Submanifolds of (para-)quaternionic Kähler manifolds

Stefano Marchiafava ${ }^{\mathrm{i}}$
Dipartimento di Matematica, Universitá di Roma "La Sapienza", P.le A. Moro 2, 00185 Roma, Italy
marchiaf@mat.uniroma1.it

Received: 11/2/08; accepted: 31/3/2008.

Abstract

After a concise introduction on (para-)quaternionic geometry, we report on some recent results concerning para-quaternionic Hermitian and Kähler manifolds and their special submanifolds. The second part of the paper is devoted to treat in a unified way some basic matters on (para-)complex submanifolds of (para-)quaternionic manifolds.

Keywords: (para-)quaternionic Kähler manifolds - (para-)complex submanifolds
MSC 2000 classification: primary 53C40, secondary 53C26, 53C15

1 Introduction

This paper is aimed to report on some recent work on special submanifolds of quaternionic and para-quaternionic manifolds.

We start by giving a concise introduction to basic structures, such as complex and para-complex, having to do with (para)-quaternionic geometry and focus in particular on para-quaternionic structures, whose theory was developed more recently.

A first systematic study of submanifolds of a para-quaternionic manifold was made in [27]. In particular, the invariant subspaces of a para-quaternionic (Hermitian) vector space were classified and described in detail.

Passing to submanifolds here we consider in particular almost (para-)complex submanifolds and try to give a unified presentation of known results by dealing simultaneously with all possible interesting cases. A special attention is given to questions of integrability of an almost (para-)complex structure on a submanifold and some problems are pointed out.

Also some basic result on minimality of almost (para-)complex submanifolds of a (para-)quaternionic Kähler manifold are stated, by extending the work previously done for almost complex submanifolds of a quaternionic Kähler manifold.

[^0]
2 (Para-)quaternionic structures on a manifold M

Let M be a differentiable manifold. Let consider the following structures on a real vector space $V \equiv T_{x} M, x \in M$, where one assumes that I, J, K are given endomorphisms:

$$
\begin{array}{cc}
\text { COMPLEX } & \text { PARA-COMPLEX } \\
J^{2}=-I d & J^{2}=I d \\
V \otimes \mathbb{C}=V_{J}^{+} \oplus V_{J}^{-} & V=V_{J}^{+} \oplus V_{J}^{-} \\
V_{J}^{ \pm}=\{\mathbf{u} \in V \otimes \mathbb{C}, J \mathbf{u}= \pm i \mathbf{u}\} & V_{J}^{ \pm}=\{\mathbf{u} \in V, J \mathbf{u}= \pm \mathbf{u}\} \\
& \operatorname{dim} V_{J}^{+}=\operatorname{dim} V_{J}^{-}
\end{array}
$$

Remark: A para-complex structure is a particular product structure, consisting in the symmetry with respect to V_{J}^{+}parallel to V_{J}^{-}.

HYPERCOMPLEX
 PARA-HYPERCOMPLEX

$$
\begin{gathered}
H=(I, J, K) \\
I^{2}=J^{2}=K^{2}=-I d \\
I J=-J I=K \\
(J K=-K J=I \\
K I=-I K=J
\end{gathered}
$$

$$
\widetilde{H}=(I, J, K)
$$

$$
I^{2}=-I d \quad, \quad J^{2}=K^{2}=I d
$$

$$
I J=-J I=K
$$

$$
(J K=-K J=-I,)
$$

$$
K I=-I K=J)
$$

A para-hypercomplex structure $\widetilde{H}=(I, J, K)$ corresponds to a 3-web structure $\left(D_{1}, D_{2}, D_{3}\right)$ on V, [21]:

$$
\mathrm{D}_{2}=\mathrm{V}_{J}^{-}
$$

$$
\mathrm{D}_{3}=\mathrm{V}_{\mathrm{K}}^{+} \quad \mathrm{JKv}_{1}^{\mathrm{K} \mathbf{v}_{1}=\mathrm{KJv}_{1}}
$$

The analytic point of view is summarized as follows in terms of

real Clifford algebras:

$$
\begin{gathered}
\mathbb{C} \equiv C(0,1) \\
z \frac{\text { complex numbers }}{=x+i y, i^{2}=-1} \\
|z|^{2}=x^{2}+y^{2} \\
H \equiv C(0,2) \\
\text { quaternions } \\
q=q_{0}+i q_{1}+j q_{2}+k q_{3} \\
i^{2}=j^{2}=k^{2}=-1 \\
|q|^{2} \equiv q \bar{q}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2} \\
\text { no zero divisors } \\
\mathbb{H} \cong \mathbb{C}^{2} \\
q \equiv z_{1}(q)+j z_{2}(q)
\end{gathered}
$$

$$
\widetilde{\mathbb{C}} \equiv C(1,0)
$$

$$
\frac{\text { para-complex numbers }}{z=x+i y, \quad i^{2}=1}
$$

$$
|z|^{2}=x^{2}-y^{2}
$$

$$
\widetilde{H} \equiv C(2,0)=C(1,1)
$$

para-quaternions

$$
q=q_{0}+i q_{1}+j q_{2}+k q_{3}
$$

$$
i^{2}=-1, \quad j^{2}=k^{2}=1
$$

$$
q=q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2}
$$

existence of zero divisors

$$
\begin{gathered}
\widetilde{\mathbb{H}} \cong \mathbb{C}^{2} \\
q \equiv z_{1}(q)+j z_{2}(q)
\end{gathered}
$$

Examples of hypercomplex structures

- $V=\mathbb{H}^{n} \equiv \mathbb{R}^{4 n} \quad, \quad(i \cdot, j \cdot, k \cdot)$ left multiplications
- $V=\mathbb{C}^{2 n} \equiv \mathbb{C}^{n} \oplus \mathbb{C}^{n} \quad, \quad(I, J, K)$:
$I(\mathbf{u}, \mathbf{v})=(\mathbf{v},-\mathbf{u}), J(\mathbf{u}, \mathbf{v})=(-i \mathbf{u}, i \mathbf{v}), K(\mathbf{u}, \mathbf{v})=(i \mathbf{v}, i \mathbf{u})$
(This example applies to $V=T_{x} M$ where $M=T N$ and on N it is given an almost complex structure $ل \equiv i$. which is left invariant by a linear connection $\nabla:$ then, for $X \in T N$ one has the decomposition $T_{X} T N \equiv T_{X}^{h} T N \oplus T_{X}^{v} T N=$ $T_{\pi(X)} T N \oplus T_{\pi(X)} T N$ into horizontal and vertical part, [23], Theor. 2.2).

Examples of para-hypercomplex structures

$-V=\widetilde{H^{n}} \equiv \mathbb{R}^{4 n} \quad, \quad(i \cdot, j \cdot, k \cdot)$ left multiplications
$-V=\mathbb{R}^{2 n} \equiv \mathbb{R}^{n} \oplus \mathbb{R}^{n} \quad, \quad(I, J, K):$
$I(\mathbf{u}, \mathbf{v})=(\mathbf{v},-\mathbf{u}) \quad, \quad J(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u}) \quad, \quad K(\mathbf{u}, \mathbf{v})=(\mathbf{u},-\mathbf{v})$
(This example applies to $V=T_{x} M$ where $M=T N$)

$$
\begin{aligned}
& -\left(V=U \oplus U, \quad\left\{I^{\prime}: U \rightarrow U \mid\left(I^{\prime}\right)^{2}=I d\right\}\right) \quad, \quad(I, J, K): \\
& I(\mathbf{u}, \mathbf{v})=\left(I^{\prime} \mathbf{v},-I^{\prime} \mathbf{u}\right), J(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u}), K(\mathbf{u}, \mathbf{v})=\left(I^{\prime} \mathbf{u},-I^{\prime} \mathbf{v}\right)
\end{aligned}
$$

(This example applies to $T_{x} M$ where $M=T N$ and on N it is given an almost para-complex structure \square^{\prime} which is left invariant by a linear connection $\nabla,[19]$, analogously as for example of [23] mentioned above).

A (para-)hypercomplex structure on V generates respectively a structure

QUATERNIONIC

generated by $H=(I, J, K)$:

$$
Q \equiv\langle H\rangle=\mathbb{R} I+\mathbb{R} J+\mathbb{R} K
$$

$$
(I, J, K) \text { determined up to }
$$

$$
A \in S O(3)
$$

$$
S(Q)=\left\{L \in Q \mid\|L\|^{2}=1\right\}
$$

PARA-QUATERNIONIC

generated by $\widetilde{H}=(I, J, K)$:
$\widetilde{Q} \equiv\langle\widetilde{H}\rangle=\mathbb{R} I+\mathbb{R} J+\mathbb{R} K$
(I, J, K) determined up to $A \in S O(2,1)$
$S(\widetilde{Q})=S^{+}(\widetilde{Q}) \cup S^{-}(\widetilde{Q})$

$$
S^{+}(\widetilde{\widetilde{Q}})=\left\{L \in \widetilde{Q} \mid L^{2}=\mathrm{Id}\right\},
$$

$$
S^{-}(\widetilde{Q})=\left\{L \in \widetilde{Q} \mid L^{2}=-\operatorname{Id}\right\}
$$

It is well known that a quaternionic structure on V is a tensor product structure (see [26]).

