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(LB)-spaces VH(FE) and VHy(FE) of entire functions defined corresponding to a decreasing
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Introduction

The present paper deals with the study of the bounded approximation prop-
erty(BAP) for weighted (LB)-spaces of holomorphic mappings on a Banach
space. The study of the approximation properties for spaces of holomorphic
functions on infinite dimensional spaces was initiated by R. Aron and M. Schot-
tenloher in [1] and later continued in [11], [12], [13], [14], [15], [20], [21], [28].
However, by using the properties of Cesidro means operators, Bierstedt [7] stud-
ied the BAP for the projective and inductive limits of weighted spaces defined
on a balanced open subset of a finite dimensional space given by a countable
family V' of weights. In case of infinite dimension, D. Carando, D. Garcia, M.
Maestre, P. Rueda and P. Sevilla-Peris in [16], [22], [23] carried out investiga-
tions on structural properties, spectrum, composition operators defined on the
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projective limit of weighted spaces of holomorphic mappings corresponding to
an increasing sequence of weights. On the other hand, M.J. Beltrédn [4, 5, 6]
studied the inductive limits of such spaces defined by a decreasing family of
weights which are referred as weighted (LB)-spaces. In our earlier work, we ini-
tiated the study of the approximation properties in [24, 25] for such spaces and
continue the same in this paper. After having given preliminaries in Section 2,
we prove in Section 3 that a separable Banach space E has the BAP if and only
if G, (F) has the BAP, where w is a weight defined with the help of strictly
positive continuous function 7 on [0,00), as w(z) = n(||z||), x € E. Finally, in
Section 4, an S-absolute decomposition is obtained for the space VG(E), and
the BAP for the spaces VH(E) and VG(E) is investigated.

1 Preliminaries

In this section, we recall some definitions and results from the theory of
infinite dimensional holomorphy and approximation properties for which the
references are [3], [17], [18], [27], [29], [34]. The symbols N, Ny and C respec-
tively denote the set of natural numbers, N U {0} and the complex plane. The
letters E and F stand for complex Banach spaces and the symbols E’ and E*
denote respectively the algebraic dual and topological dual of E. The symbols
X and Y are used for locally convex spaces and X, = (X*, 5(X*, X)) denotes
the strong dual of X, where S(X™*, X) is the topology of uniform convergence
on all bounded subsets of X.

For each m € N, L("FE; F) denotes the Banach space of all continuous m-
linear mappings from E to F' endowed with its natural sup norm. For m = 1,
L(*E; F) = L(E; F) is the class of all continuous linear operators from E to F.
The topology of uniform convergence on compact subsets of F is denoted by 7.
A mapping P : E — F is said to be a continuous m-homogeneous polynomial
if there exists a continuous m-linear map A € L(™E;F) such that P(z) =
A(z,...,z), = € E. The space of all m-homogeneous continuous polynomials
from E to F' is denoted by P(™E;F) which is a Banach space endowed with
the norm

[Pl = sup [|P(z)].
lefl<1

A polynomial P € P(™E, F) is said to be of finite type if it is of the form

k
P(z) =) ¢]'(x)y;, v € E
j=1

where ¢; € E* and y; € F, 1 < j < k. We denote by P¢("E, F), the space of all
finite type m-homogeneous polynomials from E into F'. For m =1, Py(™E, F)
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is the space of all finite rank operators from E to F', denoted by F(E,F).
Puw(ME, F) denotes the space of all m-homogeneous polynomials which are
weakly uniformly continuous on bounded subsets of E' (a polynomial P is weakly
uniformly continuous on bounded subsets if for any bounded subset B of E and
e > 0, there exist ¢; € E*, i =1,2,...,k and § > 0 such that |P(z)— P(y)|| < €
whenever |¢;(x) — ¢i(y)| < 9,i=1,2,...,k and z,y € B).

