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Abstract. We classify algebraic curvature tensors such that the Ricci operator ρ is simple
(i.e. ρ is complex diagonalizable and Spec{ρ} = {a} or Spec{ρ} = {a1 ± a2

√−1} ) and which
are Jacobi–Ricci commuting (i.e. ρJ(v) = J(v)ρ for all v).
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The study of curvature is fundamental in differential geometry. It is often
convenient to work first in an abstract algebraic context and then subsequently
to pass to the geometrical setting. We say that M := (V, 〈·, ·〉, A) is a model if
〈·, ·〉 is a non-degenerate inner-product of signature (p, q) on a real vector space
V of dimension m = p+ q and if A ∈ ⊗4V ∗ is an algebraic curvature tensor, i.e.
a 4-tensor which has the symmetries of the Riemann curvature tensor:

A(v1, v2, v3, v4) = −A(v2, v1, v3, v4) = A(v3, v4, v1, v2),
A(v1, v2, v3, v4) + A(v2, v3, v1, v4) + A(v3, v1, v2, v4) = 0 .

(1)

If P is a point of a pseudo-Riemannian manifold M = (M,g), then the associ-
ated model is defined by setting M(M, P ) := (TPM,gP , RP ) where RP is the
curvature tensor of the Levi–Civita connection; every model is geometrically
realizable in this fashion. Consequently the study of algebraic curvature tensors
plays a central role in many geometric investigations.

If M is a model, then Jacobi operator J, the skew-symmetric curvature op-
erator R, and the Ricci operator ρ are defined by the identities:
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〈J(x)y, z〉 = A(y, x, x, z),
〈R(x, y)z,w〉 = A(x, y, z, w),

〈ρx, y〉 = Tr
{
z → 1

2R(z, x)y + 1
2R(z, y)x

}
.

One says M is Einstein if ρ = a id; a is called the Einstein constant.
The study of commutativity properties of natural operators defined by the

curvature tensor was initiated by Stanilov [4, 5] and has proved to be a very
fruitful one; we refer to [1] for a survey of the field and for a more complete
bibliography than is possible to present here.

We begin with the following fundamental result which is established in [2]
and which examines when the Jacobi operator or the skew-symmetric curvature
operator commutes with the Ricci operator:

1 Lemma. The following conditions are equivalent for a model M:

(1) J(v)ρ = ρJ(v) for all v ∈ V .

(2) R(v1, v2)ρ = ρR(v1, v2) for all v1, v2 ∈ V .

(3) A(ρv1, v2, v3, v4) = A(v1, ρv2, v3, v4) = A(v1, v2, ρv3, v4)
= A(v1, v2, v3, ρv4) for all v1, v2, v3, v4 ∈ V .

One says that a model M is decomposable if there is an orthogonal direct
sum decomposition V = V1 ⊕ V2 inducing a splitting A = A1 ⊕ A2; M is
indecomposable if it is not decomposable. Let Spec(ρ) ⊂ � be the spectrum of
the Ricci operator. One has [3]:

2 Lemma. If M is an indecomposable Jacobi–Ricci commuting model, then
Spec(ρ) = {a1} or Spec(ρ) = {a1 ± a2

√−1} where a2 > 0.
Although ρ is self-adjoint, ρ need not be diagonalizable in the higher signa-

ture setting and in fact the Jordan normal form of ρ can be quite complicated. To
simplify the discussion, we shall suppose ρ complex diagonalizable henceforth.
Motivated by Lemmas 1 and 2, we make the following:

3 Definition. If M is a model which has any of the (3) equivalent properties
listed in Lemma 1, then M is said to be a Jacobi–Ricci commuting model. If in
addition, the Ricci operator ρ is complex diagonalizable and Spec(ρ) = {a1} or
Spec(ρ) = {a1± a2

√−1} for a2 > 0, then M is said to be a simple Jacobi–Ricci
commuting model. If M is a pseudo-Riemannian manifold, then M is said to be
simple Jacobi–Ricci commuting if M(M, P ) is a simple Jacob–Ricci commuting
model for all points P of M .

