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Abstract. After a concise introduction on (para-)quaternionic geometry, we report on some
recent results concerning para-quaternionic Hermitian and Kéhler manifolds and their special
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1 Introduction

This paper is aimed to report on some recent work on special submanifolds
of quaternionic and para-quaternionic manifolds.

We start by giving a concise introduction to basic structures, such as complex
and para-complex, having to do with (para)-quaternionic geometry and focus
in particular on para-quaternionic structures, whose theory was developed more
recently.

A first systematic study of submanifolds of a para-quaternionic manifold
was made in [27]. In particular, the invariant subspaces of a para-quaternionic
(Hermitian) vector space were classified and described in detail.

Passing to submanifolds here we consider in particular almost (para-)com-
plex submanifolds and try to give a unified presentation of known results by
dealing simultaneously with all possible interesting cases. A special attention is
given to questions of integrability of an almost (para-)complex structure on a
submanifold and some problems are pointed out.

Also some basic result on minimality of almost (para-)complex submani-
folds of a (para-)quaternionic Kahler manifold are stated, by extending the
work previously done for almost complex submanifolds of a quaternionic Kahler
manifold.

'Work done under the programs of G.N.S.A.G.A. of C.N.R. and COFINO5 ”Riemannian
metrics and differentiable structures” of M.I.U.R. (Italy)
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2 (Para-)quaternionic structures on a manifold M

Let M be a differentiable manifold. Let consider the following structures on
a real vector space V =T,M, x € M, where one assumes that I, J, K are given
endomorphisms:

COMPLEX PARA-COMPLEX
J?=—1Id J?=1d
VeC=ViaeV; V=VieV;

Vi={ueV®C,Ju==+iu} Vi={ueV,Ju==u}
dimV;" = dimV;

Remark: A para-complex structure is a particular product structure, con-
sisting in the symmetry with respect to VJJr parallel to V.

HYPERCOMPLEX PARA-HYPERCOMPLEX

H=(I,JK) H=(,J,K)
I2=J2=K?=—_Id I2=-Id , J?=K2=1Id

IJ=-JI=K IJ=-JI=K
(JK =—-KJ=1I, (JK =—-KJ=—1I,)
KI=—IK=1J KI=—-IK =)

A para-hypercomplex structure H = (I,J,K) corresponds to a 3-web struc-
ture (D1, D2, D3) on V, [21]:
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The analytic point of view is summarized as follows in terms of

real Clifford algebras:

C=C(0,1) C=C(1,0)
complex numbers para-complex numbers
z=x4iy , 2=-1 z=x4+iy , =1
22 = 2?44 2 = a2 —y?
H= C(0,2) H=(C(2,0)=C(1,1)
quaternions para-quaternions
q=qo+1iq + jg2 + kg3 q=qo+1iq + jg2 + kg3
=2 =k=-1 PP=-1 , j?=k>=1
lal* =qa= a5 +af + & + 3 q=qp+ai — 4 — a3
no zero divisors existence of zero divisors
H = C? H = C?
q = z1(q) + jz(q) q = z1(q) + jz(q)
Examples of hypercomplex structures
-V =H"=R" , (i, 7+, k) left multiplications

-v=Cm=CreCt (I,J,K):

I(u,v) = (v,—u), J(u,v) = (—iu,iv), K(u,v) = (iv,iu)

(This example applies to V = T, M where M = TN and on N it is given an
almost complex structure J = i- which is left invariant by a linear connection
V : then, for X € T'N one has the decomposition TxTN = T)’}TN STVTN =
Trx)TN @ Tr(x)T'N into horizontal and vertical part, [23], Theor. 2.2).

Examples of para-hypercomplex structures

S V=H=R" (i-, j-, k+) left multiplications

S V=R"=R"¢R" , (I,J,K):

I(u,v) = (v,—u) , J(u,v)=(v,u) , K(u,v)=(u,—-v)

(This example applies to V =T, M where M = TN)

-(V=UsU , {I':U—-U||(I'?=1d}) (I,J,K):

I(u,v) = (I'v,=I'n), J(u,v) = (v,u), K(u,v) = (I'u,—I'v)

(This example applies to T, M where M = TN and on N it is given an

almost para-complex structure I’ which is left invariant by a linear connection
V, [19], analogously as for example of [23] mentioned above).
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A (para-)hypercomplex structure on V' generates respectively a structure

QUATERNIONIC PARA-QUATERNIONIC
generated byH = (I, J,K) : generated byH = (I, J,K) :
Q= (H)=RI+RJ+RK Q= (H)=RI+RJ+RK
(I,J, K) determined up to (1, J, K) determined up to

A e SO(3) A€ SO(2,1)
S(Q) ={LeQILIP =1} S(@) = 51(@Q)US (@)

ST(Q) ={LeQ|L*=1d},
57(Q)={LeQ|L*=-1d}
It is well known that a quaternionic structure on V is a tensor product
structure (see [26]).