Para-quaternionic structure as a tensor product structure:

$$
V=\mathbf{H} \otimes \mathbf{E} \quad \mathbf{H}=\mathbf{H}^{2}, \mathbf{E}=\mathbf{E}^{n}
$$

with structure group $\quad G=G L(2, \mathbb{R}) \otimes G L(n, \mathbb{R}) \cong S L(2, \mathbb{R}) \otimes G L(n, \mathbb{R})$.
Given a symplectic basis $\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)$ in \mathbf{H}^{2}, that is $\mathbf{H}^{2}=\left\langle\mathbf{h}_{1}, \mathbf{h}_{2}\right\rangle$, let take into account the identifications and isomorphisms of Lie algebras:

$$
\widetilde{H}=\mathbb{R} 1+\operatorname{Im} \widetilde{H} \cong \mathfrak{g l}_{2}(\mathbb{R}), \operatorname{Im} \widetilde{H} \equiv \mathfrak{s u}(1,1) \cong \mathfrak{s o}(2,1) \cong \mathfrak{s l}_{2}(\mathbb{R}) \cong \mathfrak{s p}_{1}(\mathbb{R})
$$

By denoting

$$
\mathcal{J}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad, \quad \mathcal{J}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \mathcal{K}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

one has the identifications

$$
I(\mathbf{h} \otimes \mathbf{e})=\mathcal{J}(\mathbf{h}) \otimes \mathbf{e}, J(\mathbf{h} \otimes \mathbf{e})=\mathcal{J}(\mathbf{h}) \otimes \mathbf{e}, K(\mathbf{h} \otimes \mathbf{e})=\mathcal{K}(\mathbf{h}) \otimes \mathbf{e}
$$

that is

$$
\begin{align*}
& I\left(\mathbf{h}_{1} \otimes \mathbf{e}+\mathbf{h}_{2} \otimes \mathbf{e}^{\prime}\right)=-\mathbf{h}_{1} \otimes \mathbf{e}^{\prime}+\mathbf{h}_{2} \otimes \mathbf{e} \\
& J\left(\mathbf{h}_{1} \otimes \mathbf{e}+\mathbf{h}_{2} \otimes \mathbf{e}^{\prime}\right)=\mathbf{h}_{1} \otimes \mathbf{e}^{\prime}+\mathbf{h}_{2} \otimes \mathbf{e} \tag{1}\\
& K\left(\mathbf{h}_{1} \otimes \mathbf{e}+\mathbf{h}_{2} \otimes \mathbf{e}^{\prime}\right)=-\mathbf{h}_{1} \otimes \mathbf{e}+\mathbf{h}_{2} \otimes \mathbf{e}^{\prime}
\end{align*}
$$

Prototype of quaternionic manifold: the quaternionic projective space $\xrightarrow[H]{ } P^{n}=\left(\Vdash^{n+1}-\{0\}\right) / H^{*}$

Prototype of para-quaternionic manifold: the para-quaternionic projective space $\hat{H} P^{n}=\hat{\mathbb{H}}^{n+1} / \hat{H}$ where $\hat{\mathbb{H}}^{n+1}$ is the space of non-singular vectors in $\widetilde{\mathbb{H}^{n+1}}$ and $\hat{H}=\left\{\left.q \in \widetilde{H} \quad|\quad| q\right|^{2} \neq 0\right\},[8]$.

It has to be noted that from the complex point of view the two notions of quaternionic and para-quaternionic structure coincide and are included in the notion of quaternionic conformal structure, see [10].

In the following two paragraphs we will focus mainly on para-type structures, by assuming that they are less familiar.

3 Hermitian structures

3.1 Hermitian para-(hyper)complex structures

The following definitions and results were stated in [27].
1 Proposition. ([27]). Let g be a (non degenerate) scalar product on V. The following notions are equivalent:

1. A para-hermitian structure (g, K) on V : that is

- K is a para-complex structure
and moreover
- K is a skew-symmetric endomorphism w.r.t. g,
i.e. $g(K X, Y)+g(X, K Y)=0$ equiv., $g(K X, K Y)+g(X, Y)=0$.

2. A totally isotropic decomposition $V=V^{+} \oplus V^{-}$w.r.t. g, i.e. a decomposition of V into two n-dimensional totally isotropic subspaces.
3. A Lagrangian decomposition $V=V^{+} \oplus V^{-}$w.r.t. a symplectic form ω, that is V^{+}, V^{-}are n-dimensional Lagrangian subspaces w.r.t. ω i.e.

$$
\omega\left(V^{ \pm}, V^{ \pm}\right)=0 .
$$

In these last two cases

$$
V^{+}=V_{K}^{+} \quad, \quad V^{-}=V_{K}^{-} .
$$

In the first two cases, $\omega=g(K \cdot, \cdot)$.
The proof of the proposition bases on the
2 Lemma (Basic Lemma). Let g be a pseudo-Euclidean metric on V :
g has signature (n, n) if and only if there exists a decomposition

$$
V=V^{+} \oplus V^{-}
$$

where $V^{ \pm}$are n-dimensional totally isotropic subspaces, i.e. the restriction

$$
g_{\mid V^{ \pm}}=0 .
$$

3 Definition. A para-hypercomplex Hermitian structure on V is a pair $(g, \widetilde{H}=(I, J, K)) \equiv\left(g,\left(J_{1}, J_{2}, J_{3}\right)\right)$ where g is a scalar product and \widetilde{H} is a para-hypercomplex structure such that

- g has signature $(2 n, 2 n)$
$-g\left(J_{\alpha} X, Y\right)+g\left(X, J_{\alpha} Y\right)=0 \quad, \quad \alpha=1,2,3$
i.e. $\left(g, J_{1}\right)$ is a Hermitian complex structure, $\left(g, J_{2}\right),\left(g, J_{3}\right)$ are Hermitian paracomplex structures.

$$
\begin{aligned}
\left\langle\mathbf{h}, \mathbf{h}^{\prime}\right\rangle: & =\operatorname{Re}\left(\mathbf{h} \overline{\mathbf{h}}^{\prime}\right)=\operatorname{Re}\left(h_{1}{\overline{h_{1}}}^{\prime}+\cdots+h_{n}{\overline{h_{n}}}^{\prime}\right) \\
& =\sum_{i=1}^{n}\left(\operatorname{Re}\left(z_{1}\left(h_{i}\right) \overline{z_{1}\left(h_{i}^{\prime}\right)}-z_{2}\left(h_{i}\right) \overline{z_{2}\left(h_{i}^{\prime}\right)}\right)\right.
\end{aligned}
$$

$g \equiv\langle\rangle:$, Hermitian scalar product of real signature $(2 n, 2 n)$ on $\mathbb{C}^{2 n}$ $i \cdot \equiv J_{1}$ isometry $\quad ; \quad j \cdot \equiv J_{2} \quad, \quad k \cdot \equiv J_{3}$ anti-isometries.

3.2 Hermitian (para-)quaternionic structures on $V^{4 n}$

QUATERNIONIC
 HERMITIAN

$(Q, g) \equiv(\langle H\rangle, g)$ where

PARA - QUATERNIONIC HERMITIAN

$(Q, g) \equiv(\langle\widetilde{H}\rangle, g)$ where (H, g) hypercomplex Hermitian (\tilde{H}, g) para-hypercomplex Hermitian

A Hermitian para-quaternionic structure can be interpreted in terms of tensor product:

$$
V=\mathbf{H} \otimes \mathbf{E} \quad, \quad g=\omega^{\mathbf{H}} \otimes \omega^{\mathbf{E}} \quad, \quad \widetilde{Q}=\mathfrak{s p}_{\omega} \mathbf{H}(\mathbf{H})
$$

where $\omega^{\mathbf{H}}, \omega^{\mathbf{E}}$ are symplectic forms on the real vector spaces $\mathbf{H}=\mathbf{H}^{2}, \mathbf{E}=\mathbf{E}^{n}$.
We will refer to such an interpretation as the Grassmann model and if $\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)$ is a basis of \mathbf{H} the para-hypercomplex structure defined by (1) will be referred as the standard (I, J, K).

4 Invariant subspaces in a para-quaternionic (Hermitian) $V^{4 n}$ and their Grassmann models

Let V be a 4 n-dimensional vector space endowed with a para-quaternionic Hermitian structure (\widetilde{Q}, g). Let think of a subspace U of V as the tangent space
$U \equiv T_{x} N$ at a point x of a submanifold N of M.
4 Definition. A subspace $U \subset V$ is called a

- complex subspace if it exists an endomorphism $I^{\prime} \in S^{-}(\widetilde{Q})$ leaving U invariant, $I^{\prime} U \subset U$,
- Hermitian subspace if moreover $g_{\mid} U$ is non degenerate.

