The Bounded Approximation Property for the Weighted (LB)-Spaces of Holomorphic Mappings on Banach Spaces

Manjul Gupta

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, India-208016 manjul@iitk.ac.in

Deepika Baweja

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, India-208016 dbaweja@iitk.ac.in

Received: 19.8.2016; accepted: 30.1.2017.

Abstract. In this paper, we consider the bounded approximation property for the weighted (LB)-spaces VH(E) and $VH_0(E)$ of entire functions defined corresponding to a decreasing family V of weights on a Banach space E. For a suitably restricted family V of weights, the bounded approximation property for a Banach space E has been characterized in terms of the bounded approximation property for the space VG(E), the predual of the space VH(E).

Keywords: (LB)-spaces, weighted spaces of holomorphic functions, bounded approximation property, Hörmander algebras.

MSC 2000 classification: 46B28, 46E50, 46G20

Introduction

The present paper deals with the study of the bounded approximation property(BAP) for weighted (LB)-spaces of holomorphic mappings on a Banach space. The study of the approximation properties for spaces of holomorphic functions on infinite dimensional spaces was initiated by R. Aron and M. Schottenloher in [1] and later continued in [11], [12], [13], [14], [15], [20], [21], [28]. However, by using the properties of Cesáro means operators, Bierstedt [7] studied the BAP for the projective and inductive limits of weighted spaces defined on a balanced open subset of a finite dimensional space given by a countable family V of weights. In case of infinite dimension, D. Carando, D. García, M. Maestre, P. Rueda and P. Sevilla-Peris in [16], [22], [23] carried out investigations on structural properties, spectrum, composition operators defined on the

http://siba-ese.unisalento.it/ © 2017 Università del Salento

projective limit of weighted spaces of holomorphic mappings corresponding to an increasing sequence of weights. On the other hand, M.J. Beltrán [4, 5, 6] studied the inductive limits of such spaces defined by a decreasing family of weights which are referred as weighted (LB)-spaces. In our earlier work, we initiated the study of the approximation properties in [24, 25] for such spaces and continue the same in this paper. After having given preliminaries in Section 2, we prove in Section 3 that a separable Banach space E has the BAP if and only if $\mathcal{G}_w(E)$ has the BAP, where w is a weight defined with the help of strictly positive continuous function η on $[0, \infty)$, as $w(x) = \eta(||x||), x \in E$. Finally, in Section 4, an \mathcal{S} -absolute decomposition is obtained for the space VG(E), and the BAP for the spaces VH(E) and VG(E) is investigated.

1 Preliminaries

In this section, we recall some definitions and results from the theory of infinite dimensional holomorphy and approximation properties for which the references are [3], [17], [18], [27], [29], [34]. The symbols \mathbb{N} , \mathbb{N}_0 and \mathbb{C} respectively denote the set of natural numbers, $\mathbb{N} \cup \{0\}$ and the complex plane. The letters E and F stand for complex Banach spaces and the symbols E' and E^* denote respectively the algebraic dual and topological dual of E. The symbols X and Y are used for locally convex spaces and $X_b^* = (X^*, \beta(X^*, X))$ denotes the strong dual of X, where $\beta(X^*, X)$ is the topology of uniform convergence on all bounded subsets of X.

For each $m \in \mathbb{N}$, $\mathcal{L}(^{m}E; F)$ denotes the Banach space of all continuous mlinear mappings from E to F endowed with its natural sup norm. For m = 1, $\mathcal{L}(^{1}E; F) = \mathcal{L}(E; F)$ is the class of all continuous linear operators from E to F. The topology of uniform convergence on compact subsets of E is denoted by τ_c . A mapping $P: E \to F$ is said to be a *continuous m-homogeneous polynomial* if there exists a continuous m-linear map $A \in \mathcal{L}(^{m}E; F)$ such that $P(x) = A(x, \ldots, x), x \in E$. The space of all m-homogeneous continuous polynomials from E to F is denoted by $\mathcal{P}(^{m}E; F)$ which is a Banach space endowed with the norm

$$||P|| = \sup_{||x|| \le 1} ||P(x)||.$$

A polynomial $P \in \mathcal{P}(^{m}E, F)$ is said to be of *finite type* if it is of the form

$$P(x) = \sum_{j=1}^{k} \phi_j^m(x) y_j, \ x \in E$$

where $\phi_j \in E^*$ and $y_j \in F$, $1 \leq j \leq k$. We denote by $\mathcal{P}_f(^m E, F)$, the space of all finite type *m*-homogeneous polynomials from *E* into *F*. For m = 1, $\mathcal{P}_f(^m E, F)$

is the space of all finite rank operators from E to F, denoted by $\mathcal{F}(E, F)$. $\mathcal{P}_w(^mE, F)$ denotes the space of all m-homogeneous polynomials which are weakly uniformly continuous on bounded subsets of E (a polynomial P is weakly uniformly continuous on bounded subsets if for any bounded subset B of E and $\epsilon > 0$, there exist $\phi_i \in E^*$, i = 1, 2, ..., k and $\delta > 0$ such that $||P(x) - P(y)|| < \epsilon$ whenever $|\phi_i(x) - \phi_i(y)| < \delta$, i = 1, 2, ..., k and $x, y \in B$).

A mapping $f: U \to F$ is said to be *holomorphic*, if for each $\xi \in U$, there exists a ball $B(\xi, r)$ with center at ξ and radius r > 0, contained in U and a sequence $\{P_m\}_{m=1}^{\infty}$ of polynomials with $P_m \in \mathcal{P}(^m E; F), m \in \mathbb{N}_0$ such that

$$f(x) = \sum_{m=0}^{\infty} P_m(x-\xi)$$
(1)

where the series converges uniformly for each $x \in B(\xi, r)$. The space of all holomorphic mappings from U to F is denoted by $\mathcal{H}(U; F)$ and it is usually endowed with τ_0 , the topology of uniform convergence on compact subsets of U. In case U = E, the class $\mathcal{H}(E, F)$ is the space of entire mappings from E into F. For $F = \mathbb{C}$, we write $\mathcal{H}(U)$ for $\mathcal{H}(U; \mathbb{C})$. A subset A of U is U-bounded if it is a bounded set and has a positive distance from the boundary of U. A holomorphic mapping f is of bounded type if it maps U-bounded sets to bounded sets. The space of holomorphic mappings of bounded type is denoted by $\mathcal{H}_b(U; F)$.

