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Abstract. The purpose of this paper is to present a new annulus containing all the zeros of
a polynomial using a new identity involving generalized Fibonacci numbers. This new annulus
is related to two parameters. By examples, it is shown that this new annulus is more certain
than the known annuli.
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Introduction

Let k and t be nonzero real numbers. Generalized Fibonacci numbers Fk,t,n
are defined by

Fk,t,n = kFk,t,n−1 + tFk,t,n−2 (n ≥ 2), (1)

with the initial values Fk,t,0 = 0, Fk,t,1 = 1. For k = 1 and t = 1 we obtain
the well-known Fibonacci numbers Fn; for k = 2 and t = 1 we obtain the Pell
numbers Pn. Generalized Lucas numbers Lk,t,n are defined by

Lk,t,n = kLk,t,n−1 + tLk,t,n−2 (n ≥ 2), (2)

with the initial values Lk,t,0 = 2, Lk,t,1 = k. For k = 1 and t = 1 we obtain the
Lucas numbers Ln (for more details see [7], [8], [11] and the references therein).

For the generalized Fibonacci number Fk,t,n we have

Fk,t,n =
αn − βn

α− β
, k = α+ β and t = −αβ, (3)

where α =
k +
√
k2 + 4t

2
and β =

k −
√
k2 + 4t

2
[7].
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Let P (z) = anz
n + an−1z

n−1 + ... + a1z + a0 be a non-constant complex
polynomial of degree n. Recently, it has been obtained some new annuli con-
taining all the zeros of a given polynomial P (z) using some identities related to
above number sequences. It is known that polynomials are important in many
scientific areas and their properties have been investigated by many authors
since the time of Gauss and Cauchy. For example, Gauss showed that a poly-
nomial has no zeros outside certain circles [9]. Cauchy improved the result of
Gauss [2]. Diaz-Barrero obtained two new bounds for the moduli of the zeros
involving binomial coefficients and Fibonacci numbers [3]. Also he gave a ring
shaped region containing all the zeros of a polynomial [4]. Diaz-Barrero and
Egozcue introduced a new bound for the zeros of polynomials in term of bi-
nomial coefficients and Pell numbers [5]. Bidkham, Zireh and Mezerji proved a
result concerning the location of the zeros of polynomials in an annulus involv-
ing binomial coefficients and (k, t)-Fibonacci numbers [1]. Rather and Mattoo
found a new annulus containing all the zeros of the polynomials involving bino-
mial coefficients and new number sequences [10]. Dalal and Govil presented a
result providing an annulus containing all the zeros of a polynomial [6].

In this paper, motivated by the above studies, we present a new annulus for
the zeros of polynomials. In Section 1, we recall some known annuli containing
all the zeros of a polynomial. In Section 2, we prove a new identity using the
generalized Fibonacci number sequence. Using this identity we give a new annu-
lus containing all the zeros of polynomials. The comparison of this new annulus
with known annuli is made by examples. Consequently, we see that this new
annulus is significantly more certain than the known annuli. Finally, we give
some comparisons of this new annulus with respect to the parameters k and t
using some examples.

1 Preliminaries

In this section we recall some known theorems and corollaries in the litera-
ture. For example, Gauss introduced the following result on the investigation of
the region containing the zeros of a polynomial.

Theorem 1.1. [9] Let P (z) = anz
n+an−1z

n−1+...+a1z+a0 be a non-constant
complex polynomial of degree n. Then all the zeros of P (z) lie in the disc

D1 =
{
z ∈ C : |z| = R

}
,

where R = max
1≤k≤n

{
n
√

2 |ak|
}1

k .
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Cauchy [2] improved the above result of Gauss by proving the following
theorems:

Theorem 1.2. [2] Let

P (z) = zn +

n−1∑
k=0

akz
k, ak ∈ C

be a complex polynomial of degree n. All the zeros of the polynomial P (z) lie
in the disc

D2 =
{
z : |z| < γ

}
⊂
{
z : |z| < 1 + β

}
,

where β = max
0≤k≤n−1

|ak| and γ is the unique positive root of the real coefficient

equation

zn − |an−1| zn−1 − ...− |a1| z − |a0| = 0.

