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Abstract. In this paper, we consider the bounded approximation property for the weighted
(LB)-spaces V H(E) and V H0(E) of entire functions defined corresponding to a decreasing
family V of weights on a Banach space E. For a suitably restricted family V of weights, the
bounded approximation property for a Banach space E has been characterized in terms of the
bounded approximation property for the space V G(E), the predual of the space V H(E).

Keywords: (LB)-spaces, weighted spaces of holomorphic functions, bounded approximation
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Introduction

The present paper deals with the study of the bounded approximation prop-
erty(BAP) for weighted (LB)-spaces of holomorphic mappings on a Banach
space. The study of the approximation properties for spaces of holomorphic
functions on infinite dimensional spaces was initiated by R. Aron and M. Schot-
tenloher in [1] and later continued in [11], [12], [13], [14], [15], [20], [21], [28].
However, by using the properties of Cesáro means operators, Bierstedt [7] stud-
ied the BAP for the projective and inductive limits of weighted spaces defined
on a balanced open subset of a finite dimensional space given by a countable
family V of weights. In case of infinite dimension, D. Carando, D. Garćıa, M.
Maestre, P. Rueda and P. Sevilla-Peris in [16], [22], [23] carried out investiga-
tions on structural properties, spectrum, composition operators defined on the
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projective limit of weighted spaces of holomorphic mappings corresponding to
an increasing sequence of weights. On the other hand, M.J. Beltrán [4, 5, 6]
studied the inductive limits of such spaces defined by a decreasing family of
weights which are referred as weighted (LB)-spaces. In our earlier work, we ini-
tiated the study of the approximation properties in [24, 25] for such spaces and
continue the same in this paper. After having given preliminaries in Section 2,
we prove in Section 3 that a separable Banach space E has the BAP if and only
if Gw(E) has the BAP, where w is a weight defined with the help of strictly
positive continuous function η on [0,∞), as w(x) = η(‖x‖), x ∈ E. Finally, in
Section 4, an S-absolute decomposition is obtained for the space V G(E), and
the BAP for the spaces V H(E) and V G(E) is investigated.

1 Preliminaries

In this section, we recall some definitions and results from the theory of
infinite dimensional holomorphy and approximation properties for which the
references are [3], [17], [18], [27], [29], [34]. The symbols N, N0 and C respec-
tively denote the set of natural numbers, N ∪ {0} and the complex plane. The
letters E and F stand for complex Banach spaces and the symbols E′ and E∗

denote respectively the algebraic dual and topological dual of E. The symbols
X and Y are used for locally convex spaces and X∗b = (X∗, β(X∗, X)) denotes
the strong dual of X, where β(X∗, X) is the topology of uniform convergence
on all bounded subsets of X.

For each m ∈ N, L(mE;F ) denotes the Banach space of all continuous m-
linear mappings from E to F endowed with its natural sup norm. For m = 1,
L(1E;F ) = L(E;F ) is the class of all continuous linear operators from E to F .
The topology of uniform convergence on compact subsets of E is denoted by τc.
A mapping P : E → F is said to be a continuous m-homogeneous polynomial
if there exists a continuous m-linear map A ∈ L(mE;F ) such that P (x) =
A(x, . . . , x), x ∈ E. The space of all m-homogeneous continuous polynomials
from E to F is denoted by P(mE;F ) which is a Banach space endowed with
the norm

‖P‖ = sup
‖x‖≤1

‖P (x)‖.

A polynomial P ∈ P(mE,F ) is said to be of finite type if it is of the form

P (x) =
k∑
j=1

φmj (x)yj , x ∈ E

where φj ∈ E∗ and yj ∈ F , 1 ≤ j ≤ k. We denote by Pf (mE,F ), the space of all
finite type m-homogeneous polynomials from E into F . For m = 1, Pf (mE,F )
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is the space of all finite rank operators from E to F , denoted by F(E,F ).
Pw(mE,F ) denotes the space of all m-homogeneous polynomials which are
weakly uniformly continuous on bounded subsets of E (a polynomial P is weakly
uniformly continuous on bounded subsets if for any bounded subset B of E and
ε > 0, there exist φi ∈ E∗, i = 1, 2, . . . , k and δ > 0 such that ‖P (x)−P (y)‖ < ε
whenever |φi(x)− φi(y)| < δ, i = 1, 2, . . . , k and x, y ∈ B).