Example: $\mathbb{C}^{k} \equiv \mathbb{C}^{k} \oplus\{\mathbf{0}\} \subset \mathbb{C}^{n} \oplus \mathbb{C}^{n} \equiv \widetilde{\mathbb{H}^{n}}$.
Interpretation w.r.t. Grassmann model, [27]:

$$
V=\mathbf{H} \otimes \mathbf{E}, g=\omega^{\mathbf{H}} \otimes \omega^{\mathbf{E}} \text { and }(I, J, K) \text { standard. }
$$

Assume $\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)$ to be a symplectic basis for $\left(\mathbf{H}, \omega^{H}\right)$ and

$$
I\left(\mathbf{h}_{1} \otimes \mathbf{e}+\mathbf{h}_{2} \otimes \mathbf{e}^{\prime}\right)=-\mathbf{h}_{1} \otimes \mathbf{e}^{\prime}+\mathbf{h}_{2} \otimes \mathbf{e}
$$

For any pair (\mathbf{F}, L) where \mathbf{F} is a subspace of \mathbf{E} and L is a complex structure of \mathbf{F}, i.e.

$$
\mathbf{F} \subset \mathbf{E} \quad, \quad L \in \operatorname{End}(\mathbf{F}) \quad, \quad L^{2}=-\operatorname{Id}
$$

let consider the corresponding subspace $U^{\mathbf{F}, L}$ of $V=\mathbf{H} \otimes \mathbf{E}$ given by

$$
U^{F, L}=\left\{X=\mathbf{h}_{1} \otimes \mathbf{f}+\mathbf{h}_{2} \otimes L \mathbf{f}, \mathbf{f} \in F\right\}
$$

the endomorphism $I^{F, L}$ of $U^{F, L}$ given by

$$
I^{F, L}\left(\mathbf{h}_{1} \otimes \mathbf{f}+\mathbf{h}_{2} \otimes L \mathbf{f}\right)=-\mathbf{h}_{1} \otimes L \mathbf{f}+\mathbf{h}_{2} \otimes \mathbf{f}
$$

i.e. $I^{F, L}=I_{\mid U^{F, L}}$, and the Hermitian scalar product g^{L} on (\mathbf{F}, L) given by

$$
\begin{aligned}
g^{L}\left(\mathbf{f}, \mathbf{f}^{\prime}\right): & =g\left(\mathbf{h}_{1} \otimes \mathbf{f}+\mathbf{h}_{2} \otimes L f, \mathbf{h}_{1} \otimes \mathbf{f}^{\prime}+\mathbf{h}_{2} \otimes L f^{\prime}\right) \\
& =\omega^{E}\left(\mathbf{f}, L \mathbf{f}^{\prime}\right)-\omega^{E}\left(L \mathbf{f}, \mathbf{f}^{\prime}\right)
\end{aligned}
$$

The signature $(2 p, 2 q)$ of $g_{\mid U}$ equals the signature of g^{L}.
The maximal dimension of $U^{F, L}$ is $2 n$, when $F=E$.
Proposition [27]: A subspace $U \subset V \equiv \mathbf{H} \otimes \mathbf{E}$ is a complex (respectively, complex Hermitian) subspace if and only $U=U^{\prime} \oplus U^{\prime \prime}$ where U^{\prime} is the maximal \widetilde{Q}-invariant subspace contained in U and $U=U^{\mathbf{F}, L}$ with respect to a basis (resp. symplectic basis) $\left(\mathbf{h}_{1}, \mathbf{h}_{2}\right)$ of \mathbf{H}.

5 Definition. A subspace $U \subset V$ is called a

- para-complex subspace if it exists an endomorphism $K^{\prime} \in S^{+}(\widetilde{Q})$ leaving U invariant, $K^{\prime} U \subset U$,
and moreover it is called a
- para-Hermitian subspace if $g_{\mid U}$ is non degenerate.

Interpretation w.r.t. Grassmann model, [27]:
A para-hermitian subspace $U \subset V$ has the form

$$
U=\left(\mathbf{h}_{1} \otimes \mathbf{E}_{1}\right) \oplus\left(\mathbf{h}_{2} \otimes \mathbf{E}_{2}\right)
$$

where E_{1}, E_{2} are (not necessarily transversal) subspaces of E $\left(\mathbf{h}_{1} \otimes \mathbf{E}_{1}, \mathbf{h}_{2} \otimes \mathbf{E}_{2}\right.$ totally isotropic in $\left.U \Rightarrow \operatorname{dim}\left(\mathbf{E}_{1}\right)=\operatorname{dim}\left(\mathbf{E}_{2}\right)=r\right)$

Also

$$
U=\mathbf{H} \otimes \mathbf{E}_{0} \oplus \mathbf{h}_{1} \otimes \mathbf{E}_{1}^{\prime} \oplus \mathbf{h}_{2} \otimes \mathbf{E}_{2}^{\prime}=U_{0} \oplus U_{1} \oplus U_{2}
$$

where U_{0} is \widetilde{Q}-invariant and U_{1}, U_{2} totally isotropic and, moreover, the non degeneracy conditions is fulfilled.

6 Definition. A subspace $U \subset V$ is called a para-quaternionic subspace if

- $\forall(I, J, K)$ of $\widetilde{Q} \quad \Rightarrow \quad I U \subset U, J U \subset U, K U \subset U$
and
- $g_{\mid U}$ is non degenerate.
(In particular, U is both Hermitian and para-Hermitian).
Grassmann interpretation for a para-quaternionic subspace, [27]:

$$
U=\mathbf{H} \otimes \mathbf{E}^{\prime}
$$

where $\mathbf{E}^{\prime}=\left(\mathbf{E}^{\prime}\right)^{2 k}$ is a 2 k -dimensional subspace of \mathbf{E},

- $\omega_{\mid \mathbf{E}^{\prime}}^{\mathrm{E}}$ is non degenerate and
- $\forall X=\mathbf{h}_{1} \otimes \mathbf{e}+\mathbf{h}_{2} \otimes \mathbf{e}^{\prime}, Y=\mathbf{h}_{1} \otimes \mathbf{f}+\mathbf{h}_{2} \otimes \mathbf{f}^{\prime} \quad \in U$

$$
g(X, Y)=g\left(\mathbf{h}_{1} \otimes \mathbf{e}+\mathbf{h}_{2} \otimes \mathbf{e}^{\prime}, \mathbf{h}_{1} \otimes \mathbf{f}+\mathbf{h}_{2} \otimes \mathbf{f}^{\prime}=\omega^{\mathbf{E}}\left(\mathbf{e}, \mathbf{f}^{\prime}\right)-\omega^{\mathbf{E}}\left(\mathbf{e}^{\prime}, \mathbf{f}\right) .\right.
$$

Also totally (para-)complex and totally real subspaces, with their respective Grassmann interpretation, were considered in [27].

5 (Para-)quaternionic (Hermitian) manifold $\left(M^{4 n}, Q, \nabla\right)$

From now on the quaternionic and para-quaternionic case will be treated simultaneously and notation is unified by setting $\eta=-1$ or $\eta=1$ and $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=$
$(-1,-1,-1)$ or $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=(-1,1,1)$ respectively for hypercomplex or parahypercomplex structure (J_{1}, J_{2}, J_{3}): then the multiplication table looks

$$
J_{\alpha}^{2}=\epsilon_{\alpha} \operatorname{Id} \quad, \quad J_{\alpha} J_{\beta}=-J_{\beta} J_{\alpha}=\eta \epsilon_{\gamma} J_{\gamma} \quad(\alpha=1,2,3)
$$

where (α, β, γ) is any circular permutation of $(1,2,3)$.
7 Definition. An almost (para-)quaternionic structure on a differentiable manifold $M^{4 n}$ is a rank 3 subbundle $Q \subset \operatorname{End}(T M)$, which is locally spanned by a field $H=\left(J_{1}, J_{2}, J_{3}\right)$ of (para-)hypercomplex structures. Such a locally defined triple $H=\left(J_{\alpha}\right), \alpha=1,2,3$, will be called a (local) admissible basis of Q.

An almost (para-)quaternionic connection is a linear connection ∇ which preserves Q; equivalently, for any local admissible basis $H=\left(J_{\alpha}\right)$ of Q one has

$$
\begin{equation*}
\nabla J_{\alpha}=-\epsilon_{\beta} \omega_{\gamma} \otimes J_{\beta}+\epsilon_{\gamma} \omega_{\beta} \otimes J_{\gamma} \tag{2}
\end{equation*}
$$

where (P.C.) means that (α, β, γ) is any circular permutation of $(1,2,3)$.
An almost (para-)quaternionic structure Q is called a (para-)quaternionic structure if M admits a (para-)quaternionic connection, i.e. a torsionfree almost (para-)quaternionic connection. An (almost) (para-)quaternionic manifold $\left(M^{4 n}, Q\right)$ is a manifold $M^{4 n}$ endowed with an (almost) (para-)quaternionic structure Q.

An almost (para-)quaternionic Hermitian manifold (M, Q, g) is an almost (para-)quaternionic manifold (M, Q) endowed with a (pseudo-)Riemannian metric g which is Q-Hermitian, i.e. any endomorphism of Q is g-skew-symmetric. $(M, Q, g), n>1$, is called a (para-)quaternionic Kähler manifold if the Levi-Civita connection of g preserves Q, i.e. ∇^{g} is a (para-)quaternionic connection.