A weight v (a continuous and strictly positive function) defined on an open balanced subset U of E is said to be *radial* if v(tx) = v(x) for all $x \in U$ and $t \in \mathbb{C}$ with |t| = 1; and on E it is said to be *rapidly decreasing* if $\sup_{x \in E} v(x) ||x||^m < \infty$ for each $m \in \mathbb{N}_0$. Let us recall from [36], weighted spaces of entire functions defined as

$$\mathcal{H}_{v}(U;F) = \{ f \in \mathcal{H}(U;F) : \|f\|_{v} = \sup_{x \in U} v(x) \|f(x)\| < \infty \}$$

and

$$\begin{aligned} \mathcal{H}_v^0(U;F) = & \{f \in \mathcal{H}(U;F) : \text{for given } \epsilon > 0 \text{ there exists a U-bounded} \\ & \text{set } A \text{ such that } \sup_{x \in U \setminus A} v(x) \|f(x)\| < \epsilon \}. \end{aligned}$$

The space $(\mathcal{H}_v(U; F), \|\cdot\|_v)$ is a Banach space and $\mathcal{H}_v^0(U; F)$ is a closed subspace of $\mathcal{H}_v(U; F)$. For $F = \mathbb{C}$, we write $\mathcal{H}_v(U) = \mathcal{H}_v(U; \mathbb{C})$ and $\mathcal{H}_v^0(U) = \mathcal{H}_v^0(U; \mathbb{C})$. The symbol B_v denotes the closed unit ball of $\mathcal{H}_v(U)$. It has been proved in [24], p.131 that the class $\mathcal{P}(E)$ of polynomials is a subspace of $H_v(E)$ if and only if the weight v is rapidly decreasing. Following Beltran [4], let $V = \{v_n\}$ denote a countable decreasing family $(v_{n+1} \leq v_n \text{ for each } n)$ of weights on E. Corresponding to V, let us consider the weighted (LB)-spaces, *i.e.*, the inductive limit of weighted spaces $\mathcal{H}_{v_n}(E)$, $n \in \mathbb{N}$ defined as

$$VH(E) = \bigcup_{n \ge 1} \mathcal{H}_{v_n}(E)$$

and

$$VH_0(E) = \bigcup_{n \ge 1} \mathcal{H}^0_{v_n}(E)$$

and endowed with the locally convex inductive topologies $\tau_{\mathcal{I}}$ and $\tau'_{\mathcal{I}}$ respectively. Since the closed unit ball B_{v_n} of each $\mathcal{H}_{v_n}(E)$ is τ_0 -compact, it follows by Mujica's completeness Theorem, cf. [32], VH(E) is complete and its predual

$$VG(E) = \{ \phi \in VH(E)' : \phi | B_{v_n} \text{ is } \tau_0 - \text{continuous for each } n \in \mathbb{N} \}$$

is endowed with the topology of uniform convergence on the sets B_{v_n} . In case V consists of a single weight v, VG(E) is written as $\mathcal{G}_v(E)$.

Let Δ be a mapping from E to VG(E) defined as $\Delta(x) = \delta_x$ where $\delta_x(f) = f(x), f \in VH(E)$ and $x \in E$. Then $\Delta \in \mathcal{H}(E; VG(E))$. Let us recall the following linearization theorem from [4]

Theorem 1.1. (Linearization Theorem) Let E be a Banach space and V be a decreasing sequence of radial rapidly decreasing weights on E. For every Banach space F and every $f \in VH(E, F)$, there exists a unique continuous operator $T_f \in \mathcal{L}(VG(E), F)$ such that $T_f \circ \Delta = f$. Moreover the mapping $\psi: VH(E, F) \to \mathcal{L}_i(VG(E), F)$, $\psi(f) = T_f$ is a topological isomorphism.

In case V is a singleton set $\{v\}$, we write Δ_v for Δ . The mapping ψ becomes an isometric isomorphism between $\mathcal{H}_v(E, F)$ and $\mathcal{L}(G_v(E), F)$ with $\Delta_v \in \mathcal{H}_v(E; VG(E))$ and $\|\Delta_v\|_v \leq 1$. Note that the above linearization theorem also holds for a weight v defined on an open subset U of E. As a consequence of Theorem 1.1, we have

Proposition 1.2. [25] Let v be a radial rapidly decreasing weight on a Banach space E. Then E is topologically isomorphic to a 1-complemented subspace of $\mathcal{G}_v(E)$.

Concerning the representation of members of $\mathcal{G}_v(U)$, we have

Proposition 1.3. [25] Let v be a weight on an open subset U of a Banach space E. Then each u in $\mathcal{G}_v(U)$ has a representation of the form

$$u = \sum_{n \ge 1} \alpha_n v(x_n) \Delta_v(x_n)$$

Weighted (LB)-Spaces

for $(\alpha_n) \in l_1$ and $(x_n) \subset U$.

A locally convex space X is said to have the approximation property if for any continuous semi-norm p on X, for a compact set K of X and $\epsilon > 0$, there exists a finite rank operator $T = T_{\epsilon,K}$ such that $\sup_{x \in K} p(T(x) - x) < \epsilon$. If $\{T_{\epsilon,K} : \epsilon > 0 \text{ and } K \text{ varies over compact subsets of } X\}$ is an equicontinuous subset of $\mathcal{F}(X, X)$, X is said to have the BAP. When X is normed and there exists a $\lambda \geq 1$ such that $||T_{\epsilon,K}|| \leq \lambda$ for each $\epsilon > 0$ and each compact set K, X is said to have the λ -BAP. In case $\lambda = 1$, we say X has the metric approximation property(MAP).

