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Abstract. In this paper we will discuss the generalized symmetric spaces for SL2(F,) and
GL2(Fy). Specifically we will characterize the structure of these spaces and prove that when
the characteristic of Iy is not equal to two the extended generalized symmetric space is equal
to the generalized symmetric space for SLa(F,) and nearly equal for GL2(F,) for all but one
involution.
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1 Introduction

Real symmetric spaces were introduced by Elie Cartan [2] as a special class
of homogeneous Riemannian manifolds. These spaces were later generalized
by Berger [1] who gave classifications of the irreducible semisimple symmetric
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spaces. Since then a rich and deep theory has developed that plays a key role in
many fields of active research such as Lie theory, differential geometry, harmonic
analysis and physics. The theory of symmetric spaces has numerous generaliza-
tions, e.g., symmetric varieties, symmetric k-varieties, Vinberg’s theta-groups,
spherical varieties, Gelfand pairs, Bruhat-Tits buildings, Kac-Moody symmet-
ric spaces, and generalized symmetric spaces, which are of importance in many
areas of mathematics and physics, including number theory, algebraic geome-
try, and representation theory. These generalizations provide a vast source of
interesting open problems.

Generalized symmetric spaces can be defined as the homogeneous spaces
G/H with G an arbitrary group and H = G = {g € G | 0(g) = g} the
fixed-point group of an order n-automorphism 6. Of special interest are au-
tomorphisms of order 2 which are also called involutions. If GG is an algebraic
group defined over a field k and 6 an involution defined over k, then these spaces
are are also called symmetric k-varieties, which were introduced in [3]. Much is
known of the structure of symmetric k-varieties for k algebraically closed and
k = R. The goal of this paper is to explore the structure of generalized symmet-
ric spaces for G = SLa(k) and GLa(k) where k = ;. Generalized symmetric
spaces over finite fields occur in the study of perverse sheaves as in the work of
Lusztig in [8] and others.

For involutions there is a natural embedding of the homogeneous spaces
G/H in the group G as follows. Let 7 : G — G be a morphism of G given
by 7(9) = gf(g)~! for ¢ € G where 6 is an involution of G. The image is
7(G) = Q = {g0(g9)~' | g € G}. The map 7 induces an isomorphism of the coset
space G/H onto 7(G) = Q. So, G/H = Q. If G is an algebraic group defined
over an algebraically closed field, then @ is a closed subvariety of G.

Definition 1. The generalized symmetric space determined by (G, 6)
is G/H=Q={g0(9)"" | g€ G}.

Note, if one considers H\G instead of G/H and lets H act on G from the
left, then we define 7(g) = g~ '0(g).

Definition 2. The extended symmetric space determined by (G, 0) is
R={geG|0(g) =g}

In general, Q C R and typically @ # R. For example, the involution
6 : SLy(R) — SLa(R) defined by 6(A) = (AT)~!, where AT denotes the trans-
pose of the matrix A, finds @ as the set of matrices of the form {AAT | A €
SLy(R)} and R = {4 € SLy(R) | A = AT}, Here, R is the familiar set of
symmetric matrices in SLo(R), but @ is the set of symmetric positive definite
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matrices in SLa(R). Clearly, @ C R but @ # R. We will see in this paper that
when we work over a finite field the results are different. The extended sym-
metric spaces play an important role in generalizing the Cartan decomposition
for real reductive groups to reductive algebraic groups defined over an arbitrary
field. While for real groups it suffices to use ) for the Cartan decomposition, in
the general case one needs the extended symmetric space R.

We begin our analysis using a classification of the involutions of SLa(IF,)
and GLg(F,) as determined by Helminck and Wu in [6]. Each conjugacy class of
involutions will define a generalized symmetric space as seen in [4]. Using these
conjugacy classes, an examination of ) and R for various involutions allows for
further study of the structure of the generalized symmetric spaces. Namely, we
can look at the study of orbit decomposition of ) by Borel subgroups, fixed-
point groups, toral subgroups and parabolic subgroups. These decompositions
lend themselves to the representation theory of the space as seen in [5].