A mapping f : U — F is said to be holomorphic, if for each & € U, there
exists a ball B(&,r) with center at £ and radius r > 0, contained in U and a
sequence { P, }o°_; of polynomials with P,, € P(™E; F), m € Ny such that

f@)=>" Pnlz—¢ (1)

m=0

where the series converges uniformly for each x € B(&,r). The space of all
holomorphic mappings from U to F' is denoted by H(U; F) and it is usually
endowed with 7, the topology of uniform convergence on compact subsets of U.
In case U = E, the class H(FE, F) is the space of entire mappings from F into F'.
For F' = C, we write H(U) for H(U;C). A subset A of U is U-bounded if it is a
bounded set and has a positive distance from the boundary of U. A holomorphic
mapping f is of bounded type if it maps U-bounded sets to bounded sets. The
space of holomorphic mappings of bounded type is denoted by H;(U; F).

A weight v (a continuous and strictly positive function ) defined on an open
balanced subset U of E is said to be radial if v(tz) = v(z) forallz € U and t € C
with [¢| = 1; and on E it is said to be rapidly decreasing if sup v(x)||z||™ < oo

zeE

for each m € Ny. Let us recall from [36], weighted spaces of entire functions
defined as

Ho(Us F) = {f e H(U; F) || fllo = iggv(x)llf(fﬂ)ﬂ < oo}

and

HUU; F)= {f € H(U;F) : for given € > 0 there exists a U-bounded
set A such that sup o(z)||f(x)| < €}.
\

zeU\A

The space (H,(U; F), ||-||») is a Banach space and HY(U; F') is a closed subspace
of Ho(U; F). For F = C, we write H,(U) = H,(U;C) and H(U) = HI(U;C).
The symbol B, denotes the closed unit ball of H,(U). It has been proved in
[24], p.131 that the class P(F) of polynomials is a subspace of H,(F) if and
only if the weight v is rapidly decreasing.
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Following Beltran [4], let V' = {v,} denote a countable decreasing family
(vn+1 < vy, for each n) of weights on E. Corresponding to V, let us consider
the weighted (LB)-spaces, i.e., the inductive limit of weighted spaces H,,, (E),
n € N defined as

VH(E) = | Ho.(E)

n>1

and

VHy(E) = | J H) (B)

n>1

and endowed with the locally convex inductive topologies 77 and 7, respec-
tively. Since the closed unit ball B, of each H,,, (E) is To-compact, it follows by
Mujica’s completeness Theorem, cf. [32], V H(FE) is complete and its predual

VG(E)={¢ € VH(E) : ¢|B,, is 7o — continuous for each n € N}

is endowed with the topology of uniform convergence on the sets B,, . In case
V consists of a single weight v, VG(E) is written as G,(F).

Let A be a mapping from E to VG(E) defined as A(z) = 6, where 0,(f) =
f(z), f € VH(E) and * € E. Then A € H(E;VG(E)). Let us recall the

following linearization theorem from [4]

Theorem 1.1. (Linearization Theorem) Let E be a Banach space and V
be a decreasing sequence of radial rapidly decreasing weights on E. For every
Banach space F' and every f € VH(E,F), there exists a unique continuous
operator Ty € L(VG(E), F) such that Ty o A = f. Moreover the mapping
:VH(E,F)— Li(VG(E),F) , ¢(f) =T} is a topological isomorphism.

In case V is a singleton set {v}, we write A, for A. The mapping ) be-
comes an isometric isomorphism between H, (E, F') and L(G,(E), F) with A, €
Hy(E; VG(E)) and ||Aylls < 1. Note that the above linearization theorem also
holds for a weight v defined on an open subset U of E. As a consequence of
Theorem 1.1, we have

Proposition 1.2. [25] Let v be a radial rapidly decreasing weight on a Ba-
nach space E. Then F is topologically isomorphic to a 1-complemented subspace

of G,(F).
Concerning the representation of members of G,(U), we have

Proposition 1.3. [25] Let v be a weight on an open subset U of a Banach
space E. Then each u in G,(U) has a representation of the form

u= Z anv(xn) Ay ()

n>1
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for (o) € 11 and (z,) C U.

