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Abstract. This is an expository article related to a talk, which I gave at the Interna-
tional Conference in honour of Prof. Kowalski on Recent Advances in Differential Geometry
in Lecce/Italy, June 2007. The article describes the construction of Fefferman-Einstein metrics,
which will be presented in an explicit form. Our construction is motivated by tractor calculus
and the notion of conformal holonomy. We will sketch the background of this motivation as
well.
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1 Introduction

CR-geometry of hypersurface type is closely related to conformal geometry
via the Fefferman construction. This construction was originally invented by
C. Fefferman in [10] for boundaries of pseudoconvex domains in �m+1 in order
to study their geometric properties and invariant theory. He showed that a
trivial circle bundle over a pseudoconvex boundary admits a certain Lorentzian
metric whose conformal class is invariant under biholomorphisms of the domain.
The construction was later extended to abstract CR-structures by an intrinsic
approach due to J.M. Lee, which assigns to any pseudo-Hermitian structure a
so-called Fefferman metric on the canonical circle bundle. It was pointed out
that a Fefferman metric is never Einstein (cf. [16]).

We aim to describe in this expository article that under certain conditions
on the underlying pseudoconvex CR-space a Fefferman metric on the canonical
circle bundle is not Einstein, but, in fact, the corresponding Fefferman con-
formal class does contain (at least locally) Einstein metrics. To be concrete,
we will explain here that the Fefferman metric to any transverse symmetric,
pseudo-Einstein structure is (locally) conformally related to an Einstein metric.
Thereby, we will show that the transverse symmetric, pseudo-Einstein struc-
tures can be derived from Kähler-Einstein spaces. The construction itself is
rather simple and we are able to explicitly compute the Ricci-tensor in order
to show that our metrics are Einstein. However, the idea for the Fefferman-
Einstein construction is originally motivated by conformal tractor calculus and
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278 F. Leitner

the notion of conformal holonomy.
We will proceed as follows. In Section 2 we recall basic notions of CR-

geometry and pseudo-Hermitian geometry. The intrinsic Fefferman construction
is reviewed in the subsequent section. In Section 4 we explain our construction
of Fefferman-Einstein metrics. In particular, Theorem 4 will provide explicit
local forms for these metrics. At this point we already have achieved our main
result. However, in the final two sections we aim to explain the motivation and
idea for the construction. For this purpose, we introduce in Section 5 conformal
Cartan geometry and tractor calculus. In particular, we will define the notion of
conformal holonomy, which is an invariant for any conformal space. The confor-
mal holonomy is suitable to detect conformally Einstein metrics (cf. Theorem
5). The conformal holonomy is also suitable to characterise Fefferman spaces
(cf. Theorem 6). Finally, in Section 6 we explain the correspondence of parallel
standard tractors in conformal and CR-geometry. The parallel standard trac-
tors of CR-geometry correspond to the transverse symmetric, pseudo-Einstein
structures (cf. Theorem 7), which is the key to our explicit construction.

Since this is an expository article we will omit any proofs. The main result
(Theorem 4) originates from [21] and is proved there in detail. Our display of
tractor calculus, which is basic for the motivation, is very much influenced by
[4] (cf. also [25, 2]). The notion of conformal holonomy and applications are
discussed e.g. in [1, 18, 20, 19].

2 CR-geometry and pseudo-Hermitian structures

We recall in brief some basic notions concerning CR-geometry and pseudo-
Hermitian structures. We will pay special attention to the condition of transverse
symmetry. For more substantial informations about these topics we refer e.g. to
[24, 26, 16, 17, 9, 6, 13].

Let Mn denote a smooth manifold of odd dimension n = 2m + 1. An in-
tegrable CR-structure of hypersurface type on M is given by a pair (H,J)
consisting of a contact distribution H in TM of codimension 1 and a com-
plex structure J on H, i.e., J2 = −id|H , which is subject to the integrability
conditions [JX, Y ] + [X,JY ] ∈ Γ(H) and

J([JX, Y ] + [X,JY ])− [JX, JY ] + [X,Y ] = 0

for all X,Y ∈ Γ(H). The Lie bracket of vector fields induces the (tensorial) Levi
bracket

L : H ×H → Q := TM/H ,

(X,Y ) �→ πQ[X,Y ] ,
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Fefferman-Einstein metrics 279

where πQ : TM → TM/H denotes the natural projection onto the quotient.
Since H is a contact distribution, the Levi bracket L is non-degenerate. We
usually assume that the quotient Q = TM/H is a trivial real line bundle over
M . In this case one can see that L is the imaginary part of a Hermitian form on
(H,J). We always assume here that this Hermitian form is positive definite and
in this case we call (M,H, J) a strictly pseudoconvex CR space (of hypersurface
type).