6 (Para-)quaternionic Kähler manifold ($M^{4 n}, Q, g$)

Let ($\left.M^{4 n}, Q, g\right), n>1$, be a (para-)quaternionic Kähler manifold and recall some basic results, see for ex. [3],[2].
$\left(M^{4 n}, g\right)$ is an Einstein manifold.
The curvature tensor of g decomposes as:

$$
\begin{equation*}
R=\nu R_{0}+W \tag{3}
\end{equation*}
$$

where

$$
R_{0}(X, Y)=\frac{1}{4}\left(X \wedge Y-\sum_{\alpha=1}^{3} \epsilon_{\alpha} J_{\alpha} X \wedge J_{\alpha} Y+\sum_{\alpha=1}^{3} 2 \epsilon_{\alpha} g\left(J_{\alpha} X, Y\right) J_{\alpha}\right)
$$

and $\nu=K / 4 n(n+2)$ is the reduced scalar curvature, W is the (para-)quaternionic Weyl tensor, for which

$$
[W(X, Y), Q]=0
$$

and all contractions are equal to zero.
The following basic identities hold for the curvature tensor R :

$$
\left[R(X, Y), J_{\alpha}\right]=-\eta \epsilon_{\alpha} \nu\left(F_{\gamma}(X, Y) J_{\beta}-F_{\beta}(X, Y) J_{\gamma}\right)
$$

One defines a (para-)quaternionic Kähler manifold of dimension 4 as a (pseudo-)Riemannian manifold ($M^{4 n}, g$) endowed with a parallel skew-symmetric (para-)quaternionic structure Q and whose curvature tensor admits a decomposition (3).

From identities (2) for the Levi-Civita connection $\nabla=\nabla^{g}$, the following integrability conditions hold:

$$
\begin{equation*}
-\nu \eta F_{\alpha}=\epsilon_{\alpha}\left(d \omega_{\alpha}-\epsilon_{\alpha} \omega_{\beta} \wedge \omega_{\gamma}\right) \tag{4}
\end{equation*}
$$

where $F_{\alpha}=g \circ J_{\alpha} \equiv g\left(J_{\alpha} \cdot, \cdot\right)$ is the Kähler form of $J_{\alpha}, \alpha=1,2,3$.

Symmetric quaternionic Kähler manifolds, [1]:

A Wolf space is a compact, simply connected quaternionic Kähler symmetric space. It has the form $W=G / K, G$ compact centerless Lie group and $K=$ $K_{1} \cdot \operatorname{Sp}(1)$ (local direct product). Main examples:

$$
\begin{gathered}
\mathbb{H} P^{n}=\frac{S p(n+1)}{S p(1) \cdot S p(n)} \quad, \quad G_{2}\left(\mathbb{C}^{n+2}\right)=\frac{S U(n+2)}{S(U(2) \times U(n))} \\
G_{4}^{+}\left(\mathbb{R}^{n+4}\right)=\frac{S O(n+4)}{S(O(4) \times O(n))}
\end{gathered}
$$

+5 exceptional spaces: $G_{2} / S O(4), F_{4} / S p(1) \cdot S p(3)$, etc. and their noncompact duals.

Symmetric para-quaternionic Kähler manifolds, [13],[1]:

$$
\begin{gathered}
T^{*} Q_{n} \equiv T^{*} G_{2}\left(\mathbb{R}^{n+2}\right)=\frac{S L(n+2, \mathbb{R})}{S(G L(2, \mathbb{R}) \times G L(n, \mathbb{R}))}, \\
G_{2}^{1,1}\left(\mathbb{C}^{p+1, q+1}\right)=\frac{S U_{p+1, q+1}}{S\left(U_{1,1} \times U_{p, q}\right)}, G_{4}^{2,2}\left(\mathbb{R}^{2+p, 2+q}\right)=\frac{S O_{2+p, 2+q}}{S O_{2,2} \times S O_{p, q}}, \\
T^{*} G_{2}\left(\mathbb{C}^{n+2}\right)=\frac{S O^{*}(2 n+4)}{S O^{*}(4) \times S O^{*}(2 n)}=\frac{S L(2(n+2), \mathbb{R})}{S(G L(2 n, \mathbb{C}) \times G L(4, \mathbb{C}))}, \\
T^{*} \mathbb{C} P^{n}=\hat{H} P^{n}=\frac{S p_{n+1}(\mathbb{R})}{S p_{1}(\mathbb{R}) \cdot S p_{n}(\mathbb{R})}
\end{gathered}
$$

+ some exceptional spaces.
Note: As the notation T^{*} indicates, several of these manifolds happen to be cotangent bundles of Kähler manifolds. One wonder if this is true for all symmetric para-quaternionic Kähler manifolds. Such a result would be the analogous of that one of [12], paragraph 5.2. pag. 100, i.e. every para-Hermitian symmetric space with semisimple group is diffeomorphic to the cotangent bundle of a Riemannian symmetric space of a particular type.

7 Submanifolds of primary interest in $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$

7.1 Almost (para-)quaternionic submanifold $\left(M^{4 m}, Q\right)$

An almost (para-)quaternionic submanifold $\left(M^{4 m}, Q\right), m \leq n$, of a (para-)quaternionic manifold $\left(\bar{M}^{4 n}, \bar{Q}\right)$ is a submanifold whose tangent bundle is \bar{Q}-invariant, $\bar{Q} T M=T M$. It is a classical result of A. Gray that a quaternionic submanifold of a quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ is totally geodesic and hence, endowed with the induced quaternionic Kähler structure $Q=\bar{Q}_{\mid T M}$ and riemannian metric $g=\bar{g}_{\mid T M}$, is itself a quaternionic Kähler manifold ($M^{4 m}, Q, g$). The analogous result for a para-quaternionic submanifold of a para-quaternionic Kähler manifold was proved in [27]. In fact, by arguing as in [6], [24], a more general result can be proved.

8 Proposition. An almost (para-)quaternionic submanifold ($M^{4 m}, Q$) of a (para-)quaternionic manifold $\left(\bar{M}^{4 n}, \bar{Q}\right)$ is totally geodesic and (para-)quaternionic.

Proof. For quaternionic case the proof was given in [6], [24]. For paraquaternionic case we observe that the proof in [6] is directly adaptable. QED $^{\text {QED }}$

Examples of (para-)quaternionic submanifolds: Let ($\bar{N}, \bar{J}, \nabla^{\prime}$) be an almost (para-)complex manifold endowed with a linear connection ∇^{\prime} leaving the almost (para-)complex structure \bar{J} invariant. Let ($\bar{M}=T \bar{N}, \bar{Q}, \bar{\nabla}$) be the almost (para-)quaternionic manifold whose (para-)quaternionic structure $\bar{Q}=Q_{\bar{\jmath}}$ is generated by the (para-)hypercomplex structure constructed as indicated in the example of (para-)hypercomplex structure referring to [23],[19] and $\bar{\nabla}$ is the extension of ∇^{\prime} to $T T \bar{N}$. Let (N, \mathbb{J}) be an almost (para-)complex submanifold of $(\bar{N}, \overline{\mathbb{J}})$, i.e. N is a submanifold of \bar{N} which is $\overline{\mathbb{J}}$-invariant, $\overline{\mathbb{J}}(T N) \subset T N$, and $J=\bar{J}_{\mid T N}$. If N is totally geodesic with respect to ∇^{\prime} then $\left(T N, Q_{J}\right)$ is a almost (para-quaternionic) submanifold of ($\bar{N}, Q_{\bar{J}}, \nabla^{\prime}$).

Para-quaternionic submanifolds of symmetric para-quaternionic ma-
nifolds:

$$
\begin{gathered}
\hat{H} P^{k} \subset \hat{H} P^{n} \quad(k \leq n) \\
G_{2}^{1,1}\left(\mathbb{C}^{h+1, k+1}\right) \subset G_{2}^{1,1}\left(\mathbb{C}^{p+1, q+1}\right), G_{4}^{2,2}\left(\mathbb{R}^{h+2, k+2}\right) \subset G_{4}^{2,2}\left(\mathbb{R}^{p+2, q+2}\right)
\end{gathered}
$$

$(h \leq p, k \leq q)$ and

$$
\begin{aligned}
G_{2}^{1,1}\left(\mathbb{C}^{h+1, k+1}\right) \subset G_{4}^{2,2}\left(\mathbb{R}^{2 p+1,2 q+1}\right) & , \quad(h \leq p, k \leq q) \\
T^{*} G_{2}\left(\mathbb{C}^{h+2}\right) \subset T^{*} G_{2}\left(\mathbb{C}^{n+2}\right) & (h \leq n)
\end{aligned}
$$

are very natural totally geodesic para-quaternionic immersions.

7.2 (Almost) (para-)complex submanifolds $\left(M^{2 m}, \bar{J}\right)$

An (almost) (para-)complex submanifold $\left(M^{2 m}, \bar{J}\right)$ is a submanifold $M^{2 m} \subset$ $\bar{M}^{4 n}$ whose tangent bundle is \bar{J}-invariant for some section

$$
\bar{J} \in \Gamma\left(Q_{\mid M}\right) \quad, \quad \bar{J}^{2}= \pm \mathrm{Id}
$$

In a para-quaternionic manifold one has to consider simultaneously both types of such submanifolds.

Let consider some examples of (para-)complex submanifolds of a para-quaternionic manifold.

The following simple remark is useful.
Remark. Let be (\bar{M}, \bar{Q}) a para-quaternionic manifold, $\left(M, Q=\bar{Q}_{\mid T M}\right)$ an almost para-quaternionic submanifold, \bar{J} a section of $S^{\epsilon}(\bar{Q}), \epsilon= \pm 1$, along M. Then $\left(M, \mathbb{J}=\bar{J}_{\mid T M}\right)$ is an almost complex or para-complex submanifold depending on if $\epsilon=-1$ or $\epsilon=1$. In particular, if (I, J, K) is a local almost para-hypercomplex base for \bar{Q}, then (M, I) and $(M, J),(M, K)$ are respectively almost complex and para-complex, para-complex submanifolds.

