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Abstract. This paper is concerned with the existence and multiplicity of solutions for the
following Dirichlet boundary value problems involving the (p1(x), p2(x))-Laplace operator of
the form:

−div(|∇u|p1(x)−2∇u)− div(|∇u|p2(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω.

By means of critical point theorems with Cerami condition and the theory of the variable
exponent Sobolev spaces, we establish the existence and multiplicity of solutions.
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Introduction

The purpose of this article is to show the existence of solutions of the fol-
lowing Dirichlet problem involving the (p1(x), p2(x))-Laplace operator of the
form

−div(|∇u|p1(x)−2∇u)− div(|∇u|p2(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, pi ∈ C(Ω)
such that 1 < p−i := infx∈Ω pi(x) ≤ p+

i := supx∈Ω pi(x) < +∞ for i = 1, 2, and
f(x, u) : Ω× R→ R satisfies Carathéodory condition.

The operator 4p(x)u := div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian, and
becomes p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses
more complicated properties than the p-Laplacian; for example, it is inhomo-
geneous. The study of problems involving variable exponent growth conditions
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has a strong motivation due to the fact that they can model various phenom-
ena which arise in the study of elastic mechanics [22], electrorheological flu-
ids [1] or image restoration [7]. The differential operator div(|∇u|p1(x)−2∇u) +
div(|∇u|p2(x)−2∇u) is known as the (p1(x), p2(x))-Laplacian operator when p1 6=
p2. When p1(x) and p2(x) are constant, this operator arises in problems of
mathematical physics (see [3]) and in plasma physics and biophysics (see [8]).
If p1 = p2 = p, then we have a single operator the p(x)-Laplacian and problem
(1) becomes the p(x)-Laplacian Dirichlet problem of the form

−∆p(x)u = −div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(2)

which have been studied sufficiently by several authors [14, 20] and the references
therein.

Define the family of functions

F =
{
Gγ : Gγ(x, t) = f(x, t)t− γF (x, t), γ ∈ [2p−m, 2p

+
M ]
}
,

where pm(x) = min{p1(x), p2(x)}, pM (x) = max{p1(x), p2(x)} for all x ∈ Ω,
p−m = infx∈Ω pm(x), p+

M = supx∈Ω pM (x) and F (x, t) =
∫ t

0 f(x, s)ds.
Noting that when p1(x) ≡ p2(x) ≡ p is a constant, F = {f(x, t)t−2pF (x, t)}

consists of only one element.
Throughout this paper, we make the following assumptions on the function

f :

(f1) There exist C > 0 and q ∈ C+(Ω) with q(x) < p∗M (x) for all x ∈ Ω such
that

|f(x, t)| ≤ C(1 + |t|q(x)−1)

for each (x, t) ∈ Ω× R, where

C+(Ω) =
{
p(x) : p ∈ C(Ω), p(x) > 1 for all x ∈ Ω

}
and p∗M is the critical exponent of pM , i.e.,

p∗M (x) =


NpM (x)
N−pM (x) if pM (x) < N,

∞ if pM (x) ≥ N.

(f2) f(x, t) = o(|t|p
+
M−1) as t→ 0 uniformly for a.e. x ∈ Ω.

(f3) f(x,−t) = −f(x, t) for (x, t) ∈ Ω× R.
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(f4) lim|t|→∞
f(x,t)t

|t|p
+
M

= +∞, uniformly for a.e. x ∈ Ω.

(g) There exists a constant δ ≥ 1 such that for all γ, η ∈ [2p−m, 2p
+
M ] and

(s, t) ∈ [0, 1]× R, the inequality

δGγ(x, t) ≥ Gη(x, st) holds for a.e. x ∈ Ω.