A nowhere vanishing real 1-form θ ∈ Ω1(M) on a strictly pseudoconvex CR
manifold (M,H, J) is called a pseudo-Hermitian structure if θ|H ≡ 0. The 1-
form θ is necessarily a contact form. If such a θ is given on (M,H, J) then its
exterior differential dθ gives rise to the Levi form Lθ(·, ·) := dθ(·, J ·), which is by
assumption a definite scalar product on H. The existence of a pseudo-Hermitian
structure θ is guaranteed by the triviality of the quotient Q. In practice, we
choose only such θ, for which Lθ(·, ·) is positive defined and in this case we call
the data (M,H, J, θ) a (strictly pseudoconvex) pseudo-Hermitian space.

To any pseudo-Hermitian structure θ on a strictly pseudoconvex CR-space
(M,H, J) belongs a Reeb field Tθ, which is uniquely determined by the condi-
tions

ιT θ ≡ 1 and ιTdθ ≡ 0 .

For convenience, we set J(T ) := 0. Moreover, we obtain a Riemannian metric
gθ on M , which is defined as gθ := Lθ + θ ◦ θ, and a covariant derivative

∇W : X(M) −→ Γ(T ∗M ⊗ TM) ,

which is called the Tanaka-Webster connection, and which is uniquely deter-
mined by ∇W gθ = 0, i.e., ∇W is metric for gθ, and by the condition

TorW (X,Y ) = Lθ(JX, Y ) · T for all X,Y ∈ Γ(H) and

TorW (T,X) = −1
2([T,X] + J [T, JX]) for all X ∈ Γ(H) ,

where TorW (X,Y ) := ∇W
X Y − ∇W

Y X − [X,Y ] is the usual torsion tensor. In
addition, for this connection the properties ∇W θ = 0 and ∇W ◦ J = J ◦ ∇W

hold.
The curvature tensor RW of a Tanaka-Webster connection ∇W is given for

X,Y,Z, V ∈ TM by

RW (X,Y,Z, V ) := gθ([∇W
X ,∇W

Y ]Z −∇W
[X,Y ]Z, V ) .

This tensor has the symmetry properties

RW (X,Y,Z, V ) = −RW (Y,X,Z, V ) = −RW (X,Y, V, Z),

RW (X,Y, JZ, V ) = −RW (X,Y,Z, JV ) .
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280 F. Leitner

There is also a notion of Ricci curvature for pseudo-Hermitian structures. It is
called the Webster-Ricci curvature tensor and can be defined by

RicW (X,Y ) := i

m∑
α=1

RW (eα, Jeα,X, Y )

with respect to a local orthonormal frame

{e1, Je1, · · · , em, Jem}
of Lθ on H. (This contraction is independent from the choice of frame.) The
Webster-Ricci curvature RicW is by definition skew-symmetric with values in the
purely imaginary numbers i�. Moreover, we have the Webster scalar curvature:

scalW := i

m∑
α=1

RicW (eα, Jeα) .

The function scalW is real on (M,H, J, θ).
Finally, in this section, let us assume that the Reeb field Tθ to a pseudo-

Hermitian structure θ on (M,H, J) is an (infinitesimal) transverse symmetry,
i.e., the torsion part TorW (T,X) vanishes for all X ∈ H. In this case we call θ a
TSPH structure on (M,H, J). The condition that Tθ is a transverse symmetry
implies LT gθ = 0, which means that Tθ is a Killing vector field for the metric
gθ. Under the assumption of transverse symmetry the connection ∇W and the
Levi-Civita connection ∇gθ to the metric gθ on M compare by

Bθ := ∇W −∇gθ =
1
2

(dθ · T − (θ ⊗ J + J ⊗ θ)) .

Using this comparison tensor one can explicitly compute the relation of the
Webster curvature tensor RW and the Riemannian curvature tensor Rgθ . This
comparison shows the following symmetry properties for RW under the assump-
tion of transverse symmetry.

1 Lemma. (cf. [21]) Let θ be a TSPH structure on (M,H, J). Then the
Webster curvature tensor RW satisfies

RW (X,Y,Z, V ) + RW (Y,Z,X, V ) + RW (Z,X, Y, V ) = 0

for all X,Y,Z, V ∈ TM . In particular, it is

RW (X,Y,Z, V ) = RW (Z, V,X, Y ) and

RW (X,JY, JZ, V ) = RW (JX, Y,Z, JV ) .

Moreover, we find the following formula for the relation of the Ricci curva-
tures. It is

Ricgθ(X,Y ) = iRicW (X,JY )− 1
2
gθ(X,Y ) (1)

for any X,Y ∈ H.
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3 The intrinsic Fefferman construction

We review here the intrinsic Fefferman construction for abstract (pseudo-
convex) CR-structures established by J.M. Lee in [16] (cf. also [3]).

So let (Mn,H, J) be a strictly pseudoconvex CR space of dimension n =
2m+1 with pseudo-Hermitian form θ. We denote by T10 the i-eigenspace of the
�-linear extension of J to H ⊗� in the complexified tangent bundle TM�. The
canonical line bundle of the CR space (M,H, J) is given by

Λm+1,0M := { ρ ∈ Λm+1T ∗M ⊗ � : ιXρ = 0 for all X ∈ T01 = T10 } .

