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Abstract. After a concise introduction on (para-)quaternionic geometry, we report on some
recent results concerning para-quaternionic Hermitian and Kähler manifolds and their special
submanifolds. The second part of the paper is devoted to treat in a unified way some basic
matters on (para-)complex submanifolds of (para-)quaternionic manifolds.
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1 Introduction

This paper is aimed to report on some recent work on special submanifolds
of quaternionic and para-quaternionic manifolds.

We start by giving a concise introduction to basic structures, such as complex
and para-complex, having to do with (para)-quaternionic geometry and focus
in particular on para-quaternionic structures, whose theory was developed more
recently.

A first systematic study of submanifolds of a para-quaternionic manifold
was made in [27]. In particular, the invariant subspaces of a para-quaternionic
(Hermitian) vector space were classified and described in detail.

Passing to submanifolds here we consider in particular almost (para-)com-
plex submanifolds and try to give a unified presentation of known results by
dealing simultaneously with all possible interesting cases. A special attention is
given to questions of integrability of an almost (para-)complex structure on a
submanifold and some problems are pointed out.

Also some basic result on minimality of almost (para-)complex submani-
folds of a (para-)quaternionic Kähler manifold are stated, by extending the
work previously done for almost complex submanifolds of a quaternionic Kähler
manifold.

iWork done under the programs of G.N.S.A.G.A. of C.N.R. and COFIN05 ”Riemannian
metrics and differentiable structures” of M.I.U.R. (Italy)
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296 S. Marchiafava

2 (Para-)quaternionic structures on a manifold M

Let M be a differentiable manifold. Let consider the following structures on
a real vector space V ≡ TxM , x ∈M , where one assumes that I, J,K are given
endomorphisms:

COMPLEX PARA-COMPLEX
J2 = −Id J2 = Id

V ⊗ � = V +
J ⊕ V −

J V = V +
J ⊕ V −

J

V ±
J =

{
u ∈ V ⊗ �, Ju = ±iu

}
V ±
J =

{
u ∈ V, Ju = ±u

}
dimV +

J = dimV −
J

Remark: A para-complex structure is a particular product structure, con-
sisting in the symmetry with respect to V +

J parallel to V −
J .

HYPERCOMPLEX PARA-HYPERCOMPLEX
H = (I, J,K) H̃ = (I, J,K)

I2 = J2 = K2 = −Id I2 = −Id , J2 = K2 = Id
IJ = −JI = K IJ = −JI = K

(JK = −KJ = I, (JK = −KJ = −I, )
KI = −IK = J KI = −IK = J)

A para-hypercomplex structure H̃ = (I, J,K) corresponds to a 3-web struc-
ture (D1,D2,D3) on V , [21]:

D2 V=
J
-

D V=
J

-

1
+

JD V=
+

3 K
D V=

3 K

1
JKv

1Kv 1=KJv

1v
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The analytic point of view is summarized as follows in terms of

real Clifford algebras:

� ≡ C(0, 1) �̃ ≡ C(1, 0)
complex numbers para-complex numbers

z = x + iy , i2 = −1 z = x + iy , i2 = 1
|z|2 = x2 + y2 |z|2 = x2 − y2

� ≡ C(0, 2) �̃ ≡ C(2, 0) = C(1, 1)
quaternions para-quaternions

q = q0 + iq1 + jq2 + kq3 q = q0 + iq1 + jq2 + kq3

i2 = j2 = k2 = −1 i2 = −1 , j2 = k2 = 1
|q|2 ≡ qq = q2

0 + q2
1 + q2

2 + q2
3 q = q2

0 + q2
1 − q2

2 − q2
3

no zero divisors existence of zero divisors
� ∼= �2 �̃ ∼= �2

q ≡ z1(q) + jz2(q) q ≡ z1(q) + jz2(q)

Examples of hypercomplex structures

- V = �n ≡ �4n , (i·, j·, k·) left multiplications
- V = �2n ≡ �n ⊕ �n , (I, J,K):

I(u,v) = (v,−u) , J(u,v) = (−iu, iv) , K(u,v) = (iv, iu)

(This example applies to V = TxM where M = TN and on N it is given an
almost complex structure � ≡ i· which is left invariant by a linear connection
∇ : then, for X ∈ TN one has the decomposition TXTN ≡ T hXTN ⊕ T vXTN =
Tπ(X)TN ⊕ Tπ(X)TN into horizontal and vertical part, [23], Theor. 2.2).

Examples of para-hypercomplex structures

- V = �̃n ≡ �4n , (i·, j·, k·) left multiplications
- V = �2n ≡ �n ⊕ �n , (I, J,K):
I(u,v) = (v,−u) , J(u,v) = (v,u) , K(u,v) = (u,−v)

(This example applies to V = TxM where M = TN)
- (V = U ⊕ U , {I ′ : U → U | (I ′)2 = Id}) , (I, J,K):

I(u,v) = (I ′v,−I ′u) , J(u,v) = (v,u) , K(u,v) = (I ′u,−I ′v)

(This example applies to TxM where M = TN and on N it is given an
almost para-complex structure �′ which is left invariant by a linear connection
∇, [19], analogously as for example of [23] mentioned above).
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298 S. Marchiafava

A (para-)hypercomplex structure on V generates respectively a structure

QUATERNIONIC PARA-QUATERNIONIC
generated byH = (I, J,K) : generated byH̃ = (I, J,K) :
Q ≡ 〈H〉 = �I + �J + �K Q̃ ≡ 〈H̃〉 = �I + �J + �K
(I, J,K) determined up to (I, J,K) determined up to

A ∈ SO(3) A ∈ SO(2, 1)
S(Q) =

{
L ∈ Q | ‖L‖2 = 1

}
S(Q̃) = S+(Q̃) ∪ S−(Q̃)

S+(Q̃) =
{
L ∈ Q̃ |L2 = Id

}
,

S−(Q̃) =
{
L ∈ Q̃ |L2 = −Id

} .