Para-quaternionic structure as a tensor product structure:
V=H®E H=H?> E=E"

with structure group G = GL(2,R) ® GL(n,R) =2 SL(2,R) ® GL(n,R)
Given a symplectic basis (hy,hy) in H?, that is H? = (hy, hy), let take into
account the identifications and isomorphisms of Lie algebras:

H=R1+ImH 2 gly(R), ImH = su(1,1) = s0(2,1) = s[,(R) = sp, (R)

By denoting

0 -1 01 -1 0
=10 ) = (he) cx=(5Y)
one has the identifications

Ih®e)=IJh)®e, Jh®e)=7J(h)®e, K(h®e)=K(h)®e

that is
Ihj®e+hy®e)=-h ®e+hy®e ,
Jhij®e+hy®e)=h;®e +hy®e |, (1)
Kh;®e+hy®e)=-h ®e+hy®e.

Prototype of quaternionic manifold: the quaternionic projective space
HP™ = (H™*! — {0})/H*
Prototype of para-quaternionic manifold: the para-quaternionic pro-

~ an+l an+l
jective space HP™ = H  /H where H is the space of non-singular vectors

in H**t! and M = {q e H | lq|* # 0}, [8].
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It has to be noted that from the complex point of view the two notions of
quaternionic and para-quaternionic structure coincide and are included in the
notion of quaternionic conformal structure, see [10].

In the following two paragraphs we will focus mainly on para-type structures,
by assuming that they are less familiar.

3 Hermitian structures

3.1 Hermitian para-(hyper)complex structures

The following definitions and results were stated in [27].

1 Proposition. (/27]). Let g be a (non degenerate) scalar product on V.
The following notions are equivalent:

1. A para-hermitian structure (g, K') on V: that is
- K is a para-complex structure

and moreover

- K is a skew-symmetric endomorphism w.r.t. g,

ie. g(KX,Y)+g(X,KY)=0 equiv.,, g(KX,KY)+g(X,Y)=0.

2. A totally isotropic decomposition V = V* & V™~ w.r.t. g, ie a
decomposition of V' into two n-dimensional totally isotropic subspaces.

3. A Lagrangian decomposition V =V @V~ w.r.t. a symplectic form
w, that is VT,V are n-dimensional Lagrangian subspaces w.r.t. w i.e.

w(VE, VE) =0.
In these last two cases
Vt=vit | VT =V
In the first two cases, w = g(K-,-).

The proof of the proposition bases on the

2 Lemma (Basic Lemma). Let g be a pseudo-Euclidean metric on V :

g has signature (n,n) if and only if there exists a decomposition
V=vtev-
where V* are n-dimensional totally isotropic subspaces, i.e. the restriction

g‘vi =0.
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3 Definition. A para-hypercomplex Hermitian structure on V is a
pair (g9, H = (I, J,K)) = (g, (J1, J2, J3)) where g is a scalar product and H is a
para-hypercomplex structure such that

- ¢ has signature (2n,2n)
-9(Jou X, Y)+9(X,J,Y)=0 , a=1,2,3

i.e. (g,J1) is a Hermitian complex structure, (g, J2), (g, J3) are Hermitian para-
complex structures.

Standard example (to keep in mind): H" & €27 = R2:2n

(h,h’): =Re(hh') =Re(hihy + - + hohn )

= >oim1 (Re(21(ha)z1 (h) — 22(hi)z2(h)))
g = (, ): Hermitian scalar product of real signature (2n,2n) on C*"

1- = Jp isometry ; j-=Ja2 , k- = Js anti-isometries.

3.2 Hermitian (para-)quaternionic structures on V*"

QUATERNIONIC PARA — QUATERNIONIC
HERMITIAN HERMITIAN
(Q.9) = ((H),9) (Q.9) = ((H),9)
where where

(H, g) hypercomplex Hermitian (f] , g) para-hypercomplex Hermitian

A Hermitian para-quaternionic structure can be interpreted in terms of ten-
sor product:

V=H®E , g:wH®wE

H’wE

. Q=spu(H)

where w are symplectic forms on the real vector spaces H = H2 E = E".

We will refer to such an interpretation as the Grassmann model and if
(hi,hy) is a basis of H the para-hypercomplex structure defined by (1) will
be referred as the standard (I, J, K).

4 Invariant subspaces in a para-quaternionic (Her-
mitian) V%" and their Grassmann models

Let V' be a 4n-dimensional vector space endowed with a para-quaternionic
Hermitian structure (@, g). Let think of a subspace U of V' as the tangent space
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U=T,N at a point x of a submanifold N of M.
4 Definition. A subspace U C V is called a N

- complex subspace if it exists an endomorphism I’ € S™(Q) leaving U
invariant, I'U Cc U,

- Hermitian subspace if moreover g /U is non degenerate.
Example: CF = C* & {0} c C" & C" = H".
Interpretation w.r.t. Grassmann model, [27]:

V=H®E, g=uw?®w® and (I, J, K) standard.
Assume (hy, hy) to be a symplectic basis for (H,w!?) and
I(hj®e+hy®e)=-h;®e +hy®e.

