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1 Introduction

In recent years, the integral inequalities have emerged as an important area
of research, since this theory has many applications in differential equations and
applied sciences. In this sense, a large number of papers have been developed,
for details, we refer the reader to [1]-[4], [7, 12, 14], [22]-[27] and the references
therein. Moreover, the fractional type inequalities have recently been studied
by several researchers. For some earlier work on the topic, we refer to [2, 3, 6],
[8]-[12] and [14, 17, 19, 20, 23]. In [5], using Korkine identity, N.S. Barnett et
al. established some integral inequalities for the expectation and the variance of
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a continuous random variable X having a probability density function defined
on [a, b]. In [16], P. Kumar presented new results involving higher moments for
continuous random variables. He also established some estimations for the cen-
tral moments. Other results based on Gruss inequality and some applications of
the truncated exponential distribution have been also discussed by the author.
In [18], P. Kumar established other good results for Ostrowski type integral in-
equalities involving moments of a continuous random variable with p.d.f. defined
on a finite interval. He also derived new bounds for the r−moments. Further,
he discussed some important applications of the proposed bounds to the Euler
beta mappings. Recently, G.A. Anastassiou et al. [2] proposed a generalization
of the weighted Montgomery identity for fractional integrals with weighted frac-
tional Peano kernel. Then, M. Niezgoda [21] proposed some generalizations for
the paper [17], by applying Ostrowski-Grüss type inequalities. In [12], the au-
thor established several integral inequalities for the fractional dispersion and
the fractional variance functions of continuous random variables with probabil-
ity density functions p.d.f. that are defined on some finite real intervals. Very
recently, A. Akkurt et al. [1] proposed new generalizations of the results in [12].
In a very recent work, Z. Dahmani et al. [13] presented new fractional integral
results for the (r, α)−fractional moments. In fact, by introducing other concepts
on the (r, α)−orders fractional moments of continuous random variables (noted
by Mr,α), the authors generalized Theorem 1 in the paper [17]. Other results
between the quantities M2r,α and M2

r,α, have been also generated by the authors.

Motivated by the results presented in [2, 5, 12], in this paper, we introduce
new w−weighted concepts for continuous random variables that have p.d.f.
defined on some finite real intervals. Then, we obtain new integral inequali-
ties for the fractional w−weighted expectation and the fractional w−weighted
variance functions. We also present new integral inequalities for the fractional
(r, w)−weighted moments. At the last section, some applications on the uniform
random distribution are given. For our results, some classical and fractional re-
sults can be deduced as some special cases.

2 Preliminaries

The following notations, definitions and preliminary facts will be used through-
out this paper.

Definition 1. [15] The Riemann-Liouville fractional integral operator of
order α > 0, for a continuous function f on [a, b] is defined as

Jαa
[
f (t)

]
= 1

Γ(α)

t∫
a

(t− τ)α−1 f (τ) dτ, α > 0, a < t ≤ b. (1)



New W−weighted concepts for continuous random variables with applications 25

For α > 0, β > 0, we have:

Jαa J
β
a

[
f (t)

]
= Jα+β

a

[
f (t)

]
, (2)

and

Jαa J
β
a

[
f (t)

]
= Jβa Jαa

[
f (t)

]
. (3)

Let us consider a positive continuous function w defined on [a, b]. We introduce
the concepts:

Definition 2. The fractional w−weighted expectation function of order α >
0, for a random variable X with a positive p.d.f. f defined on [a, b] is defined as

EX,α,w (t) := 1
Γ(α)

t∫
a

(t− τ)α−1 τw (τ) f (τ) dτ, a ≤ t < b, α > 0, (4)

where w : [a, b]→ R+ is a positive continuous function.

Definition 3. The fractional w−weighted expectation function of order α >
0 for the random variable X − E (X) is given by

EX−E(X),α,w (t) :=

1

Γ (α)

t∫
a

(t− τ)α−1 (τ − E (X)
)
w (τ) f (τ) dτ, a ≤ t < b, α > 0, (5)

where f : [a, b]→ R+ is the p.d.f. of X.