The following characterization of the BAP for a separable Banach space due to Pelczyński [35], is quoted from [33].

Theorem 1.4. For a separable Banach space E, the following assertions are equivalent:

(a) E has the bounded approximation property.

(b) There is a sequence $\{T_n\} \subset \mathcal{F}(E, E)$ such that $T_n(x) \to x$ for every $x \in E$.

(c) E is topologically isomorphic to a complemented subspace of a Banach space with a monotone Schauder basis.

Improving the above result, Mujica and Vieira [33] proved

Theorem 1.5. Let E be a separable Banach space with the λ -bounded approximation property. Then for each $\epsilon > 0$, there is a Banach space F with a Schauder basis such that E is isometrically isomorphic to a 1-complemented subspace of the Banach space F and, the sequence $\{T_n\}$ of canonical projections in F has the properties $\sup_n ||T_n|| \leq \lambda + \epsilon$ and $\limsup_{n \to \infty} ||T_n|| \leq \lambda$.

We also make use of the following result from [27], which can be easily verified.

Proposition 1.6. Let E be a Banach space with the λ -bounded approximation property. Then each complemented subspace of E with the projection map P has the $\lambda ||P||$ -bounded approximation property.

The following result proved for the MAP for any Banach space E in [25], is useful for the proof of the main result of this paper.

Theorem 1.7. Let v be a radial rapidly decreasing weight on a Banach space E satisfying $v(x) \le v(y)$ whenever $||x|| \ge ||y||, x, y \in E$. Then the following assertions are equivalent:

- (a) E has the MAP.
- (b) $\overline{\{P \in \mathcal{P}_f(E,F) : \|P\|_v \leq 1\}}^{\tau_c} = B_{\mathcal{H}_v(E,F)}$ for any Banach space F.
- (c) $\overline{B_{\mathcal{H}_v(E)\bigotimes F}}^{\tau_c} = B_{\mathcal{H}_v(E,F)}$ for any Banach space F.

M. Gupta, D. Baweja

(d) $\Delta_v \in \overline{B_{\mathcal{H}_v(E) \otimes \mathcal{G}_v(E)}}^{\tau_c}$. (e) $\mathcal{G}_v(E)$ has the MAP.

A sequence of subspaces $\{X_n\}_{n=1}^{\infty}$ of a locally convex space X is called a *Schauder decomposition* of X if for each $x \in X$, there exists a unique sequence $\{x_n\}$ of vectors $x_n \in X_n$ for all n, such that

$$x = \sum_{n=1}^{\infty} x_n = \lim_{m \to \infty} u_m(x)$$

where the projection maps $\{u_m\}_{m=1}^{\infty}$ defined by $u_m(x) = \sum_{j=1}^m x_j, m \ge 1$ are continuous.

Corresponding to a sequence space $S = \{(\alpha_n)_{n=1}^{\infty} : \alpha_n \in \mathbb{C} \text{ and } \limsup_{n \to \infty} |\alpha_n|^{\frac{1}{n}} \leq 1\}$, a Schauder decomposition $\{X_n\}_n$ is said to be S-absolute if for each $\beta = (\beta_j) \in S$

(i)
$$\beta \cdot x = \sum_{j=1}^{\infty} \beta_j x_j \in X$$
 for each $x = \sum_{j=1}^{\infty} x_j \in E$, and

(ii) for a continuous semi-norm p on X, $p_{\beta}(x) = \sum_{j=1}^{\infty} |\beta_j| p(x_j)$ defines a continuous semi-norm on X.

If each X_n is one dimensional and $X_n = \overline{span}\{x_n\}$, then $\{x_n\}_{n\geq 1}$ is a Schauder basis of X. A Schauder basis $\{x_n\}_{n\geq 1}$ of a Banach space X is called monotone if $||u_m(x)|| \leq ||u_{m+1}(x)||$ for each $m \in \mathbb{N}$ and each $x \in X$.

Proposition 1.8. [18] If a sequence $\{X_n\}_{n=0}^{\infty}$ of subspaces of a locally convex space X is an S-absolute decomposition for X, then $\{(X_n)_b^*\}_{n=0}^{\infty}$ is an S-absolute decomposition for X_b^* .

We quote from [11], [14], the following

Proposition 1.9. If $\{X_n\}_{n=0}^{\infty}$ is an S-absolute decomposition of a locally convex space X, then X has the AP(BAP) if and only if each X_n has the AP(BAP).

Theorem 1.10. [11] Let E be a Banach space. Then E^* has the BAP if and only if $\mathcal{P}_w(^nE)$ has the BAP for each $n \in \mathbb{N}$.

2 The Bounded Approximation Property for the space $\mathcal{G}_n(E)$

Throughout this section $\eta : [0, \infty) \to (0, \infty)$ denotes a continuous decreasing function satisfying $\eta(r)r^k \to 0$ for each $k \in \mathbb{N}_0$, i.e. η is rapidly decreasing.

For such a function η , consider a weight w on a Banach space E as $w(x) = \eta(||x||), x \in E$. Clearly w is a radial rapidly decreasing weight on E satisfying $w(x) \leq w(y)$ whenever $||x|| \geq ||y||, x, y \in E$. For a weight given by η , we write \mathcal{H}_{η} for \mathcal{H}_{w} and \mathcal{G}_{η} for \mathcal{G}_{w} . In this section, we characterize the bounded approximation property for the space E in terms of the bounded approximation property for the space $\mathcal{G}_{\eta}(E)$.

Theorem 2.1. Let $(E, \|\cdot\|)$ be a Banach space with a monotone Schauder basis $\{x_n : n \in \mathbb{N}\}$ and w be a radial rapidly decreasing weight on E satisfying $w(x) \leq w(y)$ whenever $\|x\| \geq \|y\|$, $x, y \in E$. Then, for each Banach space F and $f \in \mathcal{H}_w(E, F)$, there exists a sequence $\{f_n\} \subset \mathcal{H}_w(E) \bigotimes F$ such that $f_n \xrightarrow{\tau_c} f$ and $\|f_n\|_w \leq \|f\|_w$, and a fortiori, $B_{\mathcal{H}_w(E)} \bigotimes F$ is τ_c -sequentially dense in $B_{\mathcal{H}_w(E,F)}$.