For any pair (F, L) where F is a subspace of E and L is a complex structure
of F, i.e.
FCE L € End(F) , ?=-1d |,

let consider the corresponding subspace UFF of V = H® E given by
Ul = (X =m ®@f+hy@ Lf, f € F} ,
the endomorphism I7°F of UME given by
I"Fhy @f +hy @ Lf) = ~h; @ Lf + hy @ f
ie 100 = Ijyr.r, and the Hermitian scalar product g"” on (F, L) given by
ghE ) =g ®f+h ®Lfh @f +hy®Lf)
= wP(f, Lf) — wF(LE, )

The signature (2p,2q) of gv equals the signature of g*.
The mazimal dimension of UPT is 2n, when F = E.

Proposition [27]: A subspace U C V = H® E is a complex (respectively,
complex Hermitian) subspace if and only U = U’ & U" where U’ is the mazimal
@—im}am'(mt subspace contained in U and U = U¥L with respect to a basis (resp.
symplectic basis) (hi, hy) of H.

5 Definition. A subspace U C V is called a

- para-complex subspace if it exists an endomorphism K’ € ST(Q)
leaving U invariant, K'U C U,
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and moreover it is called a

- para-Hermitian subspace if gy is non degenerate.

Interpretation w.r.t. Grassmann model, [27]:

A para-hermitian subspace U C V has the form
U=(hi®E)® (h ® Ep)
where Fy, F5 are (not necessarily transversal) subspaces of F
(h; ® Eq, hy ® Eg totally isotropic in U = dim(E;) = dim(Eq) = r)

Also
U=HQREi&h QE|&#hyQE, =UyaU; & U,

where Uy is é—invariant and Uy, U, totally isotropic and, moreover, the non
degeneracy conditions is fulfilled.

6 Definition. A subspace U C V is called a para-quaternionic subspace
if

- ¥ (I, J,K)of Q = IUCU,JUCUKUCU

and

- gy is non degenerate.

(In particular, U is both Hermitian and para-Hermitian).
Grassmann interpretation for a para-quaternionic subspace, [27]:
U=HFE

where E' = (E')?* is a 2k-dimensional subspace of E,
- wﬁ]ﬂ, is non degenerate and
- VX =h®et+hy®e,Y=h f+hyof €U

g X, Y)=ghi®e+hy®e hy@f+hy@f =wF(e ) - B, f).

Also totally (para-)complex and totally real subspaces, with their re-
spective Grassmann interpretation, were considered in [27].

5 (Para-)quaternionic (Hermitian) manifold

(M*,Q, V)

From now on the quaternionic and para-quaternionic case will be treated si-
multaneously and notation is unified by setting n = —1 or n = 1 and (€1, €2, €3) =
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(=1,—1,—1) or (e1,€2,e3) = (—1,1,1) respectively for hypercomplex or para-
hypercomplex structure (Jq,.J2, J3): then the multiplication table looks

JE=e€dd | JuJsg=—JgJo =neyd, (a=1,2,3)
where (o, 3,7) is any circular permutation of (1,2, 3).

7 Definition. An almost (para-)quaternionic structure on a differen-
tiable manifold M*" is a rank 3 subbundle Q C End(T'M), which is locally
spanned by a field H = (Jy, Ja, J3) of (para-)hypercomplex structures. Such a
locally defined triple H = (J,),a = 1,2, 3, will be called a (local) admissible
basis of Q.

An almost (para-)quaternionic connection is a linear connection V
which preserves @) ; equivalently, for any local admissible basis H = (J,) of @
one has

Vo = —€gwy ® Jg + e,wg ® J, (P.C.) (2)
where (P.C.) means that (o, 3,7) is any circular permutation of (1,2,3).

An almost (para-)quaternionic structure @ is called a (para-)quaternio-
nic structure if M admits a (para-)quaternionic connection, i.e. a torsion-
free almost (para-)quaternionic connection. An (almost) (para-)quaternio-
nic manifold (M*", Q) is a manifold M*" endowed with an (almost) (para-)-
quaternionic structure Q).

An almost (para-)quaternionic Hermitian manifold (M, @, g) is an al-
most (para-)quaternionic manifold (M, Q)) endowed with a (pseudo-)Riemannian
metric g which is Q-Hermitian, i.e. any endomorphism of () is g-skew-symmetric.
(M,Q,g),n > 1, is called a (para-)quaternionic Kéhler manifold if the
Levi-Civita connection of g preserves @, i.e. VY is a (para-)quaternionic con-
nection.

