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Abstract. The aim of this paper is to study the pseudo-Riemannian warped product sub-
manifolds of a paracosymplectic manifold M̄ . We first, prove some fundamental lemmas and
then derive some important results with parallel canonical structures on PR-semi-invariant
submanifolds M of M̄ . Finally, we describe the warped product submanifold M of M̄ by devel-
oping the general optimal inequality in terms of warping function and squared norm of second
fundamental form. We also consider the totally geodesic, mixed geodesic and equality case of
the inequality.
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1 Introduction

Bishop and O’Neill [1] introduced the notion of warped product, as one of
the most effective generalization of Riemannian product manifold. Thereafter,
O’Neill, B. [18] generalized the study of warped products for semi-Riemannian
manifolds. However, the theory gain recognition after Chen came with a new
class of CR-submanifolds [3] called CR-warped products in Kaehlerian mani-
fold and established the geometric inequalities for the second fundamental form
in term of warping function [4]. On the other hand, Hasegawa-Mihai [10] and
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Munteanu [17] continued the study (in the sense of Chen) for Sasakian ambient
which earlier studied by Bejancu and Papaghuic [2] and can be observed as an
odd-dimensional counterpart of Kähler manifold. Since then several geometers
have studied the geometric aspects of warped product submanifolds in almost
Hermitian and contact manifolds (c.f., [6, 14, 22, 21]). Here, it is important to
mention that the Riemannian geometric configuration may not found appropri-
ate in mathematical physics particularly, in the theory of space-time and black
hole, where the metric is not necessarily positive definite. Thus, the geometry of
warped product submanifolds with negative definite metric became an area of
investigation. Beside this the premises of warped product has perceived several
interesting contributions in semi-Riemannian geometries, and has been effec-
tively utilized in the study of general theory of relativity and black holes (c.f.,
[7, 12, 13, 18]). Recently, B.Y. Chen and M.I. Munteanuo initiated the geometry
of pseudo-Riemannian warped products submanifolds (called them PR-warped
product ) in para-Kähler manifolds and established a optimal (or sharp) ge-
ometric inequality: as the equality case holds for certain cases it follows that
the inequality cannot be improved, involving intrinsic and extrinsic invariants
[5]. Motivated to [5], we developed an optimal geometric inequality for PR-
semi-invariant warped product submanifold M of M̄ that can be viewed as an
odd-dimensional counterpart of para-Kähler manifolds.

The brief description of the present paper is as follows: In Sect. 2, we recall
some definitions, basic facts and properties of paracosymplectic manifold and
its submanifolds in the context of paracontact structure. Sect. 3 deals with the
definition of a PR-semi-invariant submanifold M of a paracosymplectic mani-
fold M̄ , some constructive lemmas, integrablity and totally geodesic conditions
for the distributions associated with the definition of M , and important results
concerning parallel canonical structure. A general optimal inequality (in the
sense of [5]) for a PR-semi-invariant warped product submanifold M consid-
ering its totally geodesic, mixed geodesic and equality cases in the setting of
paracosymplectic manifold are derived in Sect. 4.

2 Preliminaries

Let M̄ be an odd dimensional smooth manifold. An almost paracontact
structure on M̄ is a triplet (φ, ξ, η) [11], consisting of a tensor field φ of type-
(1, 1), a vector field ξ and a 1-form η satisfying the following conditions:

φ2 = I − η ⊗ ξ, η(ξ) = 1 (2.1)

where I is the identity transformation and the tensor field φ induces on 2m-
dimensional horizontal distribution D := ker(η) an almost paracomplex struc-
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ture J ; that is J2 = I and the eigen subbundles D± corresponding to the
eigenvalues ±1 of J respectively, have equal dimension m; hence D = D+⊕D−.
From the equation (2.1), it can be directly obtained that

φξ = 0, η ◦ φ = 0 and rank(φ) = 2m. (2.2)