It is well known that a quaternionic structure on V is a tensor product
structure (see [26]).

Para-quaternionic structure as a tensor product structure:

V = H⊗E H = H2 , E = En

with structure group G = GL(2,�) ⊗GL(n,�) ∼= SL(2,�) ⊗GL(n,�) .
Given a symplectic basis (h1,h2) in H2, that is H2 = 〈h1,h2〉, let take into

account the identifications and isomorphisms of Lie algebras:

�̃ = �1 + Im�̃ ∼= gl2(�) , Im�̃ ≡ su(1, 1) ∼= so(2, 1) ∼= sl2(�) ∼= sp1(�)

By denoting

I =
(

0 −1
1 0

)
, J =

(
0 1
1 0

)
, K =

( −1 0
0 1

)
one has the identifications

I(h⊗ e) = I(h)⊗ e , J(h⊗ e) = J(h)⊗ e , K(h⊗ e) = K(h)⊗ e

that is
I(h1 ⊗ e + h2 ⊗ e′) = −h1 ⊗ e′ + h2 ⊗ e ,
J(h1 ⊗ e + h2 ⊗ e′) = h1 ⊗ e′ + h2 ⊗ e ,
K(h1 ⊗ e + h2 ⊗ e′) = −h1 ⊗ e + h2 ⊗ e′ .

(1)

Prototype of quaternionic manifold: the quaternionic projective space
�Pn = (�n+1 − {0})/�∗

Prototype of para-quaternionic manifold: the para-quaternionic pro-

jective space ĤPn = ˆ̃
�
n+1

/�̂ where ˆ̃
�
n+1

is the space of non-singular vectors
in �̃n+1 and �̂ = {q ∈ �̃ | |q|2 	= 0}, [8].

____________________________________________________________________________



Submanifolds of (para-)quaternionic Kähler manifolds 299

It has to be noted that from the complex point of view the two notions of
quaternionic and para-quaternionic structure coincide and are included in the
notion of quaternionic conformal structure, see [10].

In the following two paragraphs we will focus mainly on para-type structures,
by assuming that they are less familiar.

3 Hermitian structures

3.1 Hermitian para-(hyper)complex structures

The following definitions and results were stated in [27].

1 Proposition. ([27]). Let g be a (non degenerate) scalar product on V .
The following notions are equivalent:

1. A para-hermitian structure (g,K) on V : that is
- K is a para-complex structure
and moreover
- K is a skew-symmetric endomorphism w.r.t. g,
i.e. g(KX,Y ) + g(X,KY ) = 0 equiv., g(KX,KY ) + g(X,Y ) = 0.

2. A totally isotropic decomposition V = V + ⊕ V − w.r.t. g, i.e. a
decomposition of V into two n-dimensional totally isotropic subspaces.

3. A Lagrangian decomposition V = V + ⊕ V − w.r.t. a symplectic form
ω, that is V +, V − are n-dimensional Lagrangian subspaces w.r.t. ω i.e.

ω(V ±, V ±) = 0 .

In these last two cases

V + = V +
K , V − = V −

K .

In the first two cases, ω = g(K·, ·).

The proof of the proposition bases on the
2 Lemma (Basic Lemma). Let g be a pseudo-Euclidean metric on V :

g has signature (n, n) if and only if there exists a decomposition

V = V + ⊕ V −

where V ± are n-dimensional totally isotropic subspaces, i.e. the restriction

g|V ± = 0 .

___________________________________________________________________________



300 S. Marchiafava

3 Definition. A para-hypercomplex Hermitian structure on V is a
pair (g, H̃ = (I, J,K)) ≡ (g, (J1, J2, J3)) where g is a scalar product and H̃ is a
para-hypercomplex structure such that

- g has signature (2n, 2n)
- g(JαX,Y ) + g(X,JαY ) = 0 , α = 1, 2, 3

i.e. (g, J1) is a Hermitian complex structure, (g, J2), (g, J3) are Hermitian para-
complex structures.

Standard example (to keep in mind): �̃n ∼= �2n ≡ �2n,2n

〈h,h′〉 : = Re(hh
′) = Re(h1h1

′ + · · ·+ hnhn
′)

=
∑n

i=1

(
Re(z1(hi)z1(h′

i)− z2(hi)z2(h′
i)
)

.

g ≡ 〈 , 〉: Hermitian scalar product of real signature (2n, 2n) on �2n

i· ≡ J1 isometry ; j· ≡ J2 , k· ≡ J3 anti-isometries.

3.2 Hermitian (para-)quaternionic structures on V 4n

QUATERNIONIC PARA−QUATERNIONIC
HERMITIAN HERMITIAN
(Q, g) ≡ (〈H〉, g) (Q, g) ≡ (〈H̃〉, g)

where where

(H, g) hypercomplex Hermitian (H̃, g) para-hypercomplex Hermitian

A Hermitian para-quaternionic structure can be interpreted in terms of ten-
sor product:

V = H⊗E , g = ωH ⊗ ωE , Q̃ = spωH(H)

where ωH, ωE are symplectic forms on the real vector spaces H = H2,E = En.

We will refer to such an interpretation as the Grassmann model and if
(h1,h2) is a basis of H the para-hypercomplex structure defined by (1) will
be referred as the standard (I, J,K).