Theorem 1.3. [9] Let P (z) =
n∑
k=0

akz
k (an 6= 0) be a non-constant complex

polynomial of degree n. Then its all zeros lie in the circle D3 =
{
z ∈ C : |z| ≤ θ

}
,

where θ is the positive root of the equation

|an| zn − |an−1| zn−1 − ...− |a1| z − |a0| = 0.

In [3] it was proved the following theorem using some identities involving
Fibonacci numbers and binomial coefficients. Here C(n, k) = n!

k!(n−k)! is the
binomial coefficient.

Theorem 1.4. [3] Let P (z) =
n∑
k=0

akz
k be a non-constant complex polynomial

of degree n. Then its all zeros lie in the discs D4 =
{
z ∈ C : |z| ≤ r1

}
or D5 ={

z ∈ C : |z| ≤ r2

}
, where

r1 = max
1≤k≤n


(

2n−1 C (n+ 1, 2)

k2C (n, k)
|an−k|

)1

k


and

r2 = max
1≤k≤n


(

F3n

2kFk C (n, k)
|an−k|

)1

k

 .
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In [4] it was obtained a new annulus using some identities involving Fibonacci
numbers and binomial coefficients.

Theorem 1.5. [4] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial of degree n. Then its all zeros lie in the annulus

D6 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
, (4)

where

r1 =
3

2
min

1≤k≤n

{
2nFk C (n, k)

F4n

∣∣∣∣a0

ak

∣∣∣∣} 1
k

(5)

and

r2 =
2

3
max

1≤k≤n

{
F4n

2nFk C (n, k)

∣∣∣∣an−kan

∣∣∣∣} 1
k

. (6)

In [5] Diaz-Barrero defined a new number sequence and obtained a new
annulus.

Theorem 1.6. [5] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial. Then, for j ≥ 2, all its zeros lie in the annulus

D7 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
, (7)

where

r1 = min
1≤k≤n

C (n, k)AkB
k
j

(
bBj−1

)n−k
Ajn

∣∣∣∣a0

ak

∣∣∣∣


1
k

(8)

and

r2 = max
1≤k≤n

 Ajn

C (n, k)AkB
k
j

(
bBj−1

)n−k ∣∣∣∣an−kan

∣∣∣∣


1
k

. (9)

Here An = crn + dsn and Bn =
n−1∑
k=0

rksn−1−k, where c, d are real constants and

r, s are the roots of the equation x2−ax−b = 0 in which a, b are strictly positive

real numbers. Then
n∑
k=0

C (n, k)AkB
k
j

(
bBj−1

)n−k
= Ajn for j ≥ 2.

Corollary 1.1. [5] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial. Then all its zeros lie in the annulus

D8 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
,
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where

r1 = min
1≤k≤n

{
2kPkC(n, k)

P2n

∣∣∣∣a0

ak

∣∣∣∣
} 1

k

and

r2 = max
1≤k≤n

{
P2n

2kPkC(n, k)

∣∣∣∣an−kan

∣∣∣∣} 1
k

.

More recently, it was given a new annulus by Bidkham, A. Zireh and H. A.
Soleiman Mezerji using generalized Fibonacci numbers [1].

Theorem 1.7. [1] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial of degree n. Then for j ≥ 1, all the zeros of P (z) lie in the
annulus

D9 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
, (10)

where

r1 = min
1≤k≤n


C(n, k)Ft,s,k

(
Ft,s,2j

)k (
sFt,s,2j−1

)n−k
Ft,s,2jn

∣∣∣∣a0

ak

∣∣∣∣


1
k

(11)

and

r2 = max
1≤k≤n


Ft,s,2jn

C(n, k)Ft,s,k

(
Ft,s,2j

)k (
sFt,s,2j−1

)n−k ∣∣∣∣an−kan

∣∣∣∣


1
k

. (12)

Corollary 1.2. [1] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial. Then for j ≥ 1, all its zeros lie in the annulus

D10 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
,

where

r1 = min
1≤k≤n

C(n, k)Pk (P2j )
k (P2j−1

)n−k
P2jn

∣∣∣∣a0

ak

∣∣∣∣


1
k

and

r2 = max
1≤k≤n

 P2jn

C(n, k)Pk (P2j )
k (P2j−1

)n−k ∣∣∣∣an−kan

∣∣∣∣


1
k

.
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In [10] it was given a new annulus using a new number sequence.