Proof. Let $f \in B_{\mathcal{H}_w(E,F)}$. For each $n \in \mathbb{N}$, write $B_n = E_n \cap nB_E$, where $E_n = \overline{span}\{x_1, x_2, \ldots, x_n\}$. Clearly each B_n is a compact subset of E. Thus, by implication $(a) \Rightarrow (c)$ of Theorem 1.7, there exists a sequence $(f_n) \subset B_{\mathcal{H}_w(E) \bigotimes F}$ with $||f_n||_w \leq ||f||_w$ for each $n \in \mathbb{N}$ such that

$$\sup_{x \in B_n} \|f_n(y) - f(y)\| < \frac{1}{n}$$
(2)

Since $\{f_n : n \in \mathbb{N}\}$ is an equicontinuous subset of $\mathcal{H}_w(E, F)$, for $\epsilon > 0$, there exists a $\delta > 0$ such that for each $n \in \mathbb{N}$ and $||y - x|| < \delta$.

$$\|f_n(y) - f_n(x)\| < \epsilon. \tag{3}$$

As the basis $\{x_n\}$ is monotone, $E = \overline{\bigcup B_n}$. Fix $y_0 \in E$. Then for the above $\delta > 0$, choose $n_0 \in \mathbb{N}$ and $x \in B_{n_0}$ such that $||y_0 - x|| < \delta$. By (2), $\{f_n(x)\}$ is a Cauchy sequence, and so $\{f_n(y_0)\}$ is Cauchy by (3). Thus $f_n(y) \to f(y)$, for each $y \in E$. As the sequence $\{f_n\}$ is equicontinuous, it converges in the τ_c topology.

A particular case of the above theorem for the weight given by η , is stated in

Theorem 2.2. Let E be Banach space with a monotone Schauder basis. Then $B_{\mathcal{H}_n(E)\bigotimes F}$ is τ_c -sequential dense in $B_{\mathcal{H}_n(E,F)}$ for each Banach space F.

The next proposition is a particular case of [33, Theorem 1.2]. Its proof makes use of the following lemma from [33].

Lemma 2.3. Let *E* be a finite dimensional Banach space of dimension *n*. Then for each $\epsilon > 0$, there exist $m \in \mathbb{N}$ and operators $U_1, \ldots, U_{mn} \in \mathcal{L}(E; E)$ of

M. Gupta, D. Baweja

rank one such that

$$\sum_{j=1}^{mn} U_j(x) = x \text{ for each } x \in E$$

and

$$\|\sum_{j=1}^{k} U_j\| + \|\sum_{j=k+1}^{mn} U_j\| \le 1 + \epsilon \text{ for each } 1 \le k \le mn.$$

Proposition 2.4. Let E be a separable Banach space with the bounded approximation property. Then there is a Banach space F having Schauder basis such that E is topologically isomorphic to a 1-complemented subspace of F.

Proof. To facilitate the reading, we outline its proof from [33], cf. the proof of Theorem 1.2. Assume that E has the λ -BAP for some $\lambda > 0$ and $\{y_n\}_{n=1}^{\infty}$ is a dense subset of E. Then for each $n \in \mathbb{N}$, there exist $T_n \in \mathcal{F}(E; E)$ such that $||T_n|| \leq \lambda$ and $||T_n y_i - y_i|| \leq \frac{1}{n}$ for $1 \leq i \leq n$. Let S_n be the sequence of operators defined as $S_1 = T_1$ and $S_n = T_n - T_{n-1}$, $n \geq 2$. Then $\sum_{n=1}^{\infty} S_n(x) = x$ for each $x \in E$.

Choose $\epsilon > 0$ arbitrarily and a strictly decreasing sequence $\{\epsilon_n\}$ of positive numbers tending to zero with $\epsilon_1 = \frac{\epsilon}{\lambda}$. Then for each $n \in \mathbb{N}$, there are operators $U_{n,1}, U_{n,2}, \ldots, U_{n,m_n}$ on $S_n(E)$ of rank one such that $\sum_{j=1}^{m_n} U_{n,j}x = x$ for each $x \in S_n(E)$ and $\|\sum_{j=1}^k U_{n,j}\| + \|\sum_{j=k+1}^{m_n} U_{n,j}\| \le (1+\epsilon_n)$ for each $1 \le k \le m_n$ by Lemma 2.3.

For each $k \in \mathbb{N}$, we define the operators A_k and numbers δ_k as follows:

$$A_k = U_{n,i} \circ S_n$$
 and $\delta_k = \epsilon_n$

where *i*, *n* are chosen such that *k* has the unique representation in the form $k = m_1 + \cdots + m_{n-1} + i$ with $1 \le i \le m_n$. Then

$$\left\|\sum_{j=1}^{k} A_{j}(x) - x\right\| \le \|T_{n-1}x - x\| + (1 + \epsilon_{n})\|(T_{n} - T_{n-1})(x)\| \to 0 \text{ as } n \to \infty.$$

Since each A_j is of rank one, there exist $\phi_j \in E^*$ and $a_j \in E$ such that $A_j(x) = \phi_j(x)a_j$. Thus $\sum_{j=1}^{\infty} A_j(x) = \sum_{j=1}^{\infty} \phi_j(x)a_j = x$ and $\|\sum_{j=1}^{\infty} A_j\| \le \lambda(1+\delta_k)$.