The following is immediate from the definitions we have given.
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4 Lemma. Let M be a model.

(1) M is Einstein if and only if M is a simple Jacobi–Ricci commuting model
with Spec(ρ) = {a1}.

(2) Let M be a simple Jacobi–Ricci commuting model which is not Einstein.
Set J = JM := a−1

2 {ρ− a1 id}. Then J is a self-adjoint complex structure
on V , A(Jx, y, z, w) = A(x, Jy, z, w) = A(x, y, Jz,w) = A(x, y, z, Jw),
and ρ = a1 + a2J .

In view of Lemma 4 (1), we shall assume M is not Einstein henceforth. The
following ansatz for constructing simple Jacobi–Ricci commuting models which
are not Einstein will be crucial:

5 Definition. Let N := (V0, g, A1, A2) where g is a positive definite inner
product on a finite dimensional real vector space V0 and where A1 and A2 are
Einstein algebraic curvature tensors with Einstein constants, respectively, a1

and a2 > 0. Extend g, A1, and A2 to be complex linear on the complexification
V� := V0⊗� �. Let V := V0⊕V0

√−1 be the underlying real vector space of V�,
let 〈·, ·〉 := Re g(·, ·), and let A := Re{A1+

√−1A2} define M(N) := (V, 〈·, ·〉, A).

The following classification result is the fundamental result of this paper:

6 Theorem. Adopt the notation established above:

(1) M(N) is a simple Jacobi–Ricci commuting model which is not Einstein,
which has Spec{ρ} = {2a1 ± 2a2

√−1}, and which has that JM(N) is mul-
tiplication by

√−1.

(2) Let M be a simple Jacobi–Ricci commuting model which is not Einstein
with Spec(ρ) = {2a1 ± 2a2

√−1} for a2 > 0. Then there exists N so M is
isomorphic to M(N).

(3) If N = (V0, g, A1, A2) and Ñ = (Ṽ0, g̃, Ã1, Ã2), then M(N) is isomorphic
to M(Ñ) if and only if there is an isomorphism θ : V0 → Ṽ0 and a skew-
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adjoint linear transformation T of (V0, g) with |T | < 1 so that:

g̃(θv, θw) = g(v,w) − g(Tv, Tw),
Ã1(θv, θw, θx, θy) = A1(v,w, x, y) −A1(Tv, Tw, x, y)
−A1(Tv,w, Tx, y) −A1(Tv,w, x, Ty) −A1(v, Tw, Tx, y)
−A1(v, Tw, x, Ty) −A1(v,w, Tx, Ty) + A1(Tv, Tw, Tx, Ty)
−A2(Tv,w, x, y) −A2(v, Tw, x, y) −A2(v,w, Tx, y)
−A2(v,w, x, Ty) + A2(Tv, Tw, Tx, y) + A2(Tv, Tw, x, Ty)
+A2(Tv,w, Tx, Ty) + A2(v, Tw, Tx, Ty)

Ã2(θv, θw, θx, θy) = A2(v,w, x, y) −A2(Tv, Tw, x, y)
−A2(Tv,w, Tx, y) −A2(Tv,w, x, Ty) −A2(v, Tw, Tx, y)
−A2(v, Tw, x, Ty) −A2(v,w, Tx, Ty) + A2(Tv, Tw, Tx, Ty)
+A1(Tv,w, x, y) + A1(v, Tw, x, y) + A1(v,w, Tx, y)
+A1(v,w, x, Ty) −A1(Tv, Tw, Tx, y) −A1(Tv, Tw, x, Ty)
−A1(Tv,w, Tx, Ty) −A1(v, Tw, Tx, Ty)

(2)

Theorem 6 completes the analysis in the algebraic setting. In the geometric
setting, by contrast, the situation is still far from clear. However there is a
geometrical example known [2] in signature (2, 2) which may be described as
follows; we refer to [2] for further details. Let (x1, x2, x3, x4) be coordinates
on �4. Define a metric whose non-zero components are, up to the usual �2

symmetries, given by:

g(∂1, ∂3) = g(∂2, ∂4) = 1, g(∂3, ∂4) = s(x2
2 − x2

1),
g(∂3, ∂3) = 2sx1x2, g(∂4, ∂4) = −2sx1x2 .