In [18] the authors consider problem (1) in the particular case f(x, u) =
λ|u|q(x)−2u, where λ > 0. Under the assumptions 1 < p2(x) < q(x) < p1(x) < N

and maxy∈Ω q(y) < Np2(x)
N−p2(x) for all x ∈ Ω, they established the existence of two

positive constants λ0, λ1 with λ0 ≤ λ1 such that any λ ∈ [λ1,∞) is an eigenvalue,
while any λ ∈ (0, λ0) is not an eigenvalue of the above problem.

In [16] the authors consider problem (1) i.e., which is the well-known anisotropic
~p(.)-Laplacian problem (see, e.g., [4] and references therein) in the case N = 1, 2,
that is,

−
N∑
i=1

∂xi

(
|∂xiu|pi(x)−2∂xiu

)
= f(x, u).

Under proper growth condition and specially the well-known Ambrosetti-
Rabinowitz type condition:

∃ν > p+
M , M > 0 such that

x ∈ Ω, |t| ≥M ⇒ 0 ≤ νF (x, t) ≤ f(x, t)t, (AR)

they obtained some existence and multiplicity results.
The role of (AR) condition is to ensure the boundness of the Palais-Smale se-

quences of the Euler-Lagrange functional. This is very crucial in the applications
of critical point theory. However, although (AR) is a quite natural condition,
it is somewhat restrictive and eliminates many nonlinearities. Indeed, there are
many superlinear functions which do not satisfy (AR) condition. For instance
when p1(x) = p2(x) ≡ 2 and δ = 2, the function below does not satisfy (AR),
while it satisfies the aforementioned conditions.

f(x, t) = 2t log(1 + |t|). (3)

But it is easy to see the above function (3) satisfies (f1)–(f4).
As far as we are aware, elliptic problems like (1) involving the (p1(x), p2(x))-

Laplace operator without the (AR) type condition, have not yet been studied.
That is why, at our best knowledge, the present paper is a first contribution
in this direction. The purpose of this work is to improve the results of the
above mentioned papers. Without assuming the Ambrosetti-Rabinowitz type
conditions (AR), we prove the existence of solutions.
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Remark 1. If f(x, t) is increasing in t, then (AR) implies (g) when t is
large enough, in fact, we can take δ = 1

1−
p+
M
ν

> 1, then

δGγ(x, t)−Gη(x, st) ≥ f(x, t)t− f(x, st)st ≥ 0.

But, in general, (AR) does not imply (g), see [20, Remark 3.4] when p1(x) ≡
p2(x) ≡ p.

Now we are ready to state our results.

Theorem 1. Suppose that the conditions (f1), (f2),(f4) and (g) are satis-
fied. If q− > p+

M , then the problem (1) has at least one nontrivial solution.

Theorem 2. Assume that (f1), (f3),(f4) and (g) hold. If q− > p+
M , then

problem (1) has a sequence of weak solutions with unbounded energy.

The present paper is divided into three sections, organized as follows: In sec-
tion 2, we introduce some basic properties of the Lebesgue and Sobolev spaces
with variable exponents and some min-max theorems like mountain pass theo-
rem and fountain theorem with the Cerami condition that will be used later. In
section 3, we prove our main results.

Throughout the sequel, the letters c, ci, i = 1, 2, ..., denotes positive con-
stants which may vary from line to line but are independent of the terms which
will take part in any limit process.

Preliminaries

For the reader’s convenience, we recall some necessary background knowl-
edge and propositions concerning the generalized Lebesgue-Sobolev spaces. We
refer the reader to [9, 10, 11, 12] for details. Let Ω be a bounded domain of RN ,
denote

p+ = max{p(x) : x ∈ Ω}, p− = min{p(x) : x ∈ Ω},

Lp(x)(Ω) =

{
u : u is a measurable real-valued function,

∫
Ω
|u(x)|p(x)dx <∞

}
,

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf

{
λ > 0 :

∫
Ω
|u(x)

λ
|p(x)dx ≤ 1

}
,

becomes a Banach space [15]. We also define the space

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,
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equipped with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). Of course the

norm ‖u‖ = |∇u|Lp(x)(Ω) is an equivalent norm in W
1,p(x)
0 (Ω).

