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Abstract. The geometry of Riemannian symmetric spaces is really richer than that of Rie-
mannian homogeneous spaces. Nevertheless, there exists a large literature of special classes
of homogeneous Riemannian manifolds with an important list of features which are typical
for a Riemannian symmetric space. Normal homogeneous spaces, naturally reductive homo-
geneous spaces or g. o. spaces are some interesting examples of these classes of spaces where,
in particular, the Jacobi equation can be also written as a differential equation with constant
coefficients and the osculating rank of the Jacobi operator is constant.

Compact rank one symmetric spaces are among the very few manifolds that are known to
admit metrics with positive sectional curvature. In fact, there exist only three non-symmetric
(simply-connected) normal homogeneous spaces with positive curvature: V1 = Sp(2)/SU(2),
V2 = SU(5)/(Sp(2) × S1), given by M. Berger [6] and the Wilking’s example V3 = (SU(3) ×
SO(3))/U•(2), [37]. Here, we show some geometric properties of all these spaces, properties
related with the existence of isotropic Jacobi fields and the determination of the constant
osculating rank of the Jacobi operator. It provides different way to ”measure” of how they are
so close or not to the class of compact rank one symmetric spaces.

Keywords: normal homogeneous space, naturally reductive homogeneous space, g.o. space,
Jacobi fields, Jacobi operator, constant osculating rank

MSC 2000 classification: primary 53C30, secondary 53C25

1 Introduction

In Berger [6], a classification of simply connected normal homogeneous spaces
that have strictly positive curvature, that is, the Riemannian structure comes
from a bi-invariant metric on a group and all sectional curvatures are bounded
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from below by a positive constant, was given. In the course of his classifica-
tion he found two new examples of topological types which admit strictly pos-
itive curvature. These two examples are the manifolds V1 = Sp(2)/SU(2) and
V2 = SU(5)/(Sp(2)×S1) of dimensions 7 and 13, respectively. In [37] the author
proves that the Berger’s classification is not totally correct. In fact, he shows
that there is a third example V3 = (SU(3) × SO(3))/U•(2), equipped with a
one-parameter family of bi-invariant metrics, where U•(2) is the image under
the embedding (ι, π) : U(2) → SU(3)× SO(3) given by the natural inclusion

ι(A) =
(

A 0
0 detA−1

)
, A ∈ U(2),

and π is the projection π : U(2) → U(2)/S1. As Wilking noted, the algebraic
structure corresponding to V3 already appears in the papers of Bérard Bergery
[4], [5]. Nevertheless, it seems interesting to remark that it was Wilking who
saw the point that the manifold V3 was contained in the Aloff - Wallach’s clas-
sification [1].

The resolution of the Jacobi equation for geodesics on a general Riemannian
manifold (M,g) can be quite a difficult task. In the Euclidean space the solution
is trivial. For the symmetric spaces, the problem is reduced to a system of
differential equations with constant coefficients and one can directly show that
every Jacobi field vanishing at two points is the restriction of a Killing vector
field along the geodesic. A Jacobi field V which is the restriction of a Killing
vector field along a geodesic is called isotropic. It means that V is the restriction
of a fundamental vector field X∗ with X belonging to the Lie algebra of the
isometry group I(M,g) of (M,g). For homogeneous Riemannian manifolds, if
V vanishes at a point o of the geodesic then it is obtained as restriction of X∗,
where X belongs to the isotropy algebra of I(M,g) at o in M. This particular
situation was what originally motivated the term ’isotropic’. If q is another zero
of an isotropic Jacobi field V, then q is said to be isotropically conjugate to o
along the geodesic. In [9], [10] is proved the following:

1 Theorem. Let G/H be a simply connected normal homogeneous space of
rank 1 such that every point q conjugate to o = [H] is isotropically conjugate to
o. Then G/H is diffeomorphic to a Riemannian symmetric space of rank 1.

The proof of Chavel is based on the fact that on the manifolds V1 and V2

there exist geodesics with conjugate points which are not isotropically conjugate.
In [13], the same result is proved for V3.

Ziller in [39] proposed to examine conjectures like: A naturally reductive
homogeneous space with the property that all Jacobi fields vanishing at two points
are isotropic is locally symmetric.
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Since the Riemannian symmetric spaces verify ∇R = 0, where R denotes
the Riemannian curvature tensor, we can expect that those Riemannian homo-
geneous manifolds nearest to the symmetric spaces must verify some polynomial
relations between ∇iR. In this direction it seems interesting the following

2 Proposition. For any Riemannian manifold if ∇R 	= 0, then ∇iR 	= 0,
for all i ≥ 2.

The proof was given by Lichnerowicz for the compact case [23] and by No-
mizu and Ozeki for the non-compact case [28].

