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Abstract. In the paper, the authors obtain solutions of fractional kinetic equations involving
the generalized k-Bessel function given by Mondal. These results are general in nature and are
useful to investigate many problems in applied sciences.
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1 Introduction

The Mittag-Leffler function Eα(z) was defined [11] by

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, z, α ∈ C, |z| < 0, <(α) > 0

and Eα,β(x) was defined [22] by

Eα,β(x) =

∞∑
n=0

xn

Γ(αn+ β)
. (1.1)

The k-Bessel function of the first kind was defined [14] by

Jγ,λk,v (z) =
∞∑
n=0

(−1)n
(γ)n,k

Γk(λn+ v + 1)

1

(n!)2

(
z

2

)n
,
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where k ∈ R, λ, γ, v ∈ C, <(λ),<(v) > 0,

(γ)n,k =


Γk(γ + nk)

Γk(γ)
, k ∈ R, γ ∈ C \ {0}

γ(γ + k) · · · (γ + (n− 1)k), n ∈ N, γ ∈ C

and

Γk(z) =

∫ ∞
0

e−t
k/ktz−1 d t, <(z) > 0, k > 0.

Recently, the k-Bessel function Jγ,λk,v (z) was generalized [12] by

W k
ν,c(x) =

∞∑
r=0

(−c)r

Γk(rk + ν + k)r!

(
x

2

)2r+ν/k

. (1.2)

In this paper, we consider the function (1.2) and try to obtain solutions of
fractional kinetic equations. For more details about fractional kinetic equations
and its solutions, the Bessel functions, the k-Pochhammer symbols, and the
Laplace transforms, please refer to [1, 2, 3, 4, 5, 6, 8, 9, 13, 15, 16, 17, 18, 19,
20, 23] and the closely related references therein.

As mentioned in [10], the destruction rate and the production rate is

dN

d t
= −d(Nt) + p(Nt),

where Nt(t
∗) = N(t− t∗) for t∗ > 0 and

dNi

d t
= −ciNi(t) (1.3)

with ci > 0 and Ni(0) = N0 which means the number of density of species i
at time t = 0. It is easy to see that the solution of (1.3) is Ni(t) = N0e

−cit.
Integrating on both sides of (1.3) gives

N(t)−N0 = −c · 0D−1
t N(t), (1.4)

where 0D
−1
t is the special case of the Riemann-Liouville integral operator and

c is a constant.
The fractional generalization of (1.4) was given by

N(t)−N0 = −cv0D
−v
t N(t),

where 0D
−v
t is defined by

0D
−v
t f(t) =

1

Γ(v)

∫ t

0
(t− s)v−1f(s) d s, <(v) > 0.
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2 Solutions of generalized fractional Kinetic equa-
tions

We are now in a position to find solutions of generalized fractional Kinetic
equations for the k-Bessel function.

Theorem 2.1. If d, v > 0, l, c, t ∈ C, and k ∈ R+, then the equation

N(t)−N0W
k
l,c(t) = −dv0D

−v
t N(t), (2.1)

has a solution

N(t) = N0

∞∑
r=0

(−c)rΓ(2r + l/k + 1)

Γk(rk + l + k)r!

(
t

2

)2r+l/k+1

Ev,2r+l/k+1

(
−dvtv

)
. (2.2)

where Ev,2r+l/k+1 is the generalized Mittag-Leffler function given in (1.1).

Proof. Suppose that f(t) is a real or complex valued function of the (time)
variable t > 0 and s is a real or complex parameter. The Laplace transform of
f(t) is defined by

F (p) = L[f(t) : p] =

∫ ∞
0

e−ptf(t) d t, <(p) > 0.

The Laplace transform of the Riemann-Liouville fractional integral operator [7,
21] is

L{D−vt f(t); p} = p−vF (p). (2.3)

Applying the Laplace transform on both sides of (2.1) and using (1.2) and (2.3)
lead to

L[N(t); p] = N0L
[
W k
l,c(t); p

]
− dvL

[
D−vt N(t); p

]
,

N(p) = N0

∫ ∞
0

e−pt
∞∑
r=0

(−c)r

Γk(rk + l + k)r!

(
t

2

)2r+l/k

d t− dvp−vN(p),

N(p) + dvp−vN(p) = N0

∞∑
r=0

(−c)r2−(2r+l/k)

Γk(rk + l + k)r!

∫ ∞
0

e−ptt2r+l/k d t

= N0

∞∑
r=0

(−c)r(2)−(2r+l/k)

Γ(rk + l + k)r!

Γ(2r + l/k + 1)

p2r+l/k+1
,
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and

N(p) = N0

∞∑
r=0

(−c)r(2)−(2r+l/k+1)Γ(2r + l/k + 1)

Γ(rk + l + k)r!

×

{
p−(2r+l/k+1)

∞∑
s=0

(1)s
[−(p/d)−v]s

s!

}
. (2.4)

Taking the inverse Laplace transform on both sides of (2.4) and using L−1{p−v} =
tv−1

Γ(v) for <(v) > 0 reveals

L−1(N(p)) = N0

∞∑
r=0

(−c)r(2)−(2r+l/k)Γ(2r + l/k + 1)

Γ(rk + l/k + k)r!