4 Invariant subspaces in a para-quaternionic (Her-

mitian) V 4n and their Grassmann models

Let V be a 4n-dimensional vector space endowed with a para-quaternionic
Hermitian structure (Q̃, g). Let think of a subspace U of V as the tangent space

____________________________________________________________________________



Submanifolds of (para-)quaternionic Kähler manifolds 301

U ≡ TxN at a point x of a submanifold N of M .

4 Definition. A subspace U ⊂ V is called a
- complex subspace if it exists an endomorphism I ′ ∈ S−(Q̃) leaving U

invariant, I ′U ⊂ U ,
- Hermitian subspace if moreover g|U is non degenerate.

Example: �k ≡ �k ⊕ {0} ⊂ �n ⊕ �n ≡ �̃n.

Interpretation w.r.t. Grassmann model, [27]:
V = H⊗E , g = ωH ⊗ ωE and (I, J,K) standard.

Assume (h1,h2) to be a symplectic basis for (H, ωH) and

I(h1 ⊗ e + h2 ⊗ e′) = −h1 ⊗ e′ + h2 ⊗ e.

For any pair (F, L) where F is a subspace of E and L is a complex structure
of F, i.e.

F ⊂ E , L ∈ End(F) , L2 = −Id ,

let consider the corresponding subspace UF,L of V = H⊗E given by

UF,L = {X = h1 ⊗ f + h2 ⊗ Lf , f ∈ F} ,

the endomorphism IF,L of UF,L given by

IF,L(h1 ⊗ f + h2 ⊗ Lf) = −h1 ⊗ Lf + h2 ⊗ f

i.e. IF,L = I|UF,L, and the Hermitian scalar product gL on (F, L) given by

gL(f , f ′) : = g(h1 ⊗ f + h2 ⊗ Lf,h1 ⊗ f ′ + h2 ⊗ Lf ′)

= ωE(f , Lf ′)− ωE(Lf , f ′)

The signature (2p, 2q) of g|U equals the signature of gL.

The maximal dimension of UF,L is 2n, when F = E.

Proposition [27]: A subspace U ⊂ V ≡ H ⊗ E is a complex (respectively,
complex Hermitian) subspace if and only U = U ′⊕U ′′ where U ′ is the maximal
Q̃-invariant subspace contained in U and U = UF,L with respect to a basis (resp.
symplectic basis) (h1,h2) of H.

5 Definition. A subspace U ⊂ V is called a

- para-complex subspace if it exists an endomorphism K ′ ∈ S+(Q̃)
leaving U invariant, K ′U ⊂ U ,

___________________________________________________________________________
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and moreover it is called a

- para-Hermitian subspace if g|U is non degenerate.

Interpretation w.r.t. Grassmann model, [27]:
A para-hermitian subspace U ⊂ V has the form

U = (h1 ⊗E1)⊕ (h2 ⊗E2)

where E1, E2 are (not necessarily transversal) subspaces of E
(h1 ⊗E1,h2 ⊗E2 totally isotropic in U ⇒ dim(E1) = dim(E2) = r)

Also
U = H⊗E0 ⊕ h1 ⊗E′

1 ⊕ h2 ⊗E′
2 = U0 ⊕ U1 ⊕ U2

where U0 is Q̃-invariant and U1, U2 totally isotropic and, moreover, the non
degeneracy conditions is fulfilled.

6 Definition. A subspace U ⊂ V is called a para-quaternionic subspace
if

- ∀ (I, J,K) of Q̃ ⇒ IU ⊂ U, JU ⊂ U,KU ⊂ U
and
- g|U is non degenerate.

(In particular, U is both Hermitian and para-Hermitian).

Grassmann interpretation for a para-quaternionic subspace, [27]:

U = H⊗E′

where E′ = (E′)2k is a 2k-dimensional subspace of E,
- ωE

|E′ is non degenerate and

- ∀X = h1 ⊗ e + h2 ⊗ e′, Y = h1 ⊗ f + h2 ⊗ f ′ ∈ U

g(X,Y ) = g(h1 ⊗ e + h2 ⊗ e′,h1 ⊗ f + h2 ⊗ f ′ = ωE(e, f ′)− ωE(e′, f) .

Also totally (para-)complex and totally real subspaces, with their re-
spective Grassmann interpretation, were considered in [27].

5 (Para-)quaternionic (Hermitian) manifold

(M4n, Q,∇)

From now on the quaternionic and para-quaternionic case will be treated si-
multaneously and notation is unified by setting η = −1 or η = 1 and (ε1, ε2, ε3) =

____________________________________________________________________________
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(−1,−1,−1) or (ε1, ε2, ε3) = (−1, 1, 1) respectively for hypercomplex or para-
hypercomplex structure (J1, J2, J3): then the multiplication table looks

J2
α = εαId , JαJβ = −JβJα = ηεγJγ (α = 1, 2, 3)

where (α, β, γ) is any circular permutation of (1, 2, 3).

7 Definition. An almost (para-)quaternionic structure on a differen-
tiable manifold M4n is a rank 3 subbundle Q ⊂ End(TM), which is locally
spanned by a field H = (J1, J2, J3) of (para-)hypercomplex structures. Such a
locally defined triple H = (Jα), α = 1, 2, 3, will be called a (local) admissible
basis of Q.

An almost (para-)quaternionic connection is a linear connection ∇
which preserves Q ; equivalently, for any local admissible basis H = (Jα) of Q
one has

∇Jα = −εβωγ ⊗ Jβ + εγωβ ⊗ Jγ (P.C.) (2)

where (P.C.) means that (α, β, γ) is any circular permutation of (1,2,3).