We introduce also the following definitions:

Definition 4. The fractional w−weighted variance function of order α > 0
for a random variable X having a positive p.d.f. f on [a, b] is defined as

σ2
X,α,w (t) :=

1

Γ (α)

t∫
a

(t− τ)α−1 (τ − E (X)
)2
w (τ) f (τ) dτ, a ≤ t < b, α > 0. (6)

Definition 5. The fractional w−weighted moment function of orders r > 0,
α > 0 for a continuous random variable X having a p.d.f. f defined on [a, b] is
defined as

Mr,α,w (t) := 1
Γ(α)

t∫
a

(t− τ)α−1 τ rw (τ) f (τ) dτ, a ≤ t < b, α > 0. (7)

For the particular case t = b, we list the following definitions:
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Definition 6. The fractional w−weighted expectation of order α > 0 for a
random variable X with a positive p.d.f. f defined on [a, b] is defined as

EX,α,w := 1
Γ(α)

b∫
a

(b− τ)α−1 τw (τ) f (τ) dτ, α > 0. (8)

Definition 7. The fractional w−weighted variance of order α > 0 for a
random variable X having a positive p.d.f. f on [a, b] is given by

σ2
X,α,w := 1

Γ(α)

b∫
a

(b− τ)α−1 (τ − E (X)
)2
w (τ) f (τ) dτ, α > 0. (9)

Definition 8. The fractional w−weighted moment of orders r > 0, α > 0
for a continuous random variable X having a p.d.f. f defined on [a, b] is defined
by

Mr,α,w := 1
Γ(α)

b∫
a

(b− τ)α−1 τ rw (τ) f (τ) dτ, α > 0. (10)

Based on the above definitions, we give the following remark:

Remark 1. (1:) If we take α = 1, w(t) = 1, t ∈ [a, b] in Definition 4, we
obtain the classical expectation: EX,1,1 = E (X) .
(2:) If we take α = 1, w(t) = 1, t ∈ [a, b] in Definition 8, we obtain the classical

variance: σ2
X,1,1 = σ2 (X) =

b∫
a

(
τ − E (X)

)2
f (τ) dτ.

(3:) For α > 0, we have Jαa
[
f (t)

]
≤ (b−a)α−1

Γ(α) .

(4:) If we take α = 1, w(t) = 1, t ∈ [a, b] in Definition 8, we obtain the classical

moment of order r > 0 given by Mr :=
b∫
a
τ rf (τ) dτ .

3 Main Results

In this section, we present new w−weighted integral inequalities for random
variables with probability density functions defined on some finite real intervals.
We begin by the following theorem:

Theorem 1. Let X be a continuous random variable having a p.d.f. f :

[a, b]→ R+, and let w : [a, b]→ R+ be a positive continuous function. Then for
all α > 0, a < t ≤ b, the following inequalities for fractional integrals hold:

Jαa
[
(wf)(t)

]
σ2
X,α,w (t)−

(
EX−E(X),α,w (t)

)2

≤ ‖f‖2∞
[
Jαa
[
w(t)

]
Jαa
[
t2w(t)

]
−
(
Jαa
[
tw(t)

])2
]
, f ∈ L∞ [a, b] ,

(11)
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and

Jαa
[
(wf)(t)

]
σ2
X,α,w (t)−

(
EX−E(X),α,w (t)

)2
≤

1

2
(t− a)2

(
Jαa
[
(wf)(t)

])2
. (12)

Proof. We define the quantities:

H (τ, ρ) :=
(
g (τ)− g (ρ)

) (
h (τ)− h (ρ)

)
, τ, ρ ∈ (a, t) , a < t ≤ b, (13)

and

ϕα (t, τ) := (t−τ)α−1

Γ(α) p (τ) , τ ∈ (a, t) , a < t ≤ b, (14)

where p : [a, b]→ R+ is a continuous function.
Using (13) by (14), we can write

t∫
a
ϕα (t, τ)H (τ, ρ) dτ =

t∫
a
ϕα (t, τ)

(
g (τ)− g (ρ)

) (
h (τ)− h (ρ)

)
dτ. (15)

And then, ∫ t
a

∫ t
a ϕα (t, τ)ϕα (t, ρ)H (τ, ρ) dτdρ

=
∫ t
a

∫ t
a ϕα (t, τ)ϕα (t, ρ)

(
g (τ)− g (ρ)

) (
h (τ)− h (ρ)

)
dτdρ.

(16)

Hence,

1
Γ2(α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1 p (τ) p (ρ)
(
g (τ)− g (ρ)

) (
h (τ)− h (ρ)

)
dτdρ

= 2Jαa
[
p (t)

]
Jαa
[
(pgh) (t)

]
− 2Jαa

[
(pg) (t)

]
Jαa
[
(ph) (t)

]
.

(17)
Now, replacing p (t) = w(t)f (t) , g (t) = h (t) = t − E (X) , w : [a, b] → R+,
a < t ≤ b in (17), we obtain

1
Γ2(α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1 (τ − ρ)2w(τ)w(ρ)f (τ) f (ρ) dτdρ

= 2Jαa
[
(wf) (t)

]
Jαa
[
(wf) (t) (t− E(X))2

]
− 2(Jαa

[
(wf)(t)(t− E(X)

]
)2

= 2Jαa
[
(wf)(t)

]
σ2
X,α,w (t)− 2

(
EX−E(X),α,w (t)

)2
.