In section 1 we discuss the basic definitions and classification of involutions
of the groups SLa(FF,;) and GL2(FF,) and give an explicit description of @ and
R over a general finite field for a representative involution for these specific
groups. Our discussion begins with SLy(F,). We continue to use those results in
the characterization of GLa(FF,;). We prove that @ = R for SLy(F,) when ¢ # 2
in section 1 and discuss @ and R in GLy(F,) in section 3.

2 The generalized and extended symmetric spaces in
SLy (Fq)

For any involution of an algebraic group G, the generalized symmetric space
Q is contained in the extended generalized symmetric space R because

0 (96(9)"") =0(9)g" = (90(9)™")

However, the reverse containment is rare. For example, if G is a real connected
group, @, the image of 7, is also connected while R often is not. After estab-
lishing some preliminary facts, we will show that reverse containment does hold
for any involution of the special linear group SLy(F,) provided that the charac-
teristic of I, is not equal to two.

-1

To begin we will consider finite fields & = F, of characteristic not equal to
two. We will also consider automorphisms 6 and ¢ of a group G to be isomorphic
if there exists a ¢ € Aut(G) such that ¢8¢~! = o. The following theorem
classifies the involutions for SLa(k) over such fields.
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Theorem 1 (Helminck, Wu [6, Theorem 1]). Let G = SLa(k) with char(k) #
2 and let 0 € Aut (G) be an involution. Then 0 acts as conjugation by X, =

0 1 , ‘
where m € k™. Furthermore, if m,n € k* are in the same square class,
m 0

then conjugation by X,, is isomorphic to conjugation by X,,.

Given that k = IF, is not of characteristic two, we know F}/ (FZ)Q has just
two square classes. Therefore, there are, up to isomorphism, two involutions
both acting as conjugation by X,, - one for m a square and one for m a non-
square. We will denote the involution that acts as conjugation by X,, as 0,,.
The generalized symmetric space of G formed from the action of 6, will be
denoted as @, (G) and the extended symmetric space of the same group under
the same involution as R,,(G). We omit the subscript m when specifying the
involution is unnecessary.

For G = SLg (k) with char(k) # 2 we have the following descriptions of the
generalized and extended symmetric spaces:

Qm (SLa (k) = {g0(g9)""| g € SLa (k) }
ORIy

Ry (SL (k) = {g € SLy (k)| 0(g) = g*}
A Do |G )G -0
{0

We can now show these two spaces are equal for k = IF, with ¢ # 2t

Theorem 2. For G = SLy(k) where k = F, with char(k) # 2 and any
involution 0,, of G, Q(SLa(k)) = R(SLa(k)).

g € SLy (k:)} and

ad+mb2:1}.

Proof. As was previously shown, Q(SL2(F,)) € R(SLa(F,)). Let r € R (SLa (Fy)).
a b . e
Then r = <mb d> for some a, b, and d in F, satisfying
1 = ad+mb* (2.1)

To demonstrate that r is an element of @ (SLa (Fy)), we must find some g €
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(01 /0 1\
~9\m 0)9 m 0

in accordance to the description of @, (SL2 (Fy)) given above. We proceed with
several cases. Though the details of constructing ¢ in each case are not shown,
it should be stated that the computations required to provide this presentation
involve solving several nonlinear multivariable equations simultaneously.

SL; (Fy) such that

Case 1. Suppose a = 0. Then by equation (2.1) we have b> = m~!. Therefore,
this case only arises for 6,,, where m is in the square class. Realizing b = +vm~!
and letting ¢ be any element in F; we have:

- 0 +vml
S \Fvm o d )]
Then

-1
0 1\ ,/0 1 ¢ +tv/m 1
T = g <m 0) g <m O> fOI‘ g = <:l: \/ﬁ(d;*t_l) dt-‘,—;il 6 SLQ(Fq)

It is worth noting that in this description we are listing all possible g €
SLy(F,) such that r = g(6(g))~!. In practice, if one wanted a specific element
g, one could chose a value for ¢ and either sign for /m.