The positive real numbers �+ act by multiplication on K∗ := Λm+1,0M \ {0},
which denotes the canonical line bundle with deleted zero section. We set
Fc := K∗/�+ , which is the total space of the canonical S1-principal bundle
over (M,H, J) with projection πc : Fc → M , whose fibre action is induced by
multiplication with complex numbers of the unit circle S1 in �.

The Tanaka-Webster connection ∇W to θ on M gives rise via extension to a
covariant derivative on Λm+1,0M . This covariant derivative is seen to be induced
by a uniquely defined connection 1-form AW : TFc → i� on the canonical
S1-principal bundle. By adding a normalisation term to AW we obtain the
connection form

Aθ := AW − i

2(m + 1)
scalW θ ,

where θ and scalW denote the pull-backs via πc to Fc of the corresponding
objects on M . We call the latter 1-form Aθ the Weyl connection to θ on Fc. The
Fefferman metric to θ on the canonical bundle Fc is then defined by

fθ := Lθ − i
4

m + 2
θ ◦ Aθ .

Obviously, this is a non-degenerate, symmetric 2-tensor on Fc of signature
(1, n), i.e., fθ is a Lorentzian metric on Fc over the strictly pseudoconvex space
(Mn,H, J, θ). The important point about this construction is that the confor-
mal class [fθ] does not depend on the choice of the pseudo-Hermitian structure
θ, i.e., the conformal space (Fc, [fθ]) is a CR-invariant of (M,H, J). In fact,
rescaling the pseudo-Hermitian form by θ̃ = e2φθ with some real function φ on
M produces the conformally changed Fefferman metric fθ̃ = e2φfθ.

We remark that there exists the following characterisation result for Feffer-
man metrics on integrable CR-spaces due to G. Sparling and C.R. Graham (cf.
[23, 14]).

2 Theorem. (Sparling’s characterisation) Let (Fn+1, f) be a Lorentzian
space of dimension n + 1 ≥ 4. Suppose that f admits a Killing vector j (i.e.,
Ljf = 0) such that
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(1) f(j, j) = 0, i.e., j is lightlike,

(2) ιjW
f = 0 and ιjC

f = 0, where W f and Cf denote resp. the Weyl and
Cotton tensor of f ,

(3) Ricf (j, j) > 0 on F .

Then f is locally isometric to the Fefferman metric of some integrable, pseu-
doconvex CR-space (M,H, J) of hypersurface type and dimension n (equipped
with pseudo-Hermitian structure θ).

On the other hand, any Fefferman metric of an integrable, pseudoconvex CR-
space (M,H, J) of hypersurface type admits a Killing vector field j satisfying
(1) to (3).

4 Fefferman-Einstein metrics

Computing the Ricci-tensor Ricfθ of any Fefferman metric of a pseudo-
Hermitian space (M,H, J, θ) shows that fθ is never an Einstein metric (cf. [16]).
However, we want to show here that the Fefferman metric fθ of a so-called TSPE
structure θ is conformally related to an Einstein metric (cf. [21]).

Due to Lee’s definition in [17], a pseudo-Hermitian structure θ on a CR-space
(M,H, J) is called a pseudo-Einstein structure if

RicW = −i
scalW

m
· dθ .

Further, we say now that θ is a TSPE structure if it is pseudo-Einstein and,
simultaneously, the corresponding Reeb vector Tθ defines a transverse symmetry,
i.e., TorW (Tθ,X) = 0 for all X ∈ H. We will derive in the following a description
and construction principle for TSPE structures. This consideration will be of
local nature. First, let (M,H, J, θ) be a TSPE space. Since Tθ is a transverse
symmetry, we can locally on a suitable neighbourhood U (of any point of M)
take the quotient by the integral curves of Tθ. This gives rise to a smooth
quotient manifold N of dimension 2m with projection πU : U → N . Since the
metric gθ on M and the complex structure J on H are invariant under the local
flow of the vector field Tθ on U , the projection πU induces naturally a metric h
on N and a complex structure, which we denote again by J : TN → TN .

In fact, taking into account that πU : (U, gθ) → (N,h) is a Riemannian
submersion and (1), shows that the Ricci tensor Rich of h on N is given by

Rich(X,Y ) = iRicW (X∗, JY ∗) (2)
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for all X,Y ∈ TN , where X∗ and Y ∗ denote the corresponding horizontal lifts
for the submersion πU . Obviously, this relation shows that the metric h is Ein-
stein if and only if θ is a TSPE structure. The relation for the scalar curvatures
is scalh = 2 · scalW . Moreover, using the comparison tensor Bθ and the sub-
mersion property of πU , it is straightforward to see that J on the quotient N is
∇h-parallel. We conclude that any TSPE structure θ on a CR-space (M,H, J)
determines naturally a Kähler-Einstein structure (h, J) of Riemannian signature
on a local quotient space N .