(3)

7 Lemma. Let M be as in Equation (3). Then M is a locally symmetric
simple Jacobi–Ricci commuting manifold with Spec(ρ) = {±2s

√−1} of signa-
ture (2, 2). The Ricci operator and non-zero curvatures are described by:

R1314 = s, R1323 = −s, R1424 = s, R2324 = −s,
ρ∂1 = −2s∂2, ρ∂2 = 2s∂1, ρ∂3 = 2s∂4, ρ∂4 = −2s∂3 .

The remainder of this note is devoted to the proof of Theorem 6.

Proof of Theorem 6 (1). We generalize the discussion of [2]. Let {ei} be
an orthonormal basis for V0. Let e+

i := ei and e−i :=
√−1ei be an orthonormal

basis for V ; the vectors e+
i are spacelike and the vectors e−i are timelike so

M(N) has neutral signature. Clearly the symmetries of Equation (1) hold for
the complexification of A1 and A2 and, consequently, for A1 +

√−1A2 and
A = Re(A1 +

√−1A2). Thus M(N) is a model and the non-zero components of
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A relative to this basis are given by:

A(e−i , e+
j , e+

k , e+
l ) = A(e+

i , e−j , e+
k , e+

l ) = A(e+
i , e+

j , e−k , e+
l )

= A(e+
i , e+

j , e+
k , e−l ) = −A2(ei, ej , ek, el),

A(e+
i , e−j , e−k , e−l ) = A(e−i , e+

j , e−k , e−l ) = A(e−i , e−j , e+
k , e−l )

= A(e−i , e−j , e−k , e+
l ) = A2(ei, ej , ek, el),

A(e+
i , e+

j , e+
k , e+

l ) = A(e−i , e−j , e−k , e−l ) = A1(ei, ej , ek, el),
A(e+

i , e+
j , e−k , e−l ) = A(e+

i , e−j , e+
k , e−l ) = A(e−i , e+

j , e+
k , e−l )

= A(e+
i , e−j , e−k , e+

l ) = A(e−i , e+
j , e−k , e+

l ) = A(e−i , e−j , e+
k , e+

l )
= −A1(ei, ej , ek, el) .

(4)

Let ρ := ρA and ρi := ρAi . We sum over k in the following expansions to see:

〈ρe+
i , e+

j 〉 = A(e+
i , e+

k , e+
k , e+

j )−A(e+
i , e−k , e−k , e+

j ) = 2ρ1(ei, ej) = 2a1δij ,
〈ρe−i , e−j 〉 = A(e−i , e+

k , e+
k , e−j )−A(e−i , e−k , e−k , e−j ) = −2ρ1(ei, ej) = −2a1δij,

〈ρe+
i , e−j 〉 = A(e+

i , e+
k , e+

k , e−j )−A(e+
i , e−k , e−k , e−j ) = −2ρ2(ei, ej) = −2a2δij.

This shows that ρe±i = 2a1e
±
i ± 2a2e

∓
i . Thus we may view ρ as acting by

complex scalar multiplication by λ := 2a1 + 2a2

√−1 on V�. This implies that
the underlying real operator is complex diagonalizable and Spec(ρ) = {λ, λ̄}.
Since the tensors Ai were extended to be complex multi-linear, we have

A(ρv1, v2, v3, v4) = Re{A1(λv1, v2, v3, v4) +
√−1A2(λv1, v2, v3, v4)}

= Re{λA1(v1, v2, v3, v4) +
√−1λA2(v1, v2, v3, v4)}

= Re{A1(v1, λv2, v3, v4) +
√−1A2(v1, λv2, v3, v4)} = A(v1, ρv2, v3, v4) .

This establishes one equality of Lemma 1 (3); the other equalities follow similarly
and hence M(N) is Jacobi–Ricci commuting as well. QED

We shall need the following technical result before establishing the second
assertion of Theorem 6. Although well known, we include the proof for the sake
of completeness and to establish notation:

8 Lemma. Let J be a self-adjoint map of (V, 〈·, ·〉) so that J2 = − id. Then
there exists an orthonormal basis {e±1 , . . . , e±p } for V so that Je±i = ±e∓i .