7.3 (Para-)Kähler submanifolds of a (para-)quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$

Let $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ be an almost (para-)quaternionic Hermitian manifold.
9 Definition. An almost (para-)complex Hermitian submanifold $\left(M^{2 m}, \bar{J}, g\right), m \geq 1$, is a 2 m -dimensional g-nondegenerate (para-)complex submanifold $\left(M^{2 m}, \bar{J}\right)$ where $g=\bar{g}_{\mid M^{2 m}}$ is the induced (pseudo-)Riemannian metric.

10 Definition. A (para-)Kähler submanifold ($M^{2 m}, \bar{J}, g$), $m \geq 1$ of the (para-)quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ is an almost (para-)complex Hermitian submanifold such that the section \bar{J} is parallel along $M^{2 m}$ with respect to the Levi-Civita connection of \bar{g}.

Examples in para-quaternionic Kähler symmetric spaces.

- Submanifolds of $\hat{H} P^{n}=\frac{S p_{n+1}(\mathbb{R})}{S p_{1}(\mathbb{R}) \times S p_{n}(\mathbb{R})}$:

Kähler - $\quad \mathbb{C} P^{h}=\frac{S U_{h+1}}{S\left(U_{1} \times U_{h}\right)}$
para-Kähler - $\quad \hat{\mathbb{C}} P^{h}=\frac{S L_{h+1}(\mathbb{R})}{S L_{1}(\mathbb{R}) \times S L_{h}(\mathbb{R})} \quad, \quad(h \leq n)$

- Submanifolds of $G_{2}^{1,1}\left(\mathbb{C}^{p+1, q+1}\right)=\frac{S U_{p+1, q+1}}{S\left(U_{p, q} \times U_{1,1}\right)}$:

Kähler - $\quad \mathbb{C} P^{h} \times \mathbb{C} P^{k}=\frac{S U_{h+1}}{S\left(U_{1} \times U_{h}\right)} \times \frac{S U_{k+1}}{S\left(U_{1} \times U_{k}\right)}$
para-Kähler - $\quad G_{2}^{1,1}\left(\mathbb{R}^{h+1, k+1}\right)=\frac{S O_{h+1, k+1}}{S\left(O_{1,1} \times O_{h, k}\right)} \quad, \quad(h \leq p, k \leq q)$

- Submanifolds of $G_{4}^{2,2}\left(\mathbb{R}^{p+2, q+2}\right)=\frac{S O_{p+2, q+2}}{S\left(O_{2,2} \times O_{p, q}\right)}$:

$$
\begin{aligned}
& \text { Kähler - } \quad G_{2}\left(\mathbb{C}^{p-h+1}\right) \times G_{2}\left(\mathbb{C}^{q-k+1}\right) \quad, \quad Q_{h}^{h+1,0} \times Q_{k}^{k+1,0} \\
& \text { para- Kähler - } \quad G_{2}^{1,1}\left(\mathbb{C}^{h+1, k+1}\right) \quad, \quad Q_{h, 1} \times Q_{k, 1}
\end{aligned}
$$

- Submanifolds of $M^{8 n}=T^{*} G_{2}\left(\mathbb{C}^{n+2}\right)$:

$$
\begin{array}{lll}
\text { Kähler - } & \mathbb{C} P^{h}, \quad G_{2}\left(\mathbb{R}^{h+2}\right) \\
\text { para-Kähler - } & T^{*} \mathbb{C} P^{h} \times T^{*} \hat{\mathbb{C}} P^{k} \quad, \quad T^{*} G_{2}\left(\mathbb{R}^{k+2}\right)=T^{*} Q_{k}
\end{array}
$$

7.4 Almost (para-)complex submanifolds of a (para-)quaternionic (Hermitian) manifold. Integrability of a compatible almost (para-)complex structure.

A compatible almost (para-)complex structure \bar{J} on a (para-)quaternionic manifold (\bar{M}, \bar{Q}) is a section of $S^{ \pm}(\bar{Q})$ on \bar{M}. Integrability of a compatible almost (para-)complex structure \bar{J} or, more generally, of an almost (para)complex structure $J=\bar{J}_{\mid T M}$ induced by a compatible almost complex structure \bar{J} on a submanifold M is a natural problem to consider. Several results were obtained in [4],[5] for a quaternionic (Kähler) manifold and some of them were
extended to the para-quaternionic case by [27]. A summary of results is the following.

Let $\left(\bar{M}^{4 n}, \bar{Q}, \bar{\nabla}\right)$ be a (para-) quaternionic manifold (if $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ is (para)quaternionic Kähler we assume that $\bar{\nabla}=\nabla^{\bar{g}}$) and consider an almost (para-)complex submanifold $\left(M^{2 m}, \bar{J}\right)$, where it is induced the almost (para-)complex structure $J=\bar{J}_{\mid T M}$.
Remark: The case where $M^{2 m} \equiv \bar{M}^{4 n}$ is included.
We are interested to state conditions under which $J=\bar{J}_{\mid T M}$ is integrable.
Let $\left(J_{1}, J_{2}, J_{3}\right)$ be an admissible basis for \bar{Q}, i.e.

$$
J_{\alpha}^{2}=\epsilon_{\alpha} \mathrm{Id} \quad, \quad J_{\alpha} J_{\beta}=-J_{\beta} J_{\alpha}=\eta \epsilon_{\gamma} J_{\gamma} \quad, \quad \text { (P.C.) }
$$

where (α, β, γ) is a circular permutation of $(1,2,3)$, (note that $\left.\epsilon_{\alpha} \epsilon_{\beta} \epsilon_{\gamma}=-1\right)$, and consider the identities

$$
\begin{equation*}
\bar{\nabla} J_{\alpha}=-\left(\epsilon_{\beta} \omega_{\gamma} \otimes J_{\beta}-\epsilon_{\gamma} \omega_{\beta} \otimes J_{\gamma}\right) \tag{5}
\end{equation*}
$$

It results

$$
\eta J_{\alpha} \bar{\nabla} J_{\alpha}=\epsilon_{\alpha}\left(\omega_{\beta} \otimes J_{\beta}+\omega_{\gamma} \otimes J_{\gamma}\right) \quad(\alpha=1,2,3)
$$

and

$$
\eta \operatorname{Tr}\left(\epsilon_{\alpha} J_{\alpha} \bar{\nabla} J_{\alpha}\right)=\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}
$$

The following local 1-forms play an important role:

$$
\begin{gather*}
\theta_{\alpha}:=\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma} \quad, \quad \chi_{\alpha}:=\omega_{\beta} \circ J_{\beta}-\omega_{\gamma} \circ J_{\gamma}=\theta_{\gamma}-\theta_{\beta}, \\
\psi_{\alpha}:=\chi_{\alpha} \circ J_{\beta}=\epsilon_{\beta} \omega_{\beta}+\eta \epsilon_{\alpha} \omega_{\gamma} \circ J_{\alpha} \quad(\alpha=1,2,3) \tag{6}
\end{gather*}
$$

Remark: If the manifold is quaternionic Kähler then θ_{α} is the Lie form of the almost complex structure $J_{\alpha},[7]$, being, in general,

$$
\begin{equation*}
\theta_{\alpha}=-\eta \epsilon_{\alpha}\left(\delta F_{\alpha}\right) \circ J_{\alpha} \tag{7}
\end{equation*}
$$

(In fact, for a vector field X and a (pseudo-)orthonormal frame $E_{i}, i=$ $1, \ldots, 4 n$ one has

$$
\begin{aligned}
\eta\left(\delta F_{\alpha} \circ J_{\alpha}\right)(X) & =\eta \operatorname{Tr}_{g}\left(-g\left(\bar{\nabla} J_{\alpha}, J_{\alpha} X\right)\right) \\
& =-\epsilon_{\alpha}\left(\omega_{\gamma} \circ J_{\gamma}+\omega_{\beta} \circ J_{\beta}\right)(X)=-\epsilon_{\alpha} \theta_{\alpha}(X)
\end{aligned}
$$

and hence $\delta F_{\alpha}=-\eta \theta_{\alpha} \circ J_{\alpha}$.)