On the other hand, let us consider a Kähler-Einstein space (N2m, h, J) of
dimension 2m and Riemannian signature. The Kähler-Einstein space N is equip-
ped with the anti-canonical S1-bundle

Sac(N) := P (N)×det� S1

with projection πac, where P (N) denotes the U(n)-reduction of the orthonormal
frame bundle of (N,h, J). The Levi-Civita connection of the Kähler metric h
induces a connection form ρac : TSac(N) → i� on the anti-canonical S1-bundle.
Moreover, the metric h induces the Kähler form ω ∈ Ω2(N) and the Ricci form
ς ∈ Ω2(N). Since h is a Kähler-Einstein metric both 2-forms ω, ς are closed.
Hence we can find locally some 1-forms α and β such that dα = ω and dβ = ς.
With the lift of these 1-forms to Sac(N) we define

θ := iρac − π∗
acα + π∗

acβ .

This 1-form θ is not merely a local connection, but, in fact, it is by definition a
(local) contact form on Sac(N). In particular, we can lift the complex structure
J on N to the horizontal distribution Hθ, which is given by the local connec-
tion θ. As result we obtain a (local) CR-structure (H,J) on Sac(N) with corre-
sponding pseudo-Hermitian form θ. This CR-structure (H,J) is by construction
integrable, since the Nijenhuis tensor of J vanishes on N , and therefore, also on
Sac(N).

We can make some further observations about our local construction of
(H,J) on Sac(N). First, we note that the fundamental vector field T of the
S1-action along Sac(N) in the vertical direction (normed by θ(T ) = 1) is a
transverse symmetry of the constructed (H,J). This implies that we have a re-
construction procedure for a Kähler metric on N as described at the beginning
of this section. In fact, by construction of (H,J, θ) it is clear that the recon-
structed Kähler space is isomorphic to our initial space (N,h, J). This shows by
use of (2) that (H,J, θ) is (locally) a pseudoconvex TSPE structure on Sac(N).
Furthermore, we note that our local construction of (H,J, θ) on Sac(N) admits
a gauge freedom in form of the choice of the local 1-forms α and β. However,
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it is easy to see that the (local) isomorphism class of the constructed pseudo-
Hermitian structure (H,J, θ) on Sac(N) does not depend on the chosen gauges
α, β. Altogether, this leads us to the conclusion that we have found a natural
(local) 1-to-1-correspondence between TSPE spaces on one side and Kähler-
Einstein spaces on the other side. We manifest this statement in the following
theorem. Thereby, notice that for scalh 	= 0 the 1-form iρac − π∗

acα + π∗
acβ is

gauge equivalent to i 2m
scalh

ρac. We will find the latter gauge more convenient for
the following considerations.

3 Theorem. Let (N,h, J) be a Riemannian Kähler-Einstein space of di-
mension 2m with scalar curvature scalh.

(1) If scalh 	= 0 then the anti-canonical S1-principal bundle

Sac(N) = P (N)×det� S1

with connection 1-form

θ := i
2m
scalh

ρac ,

where ρac is the Levi-Civita connection to h, and with induced horizontal
CR-structure (H,J) is a pseudoconvex TSPE space with

scalW =
1
2
scalh 	= 0 .

(2) If scalh = 0 and the Kähler form is given by ω = dα for some (local) 1-
form α on N then (Sac(N),H, J) with (local) TSPE structure θ = iρac −
π∗
acα is Webster-Ricci flat.

Locally, any TSPE space (M,H, J, θ) is isomorphic to one of these two models
depending on the Webster scalar curvature scalW .

In the next step we simply construct the Fefferman space (Fc, fθ) over a
TSPE space (M,H, J, θ), which is (resp., can be locally) presented in the form
(1) or (2) of Theorem 3. In this construction the total space Fc is a torus bundle,
the product of the canonical Sc and the anti-canonical circle bundle Sac over an
underlying Kähler-Einstein space (N,h, J). In particular, we have the 1-forms
ρac and ρc on Fc, which arise as the lifts of the h-induced Levi-Civita connections
on Sac, resp., on Sc. Using Lemma 1 for the condition of transverse symmetry,
the curvature form ΩW = dAW on Fc of the Tanaka-Webster connection is seen
to be equal to −π∗

cRicW . This relation and the fact that θ is pseudo-Einstein is
responsible for the following simple form of the Ricci curvature of the Fefferman
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metric, which we denote here by fh := fθ in order to indicate its natural relation
with the underlying Kähler-Einstein metric h:

Ricfh = −2m
(m+2)2

ρ2
c if scalh = 0 ,

Ricfh = scalh

2(m+1)fh − 2m
(m+2)2

(ρc + ρac)2 if scalh 	= 0 .