An almost (para-)quaternionic structure Q is called a (para-)quaternio-
nic structure if M admits a (para-)quaternionic connection, i.e. a torsion-
free almost (para-)quaternionic connection. An (almost) (para-)quaternio-
nic manifold (M4n, Q) is a manifold M4n endowed with an (almost) (para-)-
quaternionic structure Q.

An almost (para-)quaternionic Hermitian manifold (M,Q, g) is an al-
most (para-)quaternionic manifold (M,Q) endowed with a (pseudo-)Riemannian
metric g which is Q-Hermitian, i.e. any endomorphism of Q is g-skew-symmetric.
(M,Q, g), n > 1, is called a (para-)quaternionic Kähler manifold if the
Levi-Civita connection of g preserves Q, i.e. ∇g is a (para-)quaternionic con-
nection.

6 (Para-)quaternionic Kähler manifold (M4n, Q, g)

Let (M4n, Q, g), n > 1, be a (para-)quaternionic Kähler manifold and recall
some basic results, see for ex. [3],[2].

(M4n, g) is an Einstein manifold.
The curvature tensor of g decomposes as:

R = νR0 + W (3)

where

R0(X,Y ) =
1
4

(
X ∧ Y −

3∑
α=1

εαJαX ∧ JαY +
3∑

α=1

2εαg(JαX,Y )Jα
)

___________________________________________________________________________
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and ν = K/4n(n + 2) is the reduced scalar curvature, W is the (para-)qua-
ternionic Weyl tensor, for which

[W (X,Y ), Q] = 0

and all contractions are equal to zero.
The following basic identities hold for the curvature tensor R:

[R(X,Y ), Jα] = −ηεαν
(
Fγ(X,Y )Jβ − Fβ(X,Y )Jγ

)
(P.C.)

One defines a (para-)quaternionic Kähler manifold of dimension 4 as
a (pseudo-)Riemannian manifold (M4n, g) endowed with a parallel skew-sym-
metric (para-)quaternionic structure Q and whose curvature tensor admits a
decomposition (3).

From identities (2) for the Levi-Civita connection ∇ = ∇g, the following
integrability conditions hold:

−νηFα = εα(dωα − εαωβ ∧ ωγ) (P.C.) (4)

where Fα = g ◦ Jα ≡ g(Jα·, ·) is the Kähler form of Jα, α = 1, 2, 3.

Symmetric quaternionic Kähler manifolds, [1]:

A Wolf space is a compact, simply connected quaternionic Kähler symmetric
space. It has the form W = G/K, G compact centerless Lie group and K =
K1 · Sp(1) (local direct product). Main examples:

�Pn = Sp(n+1)
Sp(1)·Sp(n) , G2(�n+2) = SU(n+2)

S
(
U(2)×U(n)

) ,

G+
4 (�n+4) = SO(n+4)

S
(
O(4)×O(n)

)
+ 5 exceptional spaces: G2/SO(4), F4/Sp(1) ·Sp(3), etc. and their noncompact
duals.

Symmetric para-quaternionic Kähler manifolds, [13],[1]:

T ∗Qn ≡ T ∗G2(�n+2) = SL(n+2,�)
S(GL(2,�)×GL(n,�)) ,

G1,1
2 (�p+1,q+1) = SUp+1,q+1

S(U1,1×Up,q) , G2,2
4 (�2+p,2+q) = SO2+p,2+q

SO2,2×SOp,q
,

T ∗G2(�n+2) = SO∗(2n+4)
SO∗(4)×SO∗(2n) = SL(2(n+2),�)

S(GL(2n,�)×GL(4,�)) ,

T ∗�Pn = �̂Pn = Spn+1(�)
Sp1(�)·Spn(�)

____________________________________________________________________________
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+ some exceptional spaces.

Note: As the notation T ∗ indicates, several of these manifolds happen to be
cotangent bundles of Kähler manifolds. One wonder if this is true for all symme-
tric para-quaternionic Kähler manifolds. Such a result would be the analogous
of that one of [12], paragraph 5.2. pag. 100, i.e. every para-Hermitian symmet-
ric space with semisimple group is diffeomorphic to the cotangent bundle of a
Riemannian symmetric space of a particular type.

7 Submanifolds of primary interest in (M
4n

, Q, g)

7.1 Almost (para-)quaternionic submanifold (M4m, Q)

An almost (para-)quaternionic submanifold (M4m, Q),m ≤ n, of a
(para-)quaternionic manifold (M4n

, Q) is a submanifold whose tangent bun-
dle is Q-invariant, QTM = TM . It is a classical result of A. Gray that a
quaternionic submanifold of a quaternionic Kähler manifold (M4n

, Q, g) is to-
tally geodesic and hence, endowed with the induced quaternionic Kähler struc-
ture Q = Q|TM and riemannian metric g = g|TM , is itself a quaternionic Kähler
manifold (M4m, Q, g). The analogous result for a para-quaternionic submanifold
of a para-quaternionic Kähler manifold was proved in [27]. In fact, by arguing
as in [6], [24], a more general result can be proved.

8 Proposition. An almost (para-)quaternionic submanifold (M4m, Q) of a
(para-)quaternionic manifold (M4n

, Q) is totally geodesic and (para-)quaterni-
onic.

