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Via Carlo Alberto 10, 10123 Torino, Italy
annamaria.fino@unito.it

Adriano Tomassiniii
Dipartimento di Matematica, Università di Parma,
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Abstract. We review generalized complex geometry in relation with solvmanifolds and
we describe the construction in [17] of a generalized Kähler structure on a 6-dimensional
solvmanifold. The compact manifold is the total space of a �

2-bundle over an Inoue surface
and does not admit any Kähler structure.
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Introduction

The generalized Kähler structures were introduced and studied by M. Gual-
tieri in his PhD thesis [23] in the more general context of generalized geometry
started by N. Hitchin in [28] for generalized Calabi-Yau manifolds. Both gener-
alized Kähler and generalized Calabi-Yau structures are related to generalized
complex geometry, which contains complex and symplectic geometry as extremal
special cases and shares important properties with them.

Even if there are many explicit constructions [2, 3, 29, 32, 35, 6, 11, 17]
the problem about the existence of non-trivial generalized Kähler structures on
compact manifolds which do not admit any Kähler structure is interesting.

Some obstructions and conditions on the underlying complex manifolds were
determined (as [3, 8, 23] and related references show).
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170 A. Fino, A. Tomassini

By [23, 3] it follows that a generalized Kähler structure on a 2m-dimensional
manifold M is equivalent to a pair of Hermitian structures (J+, g) and (J−, g),
where J± are two integrable almost complex structures on M and g is a Her-
mitian metric with respect to J±, such that the 3-form H = dc+F+ = −dc−F− is
closed, where F±(·, ·) = g(J±·, ·) are the fundamental 2-forms associated with
the Hermitian structures (J±, g) and dc± = i(∂±−∂±). In particular, any Kähler
metric (J, g) determines a generalized Kähler structure by setting J+ = J and
J− = ±J .

If (J±, g) is a generalized Kähler structure, then the two fundamental 2-
forms F± are ∂±∂±-closed. Therefore the Hermitian structures (J±, g) are strong
Kähler with torsion and the closed 3-form H can be also identified with the
torsion of the Bismut connections associated with the two Hermitian structures
(J±, g) (see [5, 22]). The 3-form H is called the torsion of the generalized Kähler
structure and the structure is said untwisted or twisted according to the fact that
the cohomology class [H] ∈ H3(M,�) vanishes or not.

The strong Kähler with torsion structures have been studied by many au-
thors in [15, 16, 19, 31, 39]. In the case of a complex surface, a Hermitian metric
g which satisfies the strong Kähler condition is standard in the terminology of
Gauduchon ([21]) and if, in addition, M is compact, then any Hermitian con-
formal class contains a standard metric.
Compact homogeneous examples in six dimensions are given in [16], where the
Hermitian manifolds are provided by nilmanifolds, i.e. compact quotients of
nilpotent Lie groups by uniform discrete subgroups, endowed with an Hermitian
structure (J, g) in which J and g arise from left-invariant tensors. In [8] it was
proved that these compact manifolds cannot admit any invariant generalized
Kähler structure unless they are tori. Nevertheless, Cavalcanti and Gualtieri in
[9] proved that all 6-dimensional nilmanifolds admit both left-invariant gener-
alized complex structures and left-invariant generalized Calabi-Yau structures.

No general restrictions for the existence of generalized Kähler and general-
ized Calabi-Yau structures are known in the case of solvmanifolds, i.e. for com-
pact quotients of solvable Lie groups by uniform discrete subgroups. A structure
theorem by [26] states that a solvmanifold carries a Kähler structure if and only
it is covered by a complex torus which has a structure of a complex torus bundle
over a complex torus.

Generalized complex structures on 4-dimensional solvable Lie groups have
been studied in [12], but no result is known in higher dimensions.

As far as we know, the only known solvmanifolds carrying a generalized
Kähler structure are the Inoue surface of type SM defined in [30] and the 
2-
bundle over the Inoue surface of type SM constructed in [17]. In [3] the complex
solvmanifold from [13] was considered and it was shown that this manifold does
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not admit any left-invariant strong Kähler with torsion metric compatible with
the natural left-invariant complex structure.

This note consists essentially of two parts. The first collects some defini-
tions and results on generalized complex, generalized Calabi-Yau and gener-
alized Kähler manifolds. These structures are reviewed also in relation with
solvmanifolds, discussing what is known about their existence on this type of
homogeneous manifolds.

The second part reviews the construction of the Inoue surface of type SM
and of the 6-dimensional solvmanifold found in [17].