6 (Para-)quaternionic Kihler manifold (M, Q, g)
Let (M*".Q,g), n > 1, be a (para-)quaternionic Kéhler manifold and recall
some basic results, see for ex. [3],[2].

(M g) is an Einstein manifold.

The curvature tensor of g decomposes as:
R=vRy+W (3)

where

3 3
Ro(X,Y) = i(x NY =Y eadaX ALY + 3 26ag(JaX, Y)Ja)

a=1 a=1
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and v = K/4n(n + 2) is the reduced scalar curvature, W is the (para-)qua-
ternionic Weyl tensor, for which

[W(X,Y),Q] =0

and all contractions are equal to zero.
The following basic identities hold for the curvature tensor R:

[R(X,Y), Jo] = —neav(Fy(X,Y)Js — F3(X,Y)J,) (P.C.)

One defines a (para-)quaternionic Kéahler manifold of dimension 4 as
a (pseudo-)Riemannian manifold (M?", g) endowed with a parallel skew-sym-
metric (para-)quaternionic structure () and whose curvature tensor admits a
decomposition (3).

From identities (2) for the Levi-Civita connection V = V9, the following
integrability conditions hold:

—unFy = €q(dwa — €awp A wy) (P.C.) (4)

where F, = go J, = g(Js-,-) is the Kéhler form of J,,a =1,2,3.

Symmetric quaternionic Kéhler manifolds, [1]:

A Wolf space is a compact, simply connected quaternionic Kéhler symmetric
space. It has the form W = G/K, G compact centerless Lie group and K =
K - Sp(1) (local direct product). Main examples:

n _ Sp(n+l) n+2) _ SU(n+2)
HP™ = Sp(1)-Sp(n) > G2(C") S(U(2)><U(n)) ’
G+([Rn+4) _ _ SO(n+4)
4 s(0(4)x0(n))

+ 5 exceptional spaces: Go/SO(4), Fy/Sp(1) - Sp(3), etc. and their noncompact
duals.

Symmetric para-quaternionic K&hler manifolds, [13],[1]:

I a2y SL(n+2,R)
T*Qn = T*G2(R"2) = S(GL(2,R)xGL(n,R))

1,1 SU, 2,2 SO
) p+1,g+1\ p+1,g+1 ) 24p,24q) 24p,24¢
G2 (C ) T S(U1,1xUp,g) G4 (IR ) T S502,2%x50p,4°

* n o SO*(2n+4 o SL(2(n+2),R
T*G(C"?) = SO*(4)>(<SO*()2n) - S(GL(25L,§3)><C)¥L()4,C)) )

* _r __ Spnt1(R)
T*CP" = HP™ = PR -Spn(®)
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+ some exceptional spaces.

Note: As the notation T™ indicates, several of these manifolds happen to be
cotangent bundles of Kéahler manifolds. One wonder if this is true for all symme-
tric para-quaternionic Kéhler manifolds. Such a result would be the analogous
of that one of [12], paragraph 5.2. pag. 100, i.e. every para-Hermitian symmet-
ric space with semisimple group is diffeomorphic to the cotangent bundle of a
Riemannian symmetric space of a particular type.

7 Submanifolds of primary interest in (M4n,@, J)

7.1 Almost (para-)quaternionic submanifold (M*™ Q)

An almost (para-)quaternionic submanifold (M*™, Q),m < n, of a
(para-)quaternionic manifold (M4n,@) is a submanifold whose tangent bun-
dle is Q-invariant, QTM = TM. It is a classical result of A. Gray that a
quaternionic submanifold of a quaternionic Kéahler manifold (M4n,§, g) is to-
tally geodesic and hence, endowed with the induced quaternionic Kahler struc-
ture Q = @T » and riemannian metric g = gjpyy, is itself a quaternionic Kahler
manifold (M*™,Q, g). The analogous result for a para-quaternionic submanifold
of a para-quaternionic Kéahler manifold was proved in [27]. In fact, by arguing
as in [6], [24], a more general result can be proved.

8 Proposition. An almost (para-)quaternionic submanifold (M*™, Q) of a

(para-)quaternionic manifold (M4n,@) is totally geodesic and (para-)quaterni-
onic.

PRrROOF. For quaternionic case the proof was given in [6], [24]. For para-
quaternionic case we observe that the proof in [6] is directly adaptable.

Examples of (para-)quaternionic submanifolds: Let (N,J,V’) be an
almost (para-)complex manifold endowed with a linear connection V' leaving the
almost (para-)complex structure J invariant. Let (M = TN, Q, V) be the almost
(para-)quaternionic manifold whose (para-)quaternionic structure Q = Q7 is
generated by the (para-)hypercomplex structure constructed as indicated in the
example of (para-)hypercomplex structure referring to [23],[19] and V is the
extension of V/ to TTN. Let (N, J) be an almost (para-)complex submanifold
of (N,J),i.e. N is a submanifold of N which is J-invariant, J(T'N) C TN, and
J= j|TN. If N is totally geodesic with respect to V' then (T'N, Q) is a almost
(para-quaternionic) submanifold of (N, Q, V').