Proof. For quaternionic case the proof was given in [6], [24]. For para-
quaternionic case we observe that the proof in [6] is directly adaptable. QED

Examples of (para-)quaternionic submanifolds: Let (N,�,∇′) be an
almost (para-)complex manifold endowed with a linear connection∇′ leaving the
almost (para-)complex structure � invariant. Let (M = TN,Q,∇) be the almost
(para-)quaternionic manifold whose (para-)quaternionic structure Q = Q

�
is

generated by the (para-)hypercomplex structure constructed as indicated in the
example of (para-)hypercomplex structure referring to [23],[19] and ∇ is the
extension of ∇′ to TTN . Let (N,�) be an almost (para-)complex submanifold
of (N,�), i.e. N is a submanifold of N which is �-invariant, �(TN) ⊂ TN , and
� = �|TN . If N is totally geodesic with respect to ∇′ then (TN,Q�) is a almost
(para-quaternionic) submanifold of (N,Q

�
,∇′).

Para-quaternionic submanifolds of symmetric para-quaternionic ma-

___________________________________________________________________________
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nifolds:
�̂P k ⊂ �̂Pn (k ≤ n) ,

G1,1
2 (�h+1,k+1) ⊂ G1,1

2 (�p+1,q+1) , G2,2
4 (�h+2,k+2) ⊂ G2,2

4 (�p+2,q+2)

(h ≤ p, k ≤ q) and

G1,1
2 (�h+1,k+1) ⊂ G2,2

4 (�2p+1,2q+1) , (h ≤ p, k ≤ q),

T ∗G2(�h+2) ⊂ T ∗G2(�n+2) (h ≤ n)

are very natural totally geodesic para-quaternionic immersions.

7.2 (Almost) (para-)complex submanifolds (M2m, J)

An (almost) (para-)complex submanifold (M2m, J) is a submanifold M2m ⊂
M

4n whose tangent bundle is J-invariant for some section

J ∈ Γ(Q|M) , J
2 = ±Id

In a para-quaternionic manifold one has to consider simultaneously both types
of such submanifolds.

Let consider some examples of (para-)complex submanifolds of a para-qua-
ternionic manifold.

The following simple remark is useful.

Remark. Let be (M,Q) a para-quaternionic manifold, (M,Q = Q|TM ) an al-
most para-quaternionic submanifold, � a section of Sε(Q), ε = ±1, along M .
Then (M,� = �|TM ) is an almost complex or para-complex submanifold de-
pending on if ε = −1 or ε = 1. In particular, if (I, J,K) is a local almost
para-hypercomplex base for Q, then (M, I) and (M,J), (M,K) are respectively
almost complex and para-complex, para-complex submanifolds.

7.3 (Para-)Kähler submanifolds of a (para-)quaternionic Käh-

ler manifold (M
4n

, Q, g)

Let (M4n
, Q, g) be an almost (para-)quaternionic Hermitian manifold.

9 Definition. An almost (para-)complex Hermitian submanifold
(M2m, J , g), m ≥ 1, is a 2m-dimensional g-nondegenerate (para-)complex sub-
manifold (M2m, J) where g = g|M2m is the induced (pseudo-)Riemannian met-
ric.
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10 Definition. A (para-)Kähler submanifold (M2m, J , g), m ≥ 1 of the
(para-)quaternionic Kähler manifold (M 4n

, Q, g) is an almost (para-)complex
Hermitian submanifold such that the section J is parallel along M2m with re-
spect to the Levi-Civita connection of g.

Examples in para-quaternionic Kähler symmetric spaces.

• Submanifolds of �̂Pn = Spn+1(�)
Sp1(�)×Spn(�) :

Kähler− �P h = SUh+1

S(U1×Uh)

para-Kähler− �̂P h = SLh+1(�)
SL1(�)×SLh(�) , (h ≤ n)

• Submanifolds of G1,1
2 (�p+1,q+1) = SUp+1,q+1

S(Up,q×U1,1)
:

Kähler− �P h × �P k =
SUh+1

S(U1 × Uh)
× SUk+1

S(U1 × Uk)

para-Kähler− G1,1
2 (�h+1,k+1) =

SOh+1,k+1

S(O1,1 ×Oh,k)
, (h ≤ p, k ≤ q)

• Submanifolds of G2,2
4 (�p+2,q+2) = SOp+2,q+2

S(O2,2×Op,q) :

Kähler− G2(�p−h+1)×G2(�q−k+1) , Qh+1,0
h ×Qk+1,0

k

para- Kähler− G1,1
2 (�h+1,k+1) , Qh,1 ×Qk,1

• Submanifolds of M8n = T ∗G2(�n+2):

Kähler− �P h , G2(�h+2)

para-Kähler− T ∗�P h × T ∗�̂P k , T ∗G2(�k+2) = T ∗Qk

7.4 Almost (para-)complex submanifolds of a (para-)quaterni-
onic (Hermitian) manifold. Integrability of a compatible al-
most (para-)complex structure.

A compatible almost (para-)complex structure J on a (para-)quater-
nionic manifold (M,Q) is a section of S±(Q) on M . Integrability of a compa-
tible almost (para-)complex structure J or, more generally, of an almost (para-
)complex structure J = J |TM induced by a compatible almost complex structure
J on a submanifold M is a natural problem to consider. Several results were
obtained in [4],[5] for a quaternionic (Kähler) manifold and some of them were
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extended to the para-quaternionic case by [27]. A summary of results is the
following.

Let (M4n
, Q,∇) be a (para-)quaternionic manifold (if (M 4n

, Q, g) is (para-
)quaternionic Kähler we assume that ∇ = ∇g) and consider an almost (para-)-
complex submanifold (M2m, J), where it is induced the almost (para-)complex
structure J = J |TM .

Remark: The case where M2m ≡M
4n is included.