1 Pure spinors

Before reviewing the definition of a generalized complex structure on a 2m-
dimensional manifold, let us start by recalling some definitions and results by
Cavalcanti [7], Gualtieri [23] and Hitchin [28] on pure spinors related to linear
generalized complex structures on a real vector space. Both generalized com-
plex structures and generalized Calabi-Yau structures can be defined in terms
of pure spinors.

Let V be an n-dimensional real vector space. A natural symmetric bilinear
form (, ) on V ⊕ V ∗ is defined by setting

(X + ξ, w + η) =
1
2
(ξ(w) + η(X)).

Then the natural pairing ( , ) on V ⊕ V ∗ is non-degenerate and with signature
(n, n). The group O(V ⊕ V ∗) of transformations of V ⊕ V ∗ preserving the sym-
metric bilinear form ( , ) is isomorphic to the non-compact group O(n, n). Note
that V ⊕ V ∗ has a canonical orientation. Indeed, we have the identification

� = Λ2n(V ⊕ V ∗) = ΛnV ⊗ ΛnV ∗

by using the natural pairing ( , ) : ΛkV ×ΛkV ∗ → � defined on simple elements
η = η1 . . . ∧ ηk, u = u1 ∧ . . . ∧ uk as

(η, u) = det(ηi(uj)) .

Hence, Λ2n(V ⊕ V ∗) = �. The Lie group preserving the bilinear form ( , ) and
the orientation is the special orthogonal group SO(V ⊕ V ∗) ∼= SO(n, n).

By using a block representation, the elements of the Lie algebra so(V ⊕V ∗)
can be written in the form

T =
(

A β
B −A∗

)
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172 A. Fino, A. Tomassini

where A ∈ End(V ), β : V ∗ → V , B : V → V ∗ and such that B = −B∗,
β = −β∗. Hence, B and β give rise to elements of Λ2V ∗ and Λ2V respectively,
by setting

B(Y,X) = ιXB(Y ) , β(ξ, η) = η(β(ξ)) ,

where ιX denotes the contraction along X.
Therefore, one gets the following splitting

so(V ⊕ V ∗) = End(V )⊕ Λ2V ∗ ⊕ Λ2V .

The space Λ∗V ∗ can be viewed as a module over the Clifford algebra CL(V⊕V ∗),
defined by the relation

v2 = (v, v) , for any v ∈ V ⊕ V ∗ .

The elements of the Clifford algebra act on the exterior algebra Λ∗V ∗ as

(X + ξ) · ϕ = ιXϕ + ξ ∧ ϕ

and

(X + ξ)2 · ϕ = (X + ξ) · (ιXϕ + ξ ∧ ϕ) = ιX(ξ ∧ ϕ) + ξ ∧ ιXϕ

= (ιXξ)ϕ = (X + ξ,X + ξ)ϕ .

This gives rise to the spin representation S of the group Spin(V ⊕V ∗). Since the
volume form η of the Clifford algebra on V ⊕ V ∗ satisfies the condition η2 = 1,
the spin representation S decomposes into the ±1-eigenspaces of the volume
form

S = S+ ⊕ S−

and the above splitting corresponds in terms of differential forms to

Λ∗V ∗ = ΛevV ∗ ⊕ ΛodV ∗ ,

since
S+ = ΛevV ∗ ⊗ (ΛnV ∗)

1
2 ,

S− = ΛodV ∗ ⊗ (ΛnV ∗)
1
2 .

If V has even dimension n = 2m, it is possible to define the invariant bilinear
form on S± given for even spinors by

〈ϕ,ψ〉 =
∑
k

(−1)kϕ2k ∧ ψn−2k ∈ ΛnV ∗ ⊗ ((ΛnV ∗)
1
2 )2 = � ,
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and for odd spinors by

〈ϕ,ψ〉 =
∑
k

(−1)kϕ2k+1 ∧ ψn−2k−1 ∈ ΛnV ∗ ⊗ ((ΛnV ∗)
1
2 )2 = � .

A non-zero spinor ϕ ∈ S± is called pure, if its null space, i.e. the subspace of
V ⊕ V ∗ defined as

Eϕ = {X + ξ ∈ V ⊕ V ∗ | (X + ξ) · ϕ = 0}

has dimension n , or equivalently if Eϕ is maximally isotropic.
Indeed, the null space of a spinor ϕ is isotropic, since for any v,w ∈ Eϕ,

2〈v,w〉ϕ = (vw + wv) · ϕ = 0 ,

where we used the following

(v + w)2 = (v + w, v + w) = v2 + w2 + 2(v,w)

and v · ϕ = w · ϕ = 0.
For example, let 1 be the spinor in Λ0V ∗ ⊂ Λev; then 1 is pure, since

(X + ξ) · 1 = ξ

and consequently E1 = V ⊂ V ⊕ V ∗.
If we apply any element of the group Spin(V ⊕ V ∗) to the spinor 1, then we
obtain another pure spinor. In particular, if B ∈ Λ2V ∗, then

expB = 1 + B +
1
2
B2 + . . .

is a pure spinor. In such a case, we have

EexpB = {X + ι(X)B ∈ V ⊕ V ∗ | X ∈ V } .