In [33], Tsukada gives a criterion for the existence of totally geodesic sub-
manifolds of naturally reductive homogeneous spaces (n.r.h.s.). This criterion
is based on the curvature tensor and on a finite number of its derivatives with
respect to the Levi-Civita connection. In particular, to prove this result he uses
two basic formulae proved exclusively for n.r.h.s. by K. Tojo [32]. From these for-
mulae he obtained that the curvature tensor along a geodesic can be considered,
using parallel translation, as a curve in the space of curvature tensors on the
tangent space at the origin. Later, using the general theory, he concluded that
over n.r.h.s., the Jacobi tensor field has constant osculating rank r ∈ �. In fact,
in [33] the curves of constant osculating rank in the Euclidean space are defined
and this concept is applied to n.r.h. s. Working with the Levi-Civita connection
and using the interesting geometric result of Tsukada, mentioned above in [26],
it is proved that on the manifold V1, which appears in the Berger’s classification
as an example of n.r.h.s., but non symmetric, has osculating constant rank 2.
Given the generality of the method used in [26], the authors conjectured that it
could also be applied to solving problems related to the Jacobi equation in sev-
eral other examples of n.r.h.s.In fact, in [24] has been proved that the Wilking’s
manifold V3 is also of constant osculating rank 2. In [3], the authors had suc-
cessfully applied this method on the manifold F 6 = U(3)/(U(1)×U(1)×U(1))
and they have proved that this manifold is of constant osculating rank 4.

By definition, a Riemannian g.o. manifold is a homogeneous Riemannian
manifold on which every geodesic is an orbit of a one-parameter group of isome-
tries. The first counter-example of a Riemannian g. o. manifold which is not
naturally reductive is the six-dimensional Kaplan’s example. Following [26], in
[2] is proved that the Kaplan’s example is also of constant osculating rank 4.

2 A formula for the covariant derivative of the Jacobi

operator

Let M be an n-dimensional, connected, real analytic Riemannian manifold,
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g =<,> its Riemannian metric, m ∈ M, v ∈ TmM a unit tangent vector and
let γ : J → M be a geodesic in M defined on some open interval J of IR with
0 ∈ J, m = γ(0). For a geodesic γ(t) in M the associated Jacobi operator Rt

is the self-adjoint tensor field along γ defined by Rt( . ) = R( . , γ′)γ′. In the
following for the curvature tensor we follow the notations of [21]. The covariant
derivative R

i)
t of the Jacobi operator Rt along γ is the self-adjoint tensor field

defined by

R
i)
t ( . ) = (∇γ′

i). . . ∇γ′R)( . , γ′)γ′,

where ∇ is the Levi-Civita connection associated to the metric. Its value at γ(0)
will be denoted by

R
i)
0 ( . ) = (∇γ′

i). . . ∇γ′R)( . , γ′)γ′(0)

and we also denote R
0)
t by Rt. Using the induction method it is possible to prove

3 Theorem. [26] Let X be a vector field along the geodesic γ. For n ≥ 1,
we have

∇γ′
n). . . ∇γ′R(X, γ′)γ′ =

n∑
i=0

(
n

i

)
(Rn−i)

t )(∇γ′
i). . . ∇γ′X)( . , γ′)γ′(0).

3 An algebraic expression for the covariant deriva-
tive of the Jacobi operator on a n.r.h.s.

Let G be a Lie group, H a closed subgroup, M = G/H the space of left
cosets of H and π : G → G/H the natural projection. For x ∈ G we denote by
τ the induced action of G on G/H given by τ(x)(sH) = xsH, x, s ∈ G. The Lie
algebras of G and H will be denoted by g and h, respectively.

4 Definition. [9], [21, Vol. II, p. 202] M = G/H is said to be

a) Reductive homogeneous space if the Lie algebra g admits a vector space
decomposition g = h⊕m such that m is an Ad(H)-invariant subspace.

In this case, m is identified with the tangent space at the origin o = [H]
and we get [m, h] ⊂ m.

b) Riemannian homogeneous space if G/H is a Riemannian manifold such
that the metric is preserved by τ(x), for all x ∈ G. Then it corresponds
with an Ad(H)-invariant inner product < , > on m.
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c) Naturally reductive homogeneous space if there exists a reductive decom-
position g = m⊕ h satisfying

< [u, v]m, w > + < [u,w]m, v >= 0,

for all u, v, w ∈ m, where [u, v]m denotes the m-component of [u, v] and
< , > is the inner product induced on m.

d) Normal Riemannian homogeneous space when there exists a bi-invariant
metric on g whose restriction to m = h⊥ coincides with < , > .