Proposition 1 ([9, 12]). (i) The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω),

where 1
p(x) + 1

p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have∫
Ω
|uv|dx ≤

( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x).

(ii) If p1, p2 ∈ C+(Ω) and p1(x) ≤ p2(x) for all x ∈ Ω, then Lp2(x)(Ω) ↪→
Lp1(x)(Ω) and the embedding is continuous.

Proposition 2 ([12]). Set ρ(u) =
∫

Ω |∇u(x)|p(x)dx, then for u ∈ X and
(uk) ⊂ X, we have

(1) ‖u‖ < 1 (respectively = 1;> 1) if and only if ρ(u) < 1 (respectively
= 1;> 1);

(2) for u 6= 0, ‖u‖ = λ if and only if ρ(uλ) = 1;

(3) if ‖u‖ > 1, then ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+;

(4) if ‖u‖ < 1, then ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p−;

(5) ‖uk‖ → 0 (respectively→∞) if and only if ρ(uk)→ 0 (respectively→∞).

For x ∈ Ω, let us define

p∗(x) =


Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 3 ([12, 13]). (i) W k,p(x)(Ω) and W
k,p(x)
0 (Ω) are separable re-

flexive Banach spaces.

(ii) If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω, then there is a
continuous (compact) embedding X ↪→ Lq(x)(Ω).

(iii) There is constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x), ∀u ∈W k,p(x)
0 (Ω).
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We recall the definition of the Cerami condition (C) introduced by G. Cerami
(see [5]).

Definition 1 ([5]). Let (X, ‖.‖) be a Banach space and J ∈ C1(X,R), given
c ∈ R, we say that J satisfies the Cerami c condition (we denote condition (Cc)),
if

• (i) any bounded sequence {un} ⊂ X such that J(un)→ c and J ′(un)→ 0
has a convergent subsequence;

• (ii) there exist constants δ,R, β > 0 such that

‖J ′(u)‖‖u‖ ≥ β ∀u ∈ J−1([c− δ, c+ δ]) with ‖u‖ ≥ R.

If J ∈ C1(X,R) satisfies condition (Cc) for every c ∈ R, we say that J satisfies
condition (C).

Note that condition (C) is weaker than the (PS) condition. However, it was
shown in [2] that from condition (C) it is possible to obtain a deformation
lemma, which is fundamental in order to get some critical point theorems. More
precisely, let us recall the version of the mountain pass lemma with Cerami
condition which is used in the sequel.

Proposition 4 ([2]). Let (X, ‖.‖) a Banach space, J ∈ C1(X,R), e ∈ X
and r > 0, be such that ||e|| > r and

b := inf
‖u‖=r

J(u) > J(0) ≥ J(e).

If J satisfies the condition (Cc) with

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

Γ := {γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = e},

then c is a critical value of J .

We also introduce the fountain theorem with the Condition (C) which is a
variant of [19, 23]. Let X be a reflexive and separable Banach space. Then, from
[21] there are {ei} ⊂ X and {e∗i } ⊂ X∗ such that

X = 〈ei, i ∈ N∗〉, X∗ = 〈e∗i , i ∈ N∗〉, 〈ei, e∗j 〉 = δi,j ,

where δi,j denotes the Kroneker symbol. For k ∈ N∗, put

Xk = Rek, Yk =
k
⊕
i=1
Xi, Zk =

∞
⊕
i=k
Xi.

We have the following lemma.
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Lemma 1. ([16]). For q ∈ C+(Ω) and q(x) < p∗M (x) for all x ∈ Ω, define

βk = sup{|u|q(x) : ‖u‖ = 1, u ∈ Zk}.

Then limk→+∞ βk = 0.