Theorem 1.8. [10] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial degree n. Then all its zeros lie in the annulus

D11 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
, (13)

where

r1 =
uv + 2w

uvw + w2
min

1≤k≤n


(
uvw + w2

)n
uξ(k) (uv)

b k2c
F

(u,v,w)
k C(n, k)

F
(u,v,w)
4n

∣∣∣∣a0

ak

∣∣∣∣


1
k

(14)
and

r2 =
abc+ c2

ab+ 2c
max

1≤k≤n

 F
(a,b,c)
4n(

abc+ c2
)n
aξ(k) (ab)b

k
2c F (a,b,c)

k C(n, k)

∣∣∣∣an−kan

∣∣∣∣


1
k

,

(15)

where a, b, c, u, v, w are any positive real numbers, ξ (k) := k−2
⌊
k
2

⌋
and F

(a,b,c)
m

is defined as in [10].

Using a new number sequence, Dalal and Govil proved the following theorem.

Theorem 1.9. [6] Let Ak > 0 for 1 ≤ k ≤ n with
n∑
k=1

Ak = 1. If P (z) =

n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) is a non-constant complex polynomial of degree n,

then all the zeros of P (z) lie in the annulus

D12 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
,

where

r1 = min
1≤k≤n

{
Ak

∣∣∣∣a0

ak

∣∣∣∣} 1
k

and

r2 = max
1≤k≤n

{
1

Ak

∣∣∣∣an−kan

∣∣∣∣} 1
k

.

Corollary 1.3. [6] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial of degree n. Then all the zeros of P (z) lie in the annulus

D13 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
, (16)
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where

r1 = min
1≤k≤n

{
Lk

Ln+2 − 3

∣∣∣∣a0

ak

∣∣∣∣} 1
k

(17)

and

r2 = max
1≤k≤n

{
Ln+2 − 3

Lk

∣∣∣∣an−kan

∣∣∣∣} 1
k

. (18)

Corollary 1.4. [6] Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant

complex polynomial of degree n. Then all the zeros of P (z) lie in the annulus

D14 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
, (19)

where

r1 = min
1≤k≤n

{
Ck−1Cn−k

Cn

∣∣∣∣a0

ak

∣∣∣∣} 1
k

(20)

and

r2 = max
1≤k≤n

{
Cn

Ck−1Cn−k

∣∣∣∣an−kan

∣∣∣∣} 1
k

. (21)

Here, Cn is the nth Catalan number defined by Cn = C(2n,n)
n+1 .

2 Main Results

In this section we obtain a new annulus for the zeros of polynomials using
generalized Fibonacci numbers. To do this we prove the following proposition.
Let us consider the nth generalized Fibonacci number Fk,t,n defined in (1).

Proposition 2.1. We have

n∑
i=1

ktn−iF 2
k,t,i = Fk,t,nFk,t,n+1. (22)

Proof. At first, we consider the case that n is an odd positive integer. Then
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using the equation (3) we get

n∑
i=1
k tn−i F 2

k,t,i =
n∑
i=1

(α+ β) (−αβ)n−i
(
αi − βi

α− β

)2

=
n∑
i=1

(−1)n−i(αn+i+1βn−i−2αn+1βn+αn−i+1βn+i+αn+iβn−i+1−2αnβn+1+αn−iβn+i+1)
(α−β)2

= 1
(α−β)2



+(αn+2βn−1 − 2αn+1βn + αnβn+1 + αn+1βn − 2αnβn+1 + αn−1βn+2)
−
(
αn+3βn−2 − 2αn+1βn + αn−1βn+2 + αn+2βn−1 − 2αnβn+1 + αn−2βn+3

)
+
(
αn+4βn−3 − 2αn+1βn + αn−2βn+3 + αn+3βn−2 − 2αnβn+1 + αn−3βn+4

)
−
(
αn+5βn−4 − 2αn+1βn + αn−3βn+4 + αn+4βn−3 − 2αnβn+1 + αn−4βn+5

)
.
.
.