Para-quaternionic submanifolds of symmetric para-quaternionic ma-
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nifolds:
HP* c HP"  (k<n) ,

G;l(Cthl,kJrl) C G%’l(([:erl’qul), Gi’z(Rh+2’k+2) - Gi’z([RerQ’quQ)

(h <p,k <q) and
GML(ChHLRHY) c GR2(RPHL2HYY (< pk < q),

T*Go(Ch2) c T*Go(C™?) (b < n)

are very natural totally geodesic para-quaternionic immersions.

7.2 (Almost) (para-)complex submanifolds (M?™, J)

An (almost) (para-)complex submanifold (M?™, J) is a submanifold M?™ C
M™ whose tangent bundle is J-invariant for some section

JeT@Qu) , J =+Id

In a para-quaternionic manifold one has to consider simultaneously both types
of such submanifolds.

Let consider some examples of (para-)complex submanifolds of a para-qua-
ternionic manifold.

The following simple remark is useful.

Remark. Let be (M, Q) a para-quaternionic manifold, (M,Q = @\TM) an al-
most para-quaternionic submanifold, J a section of S¢(Q), € = %1, along M.
Then (M,J = j|TM) is an almost complex or para-complex submanifold de-
pending on if € = —1 or e = 1. In particular, if (I,J,K) is a local almost
para-hypercomplex base for Q, then (M,I) and (M,J),(M,K) are respectively
almost complex and para-complex, para-complex submanifolds.

7.3 (Para-)Kdihler submanifolds of a (para-)quaternionic Kah-
ler manifold (W4n,@, J)

Let (H4n,§, g) be an almost (para-)quaternionic Hermitian manifold.

9 Definition. An almost (para-)complex Hermitian submanifold
(M?™,J,g), m > 1, is a 2m-dimensional g-nondegenerate (para-)complex sub-
manifold (M?™,.J) where g = gp2m is the induced (pseudo-)Riemannian met-
ric.
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10 Definition. A (para-)Kihler submanifold (M?™,J,g), m > 1 of the

(para-)quaternionic Kéhler manifold (M4n,@, g) is an almost (para-)complex
Hermitian submanifold such that the section J is parallel along M?™ with re-
spect to the Levi-Civita connection of g.

Examples in para-quaternionic Kahler symmetric spaces.

: Lypn _ Spny1(R) .
e Submanifolds of HP™ = W};pn@?)
. h . SU
Kahler — CP = S(T,;:}th)
. A SL R
para—Kahler — CPh = WE(LZ@R) , (h < n)

e Submanifolds of Gy (CPHLa+l) = 2rblasis,
p,q >

. SUh 1 SUk+1
Kéhler — CP" x CP* = +
awer . S x Uy~ S(U: x Uy)
SO
para-Kiihler —  GLI(RPHURHT) = _ZZhALREL (h<pk<q)

S(Ol,l X Oh,k) ’

. 2,2 SO
) p+2,g+2) p+2,q+2 .
e Submanifolds of G;*(R ) S(032x000)

Kahler — GQ(CP—hH) % GQ(@q—/H—l) ’ QZJrl,O % Qerl,O

para- Kahler —  Gy'(C"™ ) Quy x Qi
e Submanifolds of M®" = T*G4(C"2):

Kéhler —  CP" | Go(R"?)

para-Kihler —  T*CP" x T*CP* | T*Gy(R*?) =T*Qp

7.4 Almost (para-)complex submanifolds of a (para-)quaterni-
onic (Hermitian) manifold. Integrability of a compatible al-
most (para-)complex structure.

A compatible almost (para-)complex structure .J on a (para-)quater-
nionic manifold (M, Q) is a section of S*(Q) on M. Integrability of a compa-
tible almost (para-)complex structure .J or, more generally, of an almost (para-
)complex structure J = 7|T A induced by a compatible almost complex structure
J on a submanifold M is a natural problem to consider. Several results were
obtained in [4],[5] for a quaternionic (Kéhler) manifold and some of them were
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extended to the para-quaternionic case by [27]. A summary of results is the
following.

Let (M4n,@, V) be a (para-)quaternionic manifold (if (H4n,§, g) is (para-
)quaternionic Kéhler we assume that V = V7) and consider an almost (para-)-
complex submanifold (M*™,J), where it is induced the almost (para-)complex
structure J = ]TM.

Remark: The case where M?2™ = M4n is included.

We are interested to state conditions under which J = 7‘T A 1S integrable.
Let (J1,J2,J3) be an admissible basis for @, i.e.