Weighted (LB)-Spaces

Now consider the sequence space $F = \{(\alpha_j) : \sum_{j=1}^{\infty} \alpha_j a_j \text{ converges } in E\}$. It is a Banach space endowed with the norm $|||(\alpha_j)||| = \sup_k \|\sum_{j=1}^k \alpha_j a_j\|$ for which unit vectors form a monotone Schauder basis. The mappings $A: E \to F$ and $B: F \to E$ defined as $A(x) = (\phi_j(x)), x \in E$ and $B((\alpha_j)) = \sum_{i=1}^{\infty} \alpha_j a_j$ satisfy (i) $B \circ A = I_E$, the identity map on E, (ii) $||B|| \le 1$; and

(iii) $A \circ B : F \to F$ is a projection map.

Define
$$W = \{(\alpha_j) \in F : \|\sum_{j=1}^{\infty} \alpha_j a_j\| \le 1, \|\sum_{j=1}^{k} \alpha_j a_j\| \le \lambda(1+\delta_k) \text{ for each } k\}.$$

Then

$$\{(\alpha_j) \in F : ||B((\alpha_j))|| \le 1 \text{ and } ||y|| \le \lambda\} \subset W \subset \{(\alpha_j) \in F : ||(\alpha_j)|| \le (1+\epsilon_1)\}.$$

Thus W is an absolutely convex, absorbing and bounded set and so its Minkowski functional $\|\cdot\|_W$ defines a norm on F. We write $F_W = (F, \|\cdot\|_W)$. Moreover, $|||\cdot||| \leq ||\cdot||_W$ yields the identity $I: (F, ||\cdot||_W) \to (F, |||\cdot|||)$ is a homeomorphism and so F_W is a Banach space having unit vectors as Schauder basis. It is shown in [33] that $A: E \to F_W$ is an isometric embedding and $A \circ B: F_W \to F_W$ is a projection map with $||A \circ B||_W \leq 1$. Thus A(E) is 1-complemented in F_W . QED

Theorem 2.5. Let E be a separable Banach space with the BAP. Then $B_{\mathcal{H}_{\eta}(E)\bigotimes G}$ is τ_c -sequentially dense in $B_{\mathcal{H}_{\eta}(E,G)}$ for each Banach space G.

Proof. Consider $f \in B_{\mathcal{H}_{\eta}(A(E),G)}$. Recalling the notations from the proof of the preceding proposition, we have $f \circ A \circ B \circ I \in B_{\mathcal{H}_n(F_W,G)}$; indeed,

$$\sup_{y \in F} \eta(\|y\|_W) \| f \circ A \circ B \circ I(y) \|_G \le \sup_{y \in F} \eta(\|A \circ B \circ I(y)\|_W) \| f(A \circ B \circ I(y)) \|_G \le 1$$

as $||A \circ B \circ I(y)||_W \leq ||y||_W$ for each $y \in F$ and η is decreasing. Thus, in view of Theorem 2.2, there exists a sequence $(f_n) \subset B_{\mathcal{H}_n(F_W)\otimes G}$ such that $f_n \xrightarrow{\tau_c} f \circ A \circ B \circ I.$

Write f'_n for the restriction of f_n on A(E), *i.e.* $f'_n = f_n | A(E)$. In order to show the convergence of f'_n to f with respect to τ_c , consider a compact subset K of A(E). Then K = A(K') for some compact set K' of E. Consequently,

$$\sup_{y \in K} \| (f'_n - f)(y) \|_G = \sup_{x \in K'} \| f'_n(A(x)) - f(A(x)) \|_G$$
$$= \sup_{x \in K'} \| f'_n(A(x)) - f \circ A \circ B \circ I \circ A(x) \|_G \to 0 \quad \text{as } n \to \infty.$$

QED

Next, we prove

Proposition 2.6. For a given weight w on an open subset U of a Banach space E, if the closed unit ball $B_{\mathcal{H}_w(U)\bigotimes F}$ is τ_c -sequentially dense in $B_{\mathcal{H}_w(U,F)}$ for some Banach space F, then $\mathcal{F}(\mathcal{G}_w(U), F)$ is sequentially dense in $(\mathcal{L}(\mathcal{G}_w(U), F), \tau_p)$ where τ_p is the the topology of pointwise convergence.

Proof. Choose $T \in \mathcal{L}(\mathcal{G}_w(U), F)$ and $\epsilon > 0$ arbitrarily. Then by Theorem 1.1, there exist $f \in \mathcal{H}_w(U, F)$ such that $T = f \circ \Delta_w$. By the hypothesis, there is a sequence $(f_n) \subset H_w(U) \bigotimes F$ with $||f_n||_w \leq ||f||_w = ||T||$ such that $f_n \xrightarrow{\tau_c} f$. Again, applying Theorem 1.1, there exist $T_n \in \mathcal{L}(\mathcal{G}_w(U), F)$ for each $n \in \mathbb{N}$ such that $T_n = f_n \circ \Delta_w$.

Now, fix $u \in \mathcal{G}_w(U)$. Then by Proposition 1.3,

$$u = \sum_{i \ge 1} \alpha_i w(x_i) \delta_{x_i}$$

for $(\alpha_i) \in l_1$ and $(x_i) \subset U$. Choose $i_0 \in \mathbb{N}$ such that $\sum_{i>i_0} |\alpha_i| < \epsilon$.

$$\|(T_n - T)(u)\| \le \sum_{i=1}^{i_0} |\alpha_i| w(x_i) \|(f_n - f)(x_i)\| + 2\epsilon \|T\|$$

The set $K = \{x_1, x_2, \dots, x_{i_0}\}$ is a compact subset of U. Hence, for $\epsilon' = \frac{\epsilon}{\sum\limits_{i \leq i_0} |\alpha_i| w(x_i)}$, there exist $n_0 \in \mathbb{N}$ such that $\sup_{x \in K} ||f_n(x) - f(x)|| < \epsilon'$ for all $n \geq n_0$. Thus

$$||(T_n - T)(u)|| < \epsilon(2||T|| + 1)$$

for all $n \ge n_0$. This completes the proof.