We are interested to state conditions under which J = J |TM is integrable.
Let (J1, J2, J3) be an admissible basis for Q, i.e.

J2
α = εαId , JαJβ = −JβJα = ηεγJγ , (P.C.)

where (α, β, γ) is a circular permutation of (1, 2, 3), (note that εαεβεγ = −1),
and consider the identities

∇Jα = −(εβωγ ⊗ Jβ − εγωβ ⊗ Jγ
)

(5)

It results

ηJα∇Jα = εα(ωβ ⊗ Jβ + ωγ ⊗ Jγ) (α = 1, 2, 3)

and
ηTr(εαJα∇Jα) = ωβ ◦ Jβ + ωγ ◦ Jγ

The following local 1-forms play an important role:

θα := ωβ ◦ Jβ + ωγ ◦ Jγ , χα := ωβ ◦ Jβ − ωγ ◦ Jγ = θγ − θβ ,

ψα := χα ◦ Jβ = εβωβ + ηεαωγ ◦ Jα (α = 1, 2, 3)
(6)

Remark: If the manifold is quaternionic Kähler then θα is the Lie form of the
almost complex structure Jα, [7], being, in general,

θα = −ηεα(δFα) ◦ Jα (7)

(In fact, for a vector field X and a (pseudo-)orthonormal frame Ei, i =
1, . . . , 4n one has

η(δFα ◦ Jα)(X) = ηTrg
(
− g(∇Jα, JαX)

)
= −εα(ωγ ◦ Jγ + ωβ ◦ Jβ)(X) = −εαθα(X)

and hence δFα = −ηθα ◦ Jα.)
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Coming back to the general case, let observe also that it results

εα(∇JαXJα − Jα∇XJα) = −ηεβψα(X)Jβ − ψα(JαX)Jγ . (8)

For x ∈M and X,Y ∈ TxM the Nijenhuis tensor NJα of Jα is given by

4NJα(X,Y ) =
[
(∇JαXJα)Y − Jα(∇XJα)Y

]− [(∇JαY Jα)X − Jα(∇Y Jα)X
]
.

Hence

4εα NJα(X,Y ) =
ηεβJβ

[
ψα(Y )X + εαψα(JαY )JαX − ψα(X)Y − εαψα(JαX)JαY

]
.

(9)

A local admissible basis (J1, J2, J3) of Q defined on a neighborhood U in M
4n

of a point x ∈M2m is called an adapted basis for the almost (para-)complex
submanifold (M2m, J) if Jα|(M∩U) = J for some index α ∈ (1, 2, 3).

Let now assume that (J1, J2, J3) is an adapted basis for the submanifold
(M,J), being Jα|TM = J . Then the Nijenhuis tensor NJ of J is just given by
the restriction of NJα to TM2m.

Hence
11 Proposition. If m > 1, J ≡ Jα|TM is integrable if and only if ψ ≡

ψα|TM = 0, i.e. χ ≡ (ωβ ◦ Jβ − ωγ ◦ Jγ)|TM = 0.

Concerning the case of a surface, where the integrability of J always holds,
let consider the following definition.

12 Definition. An almost (para-)complex surface (M2, J) of M4m is super-
(para-)complex if ψ = 0.

From now on let denote J = Jα|TM , ψ = ψα|TM , ε = εα.

Also, at any point x ∈M2m let denote by T xM the maximal Q-invariant
subspace of TxM , T xM = TxM ∩ JβTxM .

Let observe that NJ(X,Y ) ∈ TxM, ∀X,Y ∈ TxM ; hence (9) implies that
∀X,Y ∈ TxM

ψ(Y )X + εψ(JY )JX − ψ(X)Y − εψ(JX)JY ∈ T xM (10)

A rather strong consequence of that remark in the non-integrable case is the
following result which holds in full generality.

13 Proposition. Let ψx 	= 0 at a point x of the almost (para-)complex
submanifold (M2m, J). Then the following possibilities hold for TxM :

1) TxM = TxM
or
2) TxM = TxM ⊕Dx

where Dx is a Jx-invariant 2-dimensional subspace of TxM .
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Proof. By (10), for any X ∈ TxM we have⎧⎨⎩
ψ(X)Y + εψ(JX)JY ≡ ψ(Y )X + εψ(JY )JX

(modT xM),∀Y ∈ TxM
ψ(JX)Y + ψ(X)JY ≡ ψ(JY )X + ψ(Y )JX

(11)
a) If there exists X s.t. ψx(X)2−εψ(JX)2 	= 0, then from (11) it follows that Y ∈
T xM+D′

x, where D′
x = span{X,JX}, ∀Y ∈ TxM . b) If ψx(X)2−εψ(JX)2 ≡ 0,

we first notice that it must be ε = 1, since ψx 	= 0, and ψ(JX) = ±ψ(X),∀X ∈
TxM . Moreover the first of (11) reduces to the identity

ψ(X)(Y ± JY ) ≡ ψ(Y )(X ± JX) (modT xM), ∀X,Y ∈ TxM . (12)

If ∃X ∈ T xM s.t. ψ(X) 	= 0 then Y ± JY ∈ T xM, ∀Y /∈ TxM and hence
JY = ±Y ∀Y ∈ T xM =⇒ TxM = T xM (since J 	= ±Id).

If ∃X ′ /∈ TxM (and hence also JX ′ /∈ TxM) s.t. ψ(X ′) 	= 0 then Y ± JY ∈
�(X ′± JX ′)+T xM ∀Y ∈ TxM , hence JX ′ =

−
+X ′ and TxM = �X ′ +T xM by

dimensionality reasons, and that is contradiction. QED

Let now apply the above result to a submanifold.
14 Proposition. Let (M2m, J) be an almost (para-)complex submanifold of

(M4n
, Q).