A locally convex space X is said to have the approximation property if for
any continuous semi-norm p on X, for a compact set K of X and ¢ > 0, there
exists a finite rank operator T' = T, i such that sup p(T'(z) —z) < e. If {T x :

zeK

e > 0 and K varies over compact subsets of X} is an equicontinuous subset of
F(X,X), X is said to have the BAP. When X is normed and there exists a
A > 1 such that ||T¢ k|| < X for each € > 0 and each compact set K, X is said
to have the A-BAP. In case A = 1, we say X has the metric approximation
property (MAP).

The following characterization of the BAP for a separable Banach space due
to Pelczyniski [35], is quoted from [33].

Theorem 1.4. For a separable Banach space E, the following assertions
are equivalent:

(a) E has the bounded approximation property.

(b) There is a sequence {T,,} C F(E,FE) such that T,,(x) — z for every
rekFE.

(c) E is topologically isomorphic to a complemented subspace of a Banach
space with a monotone Schauder basis.

Improving the above result, Mujica and Vieira [33] proved

Theorem 1.5. Let £ be a separable Banach space with the A-bounded
approximation property. Then for each € > 0, there is a Banach space F' with
a Schauder basis such that FE is isometrically isomorphic to a 1-complemented
subspace of the Banach space F' and, the sequence {T,,} of canonical projections
in F' has the properties sup || 7,,|| < A+ € and limsup ||7,] < A

n n—oo

We also make use of the following result from [27], which can be easily
verified.

Proposition 1.6. Let E be a Banach space with the A-bounded approxi-
mation property. Then each complemented subspace of E with the projection
map P has the \||P||-bounded approximation property.

The following result proved for the MAP for any Banach space E in [25], is
useful for the proof of the main result of this paper.

Theorem 1.7. Let v be a radial rapidly decreasing weight on a Banach
space FE satisfying v(z) < v(y) whenever ||z|| > ||y||, z,y € E. Then the following
assertions are equivalent:

(a) E has the MAP.

(b) {PePi(E,F): P, <1} = By, (k,r) for any Banach space F.

(c) Wc = By, (g,r) for any Banach space F.
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-

(d) Av c BHU(E)®QU(E) .

(e) Gy(E) has the MAP.

A sequence of subspaces {X,,}5°; of a locally convex space X is called a
Schauder decomposition of X if for each x € X, there exists a unique sequence
{z,} of vectors z,, € X,, for all n, such that

o
x = an = lim wup(z)
m—0o0

n=1

m
where the projection maps {unm}ro_; defined by u,,(xz) = > z;, m > 1 are
j=1

continuous.

Corresponding to a sequence space S = {(a, )22

. 1
o0 1ty € Cand limsup |ay|n <

n—0o0

1}, a Schauder decomposition {X,}, is said to be S-absolute if for each 5 =
(Bj) €S

00 o0
(1) B-x= Zlﬂjxj € X for each x = lej € E, and
j= 7=

o0
(ii) for a continuous semi-norm p on X, pg(x) = Zl |Bj|p(x;) defines a
]:
continuous semi-norm on X.

If each X, is one dimensional and X, = span{z,}, then {z,},>1 is a
Schauder basis of X. A Schauder basis {z,},>1 of a Banach space X is called
monotone if ||um (z)|| < ||um+1(x)| for each m € N and each z € X.

Proposition 1.8. [18] If a sequence {X,,}7°, of subspaces of a locally con-
vex space X is an S-absolute decomposition for X, then {(X,)"}32, is an
S-absolute decomposition for X; .

We quote from [11],[14], the following

Proposition 1.9. If {X,,}°° is an S-absolute decomposition of a locally
convex space X, then X has the AP(BAP) if and only if each X,, has the
AP(BAP).

Theorem 1.10. [11] Let E be a Banach space. Then E* has the BAP if
and only if P, ("E) has the BAP for each n € N.