The manifold M̄ is said to be an almost paracontact manifold if it is endowed
with an almost paracontact structure (φ, ξ, η) (c.f., [19, 23]). If an almost para-
contact manifold M̄ admits a pseudo-Riemannian metric g satisfying:

g (X,Y ) = −g (φX, φY ) + η (X) η (Y ) , (2.3)

for any vector fields X and Y , where signature of g is certainly (m+1, m); then
the quadruple (φ, ξ, η, g) is called an almost paracontact metric structure and
the manifold M̄ endowed with paracontact metric structure is called an almost
paracontact metric manifold denoted by M̄ . Furthermore with respect to g, η
is metrically dual to ξ, that is

g(X, ξ) = η(X). (2.4)

With the consequences of Eqs. (2.1), (2.2) and (2.3), we deduce that

g(φX, Y ) = −g(X,φY ), (2.5)

for any X,Y ∈ Γ(TM̄) where Γ(TM̄) denote the sections of tangent bundle
TM̄ of M̄ . The fundamental 2-form Φ on M̄ is given by

g (X,φY ) = Φ (X,Y ) . (2.6)

Definition 2.1. An almost paracontact metric manifold M̄ is said to be para-
cosymplectic if the forms η and Φ are parallel with respect to the Levi-Civita
connection ∇̄ on M̄ , i.e.,

∇̄η = 0 and ∇̄Φ = 0. (2.7)

(see [8, 15]).

Let M be a N -dimensional submanifold immersed in a (2m + 1)-dimensional
almost paracontact manifold M̄ ; we denote by the same symbol g the induced
metric on M . If Γ(TM) denotes the tangent bundle of submanifold M and
Γ(T⊥M) the set of vector fields normal to M then Gauss and Weingarten for-
mulas are given by respectively,

∇̄XY = ∇XY + h(X,Y ), (2.8)

∇̄Xζ = −AζX +∇⊥Xζ. (2.9)
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for any X,Y ∈ Γ(TM) and ζ ∈ Γ(T⊥M), where ∇ is the induced connection,
∇⊥ is the normal connection on the normal bundle Γ(T⊥M), h is the second
fundamental form, and the shape operator Aζ associated with the normal section
ζ is given by

g (AζX,Y ) = g (h(X,Y ), ζ) . (2.10)

If we write, for all X ∈ Γ(TM) and ζ ∈ Γ(T⊥M) that

ϕX = tX + nX, (2.11)

ϕζ = t′ζ + n′ζ, (2.12)

where tX (resp., nX) is tangential (resp., normal) part of ϕX and t′ζ (resp.,
n′ζ) is tangential (resp., normal) part of ϕζ. Then the submanifold M is said
to be invariant if n is identically zero and anti-invariant if t is identically zero.
From Eqs.(2.5) and (2.11), we obtain that

g(X, tY ) = −g(tX, Y ). (2.13)

Since M is a submanifold of a paracosymplectic manifold M̄ therefore for any
X,Y ∈ Γ(TM), we deduce by virtue of Eqs. (2.7), (2.8), (2.9) and (2.10) that

(∇Xt)Y = AnYX + t′h(X,Y ), (2.14)

(∇Xn)Y = n′h(X,Y )− h(X, tY ), (2.15)

where the covariant derivatives of the tensor fields t and n are, respectively,
defined by

(∇Xt)Y = ∇XtY − t∇XY, (2.16)

(∇Xn)Y = ∇⊥XnY − n∇XY. (2.17)

The canonical structure t and n on a submanifold M are said to be parallel if
∇t = 0 and ∇n = 0, respectively. Let p ∈M and {e1, · · · , eN , · · · , e2m+1} be an
orthonormal basis of the tangent space TpM̄ such that e1, · · · , eN are tangent
to M at p. The mean curvature vector H of M is given by

H(p) =
1

N
traceh. (2.18)

Also, we set

hkij = g(h(ei, ej), ek), i, j ∈ {e1, · · · , eN}, k ∈ {eN+1, · · · , e2m+1}. (2.19)
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Moreover, the squared norm of the second fundamental form h is defined as

||h||2 =

N∑
i,j=1

g(h(ei, ej), h(ei, ej)). (2.20)

A submanifold M is said to be [5]

• totally geodesic if its second fundamental form vanishes identically.

• umbilical in the direction of a normal vector field ζ on M , if Aζ = δId, for
certain function δ on M , here such ζ is called a umbilical section.

• totally umbilical if M is umbilical with respect to every (local) normal
vector field.