(18)
Since f ∈ L∞

(
[a, b]

)
, we have

‖f‖2∞
1

Γ2(α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1w(τ)w(ρ) (τ − ρ)2 dτdρ

≤ 2 ‖f‖2∞
[
Jαa
[
w (t)

]
Jαa
[
t2w(t)

]
− (Jαa

[
tw(t)

]
)2
]
.

(19)
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On the other hand, for τ, ρ ∈ [a, t] , a < t ≤ b, we obtain

1
Γ2(α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1w(τ)w(ρ) (τ − ρ)2 f (τ) f (ρ) dτdρ

≤ sup
τ,ρ∈[a,t]

∣∣(τ − ρ)
∣∣2 1

Γ2(α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1w(τ)w(ρ)f (τ) f (ρ) dτdρ

= (t− a)2 (Jαa
[
(wf)(t)

]
)2.

(20)
Combining (18) and (19), we conclude that

Jαa
[
(wf)(t)

]
σ2
X,α,w (t)−

(
EX−E(X),α,w (t)

)2

≤ ‖f‖2∞
[
Jαa
[
w (t)

]
Jαa
[
t2w(t)

]
− (Jαa

[
tw(t)

]
)2
]
,

(21)

and thanks to (18) and (20), it yields that

Jαa
[
(wf)(t)

]
σ2
X,α,w (t)−

(
EX−E(X),α,w (t)

)2
≤ 1

2 (t− a)2 (Jαa
[
(wf)(t)

]
)2.

(22)
Theorem 1 is thus proved. QED

Remark 2. If we take w (t) = 1, a < t ≤ b in Theorem 1, we obtain
Theorem 3.1 of [12].

We prove also the following theorem.

Theorem 2. Suppose that X is a continuous random variable with a p.d.f.
f : [a, b]→ R+ and let w : [a, b]→ R+ be a continuous function.

(I): If f ∈ L∞
(
[a, b]

)
, then for all α > 0, β > 0, a < t ≤ b,

Jαa
[
(wf)(t)

]
σ2
X,β,w (t) + Jβa

[
(wf)(t)

]
σ2
X,α,w (t)

− 2EX−E(X),α,w (t)EX−E(X),β,w (t)

≤ ‖f‖2∞
[
Jαa
[
w(t)

]
Jβa

[
t2w(t)

]
+ Jβa

[
w(t)

]
Jαa

[
t2w(t)

]
−2Jαa

[
tw(t)

]
Jβa
[
tw(t)

]]
. (23)

(II): For a < t ≤ b, the inequality

Jαa
[
(wf)(t)

]
σ2
X,β,w (t) + Jβa

[
(wf)(t)

]
σ2
X,α,w (t)

− 2EX−E(X),α,w (t)EX−E(X),β,w (t)

≤ (t− a)2 Jαa
[
(wf)(t)

]
Jβa
[
(wf)(t)

]
(24)

is also valid for any α > 0, β > 0.
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Proof. Thanks to (15), yields the following identity

∫ t
a

∫ t
a ϕα (t, τ)ϕβ (t, ρ)H (τ, ρ) dτdρ

=
∫ t
a

∫ t
a ϕα (t, τ)ϕβ (t, ρ)

(
g (τ)− g (ρ)

) (
h (τ)− h (ρ)

)
dτdρ.

(25)

This implies that

1
Γ(α)Γ(β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1 p (τ) p (ρ)
(
g (τ)− g (ρ)

) (
h (τ)− h (ρ)

)
dτdρ

= Jαa
[
p (t)

]
Jβa
[
(pgh) (t)

]
+ Jβa

[
p (t)

]
Jαa
[
(pgh) (t)

]
−Jαa

[
(ph) (t)

]
Jβa
[
(pg) (t)

]
− Jβa

[
(ph) (t)

]
Jαa
[
(pg) (t)

]
.

(26)
In (26), if we take p(t) = w(t)f(t), g(t) = h(t) = t− E(X), then we obtain

1

Γ (α) Γ (β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1 (τ − ρ)2w(τ)w(ρ)f (τ) f (ρ) dτdρ

=Jαa
[
(wf)(t)

]
Jβa

[
(wf)(t)(t− E(X))2

]
+ Jβa

[
(wf)(t)

]
Jαa

[
(wf)(t)(t− E(X))2

]
− 2Jαa

[
(wf)(t)(t− E(X))

]
Jβa
[
(wf)(t)(t− E(X))

]
=Jαa

[
(wf)(t)

]
σ2
X,β,w (t) + Jβa

[
(wf)(t)

]
σ2
X,α,w (t)

− 2EX−E(X),α,w (t)EX−E(X),β,w (t) .