Case 2. Suppose d = 0. Again, equation (2.1) gives us b> = m~!. Thus, as
in the previous case, we are only considering 6,, where m is in the square class.
Realizing b = +vVm~! and letting ¢ be any element in [, we have:

T (¢jﬁ i\/g?l>

is in @ for

at+mt ! at—mt "

g= (T 2vm )
t ;%
m
Case 3. Suppose a # 0, d # 0 and —md € (IF;;)Q. Write —md = s? for
some s € [Fy. Thus d = —m~1s%. By equation (2.1) we have a = ms™2(mb* — 1).
Then
<ms_2 (mb2 — 1) b >
r= —1.2

—mb -m= s

is in @ for

- bms~1 571
9= —5 0 /)"
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Case 4. Suppose a # 0, d # 0 and —md ¢ (F;)Q. First we show that
d+m 2% = y? holds for some z,y € F,. If d is a square then choose x = 0 and
y = v/d. Suppose d is not a square. Then —m = (—md)(d~') is a square because
it can be expressed as a product of two non-squares. Every element in a finite
field can be expressed as the sum of two squares. Therefore, d = y? + 22 for
2
some y and z in F,. Thus, d — 2% = 42, or equivalently d+m~* ( —sz) =y
and we can choose x = v/ —mz2.

Recall we have chosen r = ( “ b> such that equation (2.1) holds. This

—mb d
equation implies that a = d~!(1 — mb?) and so for

1—mb?
r = Tm b
—mb d
xb+y  am~l4by
g= d d .
T Yy

We know g € SLo(FF,) because we chose x and y so that d +m~'z? = y%. Thus
it follows that det(g) = yimez? _ dm _ QED

dm — dm

let

Remark 1. Theorem 2 also holds if one replaces F, by any field k& of char-
acteristic not 2 for which any element can be written as a sum of two squares.

Remark 2. A similar result does not hold for k = Q, the p-adic numbers.
We conjecture that Q,(SL2(Qp)) = Ry, (SL2(Qp)) if and only if m € Q]%.

1
It is important to note that when I, has odd characteristic, then Inn (_01 0) ,
0 1Y\. : : : 0 1\ . .
where Inn 1 o) conjugation by the matrix | 1 o) B conjugate to the

involution §(A) = (AT)~1 on SLy(F,); therefore, since R,;, = Qy,, we have also
essentially shown that every symmetric matrix in SLg(F,) has a Cholesky de-
composition gg7 where g € SLy(F q)- However, a similar result does not hold
when char(k) = 2. It was shown in [9] that the only involution of SLa(F2) is

Inn <(1) é), which gives rise to

s~ 1.0 -0 D}
we={(09)-C -6 -0 D)
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In this case, the fact that Inn ) acts as 6 where 6(A) = (AT)_1 and

01
10
() # R mirrors the result of Lempel [7] since no symmetric matrix in GL,, (F2)
with zeros on the diagonal can be decomposed into gg” for some g € GL,,(F2).

In section 3 we will consider the generalized symmetric space and the ex-
tended symmetric space for GLa(FF), and we will see how the result differs from
our result for SLy(Fy).

3 The generalized and extended symmetric spaces
for GLy(F,)

The main result of the previous section, that the generalized and extended
symmetric spaces of SLa(FF,) are equal when g # 2" | is surprising. In this section,
we discuss the conjugacy classes of involutions and extend our considerations to
the generalized and the extended symmetric spaces for GLy(F,). We conclude
by showing that, while the generalized and extended symmetric spaces are not
equal for GLy(F,) with g # 2!, they are quite similar for inner automorphisms.
This result stems from the connections between the generalized and extended
symmetric spaces for GLa(IF;) and SLy(Fy).