A mapping f : U → F is said to be holomorphic, if for each ξ ∈ U , there
exists a ball B(ξ, r) with center at ξ and radius r > 0, contained in U and a
sequence {Pm}∞m=1 of polynomials with Pm ∈ P(mE;F ), m ∈ N0 such that

f(x) =

∞∑
m=0

Pm(x− ξ) (1)

where the series converges uniformly for each x ∈ B(ξ, r). The space of all
holomorphic mappings from U to F is denoted by H(U ;F ) and it is usually
endowed with τ0, the topology of uniform convergence on compact subsets of U .
In case U = E, the class H(E,F ) is the space of entire mappings from E into F .
For F = C, we write H(U) for H(U ;C). A subset A of U is U -bounded if it is a
bounded set and has a positive distance from the boundary of U . A holomorphic
mapping f is of bounded type if it maps U -bounded sets to bounded sets. The
space of holomorphic mappings of bounded type is denoted by Hb(U ;F ).

A weight v (a continuous and strictly positive function ) defined on an open
balanced subset U of E is said to be radial if v(tx) = v(x) for all x ∈ U and t ∈ C
with |t| = 1; and on E it is said to be rapidly decreasing if sup

x∈E
v(x)‖x‖m < ∞

for each m ∈ N0. Let us recall from [36], weighted spaces of entire functions
defined as

Hv(U ;F ) = {f ∈ H(U ;F ) : ‖f‖v = sup
x∈U

v(x)‖f(x)‖ <∞}

and

H0
v(U ;F ) = {f ∈ H(U ;F ) : for given ε > 0 there exists a U-bounded

set A such that sup
x∈U\A

v(x)‖f(x)‖ < ε}.

The space (Hv(U ;F ), ‖·‖v) is a Banach space and H0
v(U ;F ) is a closed subspace

of Hv(U ;F ). For F = C, we write Hv(U) = Hv(U ;C) and H0
v(U) = H0

v(U ;C).
The symbol Bv denotes the closed unit ball of Hv(U). It has been proved in
[24], p.131 that the class P(E) of polynomials is a subspace of Hv(E) if and
only if the weight v is rapidly decreasing.
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Following Beltran [4], let V = {vn} denote a countable decreasing family
(vn+1 ≤ vn for each n) of weights on E. Corresponding to V , let us consider
the weighted (LB)-spaces, i.e., the inductive limit of weighted spaces Hvn(E),
n ∈ N defined as

V H(E) =
⋃
n≥1

Hvn(E)

and

V H0(E) =
⋃
n≥1

H0
vn(E)

and endowed with the locally convex inductive topologies τI and τ ′I respec-
tively. Since the closed unit ball Bvn of each Hvn(E) is τ0-compact, it follows by
Mujica’s completeness Theorem, cf. [32], V H(E) is complete and its predual

V G(E) = {φ ∈ V H(E)′ : φ|Bvn is τ0 − continuous for each n ∈ N}

is endowed with the topology of uniform convergence on the sets Bvn . In case
V consists of a single weight v, V G(E) is written as Gv(E).

Let ∆ be a mapping from E to V G(E) defined as ∆(x) = δx where δx(f) =
f(x), f ∈ V H(E) and x ∈ E. Then ∆ ∈ H(E;V G(E)). Let us recall the
following linearization theorem from [4]

Theorem 1.1. (Linearization Theorem) Let E be a Banach space and V
be a decreasing sequence of radial rapidly decreasing weights on E. For every
Banach space F and every f ∈ V H(E,F ), there exists a unique continuous
operator Tf ∈ L(V G(E), F ) such that Tf ◦ ∆ = f . Moreover the mapping
ψ : V H(E,F )→ Li(V G(E), F ) , ψ(f) = Tf is a topological isomorphism.