The above results lead to

Theorem 2.7. A separable Banach space E has the BAP if and only if $\mathcal{G}_n(E)$ has the BAP

Proof. Using Theorem 2.5 and Proposition 2.6 for $F = \mathcal{G}_{\eta}(E)$, the identity on $\mathcal{G}_{\eta}(E)$ can be approximated pointwise by finite rank operators. Hence by Theorem 1.4, $\mathcal{G}_{\eta}(E)$ has the BAP. The other implication follows immediately by Theorem 1.2 and 1.6.

62

QED

3 The Approximation Properties for the space VH(E)and its predual

In [37], R. Ryan has constructed the predual $\mathcal{Q}(^{m}E)$ of $\mathcal{P}(^{m}E), m \in \mathbb{N}$ which is defined as

$$\mathcal{Q}(^{m}E) = \{ \phi \in \mathcal{P}(^{m}E)' : \phi | B_{m} \text{ is } \tau_{0} - \text{continuous} \}$$

where B_m is the unit ball of $\mathcal{P}(^m E)$. The space $\mathcal{Q}(^m E)$ is endowed with the topology of uniform convergence on B_m . Analogous to condition (II) considered by García, Maestre and Rueda [22] for an increasing family of weights, Beltran [4] introduced a condition for a decreasing family V; indeed, a decreasing family V of weights satisfies condition (A) if for each $m \in \mathbb{N}$, there exist D > 0, R > 1 and $n \in \mathbb{N}, n \geq m$ such that

$$||P^{j}f(0)||_{v_{n}} \le \frac{D}{R^{j}}||f||_{v_{m}}$$

for each $j \in \mathbb{N}$ and $f \in \mathcal{H}_{v_m}(E)$.

In this section, we show that the sequence of spaces $\{\mathcal{Q}(^{m}E)\}_{m=1}^{\infty}$ form an \mathcal{S} -absolute decomposition for VG(E) when the family V satisfies condition (A) and consequently derive that a Banach space E has the BAP if and only if VG(E) has the BAP.

Let us begin with

Lemma 3.1. Let V be a decreasing family of weights satisfying condition (A). Then for $\beta \in S$ and $m \in \mathbb{N}$, there exists $n \in \mathbb{N}$ and C > 0 such that

$$\{\beta \cdot f = \sum_{j=0}^{\infty} \beta_j P^j f(0) : f \in B_{v_m}\} \subset CB_{v_n}.$$

Also,

$$\|\sum_{j=0}^{\infty}\beta_{j}P^{j}f(0)\|_{n} \leq \sum_{j=0}^{\infty}|\beta_{j}|\|P^{j}f(0)\|_{n} \leq C \text{ for each } f \in B_{v_{m}}$$
(4)

Proof. Fix $\beta \in S$ and $m \in \mathbb{N}$. Then, by condition (A), there exist D > 0, R > 1 and $n \in \mathbb{N}, n \geq m$ such that

$$||P^{j}f(0)||_{v_{n}} \le \frac{D}{R^{j}}||f||_{v_{m}}$$

for each $j \in \mathbb{N}$ and $f \in \mathcal{H}_{v_m}(U)$. Now, for R > 1, we can choose M > 0 such that $|\beta_j| \leq M(\frac{1+R}{2})^j$ for each $j \in \mathbb{N}$. Then, for each $f \in B_{v_m}$

$$\|\beta \cdot f\|_{n} \le \sum_{j=0}^{\infty} |\beta_{j}| \|P^{j}f(0)\|_{v_{n}} \le C \|f\|_{v_{m}}$$
(5)

where $C = \sum_{j=0}^{\infty} M(\frac{1+R}{2R})^j D$. Thus $\{\beta \cdot f : f \in B_{v_m}\} \subset CB_{v_n}$. Clearly (4) follows from (5).

Theorem 3.2. If $V = \{v_n\}$ is a decreasing family of radial rapidly decreasing weights satisfying condition (A), then the sequence of spaces $\{\mathcal{Q}(^mE)\}_{m=1}^{\infty}$ forms an S-absolute decomposition for VG(E) endowed with the topology of uniform convergence on B_{v_m} for each $m \in \mathbb{N}$, where B_{v_m} denotes the unit ball of $\mathcal{H}_{v_m}(E)$ for each m.

Proof. For $\phi \in VG(E)$ and $m \in \mathbb{N}$, define $\phi_m : VH(E) \to \mathbb{C}$ as

$$\phi_m(f) = \phi(P^m f(0)), \quad f \in VH(E)$$

Since $B_m \subset B_{v_m}$, $\phi_m | B_m$ is τ_0 -continuous. Thus $\phi_m \in \mathcal{Q}(^m E)$. In order to show that $\phi = \sum_{j=0}^{\infty} \phi_j$ in VG(E), fix $m \in \mathbb{N}$ and consider

$$\|\phi - \sum_{j=0}^{k-1} \phi_j\|_{B_{v_m}} = \sup_{f \in B_{v_m}} |\phi(\sum_{j=k}^{\infty} P^j f(0))| = \sup_{f \in B_{v_m}} \frac{1}{k^2} |\phi(k^2 \sum_{j=k}^{\infty} P^j f(0))|$$

Now, taking $\beta = (j^2)$ in (4), we have

$$\|k^2 \sum_{j=k}^{\infty} P^j f(0)\|_{v_n} \le \sum_{j=k}^{\infty} j^2 \|P^j f(0)\|_{v_n} \le C$$

for each $f \in B_{v_m}$. Thus, $\{k^2 \sum_{j=k}^{\infty} P^j f(0) : f \in B_{v_m}, k \in \mathbb{N}\} \subset CB_{v_n}$ and so

$$\|\phi - \sum_{j=0}^{k-1} \phi_j\|_{B_{v_m}} \le \frac{1}{k^2} \|\phi\|_{CB_{v_n}} \to 0$$

as $k \to \infty$.