An affine connection on M is said to be invariant if it is invariant under
τ(x), for all x ∈ G. It is well known ([4, Ch X, p. 186]) that there exists an
invariant affine connection D on G/H, the canonical connection, whose torsion
T and curvature B are also invariant. Because D is G-invariant T and B are
given by

To(u, v) = −[u, v]m, Bo(u, v)w = [[u, v]h, w],

for u, v, w ∈ m, where [u, v]h denotes the h-component of [u, v].
From now on we will assume that M = G/H is a n.r.h.s. We know (see [38],

[21, p.197]) that the Levi Civita connection ∇ is given by ∇uv = (1/2)[u, v]m.
Evidently, ∇u is a skew symmetric linear endomorphism of (m, <,>). Therefore
exp∇u is a linear isometry of (m,<,>). Since the Riemannian connection is a
natural free torsion connection on M, we have [32], [21, Ch. X]

5 Proposition. The following properties hold:

(i) For each v ∈ m, the curve γ(t) = τ(exp tv)o is a geodesic with γ(0) = o,
and γ′(t) = v.

(ii) The parallel translation along γ is given as follows

τ(exp tv)∗e−t∇v : ToM → ToM.

(iii) The (1, 3)-tensor Rt on m obtained by parallel translation of the Jacobi
operator along γ is given as follows

Rt = et∇v ·R0.

Above, R0 denotes the Jacobi operator at the origin o and et∇v denotes the
action on the space R(m) of curvature tensors on m.

6 Proposition. [21, Ch.1, p. 202] Let γ(t) be a geodesic as above. If X is
a differentiable vector field along γ, then

R0(X) = −[[X, v]h, v]− (1/4)[[X, v]m, v]m.
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7 Proposition. [26] Under the same hypothesis that in the Proposition 2,
we have for n > 0

(−1)n−12n(Rn)
0 )(X) =

n∑
i=0

(
n

i

)
(−1)i[. . . [[X, v]m, . . . , v]i+1)

h , . . . , v]m,

where for each term of the sum we have n + 2 brackets and the exponent i + 1)
means the position of the bracket valued on h.

We know that for each Z ∈ g, the mapping (t, p) ∈ IR×M to (exp tZ)p is a
one-parameter group of isometries and consequently, it induces a Killing vector
field Z∗ given by

Z∗
o =

d

dt |t=0
(exp tZ)o.

Z∗ is called the fundamental vector field or the infinitesimal G-motion corre-
sponding to Z on M.

On n.r.h.s., ∇ and D have the same geodesics and, consequently, the same
Jacobi fields ([9], [39]). Such geodesics are orbits of one-parameter subgroups of
G of type exp tu, where u ∈ m. Then, taking into account that DT = DB = 0
and the parallel translation with respect to D of tangent vectors at the origin
o along the geodesic γ(t) = (exp tu)o, u ∈ m, ‖u‖ = 1, coincides with the
differential of exp tu ∈ G action on M, it follows that the Jacobi equation can
be expressed as the differential equation

X ′′ − TuX
′ + BuX = 0

in the vector space m, where

TuX = T (u,X) = −[u,X]m

and
BuX = B(u,X)u = [[u,X]h, u].

The operator Tu is skew-symmetric with respect to <,>, Bu is self-adjoint and
they satisfy Ru = Bu − 1

4T
2
u [14].

8 Proposition. [14] A Jacobi field V along γ(t) with V (0) = 0 is G-
isotropic if and only if there exists an A ∈ h such that

V ′(0) = [A,u].

Then V = A∗ ◦γ. Obviously, any G-isotropic Jacobi field is isotropic, because
G is in I(M,g).

The following characterization for G-isotropic Jacobi fields on normal ho-
mogeneous spaces is useful.
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9 Lemma. [14] A Jacobi field V along γ(t) = (exp tu)o on a normal homo-
geneous space with V (0) = 0 is G-isotropic if and only if V ′(0) ∈ (Ker Bu)⊥.

The following result can be considered interesting to obtain Jacobi vector
fields along γ(t) vanishing at two points which are G-isotropic or not.

10 Proposition. [13] Let (M = G/K, g) be a normal homogeneous space
and let u, v be orthonormal vectors in m such that

(i) [u, v] ∈ m \ {0},
(ii) [[u, v], u]m = λv, for some λ > 0,

(iii) [[[u, v], u]k, u] = µ[u, v], for some µ ≤ 0.

Then , we have:

(A) If µ = 0, the vector fields V (t) along γ(t) = (exp tu)o given by

V (t) = (exp tu)∗o
((
−A sin

√
λt + B(1− cos

√
λt)
)
v

+
(
A(1− cos

√
λt) + B sin

√
λt
)
w
)
,

for A,B constants with w = 1√
λ
[u, v], are Jacobi fields such that V (2pπ√

λ
) =

0, for all p ∈ �, which are not G-isotropic.