Coming back to the general case, let observe also that it results

$$
\begin{equation*}
\epsilon_{\alpha}\left(\bar{\nabla}_{J_{\alpha} X} J_{\alpha}-J_{\alpha} \bar{\nabla}_{X} J_{\alpha}\right)=-\eta \epsilon_{\beta} \psi_{\alpha}(X) J_{\beta}-\psi_{\alpha}\left(J_{\alpha} X\right) J_{\gamma} \tag{8}
\end{equation*}
$$

For $x \in M$ and $X, Y \in T_{x} M$ the Nijenhuis tensor $\bar{N}_{J_{\alpha}}$ of J_{α} is given by

$$
4 \bar{N}_{J_{\alpha}}(X, Y)=\left[\left(\bar{\nabla}_{J_{\alpha} X} J_{\alpha}\right) Y-J_{\alpha}\left(\bar{\nabla}_{X} J_{\alpha}\right) Y\right]-\left[\left(\bar{\nabla}_{J_{\alpha} Y} J_{\alpha}\right) X-J_{\alpha}\left(\bar{\nabla}_{Y} J_{\alpha}\right) X\right]
$$

Hence

$$
\begin{align*}
4 \epsilon_{\alpha} & \bar{N}_{J_{\alpha}}(X, Y)= \\
& \eta \epsilon_{\beta} J_{\beta}\left[\psi_{\alpha}(Y) X+\epsilon_{\alpha} \psi_{\alpha}\left(J_{\alpha} Y\right) J_{\alpha} X-\psi_{\alpha}(X) Y-\epsilon_{\alpha} \psi_{\alpha}\left(J_{\alpha} X\right) J_{\alpha} Y\right] \tag{9}
\end{align*}
$$

A local admissible basis $\left(J_{1}, J_{2}, J_{3}\right)$ of \bar{Q} defined on a neighborhood U in $\bar{M}^{4 n}$ of a point $x \in M^{2 m}$ is called an adapted basis for the almost (para-)complex submanifold $\left(M^{2 m}, \bar{J}\right)$ if $J_{\alpha \mid(M \cap U)}=\bar{J}$ for some index $\alpha \in(1,2,3)$.

Let now assume that $\left(J_{1}, J_{2}, J_{3}\right)$ is an adapted basis for the submanifold (M, \bar{J}), being $J_{\alpha \mid T M}=\bar{J}$. Then the Nijenhuis tensor N_{J} of J is just given by the restriction of $\bar{N}_{J_{\alpha}}$ to $T M^{2 m}$.

Hence
11 Proposition. If $m>1, J \equiv J_{\alpha \mid T M}$ is integrable if and only if $\psi \equiv$ $\psi_{\alpha \mid T M}=0$, i.e. $\chi \equiv\left(\omega_{\beta} \circ J_{\beta}-\omega_{\gamma} \circ J_{\gamma}\right)_{\mid T M}=0$.

Concerning the case of a surface, where the integrability of J always holds, let consider the following definition.

12 Definition. An almost (para-)complex surface $\left(M^{2}, \bar{J}\right)$ of $\bar{M}^{4 m}$ is super-(para-)complex if $\psi=0$.

From now on let denote $J=J_{\alpha \mid T M}, \psi=\psi_{\alpha \mid T M}, \epsilon=\epsilon_{\alpha}$.
Also, at any point $x \in M^{2 m}$ let denote by $\bar{T}_{x} M$ the maximal Q-invariant subspace of $T_{x} M, \bar{T}_{x} M=T_{x} M \cap J_{\beta} T_{x} M$.

Let observe that $N_{J}(X, Y) \in T_{x} M, \forall X, Y \in T_{x} M$; hence (9) implies that $\forall X, Y \in T_{x} M$

$$
\begin{equation*}
\psi(Y) X+\epsilon \psi(J Y) J X-\psi(X) Y-\epsilon \psi(J X) J Y \in \bar{T}_{x} M \tag{10}
\end{equation*}
$$

A rather strong consequence of that remark in the non-integrable case is the following result which holds in full generality.

13 Proposition. Let $\psi_{x} \neq 0$ at a point x of the almost (para-)complex submanifold $\left(M^{2 m}, \bar{J}\right)$. Then the following possibilities hold for $T_{x} M$:

1) $T_{x} M=\bar{T}_{x} M$
or
2) $T_{x} M=\bar{T}_{x} M \oplus \mathcal{D}_{x}$
where \mathcal{D}_{x} is a J_{x}-invariant 2-dimensional subspace of $T_{x} M$.

Proof. By (10), for any $X \in T_{x} M$ we have

$$
\left\{\begin{array}{l}
\psi(X) Y+\epsilon \psi(J X) J Y \equiv \psi(Y) X+\epsilon \psi(J Y) J X \tag{11}\\
\psi(J X) Y+\psi(X) J Y \equiv \psi(J Y) X+\psi(Y) J X
\end{array} \quad\left(\bmod \bar{T}_{x} M\right), \forall Y \in T_{x} M\right.
$$

a) If there exists X s.t. $\psi_{x}(X)^{2}-\epsilon \psi(J X)^{2} \neq 0$, then from (11) it follows that $Y \in$ $\bar{T}_{x} M+\mathcal{D}_{x}^{\prime}$, where $\mathcal{D}_{x}^{\prime}=\operatorname{span}\{X, J X\}, \forall Y \in T_{x} M$. b) If $\psi_{x}(X)^{2}-\epsilon \psi(J X)^{2} \equiv 0$, we first notice that it must be $\epsilon=1$, since $\psi_{x} \neq 0$, and $\psi(J X)= \pm \psi(X), \forall X \in$ $T_{x} M$. Moreover the first of (11) reduces to the identity

$$
\begin{equation*}
\psi(X)(Y \pm J Y) \equiv \psi(Y)(X \pm J X)\left(\bmod \bar{T}_{x} M\right), \forall X, Y \in T_{x} M \tag{12}
\end{equation*}
$$

If $\exists \bar{X} \in \bar{T}_{x} M$ s.t. $\psi(\bar{X}) \neq 0$ then $Y \pm J Y \in \bar{T}_{x} M, \forall Y \notin T_{x} M$ and hence $J Y= \pm Y \forall Y \in \bar{T}_{x} M \Longrightarrow T_{x} M=\bar{T}_{x} M$ (since $J \neq \pm \mathrm{Id}$).

If $\exists X^{\prime} \notin \bar{T}_{x} M$ (and hence also $\left.J X^{\prime} \notin \bar{T}_{x} M\right)$ s.t. $\psi\left(X^{\prime}\right) \neq 0$ then $Y \pm J Y \in$ $\mathbb{R}\left(X^{\prime} \pm J X^{\prime}\right)+\bar{T}_{x} M \forall Y \in T_{x} M$, hence $J X^{\prime}=\overline{+} X^{\prime}$ and $T_{x} M=\mathbb{R} X^{\prime}+\bar{T}_{x} M$ by dimensionality reasons, and that is contradiction.

QED
Let now apply the above result to a submanifold.
14 Proposition. Let $\left(M^{2 m}, \bar{J}\right)$ be an almost (para-) complex submanifold of $\left(\bar{M}^{4 n}, \bar{Q}\right)$.

If the codimension of $\bar{T}_{x} M$ in $T_{x} M$ is bigger than 2, i.e. $\operatorname{dim} \bar{T}_{x} M<2(m-1)$,
a) on an open dense set $U \subset M^{2 m}$ or
b) in a point x, if $\left(M^{2 m}, J\right)$ is analytic,
then J is integrable.
As a consequence one has also the following corollary.
15 Corollary. If $\operatorname{dim}(M)=4 k$ and $N(J) \neq 0$ on an open set U dense in M, then M is a totally geodesic (para-)quaternionic submanifold.

The construction of examples of $2(2 k+1)$-dimensional almost (para-)complex submanifolds which are not (para-)complex is an open problem.

From results of [26],[2] it follows that in a neighborhood of any point x of a (para-)quaternionic Kähler manifold there exists a compatible (para-)complex structure \bar{J}. Equivalently, in a neighborhood of any point x there exists an admissible basis $\left(J_{1}, J_{2}, J_{3}\right)$ such that one of the almost (para-)complex structures J_{α} is integrable (in para-quaternionic case both possibilities occur). A rather extensive study of compatible complex structures on a quaternionic Kähler manifold was made in [7], dealing also with the existence of global complex structures. An analogous study could be performed for (para)complex structures of a pa-ra-quaternionic Kähler manifolds

8 Minimal almost complex submanifolds

In this section, following the lines of [5], we calculate the mean curvature vector of an almost (para-)complex hermitian submanifold of a (para-)quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$.

Let N^{k} be a (non-degenerate) submanifold of $\bar{M}^{4 n}, g=\bar{g}_{\mid N}$ the metric induced by \bar{g} and h the second fundamental form of N^{k}. We recall that the "mean curvature vector" $H=\frac{1}{k} \operatorname{Tr}_{g} h$ of N^{k} at a point x is given by

$$
\begin{equation*}
H=\frac{1}{k} \sum_{k} g_{i} h\left(E_{i}, E_{i}\right) \tag{13}
\end{equation*}
$$

where $\left(E_{1}, \ldots, E_{k}\right)$ is a (pseudo-) orthonormal basis of $T_{x} M^{k}$ and $g_{i}=g\left(E_{i}, E_{i}\right) \in$ $(-1,1), i=1, \ldots, k,[22]$.

Let $\left(M^{2 m}, \bar{J}\right)$ be an almost (para-)complex submanifold of the (para-)quaternionic Kähler manifold ($\left.\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$.

Without any loss of validity, we assume that $M^{2 m} \subset U \subset M^{4 n}$, where U is an open set where it is given a local adapted (para-)hypercomplex frame $\left(J_{1}, J_{2}, J_{3}\right)$ such that $\bar{J}=J_{\alpha \mid M}$.