2 The Bounded Approximation Property for the space
Gn(E)

Throughout this section 7 : [0,00) — (0, 00) denotes a continuous decreasing
function satisfying n(r)r* — 0 for each k& € Ny, i.e.  is rapidly decreasing.
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For such a function 7, consider a weight w on a Banach space E as w(x) =
n(||z]|), = € E. Clearly w is a radial rapidly decreasing weight on F satisfying
w(z) < w(y) whenever ||z|]| > ||y||, =,y € E. For a weight given by 7, we
write H, for H,, and G, for G,. In this section, we characterize the bounded
approximation property for the space F in terms of the bounded approximation
property for the space G, (FE).

Theorem 2.1. Let (E, | - ||) be a Banach space with a monotone Schauder
basis {z, : n € N} and w be a radial rapidly decreasing weight on E satisfying
w(z) < w(y) whenever |z|| > ||y|l, x,y € E. Then, for each Banach space
F and f € Hy(E,F), there exists a sequence {f,} C Hy(E)Q F such that
frn = f and || fullw < ||f]lw, and a fortiori, By, (B)® F 18 Te-sequentially dense
in BHw(E,F)'

Proof. Let f € By, (g,r). For each n € N, write B, = E, N nBg, where
E, =span{zy,x2,...,z,}. Clearly each B, is a compact subset of E. Thus, by
implication (a) = (c) of Theorem 1.7, there exists a sequence (fn) C By, (5)Q F
with || fnllw < || f]lw for each n € N such that

sup [1faly) ~ F)I < )

x€B,,

Since {f, : n € N} is an equicontinuous subset of H,,(E, F), for ¢ > 0, there
exists a 0 > 0 such that for each n € N and ||y — z|| < 0.

[fn(y) = fu@)] <e 3)

As the basis {z,,} is monotone, E = |JB,, . Fix yo € E. Then for the above
0 > 0, choose ng € N and z € By, such that ||yo — z|| < J. By (2), {fn(x)}
is a Cauchy sequence, and so {f,(yo)} is Cauchy by (3). Thus f.(y) — f(y),
for each y € E. As the sequence {f,} is equicontinuous, it converges in the 7.
topology. QED

A particular case of the above theorem for the weight given by 7, is stated
in

Theorem 2.2. Let E be Banach space with a monotone Schauder basis.
Then By, (p)® F 1S Tc-sequential dense in By, (g ) for each Banach space F.

The next proposition is a particular case of [33, Therorem 1.2]. Its proof
makes use of the following lemma from [33].

Lemma 2.3. Let E be a finite dimensional Banach space of dimension n.
Then for each € > 0, there exist m € N and operators Uy, ..., Upn, € L(E; E) of
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rank one such that

ZUj(x) =z foreachx € E
j=1

and

k mn
HZU]]H-H Z Uj| <14e€ foreach 1<k <mn.
j=1 j=k+1

Proposition 2.4. Let E be a separable Banach space with the bounded
approximation property. Then there is a Banach space F' having Schauder basis
such that F is topologically isomorphic to a 1-complemented subspace of F'.

Proof. To facilitate the reading, we outline its proof from [33], cf. the proof of

Theorem 1.2. Assume that E has the A-BAP for some A > 0 and {y,}2, is a

dense subset of E. Then for each n € N, there exist T, € F(E; E) such that

Tl < Xand || Thy; —yill < & for 1 < i < n. Let S, be the sequence of operators
[e.e]

defined as S1 = Ty and S, = T), — T—1, n > 2. Then ) S,(x) = x for each

n=1

zeFE.
Choose € > 0 arbitrarily and a strictly decreasing sequence {¢,} of positive
numbers tending to zero with €; = £. Then for each n € N, there are operators

Uni, Un2,...,Upm, on Sy(E) of rank one such that Zn Upjx = z for each

j=1
k mn
x € Sp(E) and || X" Unjll + 1 Y Unjll < (1+e€,) for each 1 < k < m,, by
Jj=1 j=k+1

Lemma 2.3.
For each k € N, we define the operators A; and numbers 0 as follows:

A =Upi08S, and d =€,

where i, n are chosen such that k has the unique representation in the form
k=mi+4+---+my_1+¢with 1 <7 <m,. Then

k
1Y " Aj(@) — 2| < | Tnrz — 2| + 1+ e)[(Tn — Tn1)(z)]| = 0 as n — oo
j=1

Since each A; is of rank one, there exist ¢; € E* and a; € E such that A;(z) =
[&.8] o0 o0

¢j(x)a;. Thus ZlAj(:c) = Zl¢j(m)aj =z and || ‘21 Ajll < X1+ o).
j= J= J=
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o0
Now consider the sequence space F' = {(¢;) : ) oja; converges in E}. It
j=1

k
is a Banach space endowed with the norm |||(;)||| = sup || > «aja;|| for which
kooj=1

unit vectors form a monotone Schauder basis. The mappings A : £ — F and
o0

B : F — E defined as A(x) = (¢;(x)), x € E and B((a;)) = > «oja; satisfy
j=1

(i) Bo A = I, the identity map on E, (ii) ||B|| < 1; and
(ili)Ao B : F' — F is a projection map.

00 k
Define W = {(a;) € F : || Y aja;|| < 1,|| X ajaj]| < A1+ 0y) for each k}.
i=1 J=1
Then
{(a) € F 1 | B((a))[| <1 and [ly[| < A} € W C {(q;) € F = [[(a))[| < (A +e)}.

Thus W is an absolutely convex, absorbing and bounded set and so its Minkowski
functional || - ||w defines a norm on F. We write Fyy = (F,|| - ||w). Moreover,
-] < |- |lw yields the identity I : (F |- |lw) — (F,]|||-]||) is @ homeomorphism
and so Fyy is a Banach space having unit vectors as Schauder basis. It is shown
in [33] that A : F — Fy is an isometric embedding and Ao B : Fyy — Fy
is a projection map with [|[A o Bljyy < 1. Thus A(F) is 1-complemented in
Fyy. QED

Theorem 2.5. Let E be a separable Banach space with the BAP. Then
By, (B)® G 1s Te-sequentially dense in By, (g ) for each Banach space G.

Proof. Consider f € By, (A(g),q)- Recalling the notations from the proof of the
preceeding proposition, we have fo Ao Bol € By, (Fy )5 indeed,

sup n([[yllw )l f o Ao Bol(y)lle < supn(||AoBol(y)llw)llf(AeBeol(y)le<
yer yeF

as ||[Ao BoI(y)|lw < |lyllw for each y € F and 7 is decreasing. Thus, in
view of Theorem 2.2, there exists a sequence (fn) C By, (ry)ec such that
fon= foAoBol.

Write f], for the restriction of f,, on A(FE), .i.e. f| = fn|A(FE).

In order to show the convergence of f/ to f with respect to 7, consider a

compact subset K of A(E). Then K = A(K') for some compact set K’ of E.
Consequently,

sup [|(fy, — H)W)lle = sup [|f(A(@)) — f(A())lle
yeK e K’

— sup ||[f,(A() — fo Ao BoloA(z)|g—0 asn— .
zeK'
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QED

Next, we prove

Proposition 2.6. For a given weight w on an open subset U of a Ba-
nach space E, if the closed unit ball By, (g Fr is Tc-sequentially dense in
By, w,r) for some Banach space F', then F(Gy,(U), F) is sequentially dense in
(L(Gw(U), F), 1p) where 7, is the the topology of pointwise convergence.

Proof. Choose T' € L(G,,(U), F) and € > 0 arbitrarily. Then by Theorem 1.1,
there exist f € H, (U, F) such that T' = f o A,. By the hypothesis, there is
a sequence (f,) C Hy(U) ® F with |[fullw < [/ = || such that f, 7 /.
Again, applying Theorem 1.1, there exist T;, € L(G,(U), F) for each n € N such
that T}, = fi, 0 Ay

Now, fix u € G, (U). Then by Proposition 1.3,

U = Z 0w (x;)0g,

i>1

for (a;) € Iy and (x;) C U. Choose ig € N such that > |os] <e.