(B) If µ < 0, the vector fields V (t) along γ(t) = (exp tu)o given by

V (t) = (exp tu)∗o
(√

λ
λ−µ

(
µ
λs(t)− sin s(t)− µ

2λso(1− cos s(t))
)
v

+(1− cos s(t)− µ
2λso sin s(t))w

)
,

where s(t) =
√

λ− µt and so ∈]0, 2π[ verifying µ
λso sin so = 2(1 − cos so),

is a Jacobi field such that V ( so√
λ−µ) = 0 and it is not G-isotropic.

4 Some examples

4.1 The Berger’s manifold V1 = Sp(2)/SU(2)

The Lie algebra sp(2) of the symplectic group Sp(2) can be view as a sub-
algebra of su(4) and so, as a subalgebra of su(5). A basis for sp(2) is given by
(see [6])

S1 = P1 − P2, S2 = P3 − P4, S3 = Q12,
S4 = R12, S5 = Q34, S6 = R34,
S7 = Q13 −Q24, S8 = R13 + R24, S9 = Q14 + Q23,
S10 = R14 −R23,
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where Qkl = Ekl − Elk, Rkl =
√−1(Ekl + Elk) and Pk =

√−1(Ekk − E55)
and Ekl denote the (5 × 5) matrices (δakδbl)1≤a,b≤5, for 1 ≤ k, l ≤ 5. Then
an orthonormal basis of sp(2) with respect to the inner product < X,Y >=
−1

5 traceXY and adapted to the reductive decomposition sp(2) = su(2) ⊕m is
{K1,K2,K3;M1, . . .M7}, where

K1 =
1
2
(3S1 + S2), K2 = S5 +

√
3

2
S7, K3 = S6 +

√
3

2
S8

generate su(2) and

M1 = 1
2 (S1 − 3S2), M2 =

√
5
2S3, M3 =

√
5
2S4,

M4 = 1√
2
(
√

3S5 − S7), M5 = 1√
2
(
√

3S6 − S8), M6 =
√

5
2 S9,

M7 =
√

5
2 S10

is basis for m. The brackets [Mi,Mj ] 1 ≤ i < j ≤ 7, are given by

[M1,M2] = M3, [M1,M3] = −M2,

[M1,M4] = −(M5 +
√

6K3), [M1,M5] = M4 +
√

6K2,

[M1,M6] = −M7, [M1,M7] = M6,

[M2,M3] = M1 + 3K1, [M2,M4] = M6,

[M2,M5] = −M7, [M2,M6] = −M4 +
√

3
2K2,

[M2,M7] = M5 −
√

3
2K3, [M3,M4] = M7

[M3,M5] = M6, [M3,M6] = −M5 +
√

3
2K3,

[M3,M7] = −M4 +
√

3
2K2, [M4,M5] = −M1 + K1,

[M4,M6] = M2 +
√

5
2K2, [M4,M7] = M3 +

√
5
2K3,

[M5,M6] = M3 −
√

5
2K3, [M5,M7] = −M2 +

√
5
2K2,

[M6,M7] = −M1 + 2K1 .

Hence, using Proposition 10, we can prove

11 Proposition. [13] On V1 there exist 2-dimensional subspaces m′ of m

such that for all u ∈ m′, the geodesic γ(t) = (exp tu)o admits Jacobi fields
vanishing at two points which are not isotropic.

In the classical literature, curves of constant osculating rank in the Euclidean
space are defined and this concept is applied to n.r.h.s. Let c : I → IRn be a
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curve defined on an open interval I of IR into IRn. We say that c has constant
osculating rank r if for all t ∈ I, its higher order derivatives c′(t), . . . , cr)(t) are
linearly independent and c′(t), . . . , cr+1)(t) are linearly dependent in IRn. It is
a fundamental fact that if c has constant osculating rank r, there exist smooth
real functions a1, . . . , ar : I → IR such that

c(t) = c(0) + a1(t)c′(0) + · · ·+ ar(t)cr)(0).

We return to a n.r.h.s. M. For a unit vector v ∈ m determining the geodesic γ,
Rt = et∇vRo is a curve in R(m). Since et∇v is a one-parameter subgroup of the
group of linear isometries of R(m), the curve Rt has constant osculating rank r,
[33]. Therefore, for the Jacobi operator we have

Rt = R0 + a1(t)R
1)
0 + · · ·+ ar(t)R

r)
0 .

Working with the Levi-Civita connection and using the interesting geometric
Tsukada’s result mentioned above, in [26], it is proved that the manifold V1 has
constant osculating rank 2. In fact, we prove that

R
2n)
0 = (−1)n−1R

2)
0 , R

2n+1)
0 = (−1)nR1)

0 .