To handle simultaneously all possible cases of ambient manifold, possibly pseudo-Riemannian, we assume the following additional hypothesis:

At any point $x \in M^{2 m}$ the tangent space of the submanifold admits a (pseudo-)orthogonal decomposition

$$
\begin{equation*}
T_{x} M=\bar{T}_{x} M \oplus \mathcal{D}_{x} \tag{14}
\end{equation*}
$$

where $\bar{T}_{x} M=T_{x} M \cap J_{\beta} T_{x} M$ is the maximal Q-invariant subspace of $T_{x} M$ and \mathcal{D}_{x} is the (possibly zero) \bar{J}-invariant orthogonal complement to $\bar{T}_{x} M$. Equivalently, $\bar{T}_{x} M$ is a \bar{g}-nondegenerate subspace of $T_{x} M, \forall x \in M^{2 m}$.

Note that the space $\mathcal{D}_{x}=J_{\beta} \mathcal{D}_{x}$ does not depend on the adapted basis $\left(J_{1}, J_{2}, J_{3}\right)$ and

$$
T_{x}^{Q} M=\bar{T}_{x} M \oplus \mathcal{D}_{x} \oplus \widetilde{\mathcal{D}}_{x}
$$

is a direct sum decomposition of the minimal Q-invariant subspace $T_{x}^{Q} M$ of $T_{x} \bar{M}$ which contains $T_{x} M$.

Remark that $\widetilde{\mathcal{D}}_{x}$ is orthogonal to $\bar{T}_{x} M$ but in general, if $\operatorname{dim} \mathcal{D}_{x}>2$, not orthogonal to \mathcal{D}_{x}. Let recall also that by (13), in case $n>1$, if $\operatorname{dim} \mathcal{D}_{x}>2$ for any $x \in M$ then the almost complex structure $J=\bar{J}_{\mid M}$ is integrable.

We denote by

$$
\mathbf{t}_{\alpha}=\left.\bar{g}^{-1} \circ \theta_{\alpha} \in T \bar{M}\right|_{M}
$$

the (local) vector field along M, dual to the 1-form $\theta_{\alpha}=\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}$ with respect to \bar{g}.

16 Proposition. Let $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ be a (para-)quaternionic Kähler manifold and $\left(M^{2 m}, \bar{J}\right)$ be a (para-)complex hermitian submanifold. Moreover let assume that the hypothesis (14) holds at any point $x \in M$. Then, with respect to an adapted frame $\left(J_{1}, J_{2}, J_{3}\right)$ such that $\bar{J}=J_{\alpha}$,

$$
\begin{equation*}
h(X, X)-\epsilon_{\alpha} h(J X, J X)=-\eta\left[\epsilon_{\beta} \theta_{\alpha}\left(J_{\beta} X\right) J_{\beta} X+\epsilon_{\gamma} \theta_{\alpha}\left(J_{\gamma} X\right) J_{\gamma} X\right]^{\perp} \tag{15}
\end{equation*}
$$

where \perp means the projection on $T M^{\perp}$, and

- the mean curvature vector H of an almost (para-)complex submanifold $\left(M^{2 m}, J_{\alpha}\right)$ of $\bar{M}^{4 n}$ is given by

$$
\begin{equation*}
H=-\frac{\eta}{2 m}\left[\operatorname{Pr}_{\widetilde{\mathcal{D}}} \mathbf{t}_{\alpha}\right]^{\perp} \tag{16}
\end{equation*}
$$

where, for any $X \in T_{x} \tilde{M}, \operatorname{Pr}_{\mathcal{D}^{\prime}}(X)$ is the orthogonal projection of X onto the subspace $\widetilde{\mathcal{D}}_{x}$ and X^{\perp} means the orthogonal projection of X onto $T_{x}^{\perp} M$.

If $m=1$ the formula can be written as

$$
\begin{equation*}
H=-\frac{\eta}{2}\left[\left(\epsilon_{\beta} \theta_{\alpha}\left(J_{\beta} X\right) J_{\beta} X+\epsilon_{\gamma} \theta_{\alpha}\left(J_{\gamma} X\right) J_{\gamma} X\right]\right. \tag{17}
\end{equation*}
$$

where X is any unit vector of TM.
Proof. Let $J=J_{\alpha \mid T M}$ with respect to an adapted basis $\left(J_{1}, J_{2}, J_{3}\right)$. For any vectors $X, Y \in T M$ one has

$$
\begin{aligned}
-\left(\epsilon_{\beta} \omega_{\gamma}(X) J_{\beta} Y-\epsilon_{\gamma} \omega_{\beta}(X) J_{\gamma} Y\right) & =\left(\bar{\nabla}_{X} J_{\alpha}\right) Y \\
& =\left(\nabla_{X} J\right) Y+h(X, J Y)-J_{\alpha} h(X, Y)
\end{aligned}
$$

Hence

$$
\begin{equation*}
h(X, J Y)-J_{\alpha} h(X, Y)=-\left[\epsilon_{\beta} \omega_{\gamma}(X) J_{\beta} Y-\epsilon_{\gamma} \omega_{\beta}(X) J_{\gamma} Y\right]^{\perp} \tag{18}
\end{equation*}
$$

By comparing with the identity where X is exchanged with Y, one gets the identity

$$
\begin{aligned}
h(X, J Y)-h(Y, J X)= & -\epsilon_{\beta}\left[\omega_{\gamma}(X) J_{\beta} Y-\omega_{\gamma}(Y) J_{\beta} X\right]^{\perp} \\
& +\epsilon_{\gamma}\left[\omega_{\beta}(X) J_{\gamma} Y-\omega_{\beta}(Y) J_{\gamma} X\right]^{\perp}
\end{aligned}
$$

that is, by exchanging X with $J X$,

$$
\begin{align*}
-\epsilon_{\alpha} h(X, Y)+h(J X, J Y)= & -\epsilon_{\beta}\left[\omega_{\gamma}\left(J_{\alpha} X\right) J_{\beta} Y+\eta \epsilon_{\gamma} \omega_{\gamma}(Y) J_{\gamma} X\right]^{\perp} \tag{19}\\
& +\epsilon_{\gamma}\left[\omega_{\beta}\left(J_{\alpha} X\right) J_{\gamma} Y-\eta \epsilon_{\beta} \omega_{\beta}(Y) J_{\beta} X\right]^{\perp} .
\end{align*}
$$

Let now $\left(E_{1}, \ldots, E_{m}, J_{\alpha} E_{1}, \ldots, J_{\alpha} E_{m}\right)$ be a (pseudo-) orthonormal basis of $T_{x} M$ such that $\left(E_{1}, \ldots, E_{k}, J_{\alpha} E_{1}, \ldots, J_{\alpha} E_{k}\right)$ is an orthonormal basis of \mathcal{D} and, hence,
$\left(E_{k+1}, \ldots, E_{m}, J_{\alpha} E_{k+1}, \ldots, J_{\alpha} E_{m}\right)$ is a (pseudo-)orthonormal basis of $\bar{T} M$. By using the previous identity, we find

$$
\begin{aligned}
& -2 m H \\
& =\sum_{i=1}^{m}\left\{\left(\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}\right)\left(J_{\beta} E_{i}\right) J_{\beta} E_{i}+\left(\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}\right)\left(J_{\gamma} E_{i}\right) J_{\gamma} E_{i}\right\}^{\perp} \\
& =\sum_{i=1}^{k}\left\{\left(\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}\right)\left(J_{\beta} E_{i}\right) J_{\beta} E_{i}+\left(\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}\right)\left(J_{\gamma} E_{i}\right) J_{\gamma} E_{i}\right\}^{\perp} \\
& =-\left[\operatorname{Pr}_{J_{\beta} \mathcal{D}} \mathbf{t}_{\alpha}\right]^{\perp}
\end{aligned}
$$

since $\left(J_{\beta} E_{1}, \ldots, J_{\beta} E_{k}, J_{\beta} E_{1}, \ldots, J_{\beta} E_{k}\right)$ is a (pseudo-)orthonormal basis of $\widetilde{\mathcal{D}}=$ $J_{\beta} \mathcal{D}$.

17 Corollary. The almost (para-)complex submanifold $M^{2 m} \subset \tilde{M}^{4 n}$ is minimal if the 1-form

$$
\theta:=\theta_{\alpha}=\left(\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}\right)_{\mid T M}
$$

vanishes on $\widetilde{\mathcal{D}}$ for some adapted basis $\left(J_{1}, J_{2}, J_{3}\right)$.
Since for a (para)Kähler submanifold $\left(M^{2 m}, J_{\alpha}\right)$, the 1-forms $\omega_{\beta}, \omega_{\gamma}$ vanish on $M^{2 m}$, we have the following corollary (see [4], [5], [27]).

Let recall that
18 Proposition ([5],[2],[27]). The almost (para-) complex submanifold
$\left(M^{2 m}, \bar{J}\right)$ of the (para-)quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ is (para-)Kähler if and only with respect to an adapted frame $\left(J_{1}, J_{2}, J_{3}\right)$ where $\bar{J}=J_{\alpha}$ one has

$$
\omega_{\beta \mid T M}=\omega_{\gamma_{\mid T M}}=0
$$

Proof. It is immediate from (5).
Then we have also the following corollary of Proposition 16.
19 Corollary ([5],[2],[27]). A (para)Kähler submanifold $\left(M^{2 m}, \bar{J}\right)$ of a (pa-ra-)quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ is minimal.