(27)

Let f ∈ L∞
(
[a, b]

)
. Then,

1

Γ (α) Γ (β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1 (τ − ρ)2w(τ)w(ρ)f (τ) f (ρ) dτdρ

≤ ‖f‖2∞
1

Γ (α) Γ (β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1 (τ − ρ)2w(τ)w(ρ)dτdρ

= ‖f‖2∞
[
Jαa
[
w(t)

]
Jβa

[
t2w(t)

]
+ Jβa

[
w(t)

]
Jαa

[
t2w(t)

]
− 2Jαa

[
tw(t)

]
Jβa
[
tw(t)

]]
.

(28)
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Using the fact that sup
τ,ρ∈[a,t]

∣∣(τ − ρ)
∣∣2 = (t− a)2, it follows that

1
Γ(α)Γ(β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1w(τ)w(ρ) (τ − ρ)2 f (τ) f (ρ) dτdρ

≤ sup
τ,ρ∈[a,t]

∣∣(τ − ρ)
∣∣2 1

Γ(α)Γ(β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1w(τ)w(ρ)f(τ)f(ρ)dτdρ

≤ (t− a)2Jαa
[
(wf)(t)

]
Jβa
[
(wf)(t)

]
.

(29)
Thanks to (27) and (28), we obtain

Jαa
[
(wf)(t)

]
σ2
X,β,w (t) + Jβa

[
(wf)(t)

]
σ2
X,α,w (t)

− 2EX−E(X),α,w (t)EX−E(X),β,w (t)

≤ ‖f‖2∞
[
Jαa
[
w(t)

]
Jβa

[
t2w(t)

]
+ Jβa

[
w(t)

]
Jαa

[
t2w(t)

]
−2Jαa

[
tw(t)

]
Jβa
[
tw(t)

]]
. (30)

By (27) and (29), we have

Jαa
[
(wf)(t)

]
σ2
X,β,w (t) + Jβa

[
(wf)(t)

]
σ2
X,α,w (t)

− 2EX−E(X),α,w (t)EX−E(X),β,w (t)

≤ (t− a)2Jαa
[
(wf)(t)

]
Jβa
[
(wf)(t)

]
. (31)

QED

Remark 3. (i) : Applying Theorem 2 for α = β, we obtain Theorem 1.
(ii) : Taking w(t) = 1, a < t ≤ b in Theorem 2, we obtain theorem 3.2 of [12].

The third main result is the following theorem which generalizes the second
part of Theorem 1. We have:

Theorem 3. Let f be the p.d.f. of X on [a, b] and w : [a, b] → R+. Then
the following fractional inequality holds:

Jαa
[
(wf)(t)

]
σ2
X,α,w (t)−

(
EX−E(X),α,w (t)

)2
≤ 1

4 (b− a)2
(
Jαa
[
(wf)(t)

])2
,

(32)
for α > 0 and a < t ≤ b.

Proof. Let l ≤ h(t) ≤ L and m ≤ g(t) ≤ M, with l, L,m,M ∈ R+. For
α > 0 and for each a < t ≤ b, by Theorem 3.1 of [9], we have∣∣∣Jαa [p(t)] Jαa [(phg) (t)

]
− Jαa

[
(ph) (t)

]
Jαa
[
(pg) (t)

]∣∣∣
≤ 1

4

(
Jαa
[
p(t)

])2
(L− l) (M −m) .

(33)
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In this above inequality, we replace h by g, we will have∣∣∣∣Jαa [p (t)
]
Jαa

[(
pg2
)

(t)
]
− (Jαa

[
pg (t)

]
)2

∣∣∣∣ ≤ 1
4

(
Jαa
[
p(t)

])2
(M −m)2 . (34)

By taking p(t) = w(t)f(t), g(t) = t− E(X), a < t ≤ b in (34), we obtain:∣∣∣∣Jαa [(wf) (t)
]
Jαa

[
(wf) (t)

(
t− E(X

)
)2
]
− (Jαa

[
(wf) (t)

(
t− E(X

)
)
]
)2

∣∣∣∣
≤ 1

4

(
Jαa
[
(wf) (t)

])2
(M −m)2 .

(35)
In (35), we take M = b− E(X) and m = a− E(X), then we have

0 ≤ Jαa
[
(wf) (t)

]
Jαa

[
(wf) (t)

(
t− E(X

)
)2
]
− (Jαa

[
(wf) (t)

(
t− E(X

)
)
]
)2

≤ 1
4 (b− a)2

(
Jαa
[
(wf) (t)

])2
,

(36)
which is clearly equivalent to the following inequality

Jαa
[
(wf) (t)

]
σ2
X,α,w (t)−

(
EX−E(X),α,w (t)

)2
≤ 1

4 (b− a)2
(
Jαa
[
(wf) (t)

])2
.