In order to be able to determine the explicit form of the Jacobi operator
along an arbitrary geodesic γ with initial vector v at the origin, it is useful to
determine the values of Ri)

0 , i = 0, 1, 2, 3, 4. We obtain them by using Proposition
7. In the following we always suppose that v ∈ m is an arbitrary unit vector, that
is, v =

∑7
i=1 xiMi,

∑7
i=1(x

i)2 = 1. Further, we denote by {Ei, i = 1, . . . , 7}
the orthonormal frame field along γ obtained by parallel translation of the basis
{Mi}. Evidently, the operators R

i)
0 , i = 0, 1, 2, 3, 4, are given by

R
i)
0 = R

i)
kl(0), R

i)
kl(0) =< Ri)(Ek), El > (0).

In [26] it is proved
12 Lemma. At γ(0) we have:

(i) R
3)
0 = −‖γ′‖2R1)

0 = −R
1)
0 ,

(ii) R
4)
0 = −‖γ′‖2R2)

0 = −R
2)
0 .

13 Proposition. At γ(0) we have:

(i) R
2n)
0 = (−1)n−1R

2)
0 ,

(ii) R
2n+1)
0 = (−1)nR1)

0 .

14 Corollary. V1 has constant osculating rank 2.
15 Corollary. Along the geodesic γ the Jacobi operator can be written as

Rt = R0 + R
2)
0 + R

1)
0 sin t−R

2)
0 cos t.
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4.2 The Wilking’s manifold V3 = (SU(3)× SO(3))/U•(2)

We recall that V3 := (SO(3) × SU(3))/U•(2) is equipped with a one-pa-
rameter family of biinvariant metrics, where U•(2) is the image of U(2) under
the embedding (π, ι) : U(2) ↪→ SO(3) × SU(3), where π is the projection π :
U(2) → U(2)/S1 ∼= SO(3), being S1 ⊂ U(2) the center of U(2), and ι is the
natural inclusion

ι(A) :=
(

A 0
0 detA−1

)
for A ∈ U(2).

Using the natural isomorphism between so(3) and su(2), we can consider the Lie
algebra so(3) ⊕ su(3) of SO(3) × SU(3) as the subalgebra of su(5) of matrices
of the form

X =
(

X1 0
0 X2

)
X1 ∈ su(2), X2 ∈ su(3).

Then the Lie algebra u•(2) of U•(2) may be expressed as

u•(2) =

⎧⎨⎩
⎛⎝ π∗A 0 0

0 A 0
0 0 − traceA

⎞⎠ | A ∈ u(2)

⎫⎬⎭ ,

where π∗ denotes the differential map of π. On V3 it is considered the one-
parameter family of metrics gλ induced by the bi-invariant metrics <,>λ, for
λ > 0, on SO(3)× SU(3) given by

< X,Y >λ= −1
2
(λ trace X1Y1 + traceX2Y2),

for X,Y ∈ so(3)⊕ su(3). Then (V3, gλ) is isometric to the Aloff-Wallach spaces
(M7

11, g̃t), for t = − 3
2λ+3 , [37].

Next, we choose an orthonormal basis of so(3) ⊕ su(3) adapted to the re-
ductive decomposition u•(2) ⊕ m, where m is the orthogonal space to u•(2) in
so(3) ⊕ su(3). An orthonormal basis for u•(2) is given by

K1 = 1√
1+λ

(P1 − P2 + P3 − P4), K2 = 1√
1+λ

(R12 + R34),

K3 = 1√
1+λ

(Q12 + Q34), K4 = 1√
3
(P3 + P4)

and {M1, . . . ,M7}, given by

M1 = 1√
λ(1+λ)

(P1 − P2 − λ(P3 − P4)), M2 = 1√
λ(1+λ)

(R12 − λR34),

M3 = 1√
λ(1+λ)

(Q12 − λQ34),
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M4 = Q35, M5 = Q45, M6 = R35, M7 = R45,

constitute an orthonormal basis for m. The brackets [Mi,Mj ] 1 ≤ i < j ≤ 7, are
given by

[M1,M2] = − 2√
λ(1+λ)

((1 − λ)M3 +
√

λK3),

[M1,M3] = 2√
λ(1+λ)

((1− λ)M2 +
√

λK2),

[M1,M4] = −
√

λ
1+λM6, [M1,M5] =

√
λ

1+λM7,

[M1,M6] =
√

λ
1+λM4, [M1,M7] = −

√
λ

1+λM5,

[M2,M3] = − 2√
λ(1+λ)