Proposition 5 ([17]). Assume that (X, ‖.‖) is a separable Banach space,
J ∈ C1(X,R) is an even functional satisfying the Cerami condition. Moreover,
for each k = 1, 2, . . . , there exist ρk > rk > 0 such that

(A1) inf{u∈Zk: ‖u‖=rk} J(u)→ +∞ as k →∞;

(A2) max{u∈Yk: ‖u‖=ρk} J(u) ≤ 0.

Then J has a sequence of critical values which tends to +∞.

Consider the following functional

Φ(u) =

∫
Ω

1

p1(x)
|∇u|p1(x)dx+

∫
Ω

1

p2(x)
|∇u|p2(x)dx, for all u ∈ X,

where X := W
1,p1(x)
0 (Ω)∩W 1,p2(x)

0 (Ω) with the norm ‖u‖ = ‖u‖p1(x) + ‖u‖p2(x),

∀x ∈ Ω. It is obvious that (X, ‖.‖) is also a separable and reflexive Banach space.

By using standard arguments, it can be proved that Φ ∈ C1(X,R) (see [6]),
and the (p1(x), p2(x))-Laplace operator is the derivative operator of Φ in the
weak sense. Denote L = Φ′ : X → X∗, then

〈L(u), v〉 =

∫
Ω
|∇u|p1(x)−2∇u∇v dx+

∫
Ω
|∇u|p2(x)−2∇u∇v dx,

for all u, v ∈ X, and 〈., .〉 is the dual pair between X and its dual X∗.

Proposition 6 ([16]). (1) L is a continuous, bounded homeomorphism
and strictly monotone operator.

(2) L is a mapping of type (S+), namely: un ⇀ u and lim supn→+∞ L(un)(un−
u) ≤ 0, imply un → u.

Let us denote

pM (x) = max{p1(x), p2(x)}, pm(x) = min{p1(x), p2(x)}, ∀x ∈ Ω.

It is easy to see that pM (.), pm(.) ∈ C+(Ω). For q(.) ∈ C+(Ω) such that q(x) <

pM (x) for any x ∈ Ω we have X := W
1,p1(x)
0 (Ω)∩W 1,p2(x)

0 (Ω) = W
1,pM (x)
0 (Ω) ↪→

Lq(x)(Ω) and the imbedding is continuous and compact.
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Definition 2. A function u ∈ X is said to be a weak solution of (1) if∫
Ω
|∇u|p1(x)−2∇u∇v dx+

∫
Ω
|∇u|p2(x)−2∇u∇v dx−

∫
Ω
f(x, u)v dx = 0,

for all v ∈ X.

Define

Φ(u) =

∫
Ω

1

p1(x)
|∇u|p1(x)dx+

∫
Ω

1

p2(x)
|∇u|p2(x)dx, Ψ(u) =

∫
Ω
F (x, u)dx.

The Euler-Lagrange functional associated to problem (1) is

J(u) = Φ(u)−Ψ(u).

Under the hypothesis (f1), the functional J is well defined, of class C1, and
the Fréchet derivative is given by

〈J ′(u), v〉 =

∫
Ω
|∇u|p1(x)−2∇u∇v dx+

∫
Ω
|∇u|p2(x)−2∇u∇v dx−

∫
Ω
f(x, u)v dx

for all u, v ∈ X. Moreover a weak solution of problem (1) corresponds to a
critical point of the functional J .

Proof of main results

First of all, we start with the following compactness result which plays the
most important role.

Lemma 2. Under assumptions (f1), (f4) and (g), J satisfies the Cerami
condition.