Ji=edd , Judg=—Jsdoa=nedy, , (PO

where (o, 8,7) is a circular permutation of (1,2,3), (note that e,ege, = —1),
and consider the identities

VJa = —(eﬁwy ® Jg — €W & JW) (5)
It results
NJaV o = €a(ws @ Jg + wy ® J,) (=1,2,3)

and
NTr(eaJoVia) = wgo Jg+wyoJ,

The following local 1-forms play an important role:
0o :=wgodgt+wyoldy, , Xai=wgoJg—wyolJ,=0,—-10g,
(6)
Yo = Xa © Jg = €gwg + Neqwy 0 Jo (a=1,2,3)

Remark: If the manifold is quaternionic Kéhler then 6, is the Lie form of the
almost complex structure J,, [7], being, in general,

0o = —nea(0Fy) 0 Jy, (7)

(In fact, for a vector field X and a (pseudo-)orthonormal frame FE;, i =
1,...,4n one has

N(0F, 0 Jy)(X) = nTrg( —g(VJa, JQX))
= —€q(wy o Jy +wgoJg)(X) = —€nba(X)

and hence 6F, = —nf, o J,.)
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Coming back to the general case, let observe also that it results
€a(Viuxda — JaVxJa) = —negta(X)Js — a(JoX) T, . (8)
For # € M and X,Y € T, M the Nijenhuis tensor N of .J, is given by
AN, (X,Y) = [(VixJa)Y — Ja(VxJ)Y]| = [(ViyJa) X — Jo(Vy Ja) X].
Hence

4604 NJQ(X’Y): 9
neads[ha(Y)X + €atha(JaY)Ja X — 1o (X)Y — €atha(JaX)JaY ] . 9)

A local admissible basis (J1, Jo, J3) of Q defined on a neighborhood U in a
of a point & € M?™ is called an adapted basis for the almost (para-)complex
submanifold (M?™,J) if Jol(Mv) = J for some index o € (1,2,3).

Let now assume that (Jy,Jo,J3) is an adapted basis for the submanifold
(M, J), being JojTm = J. Then the Nijenhuis tensor N of J is just given by
the restriction of N, to TM?™,

Hence

11 Proposition. If m > 1, J = Ju7ar is integrable if and only if ¢ =
wa|TM = 0, 1.e. X = (wﬂ o Jlg — Wy O J’y)\TM =0.

Concerning the case of a surface, where the integrability of J always holds,
let consider the following definition.

12 Definition. An almost (para-)complex surface (M2, J) of M is super-
(para-)complex if ¢ = 0.

From now on let denote J = Ju|ras, ¥ = Yo € = €a-

Also, at any point x € M?™ let denote by T, M the maximal Q-invariant
subspace of T, M, T,M = T,M N JgT M.

Let observe that Nj(X,Y) € T,M,VX,Y € T,M; hence (9) implies that
VX,Y € T,M

YYV)X +ep(JY)IX —p(X)Y —ep(JX)JY € T, M (10)

A rather strong consequence of that remark in the non-integrable case is the
following result which holds in full generality.

13 Proposition. Let 1, # 0 at a point x of the almost (para-)complex
submanifold (M?™,.J). Then the following possibilities hold for T, M :

1) TyM =T, M

or

2) TuM =T, M ® D,

where D, is a J-invariant 2-dimensional subspace of T, M.
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Proor. By (10), for any X € T, M we have

V(X)Y +ep(JX)TY = (V)X +ep(JY)JIX
(mod T, M),VY € T, M

(11)
a) If there exists X s.t. ¥, (X)?—ep(JX)? # 0, then from (11) it follows that Y €
T.M+D’,, where D/, = span{X, JX}, VY € T, M.b) If ¢, (X)*—ep(JX)? = 0,
we first notice that it must be € = 1, since ¢, # 0, and P(JX) = £(X),VX €
T..M. Moreover the first of (11) reduces to the identity

YX)Y £JY) = p(Y)(X £ JX) (mod T, M), VX,Y € T,M.  (12)

If 3X € T,M st. (X) # 0 then Y £ JY € T,M,VY ¢ T,M and hence
JY = £Y VY € T,M = T,M =T, M (since J # +1d).

If 3X’' ¢ T, M (and hence also JX' ¢ T, M) s.t. (X') #0 then Y £ JY €
R(X'+JX')+T,MVYY € T, M, hence JX' = +X’' and T,M = RX' +T,M by
dimensionality reasons, and that is contradiction.

G(IX)Y +(X)TY = p(JY)X +(Y)JIX

Let now apply the above result to a submanifold.

14 Proposition. Let (M?™,.J) be an almost (para-)complex submanifold of
_4n J—
ar'". Q). B B
If the codimension of T M in T, M is bigger than 2, i.e. dimT M < 2(m—1),
a) on an open dense set U C M*™
or
b) in a point x, if (M>™,J) is analytic,
then J is integrable.
As a consequence one has also the following corollary.

15 Corollary. If dim(M) = 4k and N(J) # 0 on an open set U dense in
M, then M is a totally geodesic (para-)quaternionic submanifold.