Proof. We assume that p = 1 as the general result then follows by induc-
tion. Let {f±} be an orthonormal basis for V where f+ is spacelike and f− is
timelike. As J is trace-free and self-adjoint,

J =
(

a b
−b −a

)
.
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Since J2 = − id, b2 − a2 = 1. Let e(θ) := cosh θf+ + sinh θf−. Then

〈Je(θ), e(θ)〉
= 〈(a cosh θ + b sinh θ)f+ + (−b cosh θ − a sinh θ)f−, cosh θf+ + sinh θf−〉
= a cosh2 θ + b cosh θ sinh θ + b cosh θ sinh θ + a sinh2 θ

= 1
2{(a + b)e2θ + (a− b)e−2θ} .

Since a2 − b2 = −1, a + b and a− b have opposite signs. Thus for some value of
θ, we have 〈Je(θ), e(θ)〉 = 0. Set e+

i = e(θ) and e−i = Je(θ). QED

Proof of Theorem 6 (2). Let M = (V, 〈·, ·〉, A) be a simple Jacobi–Ricci
commuting model. Assume that the Ricci operator ρ is complex diagonalizable
and that Spec(ρ) = {2a1 ± 2a2

√−1} for a2 > 0. By Lemma 8, there is an
orthonormal basis {e±i } for V so Je±i = ±e∓i . Set

A1(ei, ej , ek, el) := A(e+
i , e+

j , e+
k , e+

l ),
A2(ei, ej , ek, el) := −A(e−i , e+

j , e+
k , e+

l ) .

We may then derive the relations of Equations (4) from Lemma 4 (2). We check
that A1 and A2 are algebraic curvature tensors by verifying that:

A1(ei, ej , ek, el) = A(e+
i , e+

j , e+
k , e+

l ) = −A(e+
j , e+

i , e+
k , e+

l )
= −A1(ej , ei, ek, el),

A1(ei, ej , ek, el) = A(e+
i , e+

j , e+
k , e+

l ) = A(e+
k , e+

l , e+
i , e+

j )
= A1(ek, el, ei, ej),

A1(ei, ej , ek, el) + A1(ej , ek, ei, el) + A1(ek, ei, ej , el)
= A(e+

i , e+
j , e+

k , e+
l ) + A(e+

j , e+
k , e+

i , e+
l ) + A(e+

k , e+
i , e+

j , e+
l ) = 0,

A2(ei, ej , ek, el) = −A(e−i , e+
j , e+

k , e+
l ) = A(e+

j , e−i , e+
k , e+

l )
= −A(e−j , e+

i , e+
k , e+

l ) = −A2(ej , ei, ek, el),
A2(ek, el, ei, ej) = −A(e−k , e+

l , e+
i , e+

j ) = −A(e+
i , e+

j , e−k , e+
l )

= −A(e−i , e+
j , e+

k , e+
l ) = A2(ei, ej , ek, el),

A2(ei, ej , ek, el) + A2(ej , ek, ei, el) + A2(ek, ei, ej , el)
= −A(e−i , e+

j , e+
k , e+

l )−A(e−j , e+
k , e+

i , e+
l )−A(e−k , e+

j , e+
i , e+

l )
= −A(e−i , e+

j , e+
k , e+

l )−A(e+
j , e+

k , e−i , e+
l )−A(e+

k , e+
j , e−i , e+

l ) = 0.