Proof. For all c ∈ R, we show that J satisfies (i) of Cerami condition. Let
{un} ⊂ X be bounded, J(un) → c and J ′(un) → 0. Without loss of generality,
we assume that un ⇀ u, then J ′(un)(un − u)→ 0. Thus we have

J ′(un)(un − u) =

∫
Ω
|∇un|p1(x)−2∇un(∇un −∇u)dx

+

∫
Ω
|∇un|p2(x)−2∇un(∇un −∇u)dx

−
∫

Ω
f(x, un)(un − u)dx

→ 0.
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From (f1), Propositions 1 and 3, we can easily get that
∫

Ω f(x, un)(un−u)dx→
0. Therefore, we have

2∑
i=1

∫
Ω
|∇un|pi(x)−2∇un(∇un −∇u)dx→ 0. (4)

Furthermore, since un ⇀ u in X, we have

2∑
i=1

∫
Ω
|∇u|pi(x)−2∇u(∇un −∇u)dx→ 0. (5)

From (4) and (5), we deduce that

2∑
i=1

∫
Ω

(
|∇un|pi(x)−2∇un − |∇u|pi(x)−2∇u

)
. (∇un −∇u) dx→ 0. (6)

Next, we apply the following well-known inequality(
|ξ|r−2ξ − |ψ|r−2ψ

)
. (ξ − ψ) ≥ 2−r|ξ − ψ|r, ξ, ψ ∈ RN , (7)

valid for all r ≥ 2. From the relations (6) and (7), we infer that

2∑
i=1

∫
Ω
|∇un −∇u|pi(x)dx→ 0, (8)

and, consequently, un → u in X.
Now, we check that J satisfies the assertion (ii) of Cerami condition. Arguing

by contradiction, there exist c ∈ R and {un} ⊂ X satisfying:

J(un)→ c, ‖un‖ → ∞, ‖J ′(un)‖‖un‖ → 0. (9)

Let

pn =

∫
Ω

(
|∇un|p1(x) + |∇un|p2(x)

)
dx∫

Ω
1

p1(x) |∇un|p1(x)dx+
∫

Ω
1

p2(x) |∇un|p2(x)dx
.

Choosing ‖un‖ > 1, for n ∈ N, thus

c = lim
n→+∞

(
J(un)− 1

pn
J ′(un)(un)

)
= lim

n→+∞

(
1

pn

∫
Ω
f(x, un)undx−

∫
Ω
F (x, un)dx

)
. (10)
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Denote wn = un
‖un‖ , then ‖wn‖ = 1, so {wn} is bounded. Up to a subsequence,

for some w ∈ X, we get

wn ⇀ w in X,

wn → w in Lq(x)(Ω),

wn(x)→ w(x) a.e. in Ω.

If w ≡ 0, we can define a sequence {tn} ⊂ R such that

J(tnun) = max
t∈[0,1]

J(tun).

For any B > 1
2p+M

, let bn =
(

2Bp+
M

) 1

p−
M wn, since bn → 0 in Lq(x)(Ω) and

|F (x, t)| ≤ C(1 + |t|q(x)), by the continuity of the Nemitskii operator, we see
that F (., bn)→ 0 in L1(Ω) as n→ +∞, therefore

lim
n→∞

∫
Ω
F (x, bn)dx = 0. (11)

Then for n large enough,
(

2Bp+
M

) 1

p−
M /‖un‖ ∈ (0, 1) and

J(tnun) ≥ J(bn)

=

∫
Ω

|∇bn|p1(x)

p1(x)
dx+

∫
Ω

|∇bn|p2(x)

p2(x)
dx−Ψ(bn)

≥ 1

p+
1

∫
Ω

(
2Bp+

M

)
|∇wn|p1(x)dx+

1

p+
2

∫
Ω

(
2Bp+

M

)
|∇wn|p2(x)dx

−
∫

Ω
F (x, bn)dx

≥ 2B

∫
Ω
|∇wn|p1(x)dx+ 2B

∫
Ω
|∇wn|p2(x)dx−

∫
Ω
F (x, bn)dx

≥ 2c1B‖wn‖p
−
1 + 2c2B‖wn‖p

−
2 −

∫
Ω
F (x, bn)dx

≥ 2c1B + 2c2B −
∫

Ω
F (x, bn)dx.