+
(
α2n−3β4 − 2αn+1βn + α5β2n−4 + α2n−4β5 − 2αnβn+1 + α4β2n−3

)
−
(
α2n−2β3 − 2αn+1βn + α4β2n−3 + α2n−3β4 − 2αnβn+1 + α3β2n−2

)
+
(
α2n−1β2 − 2αn+1βn + α3β2n−2 + α2n−2β3 − 2αnβn+1 + α2β2n−1

)
−
(
α2nβ − 2αn+1βn + α2β2n−1 + α2n−1β2 − 2αnβn+1 + αβ2n

)
+
(
α2n+1 − 2αn+1βn + αβ2n + α2nβ − 2αnβn+1 + β2n+1

)


= 1

(α−β)2

[
α2n+1 − αn+1βn − αnβn+1 + β2n+1

]
= Fk,t,n Fk,t,n+1.

The case that n is an even positive integer can be proved by a similar way.
Consequently, we have proved the identity (22). QED

In order to determine a new annulus containing the zeros of a given polyno-
mial, we use the identity (22). We give the following theorem.

Theorem 2.1. Let P (z) =
n∑
k=0

akz
k (ak 6= 0, 0 ≤ k ≤ n) be a non-constant com-

plex polynomial of degree n. Then all the zeros of P (z) lie in the annulus

D15 =
{
z ∈ C : r1 ≤ |z| ≤ r2

}
, (23)

where

r1 = min
1≤i≤n

{
ktn−iF 2

k,t,i

Fk,t,nFk,t,n+1

∣∣∣∣a0

ai

∣∣∣∣
} 1

i

(24)

and

r2 = max
1≤i≤n

{
Fk,t,nFk,t,n+1

ktn−iF 2
k,t,i

∣∣∣∣an−ian

∣∣∣∣
} 1

i

. (25)

Proof. To prove the inequality r1 ≤ |z| we use the equation (24) . We have

r1 = min
1≤i≤n

{
ktn−iF 2

k,t,i

Fk,t,nFk,t,n+1

∣∣∣∣a0

ai

∣∣∣∣
} 1

i

,
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r1 ≤

{
ktn−iF 2

k,t,i

Fk,t,nFk,t,n+1

∣∣∣∣a0

ai

∣∣∣∣
} 1

i

and so

ri1 ≤

{
ktn−iF 2

k,t,i

Fk,t,nFk,t,n+1

∣∣∣∣a0

ai

∣∣∣∣
}

, i = 1, 2, ..., n. (26)

Let us assume that |z| < r1. In this case, if we use the inequalities |x| − |y| ≤∣∣|x| − |y|∣∣ ≤ |x+ y| , |x+ y| ≤ |x|+ |y| and |xy| = |x| |y|, respectively, we have

∣∣P (z)
∣∣ =

∣∣∣∣∣∣
n∑
i=0

aiz
i

∣∣∣∣∣∣ (27)

≥
∣∣∣a0 + a1z + a2z

2 + ...+ anz
n
∣∣∣

≥ |a0| −
∣∣∣a1z + a2z

2 + ...+ anz
n
∣∣∣

≥ |a0| −
(
|a1z|+

∣∣∣a2z
2
∣∣∣+ ...+ |anzn|

)
≥ |a0| −

n∑
i=1

|ai| |z|i

> |a0| −
n∑
i=1

|ai| ri1

= |a0|

1−
n∑
i=1

∣∣∣∣ aia0

∣∣∣∣ ri1
 .

Substituting (26) into (27), we have

∣∣P (z)
∣∣ > |a0|

1−
n∑
i=1

∣∣∣∣ aia0

∣∣∣∣ ri1


≥ |a0|

1−
n∑
i=1

∣∣∣∣ aia0

∣∣∣∣ ktn−iF 2
k,t,i

Fk,t,nFk,t,n+1

∣∣∣∣a0

ai

∣∣∣∣


≥ |a0|

1−
n∑
i=1

ktn−iF 2
k,t,i

Fk,t,nFk,t,n+1

 = 0.

Hence we have seen that there are no roots of P (z) in
{
z ∈ C : r1 < |z|

}
.
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To prove the second part of the theorem, we can write

∣∣P (z)
∣∣ =

∣∣∣∣∣∣
n∑
i=0

aiz
i

∣∣∣∣∣∣
≥ |anzn| −

n∑
i=1

|an−i| |z|n−i

= |anzn|

1−
n∑
i=1

∣∣∣∣an−ian

∣∣∣∣ 1

|z|i

 .