Weighted (LB)-Spaces

For the continuity of the projection map $R_j : VG(E) \to \mathcal{Q}(jE), j \in \mathbb{N}$, consider a net (ϕ^{η}) in VG(E), converging to 0. Then

$$\begin{aligned} \|R_j(\phi^{\eta})\|_{B_{v_m}\bigcap\mathcal{P}(^jE)} &= \sup_{B_{v_m}\bigcap\mathcal{P}(^jE)} |\phi^{\eta}_j(P)| = \sup_{B_{v_m}\bigcap\mathcal{P}(^jE)} |\phi^{\eta}(P)| \\ &\leq \|\phi^{\eta}(P)\|_{B_{v_m}} \to 0. \end{aligned}$$

Finally, we show that this decomposition for VG(E) is S-absolute. Let $\beta = (\beta_j) \in S$ and $\phi = (\phi_j) \in VG(E)$ and $l, k \in \mathbb{N}$ with $l \ge k$. Since $(j^2\beta_j) \in S$, for $m \in \mathbb{N}$, by Lemma 3.1, there exist C > 0 and $n \in \mathbb{N}$ such that $\{\sum_{j=k}^{l} j^2 \beta_j P^j f(0) : f \in B_{v_m}, k, l \in \mathbb{N}\} \subset CB_{v_n}$. Thus

$$\begin{split} \|\sum_{j=k}^{l}\beta_{j}\phi_{j}\|_{B_{v_{m}}} &= \sup_{f\in B_{v_{m}}}|\sum_{j=k}^{l}\beta_{j}\phi_{j}(f)| \leq \sum_{j=k}^{l}\frac{1}{j^{2}}\|\phi(j^{2}\beta_{j}P^{j}f(0))\|_{B_{v_{m}}}\\ &\leq \sum_{j=k}^{l}\frac{1}{j^{2}}\|\phi\|_{CB_{v_{n}}} \to 0 \quad \text{as } k, \ l \to \infty. \end{split}$$

Thus $\sum_{j=0}^{\infty} \beta_j \phi_j$ converges in VG(E). Similar arguments would yield that the decomposition is absolute.

Making use of Proposition 1.9 and Theorem 3.2, we get

Theorem 3.3. Let V be a decreasing family of radial rapidly decreasing weights satisfying condition (A). Then the following are equivalent:

- (a). E has the BAP(AP).
- (b). $\mathcal{Q}(^{m}E)$ has the BAP(AP) for each $m \in \mathbb{N}$.

(c). VG(E) has the BAP(AP).

Proof. $(a) \Leftrightarrow (b)$ This result is proved in [28] for the AP and in [13] for the BAP.

 $(b) \Leftrightarrow (c)$ is a consequence of Proposition 1.9 and Theorem 3.2.

Remark 3.4. We would like to point out that Theorem 2.7 is not a particular case of Theorem 3.3 as the family V consisting of a single weight v never satisfies condition (A); indeed, if there exist some D > 0 and R > 1 such that for each $j \in \mathbb{N}$ and $f \in \mathcal{H}_v(U)$

$$||P^{j}f(0)||_{v} \le \frac{D}{R^{j}}||P^{j}f(0)||_{v}$$

would yield $R^j \leq D$ for each j, which is not possible.

The following result of Beltran [4] is an immediate consequence of Theorem 3.2 and Proposition 1.8.

Proposition 3.5. If V is a decreasing family of radial rapidly decreasing weights satisfying condition (A), then $\{\mathcal{P}(^{m}E)\}_{m=0}^{\infty}$ is an \mathcal{S} -absolute decomposition for VH(E).

Next, we prove

Theorem 3.6. Let *E* be a Banach space with $\mathcal{P}(^{m}E) = \mathcal{P}_{w}(^{m}E)$, for each $m \in \mathbb{N}$. Then, for a decreasing family *V* of radial rapidly decreasing weights on *E* satisfying condition (A), the following are equivalent:

(a). E^* has the BAP.

(b). $\mathcal{P}(^{m}E)$ has the BAP for each $m \in \mathbb{N}$.

(c). VH(E) has the BAP.

Proof. $(a) \Leftrightarrow (b)$ follows from Theorem 1.10; and $(b) \Leftrightarrow (c)$ is a consequence of Propositions 1.9 and 3.5.

Since $\mathcal{P}(^m\mathbb{C}^N) = \mathcal{P}_w(^m\mathbb{C}^N)$ for each $m \in \mathbb{N}$ and for given $N \in \mathbb{N}$, we have

Corollary 3.7. The spaces $VH(\mathbb{C}^N)$ have the BAP for any family V of radial rapidly decreasing weights satisfying (A) and $N \in \mathbb{N}$.

Remark 3.8. In case the family V of radial rapidly decreasing weights satisfies condition (A), it has been proved in [5], $VH(E) = VH_0(E)$ for any Banach space E. The above corollary, thus, yields the result of Bierstedt, namely $(VH_0(\mathbb{C}^N), \tau_V)$ has the BAP for the restricted family V satisfying condition (A).

The Hörmander algebra $A_p(E)$ of entire functions defined on a Banach space has been studied by Beltran [5] who considered the sequence V of weights $v_n(x) = e^{-np(||x||)}, x \in E$, defined with the help of a growth condition p, *i.e.* an increasing continuous function $p: [0, \infty) \to [0, \infty)$ with the following properties:

(a) $\phi: r \to p(e^r)$ is convex.

(b) $log(1+r^2) = o(p(r))$ as $r \to \infty$.

(c) there exists $\lambda \ge 0$ such that $p(2r) \le \lambda(p(r) + 1)$ for each $r \ge 0$.

Then $V = \{v_n\}$ is a family of rapidly decreasing weights satisfying condition (A). This observation leads to

Example 3.9. Under the hypothesis of Theorem 3.6 for E, *i.e.*, $\mathcal{P}(^{m}E) = \mathcal{P}_{w}(^{m}E)$, for each $m \in \mathbb{N}$, $A_{p}(E)$ has the BAP whenever E^{*} has the BAP. In particular, $A_{p}(\mathbb{C}^{N})$ has the BAP for each growth condition p and $N \in \mathbb{N}$.

66

Acknowledgements. The second author acknowledges the Council of Scientific and Industrial Research INDIA for a Research Fellowship.