That is,
J(tnun)→ +∞. (12)

From J(0) = 0 and J(un)→ c, we know that tn ∈ (0, 1) and

〈J ′(tnun), tnun〉 = tn
d

dt

∣∣∣
t=tn

J(tun) = 0.
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Thus, from (12), we obtain that

1

ptn
〈Ψ′(tnun), tnun〉 −Ψ(tnun)

=
1

ptn
〈Φ′(tnun), tnun〉 −Ψ(tnun) = J(tnun)→∞, (13)

as n→∞, where ptn = 〈Φ′(tnun),tnun〉
Φ(tnun) .

Let γtnun = ptn and γun = pn, then γtnun , γun ∈ [2p−m, 2p
+
M ]. Hence,Gγtnun , Gγun ∈

F . Using (g), (13) and the fact that infn
ptn
pnδ

> 0, we get

1

pn

∫
Ω
f(x, un)undx−

∫
Ω
F (x, un)dx

=
1

pn

∫
Ω
Gγun (x, un)dx

≥ 1

pnδ

∫
Ω
Gγtnun (x, tnun)dx

≥
ptn
pnδ

(
1

ptn
〈Ψ′(tnun), tnun〉 −Ψ(tnun)

)
→ +∞,

which contradicts (10).
If w 6= 0, from (9), we write∫
Ω
|∇un|p1(x)dx+

∫
Ω
|∇un|p2(x)dx−

∫
Ω
f(x, un)undx

= 〈J ′(un), un〉 = o(1)‖un‖, (14)

that is,

1− o(1) =

∫
Ω

f(x, un)un∫
Ω |∇un|p1(x)dx+

∫
Ω |∇un|p2(x)dx

dx

≥
∫

Ω

f(x, un)un

‖un‖p
+
M

dx

=

∫
Ω

f(x, un)un

|un|p
+
M

|wn|p
+
Mdx.

(15)

Define the set Λ0 = {x ∈ Ω : w(x) = 0}. Then, for x ∈ Λ\Λ0 = {x ∈ Ω :

w(x) 6= 0} we have |un(x)| → +∞ as n→ +∞. Hence by (f4) we deduce

f(x, un(x))un(x)

|un(x)|p
+
M

|wn(x)|p
+
M → +∞ as n→ +∞.
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In view of |Λ\Λ0| > 0, we deduce via the Fatou Lemma that∫
Λ\Λ0

f(x, un)un

|un|p
+
M

|wn|p
+
Mdx→ +∞ as n→ +∞. (16)

On the other hand, from (f1) and (f4), there exists d > −∞ such that
f(x,t)t

|t|p
+
M

≥ d for t ∈ R and a.e. x ∈ Ω. Moreover, we have
∫

Λ0
|wn(x)|p

+
Mdx → 0.

Thus, there exists m > −∞ such that∫
Λ0

f(x, un)un

|un|p
+
M

|wn|p
+
Mdx ≥ d

∫
Λ0

|wn|p
+
Mdx ≥ m > −∞. (17)

Combining (15), (16) and (17), there is a contradiction. This completes the
proof of Lemma 2.

Proof of Theorem 1. By Lemma 2, J satisfies conditions (C) in X. To
apply Proposition 4, we will show that J possesses the mountain pass geometry.

First, we claim that there exist µ, ν > 0 such that

J(u) ≥ µ > 0, for all u ∈ X with ‖u‖ = ν.

Let ‖u‖ ≤ 1. Then by Proposition 2, we have

J(u) ≥ c1

p+
1

‖u‖p
+
1 +

c2

p+
2

‖u‖p
+
2 −

∫
Ω
F (x, u)dx

≥ c∗

p+
M

‖u‖p
+
M −

∫
Ω
F (x, u)dx,

(18)

where c∗ = min{c1, c2}. Since p+
M < q− ≤ q(x) < p∗M (x) for all x ∈ Ω, we have

the continuous embedding X ↪→ Lp
+
M (Ω) and X ↪→ Lq

−
(Ω) and also there are

two positive constants, c3 and c4 such that

|u|p+M ≤ c3‖u‖ and |u|q− ≤ c4‖u‖ for all u ∈ X. (19)