Having derived these formulae for the Ricci curvature one can almost guess
the conformal factor, which rescales the metric fh to on Einstein metric in the
Fefferman conformal class. In fact, let us choose a local coordinate function t
on the torus bundle Fc such that

dt = i(m + 2)ρc when scalh = 0, resp.,

dt = i(m + 2) · (ρc + ρac) when scalh 	= 0 .

Using the standard formula for the conformal transformation rule of the Ricci
curvature we immediately see that the conformally changed metric

f̃h := cos−2(t)fh

is an Einstein metric (on its domain of definition). Rewriting fh in a convenient
way, we obtain the following explicit local forms for Fefferman-Einstein metrics
with Lorentzian signature.

4 Theorem. Let (N,h, J) be a Riemannian Kähler-Einstein space of di-
mension 2m with scalar curvature scalh.

(1) If scalh = 0 and the Kähler form is ω = dα for some 1-form α on N ,
then the metric

f̃h = cos−2(t) · ( π∗h + 4dt ◦ (π∗α + ds)
)

on N ×{ (s, t) : −π
2 < t < π

2 } ⊂ N ×�2 (with natural projection π onto
N) is Ricci-flat and conformally related to a Fefferman metric.

(2) If scalh 	= 0 then the metric

f̃h = cos−2(t) ·
(

π∗h− 4m(m + 1)
scalh

· ( dt2 +
ρ2
ac

(m + 1)2
)
)

on Sac(N)×(−π
2 ,

π
2 ), where (Sac(N), π,N) is the anti-canonical S1-bundle

over N with Levi-Civita connection ρac : TSac(N) → i�, is Einstein with
scalf̃h = 2m+1

2m · scalh and conformally related to a Fefferman metric.
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On the other hand, if a Fefferman metric fh of Lorentzian signature over an
integrable CR-space is locally conformally Einstein, then any Einstein metric
f̃ ∈ [fh] can be brought locally into the form (1) or (2).

We have to add some remarks about this theorem. First, we note that the
Fefferman metric cos2(t)f̃h minus the parallel line element dt2 in the Ricci non-
flat situation (2) is locally isometric to the Sasaki-Einstein metric constructed on
the anti-canonical line bundle over the Kähler-Einstein space (N,h, J). Also note
that the conformal factor cos−2(t) is not defined on the entire torus bundle Fc.
In fact, there does not exist a global Fefferman-Einstein metric on Fc. However,
locally in the neighbourhood of any point of Fc a conformal Einstein scale does
exist (depending on where the coordinate function t is set to be zero). Finally,
we remark that so far we gave no proof or reason why the reversed statement,
that any Fefferman-Einstein metric can be brought into the form (1) or (2) of
Theorem 4, shall be true. The justification for this statement will become clear
in the final section.

5 Conformal tractor calculus

We introduce here conformal tractor calculus with canonical connection
via Cartan geometry. In particular, we define the notion of conformal trac-
tor holonomy. Our explanations are not more than a dispatch. We refer to
[8, 25, 15, 2, 11, 7] for the necessary background.

The orthogonal group G := O(2, n) acts in a standard way on �2,n, which
denotes the (n+2)-dimensional pseudo-Euclidean space of signature (2, n). Then
we denote by �L the projectivation of the lightcone in �2,n, which is a homoge-
neous space G/P with fixed point group P of a real line in �L. In fact, the space
�L admits a G-invariant conformal structure and can be used as the flat model
of Lorentzian conformal geometry. We call �L the Möbius space of signature
(1, n − 1) and G the Möbius group (which acts effectively only after factoring
through its centre �2). The Lie algebra g = so(2, n) of the Möbius group G is
equipped with a |1|-grading g−1 ⊕ g0 ⊕ g1 induced by the parabolic subgroup
P ⊂ G. The Lie algebra p is given by g0 ⊕ g1. We also set p+ := g1.

Now let (Fn, c) be an arbitrary n-dimensional space with conformal structure
c given by the conformal class [g] of a Lorentzian metric g on F . It is a matter
of fact that the conformal structure c gives rise in a natural and unique way
to a principal P -bundle P(F ) over F with projection π and a canonical Cartan
connection, i.e., a P -equivariant absolute parallelism on P(F ),

ωnor : TP(F ) → g .

We denote by Ω := dωnor + 1
2 [ωnor, ωnor] the curvature of the canonical Cartan
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connection. The curvature Ω gives rise to a curvature function

κ : P(F ) → Hom(Λ2g/p, g) ,

and the Cartan connection ωnor is uniquely determined by the normalisation
condition ∂∗κ = 0, where ∂∗ denotes the Kostant-codifferential computing the
Lie algebra cohomology of g−1

∼= g/p with values in g. We call (P(F ), ωnor) the
canonical conformal Cartan geometry on (F, c).