(T = T) )| < Y Jaslw(@a)||(fa = f) (@) + 26T
i=1

i . 3 ! €
The set K = {z1,x2,...,%;,} is a compact subset of U. Hence, for ¢ = W,
i<ig

there exist ng € N such that sup || f,(z) — f(z)]| < € for all n > ng. Thus
zeK

(T = T)(u)| < e||T] +1)
for all n > ng. This completes the proof. QED

The above results lead to

Theorem 2.7. A separable Banach space F has the BAP if and only if
Gn(E) has the BAP

Proof. Using Theorem 2.5 and Proposition 2.6 for F' = G,(F), the identity
on G,(E) can be approximated pointwise by finite rank operators. Hence by
Theorem 1.4, G,(E) has the BAP. The other implication follows immediately
by Theorem 1.2 and 1.6.
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3 The Approximation Properties for the space VH(FE)
and its predual

In [37], R. Ryan has constructed the predual Q("™FE) of P("™FE), m € N which
is defined as

Q(ME)={¢ € P("E)": ¢| B, is 70 — continuous}

where B, is the unit ball of P("FE). The space Q("FE) is endowed with the
topology of uniform convergence on B,,. Analogous to condition (II) considered
by Garcia, Maestre and Rueda [22] for an increasing family of weights, Beltran
[4] introduced a condition for a decreasing family V'; indeed, a decreasing family
V of weights satisfies condition (A) if for each m € N, there exist D >0, R > 1
and n € N, n > m such that

: D
122 £(O) o, < 251 f o

for each j € N and f € H,, (E).

In this section, we show that the sequence of spaces {Q(™FE)}>°_; form an
S-absolute decomposition for VG(E) when the family V satisfies condition (A)
and consequently derive that a Banach space F has the BAP if and only if
VG(FE) has the BAP.

Let us begin with

Lemma 3.1. Let V be a decreasing family of weights satisfying condition
(A). Then for f € S and m € N, there exists n € N and C' > 0 such that

{B-1=>_BiP’f(0): f € By} CCB,,.
j=0
Also,
1Y "B PIf(0)ln <> 18P £(0)|ln < C for each f € B, (4)
j=0 j=0

Proof. Fix f € § and m € N. Then, by condition (A), there exist D > 0, R > 1
and n € N, n > m such that

: D
12 £ (O)lon, < 251 f llown
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for each j € N and f € H,,, (U). Now, for R > 1, we can choose M > 0 such
that |3;] < M(3££)7 for each j € N. Then, for each f € B,,,

18+ Flla <D IBIPT (0o, < Cl fllo (5)
=0
where C = >° M(X:R)ID. Thus {8 f : f € B,,,} C CB,,. Clearly (4) follows
7=0
from (5). QED

Theorem 3.2. If V = {v,} is a decreasing family of radial rapidly decreas-
ing weights satisfying condition (A), then the sequence of spaces {Q("E)}>_;
forms an S-absolute decomposition for VG(FE) endowed with the topology of
uniform convergence on B, for each m € N, where B, denotes the unit ball
of H,,, (E) for each m.

Proof. For ¢ € VG(FE) and m € N, define ¢, : VH(E) — C as
om(f) = &(P™f(0)), fEVH(E)
Since By, C By,,, ¢m|Bm is To-continuous. Thus ¢,,, € Q(™FE). In order to show

that ¢ = > ¢; in VG(E), fix m € N and consider
j=0

k—1 [e'e) ' 1 [e%S) '
16 =3 il = s 63 PSO) = sup 1ok P S0))
=0 vm

€Bom =k j=k

Now, taking 8 = (j2) in (4), we have

K2 3~ P2 fO)l, < 31 fO), < C
j=k

j=k
for each f € B,,,. Thus, {k* >_ Pif(0): f € B,,,,k € N} C CB,, and so
j=k
k—1 1
6~ 3" 63l.,, < l9lles, =0
§=0

as k — oo.
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For the continuity of the projection map R; : VG(E) — Q(E), j € N,
consider a net (¢") in VG(F), converging to 0. Then

1R (6B, nPer) = sup [¢](P)/= sup [¢"(P)]
anLnP(]E) vanP(JE)

< [l¢"(P)llz,, — 0.