By Chevalley [10, III 2.4], if ϕ,ψ are pure spinors, then

〈ϕ,ψ〉 = 0 (1)

if and only if Eϕ ∩ Eψ 	= {0}. Moreover, any maximal isotropic subspace of
V ⊕ V ∗ is represented by a unique pure line in the spin bundle S. The line is
contained in S+ for even maximal isotropic subspaces and in S− for odd ones.
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2 Linear generalized complex structures

By [28, 23, 8, 20] it is possible to define an endomorphism of V ⊕ V ∗ which
generalizes both complex and symplectic structure.

1 Definition. A generalized complex structure on a real vector space V is
an endomorphism J of V ⊕ V ∗ such that

• J2 = −idV⊕V ∗

• J∗ = −J,

where J∗ : (V ⊕ V ∗)∗ → V ⊕ V ∗ is the dual map of J and V ⊕ V ∗ is identified
to its dual space via the natural pairing ( , ) on V ⊕ V ∗.

The following propositions by [23, Proposition 4.2 and 4.3] characterize gen-
eralized complex structures.

2 Proposition. A generalized complex structure on V is equivalent to as-
sign a complex structure on V ⊕V ∗ that is orthogonal with respect to the natural
pairing on V ⊕ V ∗.

Indeed, if J is a generalized complex structure on V , one has

(Jv, Jw) = (J∗Jv,w) = −(J2v,w) = (v,w),

for any v,w ∈ V ⊕ V ∗.
In terms of isotropic subspaces with respect to the natural pairing ( , ), as

for the case of complex structures, we have the following
3 Proposition. A generalized complex structure J on V is equivalent to

assign a maximal isotropic subspace E of (V ⊕ V ∗)⊗� such that E ∩E = {0}.
As in the case of the complex structures, if J is a generalized complex struc-

ture on V , the corresponding maximal isotropic subspace is

E = {v ∈ (V ⊕ V ∗)⊗ � | Jv = iv} .

Viceversa, if E is maximal isotropic and such that E ∩ E = {0}, the gener-
alized complex structure J on V ⊕ V ∗ is given by{

Jv = iv, ∀v ∈ E

Jv = −iv, ∀v ∈ E .

By [23, Theorem 4.8] any maximal isotropic subspace E in (V ⊕ V ∗) ⊗ �

corresponds to a pure spinor line generated by

ϕE = exp(B + iω)Ω, (2)
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where B,ω are real 2-forms and Ω = θ1 ∧ · · · ∧ θn, with (θ1, . . . , θk) linearly
independent complex 1-forms. The integer k is called the type of the maximal
isotropic subspace or equivalently of the generalized complex structure.

The complex and symplectic structures are generalized complex structures
of “extreme”type.

4 Example (Complex structures). Let J be a complex structure on V .
Define J as

J =
( −J 0

0 J∗

)
.

Then J is a complex structure on V ⊕ V ∗ and J∗ = −J, i.e. J is a generalized
complex structure on V . The corresponding pure spinor line is generated by
ϕE = Ωn,0, where Ωn,0 is a generator of the space of (n, 0)-forms on the complex
space (V, J) and therefore the generalized complex structure is of type n.

5 Example (Symplectic structures). Let ω be a symplectic structure on V .
Set

J =
(

0 −ω−1

ω 0

)
.

Then J2 = −idV⊕V ∗ and J∗ = −J, i.e. J is a generalized complex structure on
V . The associated pure spinor line is generated by ϕE = exp(iω) and thus the
generalized complex structure is of type 0.