In case V is a singleton set {v}, we write ∆v for ∆. The mapping ψ be-
comes an isometric isomorphism between Hv(E,F ) and L(Gv(E), F ) with ∆v ∈
Hv(E;V G(E)) and ‖∆v‖v ≤ 1. Note that the above linearization theorem also
holds for a weight v defined on an open subset U of E. As a consequence of
Theorem 1.1, we have

Proposition 1.2. [25] Let v be a radial rapidly decreasing weight on a Ba-
nach space E. Then E is topologically isomorphic to a 1-complemented subspace
of Gv(E).

Concerning the representation of members of Gv(U), we have

Proposition 1.3. [25] Let v be a weight on an open subset U of a Banach
space E. Then each u in Gv(U) has a representation of the form

u =
∑
n≥1

αnv(xn)∆v(xn)
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for (αn) ∈ l1 and (xn) ⊂ U .

A locally convex space X is said to have the approximation property if for
any continuous semi-norm p on X, for a compact set K of X and ε > 0, there
exists a finite rank operator T = Tε,K such that sup

x∈K
p(T (x)− x) < ε. If {Tε,K :

ε > 0 and K varies over compact subsets of X} is an equicontinuous subset of
F(X,X), X is said to have the BAP. When X is normed and there exists a
λ ≥ 1 such that ‖Tε,K‖ ≤ λ for each ε > 0 and each compact set K, X is said
to have the λ-BAP. In case λ = 1, we say X has the metric approximation
property(MAP).

The following characterization of the BAP for a separable Banach space due
to Pelczyński [35], is quoted from [33].

Theorem 1.4. For a separable Banach space E, the following assertions
are equivalent:

(a) E has the bounded approximation property.

(b) There is a sequence {Tn} ⊂ F(E,E) such that Tn(x) → x for every
x ∈ E.

(c) E is topologically isomorphic to a complemented subspace of a Banach
space with a monotone Schauder basis.

Improving the above result, Mujica and Vieira [33] proved

Theorem 1.5. Let E be a separable Banach space with the λ-bounded
approximation property. Then for each ε > 0, there is a Banach space F with
a Schauder basis such that E is isometrically isomorphic to a 1-complemented
subspace of the Banach space F and, the sequence {Tn} of canonical projections
in F has the properties sup

n
‖Tn‖ ≤ λ+ ε and lim sup

n→∞
‖Tn‖ ≤ λ.

We also make use of the following result from [27], which can be easily
verified.

Proposition 1.6. Let E be a Banach space with the λ-bounded approxi-
mation property. Then each complemented subspace of E with the projection
map P has the λ‖P‖-bounded approximation property.

The following result proved for the MAP for any Banach space E in [25], is
useful for the proof of the main result of this paper.

Theorem 1.7. Let v be a radial rapidly decreasing weight on a Banach
space E satisfying v(x) ≤ v(y) whenever ‖x‖ ≥ ‖y‖, x, y ∈ E. Then the following
assertions are equivalent:

(a) E has the MAP.

(b) {P ∈ Pf (E,F ) : ‖P‖v ≤ 1}τc = BHv(E,F ) for any Banach space F .

(c) BHv(E)
⊗
F
τc

= BHv(E,F ) for any Banach space F .
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(d) ∆v ∈ BHv(E)
⊗
Gv(E)

τc
.

(e) Gv(E) has the MAP.

A sequence of subspaces {Xn}∞n=1 of a locally convex space X is called a
Schauder decomposition of X if for each x ∈ X, there exists a unique sequence
{xn} of vectors xn ∈ Xn for all n, such that

x =
∞∑
n=1

xn = lim
m→∞

um(x)

where the projection maps {um}∞m=1 defined by um(x) =
m∑
j=1

xj , m ≥ 1 are

continuous.

Corresponding to a sequence space S = {(αn)∞n=1 : αn ∈ C and lim sup
n→∞

|αn|
1
n ≤

1}, a Schauder decomposition {Xn}n is said to be S-absolute if for each β =
(βj) ∈ S

(i) β · x =
∞∑
j=1

βjxj ∈ X for each x =
∞∑
j=1

xj ∈ E, and

(ii) for a continuous semi-norm p on X, pβ(x) =
∞∑
j=1
|βj |p(xj) defines a

continuous semi-norm on X.