Let (B, gB) and (F, gF ) be two pseudo-Riemannian manifolds and f be a positive
smooth function on B. Consider the product manifold B × F with canonical
projections

π : B × F → B and σ : B × F → F. (2.21)

Then the manifold M = B ×f F is said to be warped product if it is equipped
with the following warped metric

g(X,Y ) = gB (π∗(X), π∗(Y )) + (f ◦ π)2gF (σ∗(X), σ∗(Y )) (2.22)

for all X,Y ∈ Γ(TM) and ‘∗’ stands for derivation map, or equivalently,

g = gB + f2gF . (2.23)

The function f is called the warping function and a warped product manifold
M is said to be trivial if f is constant. In view of simplicity, we will identify a
vector field X on B with its lift X̄ and a vector field Z on F with its lift Z̄ on
M = B ×f F (see also [1, 5]). Now, we recall the following proposition for the
warped product manifolds [1]:

Proposition 2.2. For X,Y ∈ Γ(TB) and U, V ∈ Γ(TF ), we obtain on
warped product manifold M = B ×f F that

(1) ∇XY ∈ Γ(TB),

(2) ∇XU = ∇UX = X(ln f)U,

(3) ∇UV = ∇′UV − g(U, V )grad(ln f),

where, ∇ and ∇′ denotes the Levi-Civita connections on M and F respectively.
Furthermore, grad(ln f) is the gradient of ln f with respect to the ambient
metric g.
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3 PR-semi-invariant submanifolds

This section includes the definition of PR-semi-invariant submanifolds M
of M̄ and conditions for distributions equipped with the definition of M and
an important results allied to the characterization of M with parallel canonical
structure.

Definition 3.1. Let M is an isometrically immersed pseudo-Riemannian sub-
manifold of an almost paracontact manifold M̄ . Then M is said to be a PR-
semi-invariant submanifold [20], if it is furnished with a pair of orthogonal dis-
tribution (D,D⊥) satisfying the conditions:

(i) TM = D⊕D⊥ ⊕ {ξ},

(ii) the distribution D is invariant under φ, i.e., φ(Dp) ⊆ Dp, for each p ∈M
and

(iii) the distribution D⊥ is anti-invariant under φ, i.e., φ(Dp
⊥) ⊆ T⊥p M , for

each p ∈M .

Here, D and D⊥ are the distributions on invariant B and anti-invariant F
submanifold of M̄ , respectively. Now, we can say that a PR-semi-invariant
submanifold M is invariant, if dimDp

⊥ = 0; anti-invariant, if dimDp = 0;
proper if dimDp 6= 0 and dimDp

⊥ 6= 0; mixed totally geodesic, if h(Dp,Dp
⊥) = 0

for each p ∈M .
Let M be a PR-semi-invariant submanifolds of a paracosymplectic manifold

M̄ such that ξ is tangent to M . Then we can write

TpM̄ = TpM ⊕ T⊥p M, p ∈M,

and the normal bundle T⊥M of M of a paracosymplectic manifold M̄ can be
decomposed as

T⊥M = φ(D⊥)⊕ ν,

where ν is normal subbundle orthogonal to φ(D⊥) and invariant under φ.
Now, we give an important lemmas for later use:

Lemma 3.2. If M be a PR-semi-invariant submanifold M of a paracosym-
plectic manifold M̄ such that ξ ∈ Γ(TM). Then for any X ∈ Γ(D) and
Z ∈ Γ(D⊥), we have

∇Xξ = 0, h(X, ξ) = 0, (3.1)

∇Zξ = 0, h(Z, ξ) = 0, (3.2)

∇ξξ = 0, h(ξ, ξ) = 0. (3.3)
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Proof. The proof of the lemma can be easily derive by using the fact that the
manifold is paracosymplectic and Gauss-Weingertan formulas. QED

Lemma 3.3. If M be a PR-semi-invariant submanifold M of a paracosym-
plectic manifold M̄ such that ξ ∈ Γ(TM). Then we have

(∇Xt)ξ = (∇Xn)ξ = (∇ξt)X = (∇ξn)X = 0; (∇ξt′)Z = (∇ξn′)Z = 0; (3.4)

for any X ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof. By virtue of lemma 3.2 and Eqs. (2.14)-(2.17), we complete the proof of
the lemma. QED

Proposition 3.4. Let M be a PR-semi-invariant submanifold M of a para-
cosymplectic manifold M̄ such that ξ ∈ Γ(TM). Then for any Y, Z ∈ Γ(TM),
canonical structure t is parallel if and only if AnY Z = AnZY .