We verify A1 and A2 are Einstein by summing over k to compute

(ρ1ei, el) = A(e+
i , e+

j , e+
j , e+

l )
= 1

2A(e+
i , e+

j , e+
j , e+

l )− 1
2A(e+

i , e−j , e−j e+
l ) = 1

2 〈ρe+
i , e+

l 〉 = a1δil.
(ρ2ei, el) = −A(e−i , e+

j , e+
j , e+

l )
= −1

2A(e−i , e+
j , e+

j , e+
l ) + 1

2A(e−i , e−j , e−j e+
l ) = −1

2〈ρe−i , e+
l 〉 = a2δil.
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The desired result now follows. QED

Replacing e−i by −e−i in Equation (4) yields an isomorphism between the
models N(V, (·, ·), A1, A2) and N(V, (·, ·), A1 ,−A2); it is for this reason that we
may always assume the Einstein constant of A2 is positive. This reflects that
complex conjugation defines a field isomorphism of � taking λ → λ̄ or, equiv-
alently, by replacing a2 by −a2 in the construction. More important, however,
is the fact that the splitting V = V+ ⊕ V− where V± := Span{e±i } which is
crucial to our discussion is highly non-unique. Let N = (V0, g, A1, A2) and let
Ñ = (Ṽ0, g̃, Ã1, Ã2). Let M = M(N) and M̃ = M(Ñ). Let J and J̃ be the asso-
ciated complex structures on V and on Ṽ , respectively. We then have maximal
spacelike subspaces V+ := V0 and Ṽ+ := Ṽ0 of V and Ṽ , respectively, so that
for all x, y, z, w in V0 and for all x̃, ỹ, z̃, w̃ in Ṽ0,

V+ ⊥ JV+, Ṽ+ ⊥ J̃ Ṽ+,

A1(v,w, x, y) = A(v,w, x, y), Ã1(ṽ, w̃, x̃, ỹ) = Ã(ṽ, w̃, x̃, ỹ),
A2(v,w, x, y) = A(Jv,w, x, y), Ã2(ṽ, w̃, x̃, ỹ) = −Ã(J̃ ṽ, w̃, x̃, ỹ),
g(x, y) = 〈x, y〉, g̃(x̃, ỹ) = 〈x̃, ỹ〉 .

Suppose that Θ is an isomorphism from M to M̃. We may then identify
V = Ṽ and J = J̃ . The decomposition V = V+ ⊕ JV+ defines orthogonal
projections π±. Since Ṽ+ is spacelike, π+ defines an isomorphism θ from Ṽ+ to
V+. Let

T = −J ◦ π− ◦ θ−1 : V+ → Ṽ+ → V− → V+ .

We may then represent any element of Ṽ+ in the form v + JTv for v ∈ V+.

9 Lemma. Adopt the notation established above:

(1) Ṽ+ ⊥ JṼ+ if and only if T is skew-adjoint.

(2) The induced metric on Ṽ+ is positive definite if and only if |T | < 1.

Proof. We have that J is self-adjoint and that J2 = − id. Consequently,
we have the following implications which establish Assertion (1):

Ṽ+ ⊥ JṼ+.

⇔ 〈v + JTv, Jw + JJTw〉 = 0 for all v,w ∈ V+.

⇔ −〈v, Tw〉 − 〈Tv,w〉 = 0 for all v,w ∈ V+.

⇔ T is skew-adjoint.

We argue similarly to prove Assertion (2):
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〈v + JTv, v + JTv〉 > 0 for all 0 	= v ∈ V+.
⇔ g(v, v) − g(Tv, Tv) > 0 for all 0 	= v ∈ V+.
⇔ |Tv|2 < |v|2 for all 0 	= v ∈ V+.
⇔ |T | < 1. QED

Proof of Theorem 6 (3). Suppose Θ : M(V0, A1, A2) → M(Ṽ0, Ã1, Ã2)
is an isomorphism. We use Θ to identify V with Ṽ and to parametrize Ṽ+ in
the form {v + JTV } where T is a skew-adjoint linear map of V0 with |T | < 1.
We then the following identities for all v, w, x, and y:

g̃(v,w) = 〈v + JTv,w + JTw〉,
Ã1(v,w, x, y) = A(v + JTv,w + JTw, x + JTx, y + JTy),
Ã2(v,w, x, y) = A(J(v + JTv), w + JTw, x + JTx, y + JTy) .

(5)

Lemma 1 (2) and Equation (5) imply that Equation (2) holds. This establishes
one implication of Theorem 6 (3). As the arguments are reversible, the converse
implication holds as well. QED
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