References

- [1] R. ARON, M. SCHOTTENLOHER: Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal., 21 (1976), 7-30.
- [2] R. ARON, J. B. PROLLA: Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math., 313 (1980), 195-216.
- [3] J. A. Barroso: Introduction to Holomorphy, North-Holland Math. Studies, 106, North-Holland, Amsterdam, 1985.
- [4] M. J. BELTRÁN: Linearization of weighted (LB)-spaces of entire functions on Banach spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 106, 1 (2012), 275-286.
- [5] M. J. BELTRÁN: Spectra of weighted (LB)-algebras of entire functions on Banach spaces, J. Math Anal. Appl., 387, no. 2 (2012), 604-617.
- [6] M. J. BELTRÁN: Operators on weighted spaces of holomorphic functions, PhD Thesis, Universitat Politècnica de València, València, 2014.
- [7] K. D. BIERSTEDT, J. BONET, A. GALBIS: Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J., 40(1993), 271-297.
- [8] K. D. BIERSTEDT, J. BONET: Biduality in Fréchet and (LB)-spaces, in: Progress in Functional Anlysis, K. D. Bierstedt et. al.(eds.), North Holland Math. Stud. 170, North Holland, Amsterdam, 1992, 113-133.
- [9] K. D. BIERSTEDT, R. G. MIESE, W. H. SUMMERS: A projective description of weighted inductive limits, Trans. Amer. Math. Soc., 272 (1982), 107-160.
- [10] K. D. BIERSTEDT: Gewichtete Raume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt II, J. Reine Angew. Math., 260 (1973), 133-146.
- [11] C. BOYD, S. DINEEN, P. RUEDA: Weakly uniformly continuous holomorphic functions and the approximation property, Indag. Math.(N.S.), 12 (2001), 147-156.
- [12] E. ÇALIŞKAN: Approximation of holomorphic mappings on infinite dimensional spaces, Rev. Mat. Complut., 17 (2004), 411-434.
- [13] E. ÇALIŞKAN: The bounded approximation property for the predual of the space of bounded holomorphic mappings, Studia Math., 177 (2006), 225-233.
- [14] E. ÇALIŞKAN : The bounded approximation property for spaces of holomorphic mappings on infinite dimensional spaces, Math. Nachr., 279 (2006), 705-715.
- [15] E. ÇALIŞKAN: The bounded approximation property for weakly uniformly continuous type holomorphic mappings, Extracta Math., 22(2007), 157-177.
- [16] D. CARANDO, D. GARCIA, M. MAESTRE, P. SEVILLA-PERIS: On the spectra of algebras of analytic functions, Contemp. Math., 561 (2012), 165-198.
- [17] P. G. CASAZZA: Approximation properties, in: W.B. Johnson, J. Lindenstrauss (Eds.), Handbook of the geometry of Banach spaces 1 (2001): 271-316.

- [18] S. DINEEN: Complex Analysis in Locally Convex Spaces, North-Holland Math. Studies, vol. 57, North-Holland, Amsterdam, 1981.
- [19] S. DINEEN: Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
- [20] S. DINEEN, J. MUJICA: The approximation property for spaces of holomorphic functions on infinite dimensional spaces I, J. App. Theory, 126 (2004), 141-156.
- [21] S. DINEEN, J. MUJICA: The approximation property for spaces of holomorphic functions on infinite dimensional spaces II, J. Funct. Anal., 259 (2010), 545-560.
- [22] D. GARCÍA, M. MAESTRE, P. RUEDA: Weighted spaces of holomorphic functions on Banach spaces, Studia Math., 138(1) (2000),1-24.
- [23] D. GARCÍA, M. MAESTRE, P. SEVILLA- PERIS: Weakly compact composition operators between weighted spaces, Note Mat., 25(2005/06), 205-220.
- [24] M. GUPTA, D. BAWEJA: Weighted Spaces of holomorphic functions on Banach Spaces and the approximation property, Extracta Math., 31(2)(2016), 123-144.
- [25] M. GUPTA, D. BAWEJA: The bounded approximation property for the weighted spaces of holomorphic mappings on Banach spaces, Glasgow Math. J. (to appear).
- [26] E. JORDA: Weighted vector-valued holomorphic functions on Banach spaces, Abstract and Applied Analysis, Vol. 2013. Hindawi Publishing Corporation, (2013).
- [27] J. LINDENSTRAUSS, L. TZAFRIRI: Classical Banach spaces I, Springer, Berlin 1977.
- [28] J. MUJICA: Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc., 324, 2 (1991), 867-887.
- [29] J. MUJICA: Complex Analysis in Banach Spaces, North-Holland Math. Studies, vol. 120, North-Holland, Amsterdam, 1986.
- [30] J. MUJICA: Linearization of holomorphic mappings of bounded type, In: Progress in Functional Analysis, K.D. Biersted et al.(eds.), North Holland Math. Stud. 170, North-Holland, Amsterdam (1992), 149-162.
- [31] J. MUJICA, L. NACHBIN: Linearization of holomorphic mappings on locally convex spaces, J. Math. Pures. Appl., 71 (1992), 543-560.
- [32] J. MUJICA: A completeness criteria for inductive limits of Banach spaces. In Functional Analysis: Holomorphy and Approximation Theory II, North Holland Math. Studies, vol. 86 North-Holland, Amsterdam, 1984, 319-329.
- [33] J. MUJICA, D. M. VIEIRA: Schauder basis and the bounded approximation property in Separable Banach spaces, Studia Math., 196(1)(2010), 1-12.
- [34] L. NACHBIN: Topology on Spaces of Holomorphic Mappings, Springer-Verlag, Berlin 1969.
- [35] A. PELCZYŃSKI: Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math., 40(1971), 239-242.
- [36] P. RUEDA: On the Banach Dieudonne theorem for spaces of holomorphic functions, Quaest. Math., 19(1996), 341-352.
- [37] R. RYAN: Applications of topological tensor products to infinite dimensional holomorphy, PhD Thesis, Trinity College, Dublin 1980.