The spaces �2,n and g are in a natural way G-modules (and hence P -
modules), which give rise to associated vector bundles of P(F ). In fact, we
define

T := P×P �2,n and A := P×P g

and call T the conformal standard tractor bundle, whereas A is called the adjoint
tractor bundle of (F, c). Since the tractor bundles T and A are induced by G-
modules, the canonical Cartan connection ωnor gives naturally rise to covariant
derivatives ∇nor acting on sections of T and A. We call ∇nor on T the tractor
connection. This connection has a uniquely defined holonomy group, which we
denote by Hol(T). Its Lie algebra is denoted by hol(T). The holonomy group
Hol(T) and its algebra are by construction conformal invariants of the underly-
ing space (F, c). We also want to note here that the tractor bundle (T,∇nor) for
a conformal space (F, c) can be defined directly without the approach of Car-
tan geometry. In fact, tractor calculus and Cartan geometry are formulations of
conformal geometry, which are on an equal footing (cf. [25, 2]).

The tractor bundles T and A and the tractor holonomy have some interesting
features, which we want to explain next. First, let us consider T with the tractor
connection ∇nor. The bundle T admits an invariant scalar product 〈·, ·〉T and
an invariant filtration T ⊃ T0 ⊃ T1, where T1 is a lightlike real line bundle and
T0 the corresponding orthogonal subspace. With respect to a compatible metric
g̃ ∈ c this filtration of the standard tractor bundle T splits into � ⊕ TF ⊕ �

and the tractor connection ∇nor acts on a standard tractor t = (f, ψ, h) ∈ Γ(T)
with respect to this splitting and X ∈ TF by

∇nor
X t =

⎛⎝ Xh

∇g̃
Xψ

Xf

⎞⎠+

⎛⎝ 0 Pg̃(X, ·) 0
X 0 −Pg̃(X, ·)�
0 −g̃(X, ·) 0

⎞⎠⎛⎝ h
ψ
f

⎞⎠ .

Thereby, ∇g̃ denotes the Levi-Civita connection of g̃, Pg̃ := 1
n−2( scalg̃

2(n−1) −Ricg̃)

is the Schouten tensor and Pg̃(X, ·)� denotes the dual vector to Pg̃(X, ·). Note
that the content of the curvature Ω of the tractor connection ∇nor is given with
respect to g̃ ∈ c by the Weyl curvature tensor W g̃ and the Cotton tensor C g̃.
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Let us consider now the tractor equation ∇nort = 0 for a standard tractor
t ∈ Γ(T). With respect to the metric g ∈ c and the corresponding splitting
t = (f, ψ, h) this equation is equivalent to the single second order PDE

trace-free part of (Hessg(f)− f · Pg) = 0 .

It is well known that a function f ∈ C∞(F ) solves this equation if and only if
g̃ := f−2g is an Einstein metric in the conformal class c. Note that if a solution
f admits a zero on F then g̃ is not globally defined on F . In general, we call a
conformal class c almost-Einstein if it admits a compatible Einstein metric up
to singular points on F (cf. [12]). The first conclusion here in the framework
of tractor calculus is that a conformal class c is almost-Einstein if and only if
there exists a ∇nor-parallel standard tractor t ∈ Γ(T). The interesting point in
relation with the conformal holonomy is the observation that a ∇nor-parallel
standard tractor t exists on F if and only if the action of Hol(T) fixes some
vector γ in the standard module �2,n.

5 Theorem. Let (F, c) be a conformal space with standard tractor bundle
T and tractor holonomy Hol(T). Then the conformal class c is almost-Einstein
if and only if Hol(T) fixes a vector in �2,n.

Let us also consider the adjoint tractor bundle A on (F, c). The adjoint
tractor bundle A is filtered by A ⊃ A0 ⊃ A1, where A0 is the associated bundle
to the P -module p and A1 is associated to p+. The quotient A/A0 is canonically
identified with the tangent space TF on F and we denote the corresponding
projection by Π : A → TF . It is a matter of fact that, if A ∈ Γ(A) is an adjoint
tractor, which solves the tractor equation

∇norA = Ω( · ,Π(A)) , (3)

then Π(A) is a conformal Killing vector field on (F, c), i.e., an infinitesimal con-
formal isometry. On the other hand, it is also true that the 2-jet of a conformal
Killing vector field V on (F, c) gives uniquely rise to an adjoint tractor AV solv-
ing (3) such that Π(AV ) = V . This establishes a description of conformal Killing
vector fields by use of tractor calculus. Finally, note that the standard action of
p on �2,n is P -equivariant, which implies the existence of an invariant action of
A on the standard tractors in T. We denote this action by • : A⊗ T → T.

6 The motivation from conformal holonomy

Having tractor calculus at hand we are able to explain now the motivation
for our Fefferman-Einstein construction as outlined in Section 4. In particular,
we can sketch a proof for the reversed statement in Theorem 4. The arguments
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about CR-tractor calculus and its relation to conformal tractor calculus that we
use in this section work along the lines of [4].