Moreover, as another corollary we get the following result, see also [5], [27].
20 Corollary. Let $\left(M^{2}, \bar{J}\right)$ be a 2-dimensional (para-) complex submanifold of a 4-dimensional (para-)quaternionic Kähler manifold. Then the following conditions are equivalent:

1) $\left(M^{2}, \bar{J}\right)$ is (para-)Kähler,
2) $\left(M^{2}, \bar{J}\right)$ is minimal and super(para-)complex.

Proof. $\left(M^{2}, J_{\alpha}\right)$ is super(para-)complex if and only if $\left(\omega_{\beta} \circ J_{\beta}-\omega_{\gamma} \circ\right.$ $\left.J_{\gamma}\right)_{\mid T M}=0$ and by corollary (17) of proposition 16 it is minimal if and only if $\left(\omega_{\beta} \circ J_{\beta}+\omega_{\gamma} \circ J_{\gamma}\right)_{\mid T M}=0$. These two conditions imply $\omega_{\beta \mid T M}=\omega_{\gamma \mid T M}=0$, i.e. $\left(M^{2}, \bar{J}\right)$ is Kähler. The converse statement is clear.

By the same proof one gets the following corollary.
21 Corollary. Let $\left(M^{2}, \bar{J}\right)$ be a super(para-)complex surface of a (para-)quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$. Then it is minimal if and only if it is a (para-)Kähler submanifold.

The following proposition, which was proved in [4], [27] respectively for quaternionic Kähler, (para-)quaternionic Kähler case, gives a characterization of (para-)Kähler submanifolds between almost (para-)complex submanifolds of a (para-)quaternionic manifold.

22 Proposition. ([5],[27]) Let $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ be a (para-)quaternionic Kähler manifold with non zero scalar curvature and $\left(M^{2 m}, \bar{J}\right)$ an almost complex submanifold of \bar{M} which is not a (para-)quaternionic submanifold. Then $\left(M^{2 m}, \bar{J}\right)$ is a (para-)Kähler submanifold if and only if the shape operators A^{ξ} verify the condition

$$
A^{\bar{J} \xi}+\bar{J} A^{\xi}=0 \quad \forall \xi \in T M^{\perp}
$$

or, equivalently, the second fundamental form h of M satisfies the condition

$$
\begin{equation*}
h(X, \bar{J} Y)-\bar{J} h(X, Y)=0 \quad \forall X, Y \in T M \tag{20}
\end{equation*}
$$

23 Definition. An almost (para-)complex submanifold $\left(M^{2 m}, \bar{J}\right)$ of a (pa-ra-)quaternionic Kähler manifold ($\left.\tilde{M}^{4 n}, \bar{Q}, \bar{g}\right)$ is called pluriminimal or $(1,1)$ geodesic if one of the following equivalent conditions holds:
i) the second fundamental form h of M satisfies

$$
\begin{equation*}
-\epsilon h(X, Y)+h(J X, J Y)=0 \quad \forall X, Y \in T M \tag{21}
\end{equation*}
$$

ii) the shape operators A^{ξ} anticommute with $J=\bar{J}_{\mid T M}$,

$$
A^{\xi} J+J A^{\xi}=0 \quad \forall \xi \in T M^{\perp}
$$

iv) any J-invariant 2-dimensional submanifold N^{2} of $M^{2 m}$ is minimal in $\bar{M}^{4 n}$.

A pluriminimal almost (para-)complex submanifold $\left(M^{2 m}, \bar{J}\right)$ is minimal.
A (para-)Kähler submanifold $\left(M^{2 m}, \bar{J}\right)$ of a (para-)quaternionic Kähler manifold ($\left.\tilde{M}^{4 n}, \bar{Q}, \bar{g}\right)$ is pluriminimal, since the identity (20) implies (21), as it was observed by Y. Ohnita, [23]. We do not know if the converse is also true under general hypothesis. The following proposition is a partial answer to this question, by giving a characterization of (para-)complex pluriminimal submanifolds.

24 Proposition ([5], [27]). A (para-)complex submanifold ($\left.M^{2 m}, \bar{J}\right), m>$ 1, of the (para-)quaternionic Kähler manifold $\left(\bar{M}^{4 n}, \bar{Q}, \bar{g}\right)$ with non zero scalar curvature is pluriminimal if and only if it is a (para-)Kähler submanifold or a (para-)quaternionic (hence totally geodesic) submanifold, and these cases cannot happen simultaneously.

References

[1] D.V. Alekseevsky, V. Cortés Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type. Lie Groups and invariant theory, 33-62, Amer. Math. Soc. Transl. Sez. 2, 21 Amer. Math. Soc., Providence, R.I., 2005
[2] D.V. Alekseevsky, V. Cortés The twistor spaces of a para-quaternionic Kähler manifold, preprint 2007
[3] D.V. Alekseevsky, S. Marchiafava Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl., 171 (1996), 205-273
[4] D.V. Alekseevsky, S. Marchiafava Hermitian and Kähler submanifolds of a quaternionic Kähler manifold, Osaka J. Math. 38 (2001), 869-904.
[5] D.V. Alekseevsky, S. Marchiafava A twistor construction of Kähler submanifolds of a quaternionic Kähler manifold, Ann. Mat. Pura Appl. (4) 184 (2005), no. 1, 53-74
[6] D.V. Alekseevsky, S. Marchiafava A report on quaternionic-like structures on a manifold, Proceedings of the International Workshop on Differential Geometry and its Applications (Bucharest 1993), Politechn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 55 (1993), 9-24
[7] D.V. Alekseevsky, S. Marchiafava, M. Pontecorvo Compatible Almost Complex Structures on Quaternion Kähler Manifolds, Ann. Global Anal. and Geom. 16 (1998), 419-444
[8] N. Blazic Para-quaternionic projective space and pseudo-riemannian geometry, Publications de l'Institut Mathématique, n.s., 60 (74) (1996), 101-107
[9] D.E. Blair, J. Davidov, O. Muskarov Hyperbolic twistor spaces, Balkan J. Geom. Appl. 5 (2000), n. 2, 9-16
[10] T.N. Bailey, M.G. Eastwood Complex paraconformal Manifolds - their Differential Geometry and Twistor Theory, Forum Math. 3 (1991), 61-103
[11] V. Cruceanu, P. Fortuny, P.M. Gadea A survey on paracomplex geometry, Rocky Mountai J. of Math.,26, n. 1, (1996), 83-115
[12] V. Cruceanu, P.M. Gadea, J. Munoz Masqué Para-Hermitian and para-Kähler manifolds (Preprint)
[13] A.S. Dancer, H.R. Joergensen, A.F. Swann Metric geometries over the split quaternions, Rend. Sem. Mat. Univ. Pol. Torino, 63, 2 (2005), 119-139
[14] P.M. Gadea, J. Munoz Masqué Symmetric structures on the cotangent bundles of the real an complex Grassmannians, Indian J. pure appl. Math., 27 (1) (1996), 1-11
[15] E. Garcia-Rio, Y. Matsushita, R. Vazquez-Lorenzo Paraquaternionic Kähler manifolds, Rocky Mountain Journal of Math., 31 (2001), 237-260
[16] S. IANuS Sulle strutture canoniche dello spazio fibrato tangente di una varietà Riemanniana, Rendiconti di Matematica di Roma, 6 (1973), 76-96
[17] S. Ianus, C. Udriste Asupra spatiului fibrat tangent at unei varietati diferentiabili, St. Cerc. Mat. 22, 4, (1970), 599-611
[18] S. Ianus, R. Mazzocco, G.E. Vilcu Real lightlike hypersurfaces of para-quaternionic Kaḧler manifolds, Mediterranean Journal of Mathematics, 3 (2006), 581-592
[19] S. Ianus, G.E. Vilcu Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles, preprint 2007
[20] S. Ivanov, S. Zamkovoy ParaHermitian and para-quaternionic manifolds, Diff. Geom. and its Appl. 23 2005, 205-234
[21] S. Marchiafava, P. Nagy (Anti)-hypercomplex structures and 3-webs on a manifold, preprint Dip. Mat. "G. Castelnuovo", n. 38/03, 2003, pp. 1-21
[22] B. O'Neill Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York-London, 1983
[23] V. Oproiu Some remarkable structures and connections defined on the tangent bundle, Rend. Mat. Appl. (7) 6 (1973), 503-540
[24] H. Pedersen, Y.S. Poon, A.F. Swann Hypercomplex structures associated to quaternionic manifolds, Differential Geometry and its Applications 9 (1998), 273-292
[25] R. Rosca Sous-variétés anti-invariantes d'une variété para-kählerienne structurée par une connexion géodésique, C.R. Acad. Sci. Paris Sér. I Mat. 287 (1978), 539-541
[26] S. Salamon Differential geometry of quaternionic manifolds, Ann. Scient. Ec. Norm. Sup., 4ème série, 19 (1986), 31-55
[27] M. Vaccaro Kähler and Para-Kähler submanifolds of a para-quaternionic Kähler manifold, P.h.D. thesis, Università di Roma 2, giugno 2007
[28] S. Vukmirovic Para-quaternionic reduction, Preprint 2003, Math.DG/0304424

[^0]: ${ }^{\text {i }}$ Work done under the programs of G.N.S.A.G.A. of C.N.R. and COFIN05 "Riemannian metrics and differentiable structures" of M.I.U.R. (Italy)