From the equation (25) it follows that∣∣∣∣an−ian

∣∣∣∣ ≤ ktn−iF 2
k,t,i

Fk,t,nFk,t,n+1
ri2, i = 1, 2, ..., n

and so by simple computations we find

∣∣P (r2)
∣∣ > |anrn2 |

1−
n∑
i=1

∣∣∣∣an−ian

∣∣∣∣ 1

ri2


≥ |anrn2 |

1−
n∑
i=1

(
ktn−iF 2

k,t,i

Fk,t,nFk,t,n+1
ri2

)
1

ri2


= |an| rn2

1−
n∑
i=1

(
ktn−iF 2

k,t,i

Fk,t,nFk,t,n+1

) = 0.

This proves the second part of the theorem. QED

Remark 2.1. In Theorem 2.1, if we take Ak =
ktn−iF 2

k,t,i

Fk,t,nFk,t,n+1
we obtain

n∑
k=1

Ak = 1

and so Theorem 2.1 is a special case of Theorem 1.9. But, in the following
examples, we see that our annulus is significantly more certain than the known
annuli.

Now we give some examples to make a comparison among this new annulus
and the known annuli given in Section 1.

Example 2.1. Let us consider the polynomial

P1(z) = 5z5 − 0.002z4 − 0.03z3 + 0.05z2 − 0.01z + 100.
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Using Theorem 1.5, Theorem 1.6 (a = b = c = d = 1 and j = 2), Theorem 1.7
(j = 2, k = 1 and t = 2), Theorem 1.8 (a = b = 1

5 ,c = 2
5 ,u = v = 1

2 and w = 3
8),

Theorem 2.1 (k = 2 and t = 1), Corollary 1.3 and Corollary 1.4, we obtain the
corresponding regions for the polynomial P1(z) (see Table 1).

Example 2.2. Let us consider the following polynomial

P2(z) = 2z5 + 0.007z4 − 0.06z3 + 0.02z2 − 0.013z + 50.

Using Theorem 1.5, Theorem 1.6 (a = b = 1, c = 2, d = 3 and j = 2), Theorem
1.7 (j = 2, k = 2 and t = 1), Theorem 1.8 (a = b = 1

4 ,c = 2
3 ,u = v = 1

3 and
w = 3

7) Theorem 2.1 (k = 1 and t = 1), Corollary 1.3 and Corollary 1.4, we
obtain the corresponding regions for the polynomial P2(z) (see Table 1).

The polynomial P1(z) The polynomial P2(z)

The annulus r1 r2 Area of the annulus r1 r2 Area of the annulus

D6 1.2914 2.5665 15.4543 1.3503 2.6836 16.8971

D7 1.1233 2.1385 10.4029 1.4640 2.4753 12.5155

D9 1.1448 2.8950 22.2125 1.6235 2.2321 7.3722

D11 1.2067 4.2328 51.7136 1.0445 4.5089 60

D13 1.5328 2.1623 7.3078 1.6027 2.2610 7.99

D14 1.4614 2.2673 9.4489 1.5281 2.3714 10.3059

D15 1.7533 1.8903 1.5679 1.7328 2.0912 4.3059

Table 1. The regions for the polynomials P1(z) and P2(z).

From Table 1, it can be seen that Theorem 2.1 gives better bounds in terms
of r1 and r2.

Finally, we give some comparisons for the new annuli obtained in Theorem
2.1 by different choices of the parameters k and t using the following examples.

Example 2.3. Let us consider the following polynomial

P3(z) = z6 + 0.09z5 − 0.32z4 − 0.13z3 + 0.6z2 + 0.4z + 10.

We fix the parameter k. We obtain some comparisons for the various values of
the parameter t (see Table 2).

Example 2.4. Let us consider the following polynomial

P4(z) = 100z7 + 2z6 + 9z5 − 0.32z4 − 0.13z3 + 0.6z2 + 0.4z + 40.

We fix the parameter t. We obtain the following comparison table for some
values of the parameter k (see Table 2).
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The polynomial P3(z) The polynomial P4(z)

k t r1 r2 Area of the annulus D15 k t r1 r2 Area of annulus D15

1 1 0.2403 9 254 1 7 0.7561 2.62 19

1 2 0.5434 4.2497 55 2 7 0.71 3.41 34

1 3 0.5898 3.91 46 3 7 0.18 11 380

1 4 0.6022 3.8348 45

Table 2. The bounds of the region D15 for the polynomials P3(z) and P4(z).
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