If the codimension of T xM in TxM is bigger than 2, i.e. dimT xM < 2(m−1),
a) on an open dense set U ⊂M2m

or
b) in a point x, if (M2m, J) is analytic,

then J is integrable.
As a consequence one has also the following corollary.
15 Corollary. If dim(M) = 4k and N(J) 	= 0 on an open set U dense in

M , then M is a totally geodesic (para-)quaternionic submanifold.

The construction of examples of 2(2k+1)-dimensional almost (para-)complex
submanifolds which are not (para-)complex is an open problem.

From results of [26],[2] it follows that in a neighborhood of any point x of
a (para-)quaternionic Kähler manifold there exists a compatible (para-)complex
structure J . Equivalently, in a neighborhood of any point x there exists an admis-
sible basis (J1, J2, J3) such that one of the almost (para-)complex structures Jα
is integrable (in para-quaternionic case both possibilities occur). A rather exten-
sive study of compatible complex structures on a quaternionic Kähler manifold
was made in [7], dealing also with the existence of global complex structures.
An analogous study could be performed for (para)complex structures of a pa-
ra-quaternionic Kähler manifolds
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8 Minimal almost complex submanifolds

In this section, following the lines of [5], we calculate the mean curvature
vector of an almost (para-)complex hermitian submanifold of a (para-)quater-
nionic Kähler manifold (M 4n

, Q, g).
Let Nk be a (non-degenerate) submanifold of M

4n, g = g|N the metric
induced by g and h the second fundamental form of Nk. We recall that the
”mean curvature vector” H = 1

kTrgh of Nk at a point x is given by

H =
1
k

∑
k

gih(Ei, Ei) (13)

where (E1, . . . , Ek) is a (pseudo-)orthonormal basis of TxMk and gi = g(Ei, Ei) ∈
(−1, 1), i = 1, . . . , k, [22].

Let (M2m, J) be an almost (para-)complex submanifold of the (para-)-
quaternionic Kähler manifold (M 4n

, Q, g) .
Without any loss of validity, we assume that M2m ⊂ U ⊂ M4n, where U

is an open set where it is given a local adapted (para-)hypercomplex frame
(J1, J2, J3) such that J = Jα|M .

To handle simultaneously all possible cases of ambient manifold, possibly
pseudo-Riemannian, we assume the following additional hypothesis:

At any point x ∈ M2m the tangent space of the submanifold admits a
(pseudo-)orthogonal decomposition

TxM = TxM ⊕Dx (14)

where T xM = TxM ∩ JβTxM is the maximal Q-invariant subspace of TxM and
Dx is the (possibly zero) J-invariant orthogonal complement to T xM . Equiva-
lently, T xM is a g-nondegenerate subspace of TxM , ∀x ∈M2m .

Note that the space D̃x = JβDx does not depend on the adapted basis
(J1, J2, J3) and

TQx M = TxM ⊕Dx ⊕ D̃x

is a direct sum decomposition of the minimal Q-invariant subspace TQx M of
TxM which contains TxM .

Remark that D̃x is orthogonal to T xM but in general, if dimDx > 2, not
orthogonal to Dx. Let recall also that by (13), in case n > 1, if dimDx > 2 for
any x ∈M then the almost complex structure J = J |M is integrable.

We denote by
tα = g−1 ◦ θα ∈ TM |M

the (local) vector field along M , dual to the 1-form θα = ωβ ◦ Jβ + ωγ ◦ Jγ with
respect to g.

___________________________________________________________________________



312 S. Marchiafava

16 Proposition. Let (M4n
, Q, g) be a (para-)quaternionic Kähler manifold

and (M2m, J) be a (para-)complex hermitian submanifold. Moreover let assume
that the hypothesis (14) holds at any point x ∈ M . Then, with respect to an
adapted frame (J1, J2, J3) such that J = Jα,

h(X,X) − εαh(JX, JX) = −η[εβθα(JβX)JβX + εγθα(JγX)JγX]⊥ . (15)

where ⊥ means the projection on TM⊥ , and
- the mean curvature vector H of an almost (para-)complex submanifold

(M2m, Jα) of M
4n is given by

H = − η

2m
[
Pr

eD
tα
]⊥ (16)

where, for any X ∈ TxM̃ , PrD′(X) is the orthogonal projection of X onto the
subspace D̃x and X⊥ means the orthogonal projection of X onto T⊥

x M .
If m = 1 the formula can be written as

H = −η

2

[
(εβθα(JβX)JβX + εγθα(JγX)JγX

]
(17)

where X is any unit vector of TM .
Proof. Let J = Jα|TM with respect to an adapted basis (J1, J2, J3). For

any vectors X,Y ∈ TM one has

−(εβωγ(X)JβY − εγωβ(X)JγY ) = (∇XJα)Y
= (∇XJ)Y + h(X,JY )− Jαh(X,Y ).