Proof. We can write by the virtue of Eq. (2.14), that g((∇̃Xt)Y, Z) = g(AnYX+
t′h(X,Y ), Z) for all X ∈ Γ(TM). Thus, by using Eqs. (2.5), (2.10) and (2.12)
in above expression, we complete the proof of the proposition. QED

Proposition 3.5. Let M be a PR-semi-invariant submanifold M of a para-
cosymplectic manifold M̄ . Then the invariant distribution (D⊕ ξ) is

(a) integrable if and only if h(X,φY ) = h(φX, Y );

(b) totally geodesic if and only if g(h(X,φY ), φZ) = 0;

for any X,Y ∈ Γ(D⊕ ξ) and Z ∈ Γ(D⊥).

Proof. By virtue of lemma 3.2, Eqs.(2.14)-(2.17) and the fact that h is symmet-
ric, we obtain for any X,Y ∈ Γ(D⊕ ξ)), that

n([X,Y ]) = n(∇XY )− n(∇YX)

= ∇⊥XnY − (∇Xn)Y −∇⊥Y nX + (∇Y n)X

= (∇Y n)X − (∇Xn)Y

= n′h(Y,X)− h(Y, tX)− n′h(Y,X) + h(X, tY ).

Thus from above last expression we achieve the proof of the formula-(a). For
formula-(b), we have from Eqs. (2.3), lemma 3.2 and the definition of paracosym-
plectic manifold that g(∇XY, Z) = g(∇XφY, φZ). Now, using Eqs. (2.9), (2.10)
and property of Levi-Civita connection ∇ in previous expression, we derive the
required formula. This completes the proof of the proposition. QED
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Proposition 3.6. Let M be a PR-semi-invariant submanifold M of a para-
cosymplectic manifold M̄ . Then the anti- invariant distribution (D⊥) is

• integrable if and only if AnZW = AnWZ;

• totally geodesic if and only if g(h(Z, φX), φW ) = 0;

for any X,Y ∈ Γ(D⊕ ξ) and Z,W ∈ Γ(D⊥).

Proof. The proof of the proposition can be achieved by following same steps as
the proof of proposition 3.5. QED

Lemma 3.7. If M be a PR-semi-invariant submanifold M of a paracosym-
plectic manifold M̄ . Then we have

g(∇SZ,X) = g(φAφZS,X),∀ X ∈ Γ(D⊕ ξ), Z ∈ Γ(D⊥), S ∈ Γ(TM). (3.5)

AφZW = AφWZ, ∀ Z,W ∈ Γ(D⊥). (3.6)

AζX = φAφζX, ∀ X ∈ Γ(D⊕ ξ), ζ ∈ Γ(ν). (3.7)

g(AζX,Z) = −g(AφζφX,Z),∀ X ∈ Γ(D⊕ ξ), ζ ∈ Γ(ν) and Z ∈ Γ(D⊥). (3.8)

Proof. We have from Eqs. (2.5), (2.7), (2.9) and lemmas 3.2, 3.3, that

g(φAφZS,X) = g(φ∇̄SZ, φX).

Thus, formula-(3.5) follows from Eqs. (2.3), (2.8), lemma 3.2 and property of
Levi-Civita connection ∇̄. To prove formula-(3.6), we have from the definition of
paracosymplectic and Eq. (2.9) that g(AφZW,S) = g(∇̄WZ, φS) which implies
g(AφZW − AφWZ, S) = g([Z,W ], φS). Therefore from the fact of integrablity
of (D⊥), [Z,W ] ∈ Γ(D⊥) while φS ∈ φ(D ⊕ D⊥) conclude the formula-(3.6).
Finally, the formulas-(3.7) and (3.8) follows from expressions g(AφζX,S) =
g(ζ, h(X,S)), g(AζφX, S) = −g(ζ, h(S,X)) and the fact that distributions D
and ν are invariant under φ. The expressions above can be obtained in light of
Eqs. (2.5), (2.8) ,(2.9), (2.10) and the fact symmetry of h. This completes the
proof of the lemma. QED

Theorem 3.8. For a parallel canonical structure n, the PR-semi-invariant
submanifolds M of a paracosymplectic manifold M̄ satisfies
(i) AνD

⊥ = 0, (ii) AnD⊥(D⊕ ξ) = 0 and (iii) M is (D⊕ ξ,D⊥)-mixed totally
geodesic.