If each Xn is one dimensional and Xn = span{xn}, then {xn}n≥1 is a
Schauder basis of X. A Schauder basis {xn}n≥1 of a Banach space X is called
monotone if ‖um(x)‖ ≤ ‖um+1(x)‖ for each m ∈ N and each x ∈ X.

Proposition 1.8. [18] If a sequence {Xn}∞n=0 of subspaces of a locally con-
vex space X is an S-absolute decomposition for X, then {(Xn)b

∗}∞n=0 is an
S-absolute decomposition for X∗b .

We quote from [11],[14], the following

Proposition 1.9. If {Xn}∞n=0 is an S-absolute decomposition of a locally
convex space X, then X has the AP(BAP) if and only if each Xn has the
AP(BAP).

Theorem 1.10. [11] Let E be a Banach space. Then E∗ has the BAP if
and only if Pw(nE) has the BAP for each n ∈ N.

2 The Bounded Approximation Property for the space
Gη(E)

Throughout this section η : [0,∞)→ (0,∞) denotes a continuous decreasing
function satisfying η(r)rk → 0 for each k ∈ N0, i.e. η is rapidly decreasing.
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For such a function η, consider a weight w on a Banach space E as w(x) =
η(‖x‖), x ∈ E. Clearly w is a radial rapidly decreasing weight on E satisfying
w(x) ≤ w(y) whenever ‖x‖ ≥ ‖y‖, x, y ∈ E. For a weight given by η, we
write Hη for Hw and Gη for Gw. In this section, we characterize the bounded
approximation property for the space E in terms of the bounded approximation
property for the space Gη(E).

Theorem 2.1. Let (E, ‖ · ‖) be a Banach space with a monotone Schauder
basis {xn : n ∈ N} and w be a radial rapidly decreasing weight on E satisfying
w(x) ≤ w(y) whenever ‖x‖ ≥ ‖y‖, x, y ∈ E. Then, for each Banach space
F and f ∈ Hw(E,F ), there exists a sequence {fn} ⊂ Hw(E)

⊗
F such that

fn
τc−→ f and ‖fn‖w ≤ ‖f‖w, and a fortiori, BHw(E)

⊗
F is τc-sequentially dense

in BHw(E,F ).

Proof. Let f ∈ BHw(E,F ). For each n ∈ N, write Bn = En ∩ nBE , where
En = span{x1, x2, . . . , xn}. Clearly each Bn is a compact subset of E. Thus, by
implication (a)⇒ (c) of Theorem 1.7, there exists a sequence (fn) ⊂ BHw(E)

⊗
F

with ‖fn‖w ≤ ‖f‖w for each n ∈ N such that

sup
x∈Bn

‖fn(y)− f(y)‖ < 1

n
(2)

Since {fn : n ∈ N} is an equicontinuous subset of Hw(E,F ), for ε > 0, there
exists a δ > 0 such that for each n ∈ N and ‖y − x‖ < δ.

‖fn(y)− fn(x)‖ < ε. (3)

As the basis {xn} is monotone, E =
⋃
Bn . Fix y0 ∈ E. Then for the above

δ > 0, choose n0 ∈ N and x ∈ Bn0 such that ‖y0 − x‖ < δ. By (2), {fn(x)}
is a Cauchy sequence, and so {fn(y0)} is Cauchy by (3). Thus fn(y) → f(y),
for each y ∈ E. As the sequence {fn} is equicontinuous, it converges in the τc
topology. QED

A particular case of the above theorem for the weight given by η, is stated
in

Theorem 2.2. Let E be Banach space with a monotone Schauder basis.
Then BHη(E)

⊗
F is τc-sequential dense in BHη(E,F ) for each Banach space F .

The next proposition is a particular case of [33, Therorem 1.2]. Its proof
makes use of the following lemma from [33].