× L−1

{ ∞∑
s=0

(−1)sdvsp−(2r+l/k+1+vs)

}

and

N(t) = N0

∞∑
r=0

(−c)r(2)−(2r+l/k)Γ(2r + l/k + 1)

Γ(rk + l/k + k)r!

×
∞∑
s=0

(−1)sdvs
t(2r+l/k+vs)

Γ(vs+ 2r + l/k + 1)

= N0

∞∑
r=0

(−c)rΓ(2r + l/k + 1)

Γ(rk + l/k + k)r!

(
t

2

)2r+l/k

×
∞∑
s=0

(−1)sdvs
tvs

Γ(vs+ 2r + l/k + 1)
.

In view of definition of the generalized Mittag-Leffler function, we obtain the
desired result. QED

Corollary 2.1. If d, v > 0 and l, c, t ∈ C, then the equation

N(t)−N0W
1
l,c(t) = −dv0D

−v
t N(t)

has a solution

N(t) = N0

∞∑
r=0

(−c)rΓ(2r + l + 1)

Γ(r + l + 1)r!

(
t

2

)2r+l+1

Ev,2r+l+1

(
−dvtv

)
.

Proof. This follows from putting k = 1 in (2.2). QED



On solutions of fractional kinetic equations 15

Theorem 2.2. If d, v > 0, c, l, t ∈ C, and k ∈ R+, then the equation

N(t)−N0W
k
l,c(d

vtv) = −dv0D
−v
t N(t),

has the solution

N(t) = N0

∞∑
r=0

(−c)rΓ(2rv + vl/k + 1)

Γk(rk + l + k)r!

(
dv

2

)2r+l/k

× t2vr+lv/kEv,2rv+lv/k+1(−dvtv),

where Ev,2rv+lv/k+1 is the generalized Mittag-Leffler function defined in (1.1).

Proof. This can be proved by the same method as in the proof of Theorem 2.1.
So we omit all details. QED

Corollary 2.2. If d, v > 0 and c, l, t ∈ C, then the equation

N(t)−N0W
1
l,c(d

vtv) = −dv0D
−v
t N(t)

has the solution

N(t) = N0

∞∑
r=0

(−c)rΓ(2rv + vl + 1)

Γk(rk + l + k)r!

(
dv

2

)2r+l

t2vr+lvEv,2rv+lv+1(−dvtv).

Proof. This follows from putting k = 1 in Theorem (2.2). QED

Theorem 2.3. If d, v > 0, c, l, t ∈ C, and a 6= d, then the equation

N(t)−N0W
k
l,c(d

vtv) = −av0D
−v
t N(t)

has the solution

N(t) = N0

∞∑
r=0

(−c)rΓ(2rv + vl/k + 1)

Γk(rk + l + k)r!

(
dv

2

)2r+l/k

× t2vr+lv/kEv,2rv+lv/k+1(−avtv),

where Ev,2rv+lv/k+1 is the generalized Mittag-Leffler function defined by (1.1).

Proof. This can be proved by the method similar to the proof of Theorem 2.1.
So we omit all details. QED

Corollary 2.3. If d, v > 0 and c, l, t ∈ C, then the equation

N(t)−N0W
1
l,c(d

vtv) = −av0D
−v
t N(t)

has the solution

N(t) = N0

∞∑
r=0

(−c)rΓ(2rv + vl + 1)

Γk(rk + l + k)r!

(
dv

2

)2r+l

t2vr+lvEv,2rv+lv+1(−avtv).

Proof. This follows from setting k = 1 in Theorem (2.3). QED
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3 Graphical interpretation

In this section, we plot graphs of the solution (2.2). In each graph, we give
four special solutions by assigning different values to the parameters.

In Figures 1, we take k = 1 and v = 0.5, 1, 1.5, 2.

Similarly, in Figures 2 to 6, we take k = 2, 3, 4, 5, 10 and all other parameters
are fixed by 1. Hence, the effect of k is shown.

From these figures, we can see that Nt > 0 and Nt is an increasing function
for t ∈ (0,∞). We also can see that limt→0+ Nt = 0 and limt→∞Nt = ∞ hold
for all chosen parameters.

When plotting these graphs, we choose the first 50 terms of the Mittag-
Leffler function and the first 50 terms of our solutions to plot these graphs.
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Figure 1. The solution (2.2) for N(t) and k = 1
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Figure 2. The solution (2.2) for N(t) and k = 2
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Figure 3. The solution (2.2) for N(t) and k = 3
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Figure 4. The solution (2.2) for N(t) and k = 4
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Figure 5. The solution (2.2) for N(t) and k = 5



On solutions of fractional kinetic equations 19

0.0 0.2 0.4 0.6 0.8 1.0
0

1.´10-14

2.´10-14

3.´10-14

4.´10-14

5.´10-14

Υ=2

Υ=1.5

Υ=1

Υ=0.5

t

N(t)

Figure 6. The solution (2.2) for N(t) and k = 10
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