Proof. For any X ∈ Γ(D ⊕ ξ), Z ∈ Γ(D⊥) the theorem is obvious in light of
lemmas 3.2 and 3.3. Let S, T ∈ Γ(TM), then from Eq. (2.15) and the fact that
canonical structure n is parallel we find that

n′h(S, T ) = h(S, tT ). (3.9)
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In particular if we replace T by Z ∈ Γ(D⊥) in previous expression we deduce
that

n′h(S,Z) = 0. (3.10)

Furthermore, by the use of Eqs. (2.5), (2.10) and (2.12), we obtain that

g(n′h(S,Z), ζ) = −g(AφζZ, S)

for any ζ ∈ ν. Therefore previous expression using Eq. (3.10) and the fact that
ν is invariant reduced to g(AζZ, S) = 0. Hence proves the formula-(i) since, S
is a non null tangent vector field on M . For formula -(ii), we have from the
certainty that n is parallel and Eqs. (2.3), (2.11), (2.12) that g(h(S, tX), nZ) =
g(n′h(S,X), φZ) = −g(h(S,X), Z) = 0 for any X ∈ Γ(D). Now, using Eq.
(2.10) and the fact that X belongs to the invariant distribution in equation
g(h(S, tX), nZ) = 0, we achieve the required formula. Hence we can conclude
using Eq. (3.9) that n′2h(X,Z) = n′h(X, tZ) = 0, now again on the other side
n′2h(X,Z) = n′2h(Z,X) = n′h(Z, tX) = h(Z,X) for all X ∈ Γ(D), Z ∈ Γ(D⊥).
Finally, formula -(iii) can be derived using previous expressions and the fact of
symmetry of h. This completes the proof of the theorem. QED

4 An optimal geometric inequality

In this section, we first recall the definitions and results from [20] and then
establish general sharp inequality (in the sense of B.Y.Chen [5]) for PR-semi-
invariant warped product submanifolds of the form B×fF with the characteristic
vector field ξ tangent to B in paracosymplectic manifolds.

Definition 4.1. A PR-semi-invariant submanifold is called a PR-semi-invariant
warped product if it is a warped product of the form: B ×f F or F ×f B, where
B is an invariant submanifold, F is an anti-invariant submanifold of an almost
paracontact manifold M̄ and f is a non-constant positive smooth function on
the first factor. If the warping function f is constant then a PR-semi-invariant
warped product submanifold is said to be a PR-semi-invariant product [20].

For further systematic analysis of PR-semi-invariant warped product subman-
ifolds in a paracosymplectic manifold we recall some findings which implies the
existence and nonexistence of the warped products of different structure.

Proposition 4.2. [20] There doesn’t exist a PR-semi-invariant warped
product submanifold M = B ×f F of a paracosymplectic manifold M̄ such
that the characteristic vector field ξ is tangent to F .
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Proposition 4.3. [20] There doesn’t exist a PR-semi-invariant warped
product submanifold M = B×f F of a paracosymplectic manifold M̄(φ, ξ, η, g)
such that the characteristic vector field ξ is normal to M .

Proposition 4.4. [20] Let M → M̄ be an isometric immersion of a pseudo-
Riemannian manifold M into a paracosymplectic manifold M̄ . Then a necessary
and sufficient condition for M to be a PR-semi-invariant warped product B×fF
submanifold is that the shape operator of M satisfies

AφZX = −φX(µ)Z, X ∈ Γ(D⊕ < ξ >), Z ∈ Γ(D⊥), (4.1)

for some function µ on M such that V (µ) = 0, V ∈ Γ(D⊥).