Lemma 2.3. Let E be a finite dimensional Banach space of dimension n.
Then for each ε > 0, there exist m ∈ N and operators U1, . . . , Umn ∈ L(E;E) of
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rank one such that

mn∑
j=1

Uj(x) = x for each x ∈ E

and

‖
k∑
j=1

Uj‖+ ‖
mn∑

j=k+1

Uj‖ ≤ 1 + ε for each 1 ≤ k ≤ mn.

Proposition 2.4. Let E be a separable Banach space with the bounded
approximation property. Then there is a Banach space F having Schauder basis
such that E is topologically isomorphic to a 1-complemented subspace of F .

Proof. To facilitate the reading, we outline its proof from [33], cf. the proof of
Theorem 1.2. Assume that E has the λ-BAP for some λ > 0 and {yn}∞n=1 is a
dense subset of E. Then for each n ∈ N, there exist Tn ∈ F(E;E) such that
‖Tn‖ ≤ λ and ‖Tnyi−yi‖ ≤ 1

n for 1 ≤ i ≤ n. Let Sn be the sequence of operators

defined as S1 = T1 and Sn = Tn − Tn−1, n ≥ 2. Then
∞∑
n=1

Sn(x) = x for each

x ∈ E.

Choose ε > 0 arbitrarily and a strictly decreasing sequence {εn} of positive
numbers tending to zero with ε1 = ε

λ . Then for each n ∈ N, there are operators

Un,1, Un,2, . . . , Un,mn on Sn(E) of rank one such that
mn∑
j=1

Un,jx = x for each

x ∈ Sn(E) and ‖
k∑
j=1

Un,j‖ + ‖
mn∑

j=k+1

Un,j‖ ≤ (1 + εn) for each 1 ≤ k ≤ mn by

Lemma 2.3.

For each k ∈ N, we define the operators Ak and numbers δk as follows:

Ak = Un,i ◦ Sn and δk = εn

where i, n are chosen such that k has the unique representation in the form
k = m1 + · · ·+mn−1 + i with 1 ≤ i ≤ mn. Then

‖
k∑
j=1

Aj(x)− x‖ ≤ ‖Tn−1x− x‖+ (1 + εn)‖(Tn − Tn−1)(x)‖ → 0 as n→∞.

Since each Aj is of rank one, there exist φj ∈ E∗ and aj ∈ E such that Aj(x) =

φj(x)aj . Thus
∞∑
j=1

Aj(x) =
∞∑
j=1

φj(x)aj = x and ‖
∞∑
j=1

Aj‖ ≤ λ(1 + δk).
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Now consider the sequence space F = {(αj) :
∞∑
j=1

αjaj converges in E}. It

is a Banach space endowed with the norm |||(αj)||| = sup
k
‖

k∑
j=1

αjaj‖ for which

unit vectors form a monotone Schauder basis. The mappings A : E → F and

B : F → E defined as A(x) = (φj(x)), x ∈ E and B((αj)) =
∞∑
j=1

αjaj satisfy

(i) B ◦A = IE , the identity map on E, (ii) ‖B‖ ≤ 1; and
(iii)A ◦B : F → F is a projection map.

Define W = {(αj) ∈ F : ‖
∞∑
j=1

αjaj‖ ≤ 1, ‖
k∑
j=1

αjaj‖ ≤ λ(1 + δk) for each k}.

Then

{(αj) ∈ F : ‖B((αj))‖ ≤ 1 and ‖y‖ ≤ λ} ⊂W ⊂ {(αj) ∈ F : ‖(αj)‖ ≤ (1 + ε1)}.

ThusW is an absolutely convex, absorbing and bounded set and so its Minkowski
functional ‖ · ‖W defines a norm on F . We write FW = (F, ‖ · ‖W ). Moreover,
||| · ||| ≤ ‖·‖W yields the identity I : (F, ‖·‖W )→ (F, ||| · |||) is a homeomorphism
and so FW is a Banach space having unit vectors as Schauder basis. It is shown
in [33] that A : E → FW is an isometric embedding and A ◦ B : FW → FW
is a projection map with ‖A ◦ B‖W ≤ 1. Thus A(E) is 1-complemented in
FW . QED

Theorem 2.5. Let E be a separable Banach space with the BAP. Then
BHη(E)

⊗
G is τc-sequentially dense in BHη(E,G) for each Banach space G.