3 Twisted Courant bracket and generalized complex
structures

In this section, following [23], we recall the definition of generalized complex
structure.
Let M be a manifold of dimension n and H be a closed 3-form on M . Denote by
TM and T ∗M the tangent and cotangent bundle of M respectively. The twisted
Courant bracket is the skew-symmetric map

[ , ] : TM ⊕ T ∗M → TM ⊕ T ∗M

defined as

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ − 1
2
d(ιXη − ιY ξ) + ιXιYH ,

for any X,Y ∈ Γ(TM) and any ξ, η ∈ Γ(T ∗M), where LX denotes the Lie
derivative along the vector field X. By definition, the 3-form H is said to be the
torsion or the twisting of the Courant bracket.
In particular, if H = 0, then [ , ] is the usual Courant bracket on TM ⊕ T ∗M .
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Observe that, in general, the twisted Courant bracket does not satisfy the Jacobi
identity. Indeed, for any A,B,C sections of TM ⊕ T ∗M , let

JacH(A,B,C) = [[A,B], C] + [[B,C], A] + [[C,A], B]

the Jacobiator and

NijH(A,B,C) =
1
2
(([A,B], C) + ([B,C], A) + ([C,A], B)) + H(A,B,C)

the Nijenhuis operator, where ( , ) denotes the natural pairing on TM ⊕ T ∗M .
Then the following holds [23, p. 43]

JacH(A,B,C) = d(NijH(A,B,C)) .

In the case M is a Lie group, the twisted Courant bracket when restricted to
left-invariant vector fields and left-invariant 1-forms satisfies the Jacobi identity.
We are ready to recall the following

6 Definition. A generalized complex structure on M is the datum of a
subbundle E ⊂ (TM ⊕ T ∗M)⊗ � such that

(1) E ⊕ E = (TM ⊕ T ∗M)⊗ �;

(2) the space of sections of E is closed under the Courant bracket [ , ];

(3) E is isotropic.

By Proposition 2, it follows that a generalized complex structure on M is
equivalent to give an almost complex structure J on the bundle TM ⊕ T ∗M ,
compatible with the natural pairing, which is integrable with respect to the
Courant bracket. Moreover, by the results reviewed in Section 1, the maximal
isotropic subbundle E of (TM ⊕ T ∗M) ⊗ � can be expressed as the Clifford
annihilator of the unique line subbundle UE of the complex spinors for the
metric bundle TM⊕T ∗M . By definition UE is a pure spinor line and it is called
the canonical line bundle of the generalized complex structure J associated with
E. In terms of complex differential forms, UE can be defined by

E = {X + ξ ∈ (TM ⊕ T ∗M)⊗ � : (X + ξ) · UE = 0}.

Therefore, at any point the line UE is generated by a pure spinor of the form
(2) and the pure spinor is a local trivialization of UE .

Now, we will describe the two basic examples, namely complex and sym-
plectic structures.
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7 Example (Complex Structures). Let (M,J) be a complex manifold. De-
note, as usual, by

T 0,1M = {Z ∈ T�M | JZ = −iZ} = {X + iJX | X ∈ TM}
T ∗1,0M = {ϕ ∈ T ∗�M | Jϕ = iϕ} = {α− iJα | α ∈ T ∗M}

Set
E = T 0,1M ⊕ T ∗1,0M .

We check that E ⊂ (TM⊕T ∗M)⊗� gives rise to a generalized complex structure
on M .
First of all, E ⊕ E = (TM ⊕ T ∗M)⊗ �.
If Z +ϕ, W +ψ are any elements of E, then, by taking the �-bilinear extension
of the natural pairing ( , ) on TM ⊕ T ∗M to (TM ⊕ T ∗M)⊗ �, we get:

(Z + ϕ,W + ψ) =
1
2
(ϕ(W ) + ψ(Z)) = 0 ,

since ϕ, ψ ∈ T ∗1,0M and Z, W ∈ T 0,1M . Hence E is isotropic.
Now we check the involutivity of the sections of E with respect to the Courant
bracket. We have

[Z + ϕ,W + ψ] = [Z,W ] + LZψ − LWϕ− 1
2d(ιZψ − ιWϕ)

= [Z,W ] + LZψ − LWϕ .

Observe that given any vector field ζ of type (0, 1) and any 1-form η of type
(1, 0), we have, for any vector field ξ of type (0, 1)

Lζη(ξ) = ζ(η(ξ))− η([ζ, ξ]) = 0 ,

i.e. Lζη is of type (1, 0). Therefore, the involutivity of E follows.
Equivalently, we can think to the generalized complex structure JJ induced by
a complex one J as the endomorphism of TM ⊕ T ∗M defined as

JJ =
( −J 0

0 J∗

)
.