Now here we establish some geometric inequalities for the warped structure of
the form B ×f F such that the characteristic vector field ξ is tangent to B. We
first gave an important lemma for later use;

Lemma 4.5. If M = B ×f F be a PR-semi-invariant warped product
submanifold M of a paracosymplectic manifold M̄ such that ξ is tangent to B.
Then we have

g(AφWZ, tX) = −g(∇XZ,W ); (4.2)

g(AφζZ,X) = −g(∇⊥XφZ, ζ); (4.3)

g(AφζZ,W ) = −g(∇⊥ZφW, ζ); (4.4)

for any X ∈ Γ(D), Z,W ∈ Γ(D⊥) and ζ ∈ Γ(T⊥M).

Proof. The proof of the lemma is obvious for X = ξ by virtue of lemma 3.2,
moreover for all ξ 6= X ∈ Γ(D), Z,W ∈ Γ(D⊥) and ζ ∈ Γ(T⊥M) the lemma can
be achieved in light of equations (2.3), (2.7)-(2.12), and proposition 2.2. This
completes the proof of the lemma. QED

Theorem 4.6. Let M̄ be an odd-dimensional paracosymplectic manifold
and M = B×f F be a warped product submanifold of M̄ such that B is a (2α+
1)-dimensional invariant submanifold tangent to ξ and F a β-dimensional anti-
invariant submanifold of M . If we suppose that the submanifold F is timelike
and the normal sub-bundle φ(F ) in M̄ is invariant under the action of ∇⊥ i.e.,
∇⊥φ(F ) ⊆ φ(F ). Then the squared norm of the second fundamental form ||h||2
of M satisfies

||h||2 ≥ 2β||∇(ln f)||2 + ||hDν ||2 (4.5)

where ∇(ln f) is the gradient of ln f and ||hDν ||2 = g(hν(D,D), hν(D,D)) with
its ν component and invariant distribution D.



A general optimal inequality for warped product submanifolds 55

Proof. Let us consider the local orthonormal frame on B by {e0 = ξ, ei, ei? =
φ(ei)}, for any i, j = {1, · · · , α} such that ε0 = g(e0, e0) = 1, εi = g(ei, ei) = 1
accordingly εi? = g(ei? , ei?) = −1 for all i, and on F by {ēa} for any a, b, ... =
{1, · · · , β} such that ε̄a = g(ēa, ēa) = −1 ∀ a. Furthermore, on ν the orthonor-
mal frame can be assumed as {ζk, ζk? = φ(ζk)}, for any k = {1, · · · , q} such
that εk = g(ζk, ζk) = 1 accordingly εk? = g(ζk? , ζk?) = −1 for all k. Now, we
can write by definition of squared norm of the second fundamental form that

||h||2 = g(h, h) =

g
(
h(D,D), h(D,D)

)
+ 2 g

(
h(D,D⊥), h(D,D⊥)

)
+ g
(
h(D⊥,D⊥), h(D⊥,D⊥)

)
.

(4.6)

The first factor of the right hand side of Eq. (4.6) with the definition of ||h||2,
can be written as;

g
(
h(D,D),h(D,D)

)
=

α∑
i,j=1

[
εiεjg

(
h(ei, ej), h(ei, ej)

)
+ εi?εjg

(
h(ei? , ej), h(ei? , ej)

)
+εiεj?g

(
h(ei, ej?), (h(ei, ej?)

)
+ εi?εj?g

(
h(ei? , ej?), h(ei? , ej?)

)]
+

α∑
i=1

[
ε0εig

(
h(e0, ei), h(e0, ei)

)
+ ε0εi?g

(
h(e0, ei?), h(e0, ei?)

)]
+ε0ε0g

(
h(e0, e0), h(e0, e0)

)
. (4.7)

Furthermore, using the fact that D is totally geodesic, as a consequence from
proposition 3.5–(b), we conclude that h(D,D) ∈ ν. So we can state the expres-
sions as;

h(ei, ej) = hkijζk + hk
?

ij ζk? , h(ei, ej?) = hkij?ζk + hk
?

ij?ζk? ,

h(ei? , ej) = hki?jζk + hk
?

i?jζk? , h(ei? , ej?) = hki?j?ζk + hk
?

i?j?ζk? ,

h(e0, ei) = hk0iζk + hk
?