Proof. Consider f ∈ BHη(A(E),G). Recalling the notations from the proof of the
preceeding proposition, we have f ◦A ◦B ◦ I ∈ BHη(FW ,G); indeed,

sup
y∈F

η(‖y‖W )‖f ◦A ◦B ◦ I(y)‖G ≤ sup
y∈F

η(‖A ◦B ◦ I(y)‖W )‖f(A ◦B ◦ I(y))‖G ≤ 1

as ‖A ◦ B ◦ I(y)‖W ≤ ‖y‖W for each y ∈ F and η is decreasing. Thus, in
view of Theorem 2.2, there exists a sequence (fn) ⊂ BHη(FW )⊗G such that

fn
τc−→ f ◦A ◦B ◦ I.
Write f ′n for the restriction of fn on A(E), .i.e. f ′n = fn|A(E).
In order to show the convergence of f ′n to f with respect to τc, consider a

compact subset K of A(E). Then K = A(K ′) for some compact set K ′ of E.
Consequently,

sup
y∈K
‖(f ′n − f)(y)‖G = sup

x∈K′
‖f ′n(A(x))− f(A(x))‖G

= sup
x∈K′

‖f ′n(A(x))− f ◦A ◦B ◦ I ◦A(x)‖G → 0 as n→∞.
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QED

Next, we prove

Proposition 2.6. For a given weight w on an open subset U of a Ba-
nach space E, if the closed unit ball BHw(U)

⊗
F is τc-sequentially dense in

BHw(U,F ) for some Banach space F , then F(Gw(U), F ) is sequentially dense in
(L(Gw(U), F ), τp) where τp is the the topology of pointwise convergence.

Proof. Choose T ∈ L(Gw(U), F ) and ε > 0 arbitrarily. Then by Theorem 1.1,
there exist f ∈ Hw(U,F ) such that T = f ◦ ∆w. By the hypothesis, there is
a sequence (fn) ⊂ Hw(U)

⊗
F with ‖fn‖w ≤ ‖f‖w = ‖T‖ such that fn

τc−→ f .
Again, applying Theorem 1.1, there exist Tn ∈ L(Gw(U), F ) for each n ∈ N such
that Tn = fn ◦∆w.

Now, fix u ∈ Gw(U). Then by Proposition 1.3,

u =
∑
i≥1

αiw(xi)δxi

for (αi) ∈ l1 and (xi) ⊂ U . Choose i0 ∈ N such that
∑
i>i0

|αi| < ε.

‖(Tn − T )(u)‖ ≤
i0∑
i=1

|αi|w(xi)‖(fn − f)(xi)‖+ 2ε‖T‖

The setK = {x1, x2, . . . , xi0} is a compact subset of U . Hence, for ε′ = ε∑
i≤i0
|αi|w(xi)

,

there exist n0 ∈ N such that sup
x∈K
‖fn(x)− f(x)‖ < ε′ for all n ≥ n0. Thus

‖(Tn − T )(u)‖ < ε(2‖T‖+ 1)

for all n ≥ n0. This completes the proof. QED

The above results lead to

Theorem 2.7. A separable Banach space E has the BAP if and only if
Gη(E) has the BAP

Proof. Using Theorem 2.5 and Proposition 2.6 for F = Gη(E), the identity
on Gη(E) can be approximated pointwise by finite rank operators. Hence by
Theorem 1.4, Gη(E) has the BAP. The other implication follows immediately
by Theorem 1.2 and 1.6. QED
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3 The Approximation Properties for the space V H(E)
and its predual

In [37], R. Ryan has constructed the predual Q(mE) of P(mE),m ∈ N which
is defined as

Q(mE) = {φ ∈ P(mE)′ : φ|Bm is τ0 − continuous}

where Bm is the unit ball of P(mE). The space Q(mE) is endowed with the
topology of uniform convergence on Bm. Analogous to condition (II) considered
by Garćıa, Maestre and Rueda [22] for an increasing family of weights, Beltran
[4] introduced a condition for a decreasing family V ; indeed, a decreasing family
V of weights satisfies condition (A) if for each m ∈ N, there exist D > 0, R > 1
and n ∈ N, n ≥ m such that

‖P jf(0)‖vn ≤
D

Rj
‖f‖vm

for each j ∈ N and f ∈ Hvm(E).