(37)
QED

Remark 4. Taking w(t) = 1, a < t ≤ b in Theorem 3, we obtain Theorem
3.3 of [12].

Another result is the following:

Theorem 4. Let f be the p.d.f. of the random variable X on [a, b] and
w : [a, b]→ R+. Then for all α > 0, β > 0, a < t ≤ b, the inequality

Jαa
[
(wf) (t)

]
σ2
X,β,w (t) + Jβa

[
(wf) (t)

]
σ2
X,α,w (t) + 2

(
a− E (X)

)
×
(
b− E (X)

)
Jαa
[
(wf) (t)

]
Jβa
[
(wf) (t)

]
≤
(
a+ b− 2E(X)

)
×
(
Jαa
[
(wf) (t)

]
EX−E(X),β,w (t) + Jβa

[
(wf) (t)

]
EX−E(X),α,w (t)

)
, (38)

is valid.

Proof. We take p(t) = w(t)f(t), g(t) = t−E(X). Then, thanks to Theorem
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3.4 of [9], we can write[
Jαa
[
(wf) (t)

]
Jβa

[
(wf) (t)(t− E(X))2

]
+ Jβa

[
(wf) (t)

]
Jαa

[
(wf) (t)(t− E(X))2

]
− 2Jαa

[
(wf) (t)(t− E(X))

]
Jβa
[
(wf) (t)(t− E(X))

] ]2

≤
[ (
MJαa

[
(wf) (t)

]
− Jαa

[
(wf) (t)(t− E(X))

])
×
(
Jβa
[
(wf) (t)(t− E(X))

]
−mJβa

[
(wf) (t)

])
+
(
Jαa
[
(wf) (t)(t− E(X))

]
−mJαa

[
(wf) (t)

])
×
(
MJβa

[
(wf) (t)

]
− Jβa

[
(wf) (t)(t− E(X))

]) ]2
.

(39)

By (27) and (39) and taking into account the fact that the left-hand side of (27)
is positive, we can write

Jαa
[
(wf) (t)

]
Jβa

[
(wf) (t)(t− E(X))2

]
+ Jβa

[
(wf) (t)

]
Jαa

[
(wf) (t)(t− E(X))2

]
− 2Jαa

[
(wf) (t)(t− E(X))

]
Jβa
[
(wf) (t)(t− E(X))

]
≤
(
MJαa

[
(wf) (t)

]
− Jαa

[
(wf) (t)(t− E(X))

])
×
(
Jβa
[
(wf) (t)(t− E(X))

]
−mJβa

[
(wf) (t)

])
+
(
Jαa
[
(wf) (t)(t− E(X))

]
−mJαa

[
(wf) (t)

])
×
(
MJβa

[
(wf) (t)

]
− Jβa

[
(wf) (t)(t− E(X))

])
.

(40)

Therefore,

Jαa
[
(wf) (t)

]
σ2
X,β,w (t) + Jβa

[
(wf) (t)

]
σ2
X,α,w (t)

− 2EX−E(X),α,w (t)EX−E(X),β,w (t)

≤
(
MJαa

[
(wf) (t)

]
− EX−E(X),α,w (t)

)
×
(
EX−E(X),β,w (t)−mJβa

[
(wf) (t)

])
+
(
EX−E(X),α,w (t)−mJαa

[
(wf) (t)

])
×
(
MJβa

[
(wf) (t)

]
− EX−E(X),β,w (t)

)
.

(41)
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This implies that

Jαa
[
(wf) (t)

]
σ2
X,β,w (t) + Jβa

[
(wf) (t)

]
σ2
X,α,w (t)

+ 2mMJαa
[
(wf) (t)

]
Jβa
[
(wf) (t)

]
≤ (M +m)

×
(
Jαa
[
(wf) (t)

]
EX−E(X),β,w (t) + Jβa

[
(wf) (t)

]
EX−E(X),α,w (t)

)
.

(42)

In (42), we take M = b− E(X), m = a− E(X). We obtain:

Jαa
[
(wf) (t)

]
σ2
X,β,w (t) + Jβa

[
(wf) (t)

]
σ2
X,α,w (t) + 2

(
a− E (X)

)
×
(
b− E (X)

)
Jαa
[
(wf) (t)

]
Jβa
[
(wf) (t)

]
≤
(
a+ b− 2E(X)

)
×
[
Jαa
[
(wf) (t)

]
EX−E(X),β,w (t) + Jβa

[
(wf) (t)

]
EX−E(X),α,w (t)

]
. (43)

QED

Remark 5. If we take w (t) = 1, t ∈ [a, b] in Theorem 4, we obtain Theorem
3.4 of [12].

Next, we present the following five results for fractional w−weighted mo-
ments, where w is a positive continuous function defined on [a, b].