0i ζk? , h(e0, ei?) = hk0i?ζk + hk
?

0i?ζk? ,

h(e0, e0) = hk00ζk + hk
?

00ζk? .

Above expressions in light of lemma 3.2 and Eq. (2.19), reduced to

h(ei, ej) = hkijζk + hk
?

ij ζk? , h(ei, ej?) = hkij?ζk + hk
?

ij?ζk? ,

h(ei? , ej) = hki?jζk + hk
?

i?jζk? , h(ei? , ej?) = hki?j?ζk + hk
?

i?j?ζk? ,

h(e0, ei) = h(e0, ei?) = h(e0, e0) = 0. (4.8)
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Employing Eq. (4.8) in Eq. (4.7), we derive

g
(
h(D,D),h(D,D)

)
=

α∑
i,j=1

q∑
k=1

[{
(hkij)

2 − (hk
?

ij )2
}
−
{

(hki?j)
2 − (hk

?

i?j)
2
}

−
{

(hkij?)
2 − (hk

?

ij?)
2
}

+
{

(hki?j?)
2 − (hk

?

i?j?)
2
}]

(4.9)

Since D is integrable, therefore by the use of proposition 3.5-(a) and formula
(3.7) of lemma 3.7 in Eq. (4.9), we deduce that

g
(
h(D,D),h(D,D)

)
=

α∑
i,j=1

q∑
k=1

[
(hkij)

2 − (hk
?

ij )2
]

(4.10)

Next, we evaluate the second factor of right hand side of Eq. (4.6);

g
(
h(D,D⊥), h(D,D⊥)

)
=

α∑
i=1

β∑
a=1

[
εiε̄ag

(
h(ei, ēa), h(ei, ēa)

)
+ εi? ε̄ag

(
h(ei? , ēa), h(ei? , ēa)

)]
+

β∑
a=1

ε0ε̄ag
(
h(e0, ēa), h(e0, ēa)

)
. (4.11)

Analogous to above, we can express the following as:

h(ei, ēa) = hbianēb + hkiaζk + hk
?

ia ζk? , h(ei? , ēa) = hbi?anēb + hki?aζk + hk
?

i?aζk? ,

h(e0, ēa) = hb0anēb + hk0aζk + hk
?

0aζk? .

From lemma 3.2, above expressions reduced to

h(ei, ēa) = hbianēb + hkiaζk + hk
?

ia ζk? , h(ei? , ēa) = hbi?anēb + hki?aζk + hk
?

i?aζk? ,

h(e0, ēa) = 0. (4.12)

Equation (4.11), by the use of Eq. (4.12), becomes

g
(
h(D,D⊥), h(D,D⊥)

)
=

α∑
i=1

β∑
a,b=1

q∑
k=1

[{
(hbi?a)

2 + (hki?a)
2 − (hk

?

i?a)
2
}
−
{

(hbia)
2 + (hkia)

2 − (hk
?

ia )2
}]

(4.13)
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Formula (3.8) of lemma 3.7 in Eq. (4.13), yields that

g
(
h(D,D⊥), h(D,D⊥)

)
=

α∑
i=1

β∑
a,b=1

[
(hbi?a)

2 − (hbia)
2
]

+ 2
α∑
i=1

β∑
a=1

q∑
k=1

[
(hk

?

ia )2 − (hkia)
2
]
. (4.14)

Using formula (4.2) of lemma (4.5) and Eq. (2.10) in Eq. (4.14), we obtain that

g
(
h(D,D⊥), h(D,D⊥)

)
= β

α∑
i=1

[
(ei(ln f))2 − (ei?(ln f))2

]
+ 2

α∑
i=1

β∑
a=1

q∑
k=1

[
(hk

?

ia )2 − (hkia)
2
]
. (4.15)

Now, by employing the hypothesis ∇⊥φ(F ) ⊆ φ(F ) and formula (4.3) of lemma
(4.5), we conclude that h(D,D⊥) ⊆ φ(D⊥). Thus Eq. (4.15), simplified to

g
(
h(D,D⊥), h(D,D⊥)