In this section, we show that the sequence of spaces {Q(mE)}∞m=1 form an
S-absolute decomposition for V G(E) when the family V satisfies condition (A)
and consequently derive that a Banach space E has the BAP if and only if
V G(E) has the BAP.

Let us begin with

Lemma 3.1. Let V be a decreasing family of weights satisfying condition
(A). Then for β ∈ S and m ∈ N, there exists n ∈ N and C > 0 such that

{β · f =

∞∑
j=0

βjP
jf(0) : f ∈ Bvm} ⊂ CBvn .

Also,

‖
∞∑
j=0

βjP
jf(0)‖n ≤

∞∑
j=0

|βj |‖P jf(0)‖n ≤ C for each f ∈ Bvm (4)

Proof. Fix β ∈ S and m ∈ N. Then, by condition (A), there exist D > 0, R > 1
and n ∈ N, n ≥ m such that

‖P jf(0)‖vn ≤
D

Rj
‖f‖vm
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for each j ∈ N and f ∈ Hvm(U). Now, for R > 1, we can choose M > 0 such
that |βj | ≤M(1+R

2 )j for each j ∈ N. Then, for each f ∈ Bvm

‖β · f‖n ≤
∞∑
j=0

|βj |‖P jf(0)‖vn ≤ C‖f‖vm (5)

where C =
∞∑
j=0

M(1+R
2R )jD. Thus {β · f : f ∈ Bvm} ⊂ CBvn . Clearly (4) follows

from (5). QED

Theorem 3.2. If V = {vn} is a decreasing family of radial rapidly decreas-
ing weights satisfying condition (A), then the sequence of spaces {Q(mE)}∞m=1

forms an S-absolute decomposition for V G(E) endowed with the topology of
uniform convergence on Bvm for each m ∈ N, where Bvm denotes the unit ball
of Hvm(E) for each m.

Proof. For φ ∈ V G(E) and m ∈ N, define φm : V H(E)→ C as

φm(f) = φ(Pmf(0)), f ∈ V H(E)

Since Bm ⊂ Bvm , φm|Bm is τ0-continuous. Thus φm ∈ Q(mE). In order to show

that φ =
∞∑
j=0

φj in V G(E), fix m ∈ N and consider

‖φ−
k−1∑
j=0

φj‖Bvm = sup
f∈Bvm

|φ(
∞∑
j=k

P jf(0))| = sup
f∈Bvm

1

k2
|φ(k2

∞∑
j=k

P jf(0))|

Now, taking β = (j2) in (4), we have

‖k2
∞∑
j=k

P jf(0)‖vn ≤
∞∑
j=k

j2‖P jf(0)‖vn ≤ C

for each f ∈ Bvm . Thus, {k2
∞∑
j=k

P jf(0) : f ∈ Bvm , k ∈ N} ⊂ CBvn and so

‖φ−
k−1∑
j=0

φj‖Bvm ≤
1

k2
‖φ‖CBvn → 0

as k →∞.
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For the continuity of the projection map Rj : V G(E) → Q(jE), j ∈ N,
consider a net (φη) in V G(E), converging to 0. Then

‖Rj(φη)‖Bvm
⋂
P(jE) = sup

Bvm
⋂
P(jE)

|φηj (P )| = sup
Bvm

⋂
P(jE)

|φη(P )|

≤ ‖φη(P )‖Bvm → 0.