The construction of examples of 2(2k+1)-dimensional almost (para-)complex
submanifolds which are not (para-)complex is an open problem.

From results of [26],[2] it follows that in a neighborhood of any point x of
a (para-)quaternionic Kdhler manifold there exists a compatible (para-)complex
structure J. Equivalently, in a neighborhood of any point x there exists an admis-
sible basis (J1,J2, J3) such that one of the almost (para-)complex structures J,
is integrable (in para-quaternionic case both possibilities occur). A rather exten-
sive study of compatible complex structures on a quaternionic Kahler manifold
was made in [7], dealing also with the existence of global complex structures.
An analogous study could be performed for (para)complex structures of a pa-
ra-quaternionic Kahler manifolds
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8 Minimal almost complex submanifolds

In this section, following the lines of [5], we calculate the mean curvature
vector of an almost (para-)complex hermitian submanifold of a (para-)quater-

nionic Kéahler manifold (MM,@, g).
Let N*¥ be a (non-degenerate) submanifold of MM, g = gy the metric

induced by g and h the second fundamental form of N*. We recall that the
”mean curvature vector” H = %Trgh of N* at a point x is given by

1
H Ezk:gih(EiaEi) (13)

where (E1, ..., E}) is a (pseudo-)orthonormal basis of T, M* and g; = g(E;, E;) €
(-1, 1),i=1,...,k, [22].

Let (M?m, J) be an almost (para-)complex submanifold of the (para-)-
quaternionic Kahler manifold (H4n,§, J) .

Without any loss of validity, we assume that M?™ C U C M*", where U
is an open set where it is given a local adapted (para-)hypercomplex frame
(J1, Jo, J3) such that J = Ja|m-

To handle simultaneously all possible cases of ambient manifold, possibly
pseudo-Riemannian, we assume the following additional hypothesis:

At any point x € M?™ the tangent space of the submanifold admits a
(pseudo- )orthogonal decomposition

T,M =T,M @D, (14)

where T, M = T,M N JgT; M is the maximal Q-invariant subspace of T;,M and
D, is the (possibly zero) J-invariant orthogonal complement to 7', M. Equiva-
lently, T, M is a g-nondegenerate subspace of T,M, Vo € M?*™ .

Note that the space '51 = JgD, does not depend on the adapted basis
(Jl, JQ, Jg) and

TOM =T, M & D, & Dy
is a direct sum decomposition of the minimal @Q-invariant subspace Tf M of
T, M which contains T, M.
Remark that D, is orthogonal to T, M but in general, if dimD, > 2, not
orthogonal to D,. Let recall also that by (13), in case n > 1, if dimD, > 2 for
any x € M then the almost complex structure J = 7‘ M 1s integrable.

We denote by
ta :g_l of, € TM‘M

the (local) vector field along M, dual to the 1-form 6, = wg o J3 + wy o J, with
respect to g.
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16 Proposition. Let (M4n,@, 9) be a (para-)quaternionic Kdihler manifold
and (M?™,J) be a (para-)complex hermitian submanifold. Moreover let assume
that the hypothesis (14) holds at any point x € M. Then, with respect to an
adapted frame (Ji, Ja, J3) such that J = J,,

WX, X) — eah(JX, JX) = —n[esla(JsX) s X + €00 (], X)J, X5 . (15)

where 1. means the projection on TM* | and
- the mean curvature vector H of an almost (para-)complex submanifold

(M?™,J,) of M s given by
H=—""[Prats]"

2m (16)

where, for any X € T, M, Proy(X) is the orthogonal projection of X onto the
subspace D, and X+ means the orthogonal projection of X onto T;-M.
If m =1 the formula can be written as

H = —g (€30a(JpX)JIpX + €400 (J, X)), X (A7)

where X is any unit vector of T M.

PROOF. Let J = Ju 7y with respect to an adapted basis (Ji, J2, J3). For
any vectors X,Y € T'M one has

—(€pwy(X)J5Y — eqwg(X)J,Y) = (VxJa)Y
= (VxJ)Y + h(X,JY) — Joh(X,Y).

Hence
X, JY) = Joh(X,Y) = —[egws (X)J5Y — ews(X)J, Y]*. (18)

By comparing with the identity where X is exchanged with Y, one gets the
identity

h(X,JY) = h(Y,JX) = —eglwy(X)JpY —wy(Y)JpX]*
+eywp(X) 1Y — we(Y)J, X]

that is, by exchanging X with JX,

—eoh(X,Y) + W(JX,JY) = —eglwy(JaX)J5Y + nesws (Y)J, X]*

+ey[wg(JoX) I Y — neﬁwﬂ(y)JﬂX]i ) (19)

Let now (E1, ..., En, JoE1, ..., JoEny) be a (pseudo-)orthonormal basis of T, M
such that (Eq, ..., Eg, JoE1,. .., JoF}) is an orthonormal basis of D and, hence,
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(Egsts- s By JaEgy1, - .., JoFEn) is a (pseudo-)orthonormal basis of TM. By
using the previous identity, we find

—2mH
=Y {(wg o s +wy o y)(JEi)JgEi + (wg 0 Jg +wy o Jy) (L Ei) Ty By
= Y1 {(Wp 0 Jg +wy 0 L) (JE)JpE; + (wp © Jg +wy 0 Jy)(Jy B) Jy B}

= — |:iP'I"Jﬂ'Dta:| .

since (JgFE1,...,JgEy, JgE1, ..., JgEy) is a (pseudo-)orthonormal basis of D=
JzD.