Theorem 5. Let X be a continuous random variable having a p.d.f. f :

[a, b] → R+. Then, for any a < t ≤ b and α > 0, the following two inequalities
hold:

Jαa
[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)− EX−E(X),α,w (t)Mr−1,α,w (t)

≤ ‖f‖2∞
[
Jαa
[
w(t)

]
Jαa
[
trw(t)

]
− Jαa

[
tw(t)

]
Jαa
[
tr−1w(t)

]]
, f ∈ L∞ [a, b]

(44)
and

Jαa
[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)− EX−E(X),α,w (t)Mr−1,α,w (t)

≤ 1
2 (t− a)

(
tr−1 − ar−1

) (
Jαa
[
(wf) (t)

])2
, α > 0, a < t ≤ b.

(45)

Proof. In (17), we choose p(t) = w(t)f(t), g(t) = t−E(X) and h(t) = tr−1.
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So, we obtain

1

Γ2 (α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1 (τ − ρ)
(
τ r−1 − ρr−1

)
w(τ)w(ρ)f(τ)f(ρ)dτdρ

= 2Jαa
[
(wf) (t)

]
Jαa

[
tr−1(t− E(X)) (wf) (t)

]
− 2Jαa

[
(t− E(X)) (wf) (t)

]
Jαa

[
tr−1 (wf) (t)

]
= 2Jαa

[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)

− 2
(
EX−E(X),α,w (t)

)
Mr−1,α,w (t) .

(46)

We use the fact f ∈ L∞
(
[a, b]

)
, we can write

1
Γ2(α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1 (τ − ρ)
(
τ r−1 − ρr−1

)
w(τ)w(ρ)f(τ)f(ρ)dτdρ

≤ ‖f‖2∞
1

Γ2(α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1 (τ − ρ)
(
τ r−1 − ρr−1

)
w(τ)w(ρ)dτdρ

= ‖f‖2∞
[
2Jαa

[
w(t)

]
Jαa
[
trw(t)

]
− 2Jαa

[
tw(t)

]
Jαa
[
tr−1w(t)

]]
.

(47)
By (46) and (47), we have

Jαa
[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)−

(
EX−E(X),α,w (t)

)
Mr−1,α,w (t)

≤ ‖f‖2∞
[
Jαa
[
w(t)

]
Jαa
[
trw(t)

]
− Jαa

[
tw(t)

]
Jαa
[
tr−1w(t)

]]
.

(48)

Since sup
τ,ρ∈[a,t]

[
|τ − ρ|

∣∣τ r−1 − ρr−1
∣∣] = (t− a)

(
tr−1 − ar−1

)
, then we observe

that

1

Γ2 (α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1 (τ − ρ)
(
τ r−1 − ρr−1

)
w(τ)w(ρ)f(τ)f(ρ)dτdρ

≤ sup
τ,ρ∈[a,t]

[
|τ − ρ|

∣∣∣τ r−1 − ρr−1
∣∣∣]

× 1

Γ2 (α)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)α−1w(τ)w(ρ)f(τ)f(ρ)dτdρ

= (t− a)
(
tr−1 − ar−1

)
(Jαa

[
(wf) (t)

]
)2.

(49)
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Thanks to (46) and (49), we obtain

Jαa
[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)−

(
EX−E(X),α,w (t)

)
Mr−1,α,w (t)

≤ (t− a)
(
tr−1 − ar−1

)
(Jαa

[
(wf) (t)

]
)2.

(50)

QED

Theorem 6. Let X be a continuous random variable having a p.d.f. f :

[a, b]→ R+. Then we have:
(I∗): For any α > 0, β > 0,

Jαa
[
(wf) (t)

]
EXr−1(X−E(X)),β,w (t) + Jβa

[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)

−EX,α,w (t)Mr−1,β,w(t)− EX,β,w (t)Mr−1,α,w(t)

≤ ‖f‖2∞
[
Jαa
[
w(t)

]
Jβa
[
trw(t)

]
+ Jβa

[
w(t)

]
Jαa
[
trw(t)

]
−Jαa

[
tw(t)

]
Jβa
[
tr−1w(t)

]
− Jβa

[
tw(t)

]
Jαa
[
tr−1w(t)

]]
, a < t ≤ b,

(51)
where f ∈ L∞ [a, b] .

(II∗): The inequality

Jαa
[
(wf) (t)

]
EXr−1(X−E(X)),β,w (t) + Jβa

[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)

−EX,α,w (t)Mr−1,β,w(t)− EX,β,w (t)Mr−1,α,w(t)

≤ (t− a)
(
tr−1 − ar−1

)
Jαa
[
(wf) (t)

]
Jβa
[
(wf) (t)

]
, a < t ≤ b,

(52)
is also valid for any α > 0, β > 0.