((1 − λ)M1 +
√

λK1),

[M2,M4] = −
√

λ
1+λM7, [M2,M5] = −

√
λ

1+λM6,

[M2,M6] =
√

λ
1+λM5, [M2,M7] =

√
λ

1+λM4,

[M3,M4] =
√

λ
1+λM5, [M3,M5] = −

√
λ

1+λM4,

[M3,M6] =
√

λ
1+λM7, [M3,M7] = −

√
λ

1+λM6,

[M4,M5] = 1√
1+λ

(
√

λM3 −K3),

[M4,M6] = − 1√
1+λ

(
√

λM1 −K1) +
√

3K4,

[M4,M7] = −1√
1+λ

(
√

λM2 −K2), [M5,M6] = −1√
1+λ

(
√

λM2 −K2),

[M5,M7] = 1√
1+λ

(
√

λM1 −K1) +
√

3K4, [M6,M7] = 1√
1+λ

(
√

λM3 −K3).

Taking into account that one obtains

[K1,M1] = 0, [K1,M2] = − 2√
1+λ

M3, [K1,M3] = 2√
1+λ

M2,

[K2,M1] = 2√
1+λ

M3, [K2,M2] = 0, [K2,M3] = − 2√
1+λ

M1,

[K3,M1] = − 2√
1+λ

M2, [K3,M2] = 2√
1+λ

M1, [K3,M3] = 0.

It is proved in [13] the following result.

16 Theorem. The 3-dimensional real projective space IRP 3(λ+1
λ ) can be

isometrically embedded as a totally geodesic submanifold in (V3, gλ) and any
geodesic in this submanifold admits Jacobi fields on (V3, gλ) vanishing at two
points which are not isotropic.

Aloff and Wallach [1] have introduced (V3, gλ) from a different point of view.
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They studied for positive integers k and l the groups

Tkl :=

⎧⎨⎩
⎛⎝ zk 0 0

0 zl 0
0 0 z̄k+l

⎞⎠ | z ∈ S1 ⊂ �

⎫⎬⎭ ⊂ U(2) ⊂ SU(3),

and the one-parameter family of left-invariant, Ad(U(2))-invariant metrics on
SU(3), given by

gt(u + x, v + y) := −(1 + t)Bsu(3)(u, v) −Bsu(3)(x, y),

where t ∈] − 1,∞[, u, v ∈ u(2), x, y ∈ u(2)⊥ and Bsu(3) denotes the Killing
form of SU(3). In [1], Aloff and Wallach have shown that the space (M7

k,l, gt) :=
(SU(3), gt)/Tk,l has positive sectional curvature if and only if t ∈]− 1, 0[.

17 Proposition. [37] (V3, gλ) is isometric to (M7
1,1, gt), for t = − 3

2λ+3 .

The following results can be found in [24].

18 Lemma. For λ = 2/3 at γ(0), we have:

5R3)
0 = −2‖γ′‖2R1)

0 = −2R1)
0 , 5R4)

0 = −2‖γ′‖2R2)
0 = −2R2)

0 .

19 Proposition. For λ = 2/3 at γ(0), we have:

5R2n)
0 = (−1)n−12R2)

0 , 5R2n+1)
0 = (−1)n2R1)

0 .

20 Corollary. V3 has constant osculating rank 2 if and only if λ = 2/3.
21 Corollary. For λ = 2/3 along the geodesic γ the Jacobi operator can be

written as

Rt = R0 − 5
2
R

2)
0 +

√
5
2
R

1)
0 sin

√
2
5
t +

5
2
R

2)
0 cos

√
2
5
t.

Now, proceeding as in 4.1, we are able to determine for the manifold V3 the
explicit form of the Jacobi operator along an arbitrary geodesic γ with initial
vector v at the origin o.

Conjecture. All examples of normal homogeneous spaces coming from the
Berger’s classification are of constant osculating rank zero or two.

4.3 The Berger’s manifold V2 = SU(5)/Sp(2)× S1

M. Berger in [6] has shown that the Lie algebra h of the isotropy subgroup
in V2 is given up to isomorphism by h = sp(2) ⊕ R, where R is the centralizer
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of su(4) in su(5). Following [17], an orthonormal basis of su(5) with respect
to the bi-invariant inner product < X,Y >= −1

4 traceXY and adapted to the
reductive decomposition su(5) = h ⊕ m is {H1, . . . ,H11;M1, . . . ,M13} where
{H1, . . . ,H11} is basis of h given by

H1 = P1 + P2 − P3 − P4, H2 = Q13 + Q24, H3 = R13 + R24,
H4 = P1 − P2 − P3 + P4, H5 = Q13 −Q24, H6 = R13 −R24,
H7 = R12 −R34, H8 = Q14 + Q23, H9 = R14 + R23,

H10 = 1/
√

5(P1 + P2 +P3 +P4), H11 = Q12 + Q34.