Finally, we show that this decomposition for VG(FE) is S-absolute. Let 8 =
(Bj) € S and ¢ = (¢;) € VG(E) and I,k € N with [ > k. Since (j23;) € S, for

l .
m € N, by Lemma 3.1, there exist C > 0 and n € N such that { " 728;P7 f(0) :
j=k
fe€ B,k €N} CCB,,. Thus

l l l
1
1Y Bidillz,, = sup | Y Bidi(f) ij (B P’ f(0)IB,,,
j=k J€Bom parg
l

1
<> s2l9llon, =0 ask 1o
:k

(o ¢]

Thus ) Bj¢; converges in VG(E). Similar arguments would yield that the
7=0

decomposition is absolute. QED

Making use of Proposition 1.9 and Theorem 3.2, we get

Theorem 3.3. Let V be a decreasing family of radial rapidly decreasing
weights satisfying condition (A). Then the following are equivalent:

(a). E has the BAP(AP).

(b). Q(™E) has the BAP(AP) for each m € N.

(¢). VG(E) has the BAP(AP).

Proof. (a) < (b) This result is proved in [28] for the AP and in [13] for the
BAP.
(b) < (c) is a consequence of Proposition 1.9 and Theorem 3.2. QED

Remark 3.4. We would like to point out that Theorem 2.7 is not a particular
case of Theorem 3.3 as the family V' consisting of a single weight v never satisfies
condition (A); indeed, if there exist some D > 0 and R > 1 such that for each
j€Nand f e H,(U)

1P £(0)]l0 < 1P FO)]l,

’U — R']
would yield R/ < D for each j, which is not possible.
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The following result of Beltran [4] is an immediate consequence of Theorem
3.2 and Proposition 1.8.

Proposition 3.5. If V is a decreasing family of radial rapidly decreasing
weights satisfying condition (A), then {P(™FE)}>_, is an S—absolute decom-
position for VH(E).

Next, we prove

Theorem 3.6. Let E be a Banach space with P("FE) = P,,("FE), for each
m € N. Then, for a decreasing family V' of radial rapidly decreasing weights on
E satisfying condition (A), the following are equivalent:

(a). E* has the BAP.

(b). P(™E) has the BAP for each m € N.

(c). VH(E) has the BAP.

Proof. (a) < (b) follows from Theorem 1.10; and (b) < (c) is a consequence of
Propositions 1.9 and 3.5. QED

Since P(mCY) = P, (™CY) for each m € N and for given N € N, we have

Corollary 3.7. The spaces VH(CY) have the BAP for any family V of
radial rapidly decreasing weights satisfying (A) and N € N.

Remark 3.8. In case the family V of radial rapidly decreasing weights satis-
fies condition (A), it has been proved in [5], VH(E) = VHy(E) for any Ba-
nach space E. The above corollary, thus, yields the result of Bierstedt, namely
(VHo(CN), 7y) has the BAP for the restricted family V satisfying condition
(4).

The Hérmander algebra A, (E) of entire functions defined on a Banach space
has been studied by Beltran [5] who considered the sequence V' of weights
vp(z) = e ™) 2 € B, defined with the help of a growth condition p, i.e. an
increasing continuous function p : [0,00) — [0, c0) with the following properties:

(a) ¢ : 17— p(e") is convex.

(b) log(1 +1%) = o(p(r)) as r — co.

(c) there exists A > 0 such that p(2r) < A(p(r) 4+ 1) for each r > 0.

Then V = {v,} is a family of rapidly decreasing weights satisfying condition
(A). This observation leads to

Example 3.9. Under the hypothesis of Theorem 3.6 for F, i.e., P("E) =
Puw("E), for each m € N, A,(E) has the BAP whenever E* has the BAP. In
particular, A4,(CY) has the BAP for each growth condition p and N € N.
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