Let ε > 0 be small enough such that εc
p+M
3 < c∗

2p+M
. By the assumptions (f1) and

(f2), we have F (x, t) ≤ ε|t|p
+
M + cε|t|q(x), for all (x, t) ∈ Ω×R. Then, for ‖u‖ ≤ 1

it follows that

J(u) ≥ c∗

p+
M

‖u‖p
+
M − ε

∫
Ω
|u|p

+
Mdx− cε

∫
Ω
|u|q(x)dx

≥ c∗

p+
M

‖u‖p
+
M − εcp

+
M

3 ‖u‖
p+M − cεc5‖u‖q

−
.

(20)
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Therefore, there exist two positive real numbers µ and ν such that J(u) ≥ µ > 0,
for all u ∈ X with ‖u‖ = ν.

Next, we affirm that there exists e ∈ X\Bν(0) such that J(e) < 0.
Let v0 ∈ X \ {0}, by (f4), we can choose a constant

A >

1
p−1

∫
Ω |∇v0|p1(x)dx+ 1

p−2

∫
Ω |∇v0|p2(x)dx∫

Ω |v0|p
+
Mdx

,

such that

F (x, t) ≥ A|t|p
+
M uniformly in x ∈ Ω, |t| > CA,

where CA > 0 is a constant depending on A. Let s > 1 large enough, we have

J(sv0) =

∫
Ω

1

p1(x)
|∇sv0|p1(x)dx+

∫
Ω

1

p2(x)
|∇sv0|p2(x)dx−

∫
Ω
F (x, sv0)dx

≤ sp
+
1

p−1

∫
Ω
|∇v0|p1(x)dx+

sp
+
2

p−2

∫
Ω
|∇v0|p2(x)dx

−
∫
|sv0|>CA

F (x, sv0)dx−
∫
|sv0|≤CA

F (x, sv0)dx,

≤ sp
+
1

p−1

∫
Ω
|∇v0|p1(x)dx+

sp
+
2

p−2

∫
Ω
|∇v0|p2(x)dx

−Asp
+
M

∫
Ω
|v0|p

+
Mdx−

∫
|sv0|≤CA

F (x, sv0)dx+A

∫
|sv0|≤CA

|sv0|p
+
Mdx

≤ sp
+
1

p−1

∫
Ω
|∇v0|p1(x)dx+

sp
+
2

p−2

∫
Ω
|∇v0|p2(x)dx

−Asp
+
M

∫
Ω
|v0|p

+
Mdx+ c6,

which implies that
J(sv0)→ −∞ as s→ +∞.

Thus, there exist s0 > 1 and e = s0v0 ∈ X\Br(0) such that J(e) < 0.
Thereby, the Proposition 4 guarantees that problem (1) has a nontrivial

weak solution. This completes the proof.
Proof of Theorem 2. The proof is based on the Fountain Theorem.

According to Lemma 2 and (f3), J is an even functional and satisfies condition
(C). We will prove that if k is large enough, then there exist ρk > rk > 0 such
that:

(A1) bk := inf{J(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞;
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(A2) ak := max{J(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0 as k → +∞.

In what follows, we will use the mean value theorem in the following form: for
every γ ∈ C+(Ω) and u ∈ Lγ(x)(Ω), there is ζ ∈ Ω such that∫

Ω
|u|γ(x)dx = |u|γ(ζ)

γ(x). (21)

Indeed, it is easy to see that

1 =

∫
Ω

(
|u|
|u|γ(x)

)γ(x)

dx.

On the other hand, by the mean value theorem for integrals, there exists a
positive constant κ ∈ [γ−, γ+] depending on γ such that∫

Ω

(
|u|
|u|γ(x)

)γ(x)

dx =

(
1

|u|γ(x)

)κ ∫
Ω
|u|γ(x)dx.