Here, H10 is the generator of R and

M1 =
√

2Q15, M2 =
√

2Q25, M3 =
√

2Q35, M4 =
√

2Q45,

M5 =
√

2R15, M6 =
√

2R25, M7 =
√

2R35, M8 =
√

2R45,
M9 = Q12−Q34, M10 = Q14−Q23, M11 = R12 +R34,

M12 = R14 −R23, M13 = P1 − P2 + P3 − P4

constitute an orthonormal basis for m = h⊥.

22 Lemma. [13] The subspace ν of m generated by {M9, . . . ,M13} is a
symmetric Lie triple system and the corresponding Lie subalgebra s is isomorphic
to su(4).

Hence, one can show that SU(4)/Sp(2) becomes into a totally geodesic sub-
manifold of V2, which is isometric to the 5-dimensional sphere S5 with constant
sectional curvature 4, or equivalently, with radius 1/2. Then it proves the fol-
lowing

23 Theorem. [13] The 5-dimensional sphere S5 of radius 1
2 can be isomet-

rically embedded as a totally geodesic submanifold in V2 and any geodesic in this
submanifold admits Jacobi fields on V2 vanishing at two points which are not
isotropic.

4.4 The flag manifold F 6 = U(3)/(U(1)× U(1)× U(1))

Here we study the constant osculating rank of the Jacobi operator on the
flag manifold F 6 with a bi-invariant metric. We have the corresponding Lie
algebras g = su(3), h = su(1)⊕ su(1)⊕ su(1) and m = h⊥. It is well known that
this manifold is a six-dimensional 3-symmetric space [15]. On m we consider the
bi-invariant metric < A,B >= −Re(trace AB). An adapted orthonormal basis
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to g = m⊕ h is given by {Qi}, i = 1, . . . , 9, where

Q1 =
√

2
2

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ , Q2 =
√

2
2

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ , Q3 =
√

2
2

⎛⎝0 0 0
0 0 1
0 −1 0

⎞⎠,
Q4 =

√
2

2

⎛⎝0 i 0
i 0 0
0 0 0

⎞⎠ , Q5 =
√

2
2

⎛⎝0 0 i
0 0 0
ci 0 0

⎞⎠ , Q6 =
√

2
2

⎛⎝0 0 0
0 0 i
0 i 0

⎞⎠
span m and h is generated by

Q7 =

⎛⎝i 0 0
0 0 0
0 0 0

⎞⎠ , Q8 =

⎛⎝0 0 0
0 i 0
0 0 0

⎞⎠ , Q9 =

⎛⎝0 0 0
0 0 0
0 0 i

⎞⎠ .

The multiplication table associated to the Lie algebra g is the following:

[Q1, Q2] = −
√

2
2 Q3, [Q1, Q3] =

√
2

2 Q2, [Q1, Q4] = Q7 −Q8,

[Q1, Q5] =
√

2
2 Q6, [Q1, Q6] = −

√
2

2 Q5, [Q1, Q7] = −Q4,

[Q1, Q8] = Q4, [Q1, Q9] = 0, [Q2, Q3] = −
√

2
2 Q1,

[Q2, Q4] = −
√

2
2 Q6, [Q2, Q5] = −Q7 + Q9, [Q2, Q6] =

√
2

2 Q4,

[Q2, Q7] = Q5, [Q2, Q8] = 0, [Q2, Q9] = −Q5,

[Q3, Q4] =
√

2
2 Q5, [Q3, Q5] = −

√
2

2 Q4, [Q3, Q6] = Q8 −Q9,

[Q3, Q7] = 0, [Q3, Q8] = −Q6, [Q3, Q9] = Q6,

[Q4, Q5] =
√

2
2 Q3, [Q4, Q6] = −

√
2

2 Q2, [Q4, Q7] = Q1,

[Q4, Q8] = −Q1, [Q4, Q9] = 0, [Q5, Q6] =
√

2
2 Q1,

[Q5, Q7] = −Q2, [Q5, Q8] = 0, [Q5, Q9] = Q2,

[Q6, Q7] = 0, [Q6, Q8] = Q3, [Q6, Q9] = −Q3,

[Q7, Q8] = 0, [Q7, Q9] = 0, [Q6, Q9] = 0.

Now proceeding as in [26], in [3] the authors had proved
24 Proposition. On the manifold F 6 the Jacobi operator has constant os-

culating rank of order 4 and the relations among R
i)
0 are

1
16
‖γ′‖4R1)

0 +
5
8
‖γ′‖2R3)

0 + R
5)
0 = 0,

1
16
‖γ′‖4R2)

0 +
5
8
‖γ′‖2R4)

0 + R
6)
0 = 0

and so on.
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Moreover, F 6 is naturally reductive and compact. For naturally reductive
Riemannian 3-symmetric spaces in [12] it is proved the following theorem, which
gives in this case a positive answer for the Ziller’s conjecture already mentioned:

25 Theorem. A naturally reductive compact 3-symmetric space with the
property that all Jacobi fields vanishing at two points are isotropic is a (Hermi-
tian) symmetric space.