Let us start with a conformal holonomy consideration for our motivation.
As we have seen at the end of the previous section, an adjoint tractor A on a
conformal space (Fn+1, c) of Lorentzian signature with dimension n+1 = 2m+2,
which solves ∇norA = Ω(·,Π(A)), corresponds to the conformal Killing vector
field Π(A). Now let us consider a solution J in the adjoint tractors on (F, c) of
the equation

∇norJ = 0 with J • J = −id|T .

Such a solution J is nothing else, but a ∇nor-parallel orthogonal complex struc-
ture on T and the projection j := Π(J) is a conformal Killing vector field on
(F, c). In fact, one can easily see that j is lightlike and has no zeros on F , i.e., we
can choose (at least locally) a compatible metric g̃ ∈ c, for which j is a lightlike
Killing vector field. Since Ω(j, ·) = 0 implies ιjW

g̃ = 0 and ιjC
g̃ = 0, we see that

Sparling’s characterisation applies to g̃. We conclude that g̃ ∈ c is (locally) on F
the Fefferman metric of an underlying pseudoconvex space (M,H, J) equipped
with some pseudo-Hermitian structure θ.

Note that the existence of a solution J of the above tractor equation is
equivalent to the reduction of the conformal holonomy Hol(T) to some subgroup
of the unitary group U(1,m+1). In combination with Theorem 5 we understand
now that if a conformal space (Fn+1, c) has a conformal holonomy Hol(T), which
is reduced to U(1,m + 1) and, in addition, fixes a vector in �2,2m+2, then the
conformal class has to be Fefferman-Einstein (up to singularities). Since there
is no reason to believe that such a conformal holonomy reduction does not exist
for a conformal space (apart from the trivial holonomy in the conformally flat
case), the idea is born to generate spaces with such holonomies.

To proceed with this idea, we need a version of tractor calculus for CR-
geometries and a relation to conformal tractors via the Fefferman construction.
First, let us consider the group G̃ := SU(1,m + 1), which acts in the standard
way on �m+2 equipped with the indefinite Hermitian product (·, ·) of signature
(1,m + 1). The parabolic subgroup P̃ ⊂ G̃ is defined to be the stabiliser of a
complex null line in �m+2 under the standard action of G̃. Then the pair (G̃, P̃ )
describes a Kleinian model of pseudoconvex CR-geometry. Note that we have
a natural inclusion ι̃ : G̃ → G via the identification �m+2 ∼= �2m+4, where
G = O(2, 2m + 2) is the Möbius group.

Now let us consider an integrable, pseudoconvex CR-space (Mn,H, J) of
hypersurface type and dimension n = 2m + 1 with a choice of (m + 2)nd root
E for the complexified line bundle Λm

�
H ⊗ Q, i.e., E⊗m+2

= Λm
�
H ⊗ Q. In this

situation, there belongs a uniquely defined parabolic Cartan geometry (P̃, ωCR)
of type (G̃, P̃ ) to the CR-structure (H,J) on M , where the canonical Cartan
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connection
ωCR : T P̃ → su(1,m + 1)

is again (as in the conformal case) uniquely determined by a normalisation
condition on the corresponding curvature ΩCR.

The intersection G̃ ∩ P , where P is the parabolic subgroup of conformal
geometry in G, is contained in the parabolic P̃ , and P̃ /(G̃∩P ) is a real projective
line. We set F̃c := P̃/(G̃ ∩ P ). Then it is clear that F̃c is a circle bundle with
projection π̃c over (M,H, J) and P̃ is a principal (G̃∩P )-bundle over F̃c. We can
extend this principal bundle P̃ by the parabolic P in order to obtain a principal
P -bundle P(F̃c) over F̃c. The canonical Cartan connection ωCR on P̃ extends
as well by right translation to a Cartan connection ω : TP(F̃c) → g. Thus
we obtain a pair (P(F̃c), ω), which is a naturally constructed Cartan geometry
of conformal type (G,P ) on the base F̃c. In fact, it is straightforward to see
that the Cartan geometry (P(F̃c), ω) generates in a natural way a conformal
structure [f ] on the space F̃c. One can show that this conformal structure [f ] on
F̃c is locally conformally equivalent to the Fefferman conformal class [fθ] defined
on the canonical S1-bundle Fc over (M,H, J). However, note that (F̃c, [f ]) and
(Fc, [fθ]) (as introduced in Section 3) are in general not globally equivalent,
since the bundle F̃c corresponds to a (m+2)nd root of the canonical line bundle
Λm+1,0M . Nevertheless, we call here (F̃c, [f ]) the Fefferman space of (M,H, J)
(with respect to a (m + 2)nd root).