)
=

β

α∑
i=1

[(ei(ln f))2 − (ei?(ln f))2] = βg
(
∇(ln f),∇(ln f)

)
(4.16)

Finally, we have

g
(
h(D⊥,D⊥), h(D⊥,D⊥)

)
=

β∑
a,b=1

[
ε̄aε̄bg

(
h(ēa, ēb), h(ēa, ēb)

)]
. (4.17)

To compute the above equation we need to analyze h(ēa, ēb) to do so, we express
it in the form h(ēa, ēb) = hcabnēc + hkabζk + hk

?

abζk? . Using this expression in Eq.
(4.17), we arrive at

g
(
h(D⊥,D⊥), h(D⊥,D⊥)

)
=

β∑
a,b,c=1

q∑
k=1

[
ε̄aε̄b

{
(hcab)

2 + (hkab)
2 − (hk

?

ab )
2
}]
.

(4.18)

From formula (4.4) of lemma (4.5) and using the assumption ∇⊥φ(F ) ⊆ φ(F ),
we get h(D⊥,D⊥) ⊆ φ(D⊥) as a consequence of which hkab = hk

?

ab . Eq. (4.18)
accordingly give

g
(
h(D⊥,D⊥), h(D⊥,D⊥)

)
=

β∑
a,b,c=1

{
(hcab)

2
}
. (4.19)

By substituting, Eqs. (4.10), (4.16) and (4.19) in Eq. (4.6) we can achieve the
inequality (4.5). This completes the proof of the theorem. QED
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Now, we can state the following as a direct consequences of Theorem 4.6;

Remark 4.7. If M is mixed totally geodesic warped product submanifold in M̄
and ∇⊥φ(F ) ⊆ φ(F ) then the inequality (4.5) looks like

||h||2 ≥ ||hDν ||2.

Remark 4.8. If h(D⊥,D⊥) = 0 and ∇⊥φ(F ) ⊆ φ(F ) for M in M̄ then equality
sign for inequality (4.5) holds identically.

Theorem 4.9. Let M̄ be a (2m+1)-dimensional paracosymplectic manifold
and M = B×f F a warped product submanifold of M̄ such that B is a (2α+1)-
dimensional invariant submanifold tangent to ξ and F a β-dimensional anti-
invariant submanifold of M . If we assume that submanifold F is spacelike and
∇⊥φ(F ) ⊆ φ(F ). Then the squared norm of the second fundamental form ||h||2
of M satisfies

||h||2 ≤ 2β||∇(ln f)||2 + ||hDν ||2; (4.20)

• If h(D,D⊥) = 0 then inequality (4.20) shall be replaced by,

||h||2 ≤ ||hDν ||2,

• Equality sign for inequality (4.20) holds identically when,

h(D⊥,D⊥) = 0

where ∇(ln f) is the gradient of ln f and ||hDν ||2 = g(hν(D,D), hν(D,D)) with
its ν component and the invariant distribution D.

Proof. The proof of this Theorem can be achieved by following the proof of
Theorem 4.6 or the Theorem 4.1 (in the case of para-Kähler ambient) of [5].

QED

Theorem 4.10. Let M = B ×f F a warped product submanifold of a
paracosymplectic manifold M̄ such that B is a (2α + 1)-dimensional invariant
submanifold tangent to ξ and F a β-dimensional anti-invariant submanifold of
M . If we suppose that the submanifold F is timelike (respecvtively spaclike),
∇⊥φ(F ) ⊆ φ(F ) and B is totally geodesic in M̄ . Then the squared norm of the
second fundamental form ||h||2 on M satisfies

||h||2 ≥ 2β||∇(ln f)||2
(
respectively, ||h||2 ≤ 2β||∇(ln f)||2

)
; (4.21)

• Equality sign for inequality (4.21) holds identically when,

h(D⊥,D⊥) = 0
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where, ∇(ln f) is the gradient of ln f and D⊥ is the anti-invariant distribution
on F .

Proof. The inequality (4.21) can be drawn from the proof of the Theorem 4.6
and Theorem 4.9 respectively, whereas the case of equality can be obtained from
the proof of the inequality (4.21). QED
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