Proof. In (26), we take p(t) = w(t)f(t), g(t) = t− E(X), h(t) = tr−1. So,
we get

1

Γ (α)

1

Γ (β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1)(τ − ρ)
(
τ r−1 − ρr−1

)
w(τ)w(ρ)f(τ)f (ρ) dτdρ

=Jαa
[
(wf) (t)

]
Jβa

[
tr−1(t− E(X)) (wf) (t)

]
+ Jβa

[
(wf) (t)

]
Jαa

[
tr−1(t− E(X)) (wf) (t)

]
− Jαa

[
(t− E(X)) (wf) (t)

]
Jβa

[
tr−1wf(t)

]
− Jβa

[
(t− E(X)) (wf) (t)

]
Jαa

[
tr−1 (wf) (t)

]
=Jαa

[
(wf) (t)

]
EXr−1(X−E(X)),β,w (t)

+ Jβa
[
(wf) (t)

]
EXr−1(X−E(X)),α,w (t)

− EX,α,w (t)Mr−1,β,w(t)− EX,β,w (t)Mr−1,α,w(t).

(53)
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We have also

1
Γ(α)

1
Γ(β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1 (τ − ρ)
(
τ r−1 − ρr−1

)
w(τ)w(ρ)f(τ)f(ρ)dτdρ

≤ ‖f‖2∞
1

Γ(α)
1

Γ(β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1 (τ − ρ)
(
τ r−1 − ρr−1

)
w(τ)w(ρ)dτdρ

= ‖f‖2∞
[
Jαa
[
w(t)

]
Jβa
[
trw(t)

]
+ Jβa

[
w(t)

]
Jαa
[
trw(t)

]
− Jαa

[
tw(t)

]
Jβa
[
tr−1w(t)

]
− Jβa

[
tw(t)

]
Jαa
[
tr−1w(t)

]]
.

(54)
By (53) and (54), we obtain (51).

To prove (52), we remark that

1

Γ (α)

1

Γ (β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1w(τ)w(ρ)(τ − ρ)
(
τ r−1 − ρr−1

)
f(τ)f(ρ)dτdρ

≤ sup
τ,ρ∈[a,t]

∣∣(τ − ρ∣∣ ∣∣∣τ r−1 − ρr−1
∣∣∣

× 1

Γ (α)

1

Γ (β)

t∫
a

t∫
a

(t− τ)α−1 (t− ρ)β−1w(τ))w(ρ)f(τf(ρ)dτdρ

= (t− a)
(
tr−1 − ar−1

)
Jαa
[
(wf) (t)

]
Jβa
[
(wf) (t)

]
.

(55)

Therefore, by (53) and (55), we get (52). This ends the proof of Theorem 6.
QED

Theorem 7. Let X be a continuous random variable having a p.d.f. f :

[a, b]→ R+. Then, for all α > 0, we have:

Jαa
[
(wf) (t)

]
M2r,α,w(t)−M2

r,α,w(t) ≤ 1

4
(br − ar)2

(
Jαa
[
(wf) (t)

])2
,

a < t ≤ b. (56)

Proof. We use the same arguments as in the proof of Theorem 3 by taking
p(t) = w(t)f(t), g(t) = tr, a < t ≤ b, m = ar and M = br. QED

Theorem 8. Let X be a continuous random variable having a p.d.f. f :
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[a, b]→ R+. Then, for all α > 0, β > 0, we have:

Jαa
[
(wf) (t)

]
M2r,β,w(t) + Jβa

[
(wf) (t)

]
M2r,α,w(t)

+ 2arbrJαa
[
(wf) (t)

]
Jβa
[
(wf) (t)

]
≤ (ar + br) Jαa

[
(wf) (t)

]
Mr,β,w(t) + Jβa

[
(wf) (t)

]
Mr,α,w(t),

a < t ≤ b. (57)

Proof. We use the same techniques as in the proof of Theorem 4 by letting
p(t) = w(t)f(t), g(t) = tr, a < t ≤ b, m = ar and M = br. QED

Theorem 9. Let X be a continuous random variable having a p.d.f. f :

[a, b] → R+ such that m ≤ f ≤ M, m,M, are positive real numbers. Then for
α > 0, the following inequality holds:∣∣∣ (t−a)α

Γ(α+1)Mr,α,w(t)− Jαa
[
f(t)

]
Jαa
[
trw(t)

]∣∣∣
≤ (t−a)α

2Γ(α+1)(M −m)
(

(t−a)α

Γ(α+1)J
α
a

[
t2rw2(t)

]
− (Jαa

[
trw(t)

]
)2
) 1

2
, a < t ≤ b.