An extremely important feature of the above construction of the Cartan
geometry (P(F̃c), ω) over F̃c is the fact that in case of an underlying integrable
CR-space (M,H, J) the connection ω is identical to the canonical connection
ωnor of the conformal structure [f ] on F̃c. This is the key observation here, which
has important consequences for us. First, let us define the standard CR-tractor
bundle over an arbitrary pseudoconvex CR-space (M,H, J) by

TCR := P̃×P̃ �m+2,

where �m+2 is the standard G̃-module. The canonical connection ωCR induces
a covariant derivative ∇CR on TCR, which has a holonomy group Hol(TCR)
sitting in SU(1,m + 1). Now, since the right translation of ωCR on P(F̃c) is the
canonical connection ωnor of conformal geometry and Ωnor(χ, ·) = 0 for any
vertical vector χ in the Fefferman fibration π̃c : F̃c → M , it follows that (at
least) the holonomy algebras hol(T) and hol(TCR) of the tractor connections of
conformal and CR-geometry are identical. Certainly, in case that π̃c : F̃c → M
admits a global section the holonomy groups Hol(TCR) and Hol(T) are identical
as well.

The identification of the two holonomy algebras (resp., groups) has the fol-
lowing first consequence. Namely, it is obvious now that any Fefferman space, no
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matter if (F̃c, [f ]) or (Fc, [fθ]), has a conformal holonomy algebra hol(T), which
is reduced at least to su(1,m + 1) in so(2, 2m + 2). Together with Sparling’s
characterisation as used at the beginning of this section, we obtain a holonomy
characterisation for Fefferman spaces in the general situation.

6 Theorem. Let (Fn+1, c) be a simply connected conformal Lorentzian
space of dimension n + 1 = 2m + 2 ≥ 4 and let Hol(T) be its conformal tractor
holonomy. Then

Hol(T) ⊂ SU(1,m + 1)

if and only if c on F is locally the Fefferman conformal class over a pseudocon-
vex, integrable CR-space of hypersurface type. There exists no conformal space
(Fn+1, c), whose tractor holonomy is identical to U(1,m + 1).

Note that this theorem can also be proved by using tractor calculus only,
without the detour of Sparling’s characterisation and the reconstruction of CR-
geometry (cf. [5, 22]).

It remains to discuss the Einstein condition in terms of CR-tractors. First,
we observe that if a Fefferman space (F̃c, [f ]) over (M,H, J, θ) has a confor-
mal holonomy group Hol(T), which fixes a vector in the standard module, i.e.,
(F̃c, [f ]) is almost-Einstein, then the CR-holonomy Hol(TCR) has to fix a vec-
tor in �m+2. This fixed vector in �m+2 corresponds to a ∇CR-parallel standard
CR-tractor on (M,H, J). In fact, there is a natural 1-to-1-correspondence (at
least locally) between ∇nor-parallel standard conformal tractors on the Feffer-
man space (F̃c, [f ]) and ∇CR-parallel standard CR-tractors on (M,H, J). The
final step of our reasoning is now to clarify the meaning of a ∇CR-parallel stan-
dard CR-tractor γ ∈ Γ(TCR) for the the underlying pseudoconvex CR-space
(M,H, J). We will argue that γ corresponds (up to singularities) to a TSPE
structure θ on (M,H, J).

For this purpose, we observe that the standard CR-tractor bundle TCR ad-
mits an invariant filtration

TCR ⊃ T0
CR ⊃ T1

CR ,

where T1
CR is a complex null line (associated to the P̃ -stable line in �m+2) and

T0
CR is the corresponding orthogonal subspace in TCR. The quotient TCR/T0

CR

with projection Π̃ is isomorphic to the complex conjugated line bundle E of the
root E, and Q = TM/H naturally includes into E⊗E. We denote by σ := Π̃(γ)
the corresponding section in E to a standard CR-tractor γ ∈ Γ(TCR). Then
the product σσ is a section in Q, which determines in a unique way a pseudo-
Hermitian form θγ on (M,H, J) (minus the singular zero set {σ = 0}). One can
show that θγ is a TSPE structure if and only if γ is ∇CR-parallel. On the other
hand, the choice of a pseudo-Hermitian form θ on (M,H, J) gives rise via the
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Reeb vector to a uniquely defined section T̃θ in Q. Then there exist a unique
σθ ∈ Γ(E) such that σθσθ = T̃θ and the (m + 2)nd power of the dual of σθ is a
closed (m + 1, 0)-form on (M,H, J). Now, since TCR is the 2-jet prolongation
of its quotient E = TCR/T0

CR, there exists a natural CR-tractor D-operator
D : Γ(E) → Γ(TCR), which is a CR-invariant differential operator of 2nd order.
It is a matter of fact that the application of D to σθ is a ∇CR-parallel standard
tractor if and only if θ is a TSPE structure.

7 Theorem. There exists a natural and unique 1-to-1-correspondence be-
tween TSPE structures θ and ∇CR-parallel standard CR-tractors γ ∈ Γ(TCR)
on any pseudoconvex integrable CR-space (M,H, J) (up to singular points).

This completes our motivation for the construction of Fefferman-Einstein
metrics as described in Theorem 4. In particular, it gives (a sketch) of a proof
for the reversed statement therein.
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