Hence

h(X,JY )− Jαh(X,Y ) = −[εβωγ(X)JβY − εγωβ(X)JγY ]⊥ . (18)

By comparing with the identity where X is exchanged with Y , one gets the
identity

h(X,JY )− h(Y, JX) = −εβ[ωγ(X)JβY − ωγ(Y )JβX]⊥

+εγ [ωβ(X)JγY − ωβ(Y )JγX]⊥

that is, by exchanging X with JX,

−εαh(X,Y ) + h(JX, JY ) = −εβ[ωγ(JαX)JβY + ηεγωγ(Y )JγX]⊥

+εγ [ωβ(JαX)JγY − ηεβωβ(Y )JβX]⊥ .
(19)

Let now (E1, . . . , Em, JαE1, . . . , JαEm) be a (pseudo-)orthonormal basis of TxM
such that (E1, . . . , Ek, JαE1, . . . , JαEk) is an orthonormal basis of D and, hence,
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(Ek+1, . . . , Em, JαEk+1, . . . , JαEm) is a (pseudo-)orthonormal basis of T̄M . By
using the previous identity, we find

−2mH
=
∑m

i=1{(ωβ ◦ Jβ + ωγ ◦ Jγ)(JβEi)JβEi + (ωβ ◦ Jβ + ωγ ◦ Jγ)(JγEi)JγEi}⊥
=
∑k

i=1{(ωβ ◦ Jβ + ωγ ◦ Jγ)(JβEi)JβEi + (ωβ ◦ Jβ + ωγ ◦ Jγ)(JγEi)JγEi}⊥
= −

[
PrJβDtα

]⊥
since (JβE1, . . . , JβEk, JβE1, . . . , JβEk) is a (pseudo-)orthonormal basis of D̃ =
JβD. QED

17 Corollary. The almost (para-)complex submanifold M2m ⊂ M̃4n is min-
imal if the 1-form

θ := θα = (ωβ ◦ Jβ + ωγ ◦ Jγ)|TM

vanishes on D̃ for some adapted basis (J1, J2, J3).
Since for a (para)Kähler submanifold (M2m, Jα), the 1-forms ωβ, ωγ vanish

on M2m, we have the following corollary (see [4], [5], [27]).
Let recall that
18 Proposition ([5],[2],[27]). The almost (para-)complex submanifold

(M2m, J) of the (para-)quaternionic Kähler manifold (M4n
, Q, g) is (para-)-

Kähler if and only with respect to an adapted frame (J1, J2, J3) where J = Jα
one has

ωβ |TM = ωγ |TM = 0 .

Proof. It is immediate from (5). QED

Then we have also the following corollary of Proposition 16.
19 Corollary ([5],[2],[27]). A (para)Kähler submanifold (M2m, J) of a (pa-

ra-)quaternionic Kähler manifold (M 4n
, Q, g) is minimal.

Moreover, as another corollary we get the following result, see also [5], [27].
20 Corollary. Let (M2, J) be a 2-dimensional (para-)complex submanifold

of a 4-dimensional (para-)quaternionic Kähler manifold. Then the following con-
ditions are equivalent:

1) (M2, J) is (para-)Kähler ,

2) (M2, J) is minimal and super(para-)complex.

Proof. (M2, Jα) is super(para-)complex if and only if (ωβ ◦ Jβ − ωγ ◦
Jγ)|TM = 0 and by corollary (17) of proposition 16 it is minimal if and only if
(ωβ ◦ Jβ + ωγ ◦ Jγ)|TM = 0. These two conditions imply ωβ |TM = ωγ |TM = 0,
i.e. (M2, J) is Kähler. The converse statement is clear. QED
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By the same proof one gets the following corollary.

21 Corollary. Let (M2, J) be a super(para-)complex surface of a (para-)-
quaternionic Kähler manifold (M4n

, Q, g). Then it is minimal if and only if it
is a (para-)Kähler submanifold.

The following proposition, which was proved in [4], [27] respectively for
quaternionic Kähler, (para-)quaternionic Kähler case, gives a characterization
of (para-)Kähler submanifolds between almost (para-)complex submanifolds of
a (para-)quaternionic manifold.

22 Proposition. ([5],[27]) Let (M4n
, Q, g) be a (para-)quaternionic Kähler

manifold with non zero scalar curvature and (M2m, J) an almost complex sub-
manifold of M which is not a (para-)quaternionic submanifold. Then (M2m, J)
is a (para-)Kähler submanifold if and only if the shape operators Aξ verify the
condition

AJξ + JAξ = 0 ∀ ξ ∈ TM⊥

or, equivalently, the second fundamental form h of M satisfies the condition

h(X,JY )− Jh(X,Y ) = 0 ∀X,Y ∈ TM. (20)

23 Definition. An almost (para-)complex submanifold (M2m, J) of a (pa-
ra-)quaternionic Kähler manifold (M̃4n, Q, g) is called pluriminimal or (1, 1)-
geodesic if one of the following equivalent conditions holds:

i) the second fundamental form h of M satisfies

−εh(X,Y ) + h(JX, JY ) = 0 ∀X,Y ∈ TM ; (21)

ii) the shape operators Aξ anticommute with J = J |TM ,

AξJ + JAξ = 0 ∀ ξ ∈ TM⊥;

iv) any J-invariant 2-dimensional submanifold N2 of M2m is minimal in M
4n.

A pluriminimal almost (para-)complex submanifold (M2m, J) is minimal.

A (para-)Kähler submanifold (M2m, J) of a (para-)quaternionic Kähler ma-
nifold (M̃4n, Q, g) is pluriminimal, since the identity (20) implies (21), as it was
observed by Y. Ohnita, [23]. We do not know if the converse is also true under
general hypothesis. The following proposition is a partial answer to this question,
by giving a characterization of (para-)complex pluriminimal submanifolds.
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24 Proposition ([5], [27]). A (para-)complex submanifold (M2m, J), m >

1, of the (para-)quaternionic Kähler manifold (M4n
, Q, g) with non zero scalar

curvature is pluriminimal if and only if it is a (para-)Kähler submanifold or a
(para-)quaternionic (hence totally geodesic) submanifold, and these cases cannot
happen simultaneously.
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