(58)

Proof. Using Theorem 3.1 and lemma 3.2 of [11], we can write∣∣∣ (t−a)α

Γ(α+1)J
α
a

[
(fg) (t)

]
− Jαa

[
f(t)

]
Jαa
[
g(t)

]∣∣∣
≤ (t−a)α

2Γ(α+1)(M −m)
(

(t−a)α

Γ(α+1)J
α
a

[
g2(t)

]
− (Jαa

[
g(t)

]
)2
) 1

2
.

(59)

Taking g(t) = w(t)tr, a < t ≤ b, we obtain∣∣∣ (t−a)α

Γ(α+1)J
α
a

[
tr (fw) (t)

]
− Jαa

[
f(t)

]
Jαa
[
trw(t)

]∣∣∣
≤ (t−a)α

2Γ(α+1)(M −m)
(

(t−a)α

Γ(α+1)J
α
a

[
t2rw2(t)

]
− (Jαa

[
trw(t)

]
)2
) 1

2
.

(60)

This implies that ∣∣∣ (t−a)α

Γ(α+1)Mr,α,w(t)− Jαa
[
f(t)

]
Jαa
[
trw(t)

]∣∣∣
≤ (t−a)α

2Γ(α+1)(M −m)
(

(t−a)α

Γ(α+1)J
α
a

[
t2rw2(t)

]
− (Jαa

[
trw(t)

]
)2
) 1

2
.

(61)

QED

To end this section, we give the following theorem.
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Theorem 10. Let X be a continuous random variable having a p.d.f. f :

[a, b]→ R+, m ≤ f ≤M. Then, for all α > 0, β > 0, a < t ≤ b, we have:

(t− a)α

Γ (α+ 1)
Mr,β,w(t) +

(t− a)β

Γ (β + 1)
Mr,α,w(t)

− Jαa
[
f(t)

]
Jβa
[
trw(t)

]
− Jβa

[
f(t)

]
Jαa
[
trw(t)

]
≤

[(
M

(t− a)α

Γ (α+ 1)
− Jαa

[
f(t)

])(
Jβa
[
f(t)

]
−m (t− a)β

Γ (β + 1)

)

+

(
Jαa
[
f(t)

]
−m (t− a)α

Γ (α+ 1)

)(
M

(t− a)β

Γ (β + 1)
− Jβa

[
f(t)

])]

×

[
(t− a)α

Γ (α+ 1)
Jβa

[
t2rw2(t)

]
+

(t− a)β

Γ (β + 1)
Jαa

[
t2rw2(t)

]

− 2Jαa
[
trw(t)

]
Jβa
[
trw(t)

] ] 1
2

.

(62)

Proof. Taking g(t) = w(t)tr, a < t ≤ b, and using Theorem 3.3 and Lemma
3.4 of [11], we can obtain (62). QED

Remark 6. Applying Theorem 10 for α = β, we obtain Theorem 9.

4 Applications

We present some fractional applications for the uniform random variable X
whose p.d.f. is defined for any x ∈ [a, b] by f(x) = (b− a)−1.
Case 1: Taking w(x) = 1, x ∈ [a, b], we can obtain:
a1: Fractional Expectation of Order α:

EX,α,1 = (b− a)−1
[

(b−a)α+1

Γ(α+2) + a(b−a)α

Γ(α+1)

]
;α ≥ 1 (63)

Note that if we take α = 1, then we get:

EX,1,1 = b+a
2 = E(X). (64)

b1: Fractional Moment of Orders (2, α):

EX2,α,1 = 2(b−a)α+1

Γ(α+3) + 2a
(

(b−a)α

Γ(α+2) + a(b−a)α−1

Γ(α+1)

)
− a2(b−a)α−1

Γ(α+1) ;α ≥ 1 (65)

Taking α = 1, we obtain the classical moment of order 2:

EX2,1,1 = a2+b2+ab
3 = E(X2). (66)
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c1: Fractional Variance of Order α:
By simple calculations, we obtain

σ2
X,α,1 = 2(b−a)α+1

Γ(α+3) + 2a
(

(b−a)α

Γ(α+2) + a(b−a)α−1

Γ(α+1)

)
− a2(b−a)α−1

Γ(α+1) ;α ≥ 1, (67)

which corresponds, for α = 1, to the classical variance of the uniform distribu-
tion X.
Case 2: Consider w as an arbitrary positive function on [a, b] and apply Theo-
rem 1, we obtain the following fractional estimation on σX,α,w:

1

b− a
Jαa
[
w(b)

]
σ2
X,α,w ≤

1
Γ2(α)(b−a)2

[ b∫
a

(b− τ)α−1 (τ − E (X)
)
w (τ) dτ

]2
+ 1

2

(
Jαa
[
w(b)

])2
.

(68)
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