Finally, we show that this decomposition for V G(E) is S-absolute. Let β =
(βj) ∈ S and φ = (φj) ∈ V G(E) and l, k ∈ N with l ≥ k. Since (j2βj) ∈ S, for

m ∈ N, by Lemma 3.1, there exist C > 0 and n ∈ N such that {
l∑

j=k

j2βjP
jf(0) :

f ∈ Bvm , k, l ∈ N} ⊂ CBvn . Thus

‖
l∑

j=k

βjφj‖Bvm = sup
f∈Bvm

|
l∑

j=k

βjφj(f)| ≤
l∑

j=k

1

j2
‖φ(j2βjP

jf(0))‖Bvm

≤
l∑

j=k

1

j2
‖φ‖CBvn → 0 as k, l→∞.

Thus
∞∑
j=0

βjφj converges in V G(E). Similar arguments would yield that the

decomposition is absolute. QED

Making use of Proposition 1.9 and Theorem 3.2, we get

Theorem 3.3. Let V be a decreasing family of radial rapidly decreasing
weights satisfying condition (A). Then the following are equivalent:

(a). E has the BAP(AP).
(b). Q(mE) has the BAP(AP) for each m ∈ N.
(c). V G(E) has the BAP(AP).

Proof. (a) ⇔ (b) This result is proved in [28] for the AP and in [13] for the
BAP.

(b)⇔ (c) is a consequence of Proposition 1.9 and Theorem 3.2. QED

Remark 3.4. We would like to point out that Theorem 2.7 is not a particular
case of Theorem 3.3 as the family V consisting of a single weight v never satisfies
condition (A); indeed, if there exist some D > 0 and R > 1 such that for each
j ∈ N and f ∈ Hv(U)

‖P jf(0)‖v ≤
D

Rj
‖P jf(0)‖v

would yield Rj ≤ D for each j, which is not possible.
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The following result of Beltran [4] is an immediate consequence of Theorem
3.2 and Proposition 1.8.

Proposition 3.5. If V is a decreasing family of radial rapidly decreasing
weights satisfying condition (A), then {P(mE)}∞m=0 is an S−absolute decom-
position for V H(E).

Next, we prove

Theorem 3.6. Let E be a Banach space with P(mE) = Pw(mE), for each
m ∈ N. Then, for a decreasing family V of radial rapidly decreasing weights on
E satisfying condition (A), the following are equivalent:

(a). E∗ has the BAP.

(b). P(mE) has the BAP for each m ∈ N.

(c). V H(E) has the BAP.

Proof. (a)⇔ (b) follows from Theorem 1.10; and (b)⇔ (c) is a consequence of
Propositions 1.9 and 3.5. QED

Since P(mCN ) = Pw(mCN ) for each m ∈ N and for given N ∈ N, we have

Corollary 3.7. The spaces V H(CN ) have the BAP for any family V of
radial rapidly decreasing weights satisfying (A) and N ∈ N.

Remark 3.8. In case the family V of radial rapidly decreasing weights satis-
fies condition (A), it has been proved in [5], V H(E) = V H0(E) for any Ba-
nach space E. The above corollary, thus, yields the result of Bierstedt, namely
(V H0(CN ), τV ) has the BAP for the restricted family V satisfying condition
(A).

The Hörmander algebra Ap(E) of entire functions defined on a Banach space
has been studied by Beltran [5] who considered the sequence V of weights
vn(x) = e−np(‖x‖), x ∈ E, defined with the help of a growth condition p, i.e. an
increasing continuous function p : [0,∞)→ [0,∞) with the following properties:

(a) φ : r → p(er) is convex.

(b) log(1 + r2) = o(p(r)) as r →∞.

(c) there exists λ ≥ 0 such that p(2r) ≤ λ(p(r) + 1) for each r ≥ 0.
Then V = {vn} is a family of rapidly decreasing weights satisfying condition
(A). This observation leads to

Example 3.9. Under the hypothesis of Theorem 3.6 for E, i.e., P(mE) =
Pw(mE), for each m ∈ N, Ap(E) has the BAP whenever E∗ has the BAP. In
particular, Ap(CN ) has the BAP for each growth condition p and N ∈ N.
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[13] E. Çalişkan: The bounded approximation property for the predual of the space of bounded
holomorphic mappings, Studia Math., 177 (2006), 225-233.
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