Since an automorphism of SLy(F,) can be written as the restriction to
SLy(FF,) of a inner automorphism of GLy(IF,), using [6], we can determine that
all inner automorphisms of GLy(FF,) are conjugate to the two forms discussed
in Theorem 1. However, in GL2(F,) we have an additional automorphism, the
involution #(A) = (AT)~! which can easily be seen as outer because it acts non-
trivially on the center. These three forms constitute all the conjugacy classes of
involutions of GLa(FF,;). We will consider these cases in the following proposi-
tions.

Proposition 1. Let F, be any finite field of characteristic not equal to 2 and
consider the inner involution 0,, of GLa(F,). Then the generalized symmetric
space Q(SLa(Fy)) is equal to the generalized symmetric space Q(GL2(Fy)).

Proof. Clearly Q(SLa(F;)) € Q(GL2(Fy)). Let z € Q(GL2(F,)). Then z =
90 (g) ™! for some g € GLa(F,). Thus

det(z) = det (g (g)™")
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=1

which implies that © € SLy(F,). Since Q(GL2(F,)) € R(GL2(F,)) we know
z € R(GL(F,)). However, by det(x) = 1 we can restrict further to conclude
x € R(SLa(F,)). Thus x € Q(SL2(F,)) by Theorem 2. QED

While the analogous result for the extended symmetric spaces of the two
groups does not hold, they are quite similar.

Proposition 2. Let F, be any finite field of characteristic not equal to 2 and
consider the inner involution 6, of GLa(Fy). If m ¢ (F;)Q, then R, (GLy(Fy)) =
Rin(SLa(Fy)). If m € (F%)?, then

Run(GLy(Fy)) = R (SLa(F,)) U {( 0 i\/ﬁ) } .

+y/m 0

Proof. Letr € Ry (GLa(F,)). Then det(X,,rX,,!) = det(r~1), implying det(r) =
+1. If det(r) = 1 then clearly r € R,,(SLa(Fy)). Suppose that r = <z 2) with
det(r) = —1. Since r € R,;,(GL2(F,)) we have

Xr = r'X,,
0 1\ [a b\ _ fa b\ [0 1
m 0)\c d)]  \c d m 0
c d _ bm  —d
ma mb) ~— \—-am ¢ )’
Therefore, a = d = 0. Because det(r) = ad — bc = —1 we have be = 1. But

¢ = mb and thus mb?> = 1, forcing m to be in the square class. We conclude
det(r) = —1 only in the case where m € (IF'Z)Z and in this case mb® = 1 so that

b=4vm~! and ¢ = mb = +/m. Therefore, if m ¢ (F})? we have
Ry (GLa(Fg)) © R (SLa2(Fy)),

and if m € (F%)? we have

Run(GL3(F,)) € Rn(SLa(F,)) U {( 0 im) } .

+/m 0

The reverse containments can be checked by direct computation. QED
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Our observations concerning the generalized and extended symmetric spaces
of GLy(F,) lead directly to the following corollary of Theorem 2.

Corollary 1. For k =F,, q # 2%, and any involution 6,,,

Qun (GLa(F,)) if m ¢ (F})*

Ry, (GLa(Fy)) = O (GLa(F,)) U {( i\(JF +( (;n—l) )} if me (F:)°.

We see above that R and @ are equal for certain inner involutions and nearly
equal for others depending on the conjugacy class of the involution. When we
consider the involution #(A4) = (A7)~ on GLy(F,), then

R ={g € GLa(F,)|0(g9) = g~}
={g € GLy(Fy)lg" = g}

As mirrored in the introduction, these are symmetric matrices in GLo(F,);
however, Q = {gg”|g € GLa(F,;)}. We know immediately in this case that |R|
is much larger than |Q|. For a brief proof, consider an element x € @. Then for
some g € GLo(F,) since x = gg? we have

det(z) = det(gg?)
det(g) det(g")
det(g)%

Since the determinant of an element in () must be a square, while the de-
terminant of an element of R can be any non-zero value in the field, @) will
always have fewer elements than R and we never achieve equality. Note, for
characteristic two, R # @) with this automorphism. We demonstrated this case
at the end of Section 2.
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