The continuity of γ ensures that there exists ζ ∈ Ω such that γ(ζ) = κ. Com-
bining all together, we get (21).

(A1): For any u ∈ Zk such that ‖u‖ = rk is big enough to ensure that
‖u‖p1(x) ≥ 1 and ‖u‖p2(x) ≥ 1 (rk will be specified below), by condition (f1) and
(21) we have

J(u) =

∫
Ω

1

p1(x)
|∇u|p1(x)dx+

∫
Ω

1

p2(x)
|∇u|p2(x)dx−

∫
Ω
F (x, u)dx

≥ 1

p+
M

(
‖u‖p

−
1

p1(x) + ‖u‖p
−
2

p2(x)

)
− c7

∫
Ω
|u|q(x)dx− c8

≥ c∗

p+
M

‖u‖p
−
m − c7|u|q(ζ)q(x) − c9, where ζ ∈ Ω

≥


c∗

p+M
‖u‖p

−
m − c7 − c9 if |u|q(x) ≤ 1

c∗

p+M
‖u‖p

−
m − c7(βk‖u‖)q

+ − c9 if |u|q(x) > 1

≥ c∗

p+
M

‖u‖p
−
m − c7(βk‖u‖)q

+ − c10

= c∗

(
1

p+
M

‖u‖p
−
m − c11β

q+

k ‖u‖
q+

)
− c10.

We fix rk as follows

rk =
(
c11q

+βq
+

k

) 1

p−m−q+ ,
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then

J(u) ≥ c∗
(

1

p+
M

(c10q
+βq

+

k )
p−m

p−m−q+ − c11β
q+

k (c11q
+βq

+

k )
q+

p−m−q+

)
− c10

≥ c∗rp
−
m

k

(
1

p+
M

− 1

q+

)
− c10.

From Lemma 1, we know that βk → 0. Then since 1 < p−m ≤ p+
M < q+, it follows

rk → +∞, as k → +∞. Consequently, J(u)→ +∞ as ‖u‖ → +∞ with u ∈ Zk.
The assertion (A1) is valid.

(A2): Since dimYk <∞ and all norms are equivalent in the finite-dimensional
space, there exists dk > 0, for all u ∈ Yk with ‖u‖ big enough to ensure that
‖u‖p1(x) ≥ 1 and ‖u‖p2(x) ≥ 1, we have

Φ(u) ≤ 1

p−1

∫
Ω
|∇u|p1(x)dx+

1

p−2

∫
Ω
|∇u|p2(x)dx

≤ 1

p−m
‖u‖p

+
1

p1(x) +
1

p−m
‖u‖p

+
2

p2(x)

≤ c1

p−m
‖u‖p

+
1 +

c2

p−m
‖u‖p

+
2

≤ max(c1, c2)

p−m
‖u‖p

+
M ≤ dk|u|

p+M
p+M
. (22)

Now, from (f4), there exists Rk > 0 such that for all |s| ≥ Rk, we have F (x, s) ≥
2dk|s|p

+
M . From (f1), there exists a positive constant Mk such that

|F (x, s)| ≤Mk for all (x, s) ∈ Ω× [−Rk, Rk].

Then for all (x, s) ∈ Ω× R we have

F (x, s) ≥ 2dk|s|p
+
M −Mk. (23)

Combining (22) and (23), for u ∈ Yk such that ‖u‖ = ρk > rk, we infer that

J(u) = Φ(u)−
∫

Ω
F (x, u)dx

≤ −dk|u|
p+M
p+M

+Mk|Ω|

≤ −max(c1, c2)

p−m
‖u‖p

+
M +Mk|Ω|.

Therefore, for ρk large enough (ρk > rk), we get from the above that

ak := max{J(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0.
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The assertion (A2) holds. Finally we apply the Fountain Theorem to achieve
the proof of Theorem 2.
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