26 Theorem. On the manifold F6 the Jacobi operator along the geodesic γ
has constant osculating rank 4 and it can be written as

Rt = R0 + 10R2)
0 + 16

3 R
4)
0

−
√

2
3 (R1)

0 + 8R3)
0 ) sin t√

2
+ 2

3(8R4)
0 + R

2)
0 ) sin t√

2

+8
√

2
3 (R1)

0 + 2R3)
0 ) sin t

2
√

2
− 32

3 (R2)
0 + 2R4)

0 ) cos t
2
√

2
.

4.5 The osculating rank of the Jacobi operator for the Kaplan’s
example

The property of natural reductibility is still a special case of a more general
property:

” Each geodesic of (M,<,>) = G/H, is an orbit of a one-parameter group
of isometries exp tZ, Z ∈ g” (g. o.)

Riemannian homogeneous spaces (M,<,>) = G/H with this property (g.o.)
will be called (Riemannian) g.o. spaces. The extensive study of g.o. spaces start
just with the Kaplan’s papers [19], [20], because he gives the first counterex-
ample of a Riemannian g.o. manifold which is not naturally reductive. This is
a six-dimensional Riemannian nilmanifold with a two-dimensional center, one
of the so-called generalized Heisenberg groups. Later this class of manifolds has
provided a large number of counter-examples . The first known 7-dimensional
compact examples of Riemannian g.o. manifolds which are not naturally reduc-
tive have been found in [11].

The basic definitions and results about generalized Heisenberg groups can
be obtained in [19] and [20]. According to [26], the following was proved in [2]:

27 Theorem. Let (M,<,>) be a Riemannian g.o. space. Then there al-
ways exists a finite real number r such that the curvature operator has constant
osculating rank r.

28 Corollary. Let (M,<,>) be a Riemannian g.o. space. Then the curva-
ture operator and the Jacobi operator have the same constant osculating rank
r.
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Now we consider the Kaplan’s example N6 [19], [20]. Let n be a six-dimensio-
nal vector space equipped with a scalar product < , > and let

{E1, E2, E3, E4, E5, E6}
be an orthonormal basis. The elements E5 and E6 span the center z of the Lie
algebra n, whose structure is given by the following relations.

[E1, E2] = 0, [E1, E3] = E5, [E2, E3] = E6,

[E1, E4] = E6, [E2, E4] = −E5, [E3, E4] = 0,

[Ek, E5] = [Ek, E6] = 0, k = 1, . . . , 4, [E5, E6] = 0.

The following results can be found in [2].
29 Corollary. The osculating rank of the Jacobi operator Rt is constant in

the Kaplan’s example.
Working with the covariant derivatives of the Jacobi operator as in [26], we

have:
30 Lemma. The relations satisfied among the n-covariant derivatives for

n = 1, . . . , 6 of the (0, 4)-Jacobi operator along the arbitrary geodesic γ of the
Kaplan’s example are

1
4
‖γ′‖4R1)

0 +
5
4
‖γ′‖2R3)

0 + R
5)
0 = 0,

1
4
‖γ′‖4R2)

0 +
5
4
‖γ′‖2R4)

0 + R
6)
0 = 0

and so on.
31 Theorem. The Jacobi operator along the geodesic γ in the Kaplan’s

example has constant osculating rank 4 and it can be written as

Rt = (R0 + 5R2)
0 + 4R4)

0 )

−1
3(4R3)

0 + R
1)
0 ) sin t

2 − 16
3 (R4)

0 + R
2)
0 cos t

2

−1
3(R1)

0 + 4R3)
0 ) sin t + 1

3(R2)
0 + 4R4)

0 ) cos t.

32 Proposition. The Jacobi tensor field At along the geodesic γ in the
Kaplan’s example with initial values A0 = 0, A

1)
0 = I is given by

At =
∞∑
k=0

1
k!

βk(0)tk,

where α0(t) = α1(t) = β0(t) = 0, β1(t) = I and

βk(t) = αk−1(t) + β′
k−1(t), αk(t) = α′

k−1(t)−Rtβk−1(t),
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for k ≥ 2. Moreover, the coefficients βk(0) are only functions from R0, R
1)
0 , R

2)
0 ,

R
3)
0 and R

4)
0 .

33 Remark. For this example, in [7] the authors obtained the expression
for the Jacobi vector fields by a different method.

Open question. What is the geometrical meaning of the constant rank of the
Jacobi operator on a Riemannian homogeneous space?
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