17 Corollary. The almost (para-)complex submanifold M*™ C M* s min-
imal if the 1-form
0= Ha = (Wg o Jﬁ + Wy © J’y)|TM
vanishes on D for some adapted basis (J1, J2, J3).

Since for a (para)Kéhler submanifold (M?™,J,), the 1-forms wg,w~ vanish
on M?™ we have the following corollary (see [4], [5], [27]).
Let recall that

18 Proposition ([5],[2],[27]). The almost (para-)complex submanifold
(M?™ J) of the (para-)quaternionic Kdihler manifold (M4n,@,§) is (para-)-
Kdhler if and only with respect to an adapted frame (Jyi,Ja, J3) where J = J,
one has

W|par = Wyyrar = 0-
PRrROOF. It is immediate from (5).
Then we have also the following corollary of Proposition 16.
19 Corollary ([5,[2],[27]). A (para)Kdihler submanifold (M?™,J) of a (pa-
ra- )quaternionic Kdhler manifold (M, Q,g) is minimal.
Moreover, as another corollary we get the following result, see also [5], [27].

20 Corollary. Let (M?,J) be a 2-dimensional (para-)complex submanifold
of a 4-dimensional (para-)quaternionic Kdhler manifold. Then the following con-
ditions are equivalent:

1) (M?,J) is (para-)Kdihler
2) (M?,J) is minimal and super(para-)complex.

PROOF. (M?,J,) is super(para-)complex if and only if (wg o Jz — wy o
Jy)rm = 0 and by corollary (17) of proposition 16 it is minimal if and only if
(wgoJg+wyoJ,)ram = 0. These two conditions imply Wary = Wyirm = 05
i.e. (M?,J) is Kéhler. The converse statement is clear.
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By the same proof one gets the following corollary.

21 Corollary. Let (M?,J) be a super(para-)complex surface of a (para-)-
quaternionic Kdhler manifold (M4n,§, q). Then it is minimal if and only if it
is a (para-)Kdhler submanifold.

The following proposition, which was proved in [4], [27] respectively for
quaternionic Kahler, (para-)quaternionic Kéhler case, gives a characterization
of (para-)Kéhler submanifolds between almost (para-)complex submanifolds of
a (para-)quaternionic manifold.

22 Proposition. ([5],[27]) Let (M4n,@,§) be a (para-)quaternionic Kihler

manifold with non zero scalar curvature and (M>*™,J) an almost complex sub-
manifold of M which is not a (para-)quaternionic submanifold. Then (M*™,J)
is a (para-)Kdihler submanifold if and only if the shape operators AS wverify the
condition

ATE L TAS =0 VEe TM*

or, equivalently, the second fundamental form h of M satisfies the condition
h(X,JY)—Jh(X,Y)=0 VX,Y € TM. (20)

23 Definition. An almost (para-)complex submanifold (M 2m " J) of a (pa-
ra-)quaternionic Kihler manifold (M4", Q,q) is called pluriminimal or (1,1)-
geodesic if one of the following equivalent conditions holds:

i) the second fundamental form h of M satisfies

—h(X,Y)+h(JX,JY)=0  VX,Y € TM; (21)

ii) the shape operators A¢ anticommute with .J = 7|T M

AST + JAS =0 VEe TM*,

iv) any J-invariant 2-dimensional submanifold N2 of M?™ is minimal in M.

A pluriminimal almost (para-)complex submanifold (M?™,.J) is minimal.

A (para-)Kihler submanifold (M*™,J) of a (para-)quaternionic Kihler ma-
nifold (M 4 Q,9) is pluriminimal, since the identity (20) implies (21), as it was
observed by Y. Ohnita, [23]. We do not know if the converse is also true under
general hypothesis. The following proposition is a partial answer to this question,
by giving a characterization of (para-)complex pluriminimal submanifolds.
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24 Proposition ([5], [27]). A (para-)complex submanifold (M?™,J), m >
1, of the (para-)quaternionic Kdhler manifold (M4n,@,§) with non zero scalar
curvature is pluriminimal if and only if it is a (para-)Kdhler submanifold or a
(para-)quaternionic (hence totally geodesic) submanifold, and these cases cannot
happen simultaneously.
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