8 Example (Symplectic Structures). Let (M,ω) be a symplectic manifold.
Set

E = {Z − i ιZω | Z ∈ TM ⊗ �} .
defines a generalized complex structure on M . Indeed, E is isotropic. To see
this, let Z − i ιZω, W − i ιWω be sections of E. Then

(Z − i ιZω,W − i ιWω) =
1
2
(−i ιWω(Z)− i ιZω(W )) = 0 ,
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since ω is skew. Moreover, by the fact that ω is non-degenerate, it follows that
E ∩E = {0}.
Finally, we check the involutivity of E. Let Z − i ιZω, W − i ιWω be sections of
E. Then

[Z − i ιZω,W − i ιWω] = [Z,W ] + i(−LZιWω + LW ιZω + d(ιW ιZω))

= [Z,W ] + i(−LZιWω + LW ιZω + LZιWω − ιZLWω)

= [Z,W ]− iι[Z,W ]ω ,

where we used that dω = 0 and [LX , ιY ] = ι[X,Y ] . Again, the previous general-
ized complex structure can be viewed as

Jω =
(

0 −ω−1

ω 0

)
.

In the case of a Lie group G, by [12] there is a correspondence between
left-invariant complex structures on G and complex structures on the cotangent
bundle T ∗G which are left-invariant with respect to the Lie group structure
on T ∗G induced by the coadjoint action. The corresponding Lie bracket on
g⊕ g∗ is just the Courant bracket. By [12, Theorem 4.7], if G is solvable and 4-
dimensional, then G has neither left-invariant symplectic nor complex structures
if and only if G does not admit left-invariant generalized complex structures.
Using this correspondence, in [12] they are able to distinguish the 4-dimensional
solvable Lie groups admitting a generalized complex structure of type 0, 1 or 2.

In higher dimension, in the case G is nilpotent, by [9] any 6-dimensional
nilpotent Lie group has a left-invariant generalized complex structure, but al-
ready in dimension 8 there exists an example of nilmanifold which do not admit
any left-invariant generalized complex structure.

4 Generalized Calabi-Yau manifolds

In this section we will shortly recall the definition of generalized Calabi-
Yau manifolds, given by Hitchin in [28]. The two main examples of generalized
Calabi-Yau manifolds are furnished by Calabi-Yau manifolds and symplectic
manifolds. Furthermore, a generalized Calabi-Yau manifold is a generalized com-
plex manifold in a natural way.

9 Definition. A generalized Calabi-Yau structure on a 2m-dimensional
manifold M is given by a form ϕ ∈ Λev ⊗ � or Λod ⊗ � which is a complex
pure spinor for TM ⊕ T ∗M endowed with the natural pairing ( , ) such that ϕ
is closed and 〈ϕ,ϕ〉 	= 0 at any point.
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A generalized Calabi-Yau manifold is a pair (M,ϕ) where M is a 2m-
dimensional manifold and ϕ is a generalized Calabi-Yau structure.

10 Proposition ([28]). Let (M,ϕ) be a generalized Calabi-Yau manifold.
Then the null space of ϕ

Eϕ = {X + ξ ∈ TM ⊕ T ∗M | (X + ξ) · ϕ = 0}
gives rise to a generalized complex structure on M .

Therefore, in the case of a generalized Calabi-Yau structure, the canonical
line bundle is a trivial bundle admitting a nowhere-vanishing closed section.

11 Example (Calabi-Yau manifolds). Let (M,g, J, ω, ψ) be a Calabi-Yau
manifold, namely a compact Kähler manifold (M,g, J, ω) of dimension 2m en-
dowed with a complex (m, 0)-form ψ, parallel with respect to the Levi-Civita
connection of g and such that

ψ ∧ ψ = (−1)
m(m+1)

2 im
ωm

m!
.

Then the complex (m, 0)-form ψ defines a structure of generalized Calabi-Yau
on M . Indeed, for any Z + ξ, with Z ∈ T 0,1M and ξ ∈ T ∗1,0M we have

(Z + ξ) · ψ = ιZψ + ξ ∧ ψ = 0 ,

i.e. ψ is a pure spinor. Furthermore, by the conditions above,

(ψ,ψ) 	= 0 ,

and dψ = 0, i.e. ψ defines a generalized Calabi-Yau on M .
12 Example (Symplectic manifolds). Let (M,ω) be a symplectic manifold

of dimension 2m. Then the spinor 1 ∈ Λ0T ∗M is pure. Hence ϕ = exp(iω)
defines a pure spinor on M such that

(ϕ,ϕ) = (−2i)m
ωm

m!
	= 0

and dϕ = 0, since dω = 0. Therefore, ϕ gives rise to a generalized Calabi-Yau
structure on M .

Examples of generalized Calabi-Yau manifolds of even and odd type are
given in [28].

If M is a nilmanifold, i.e. a compact quotient of a nilpotent Lie group by a
uniform discrete subgroup, then the following result holds

13 Theorem ([9]). Any left-invariant generalized complex structure on a
nilmanifold is generalized Calabi-Yau, i.e. any left-invariant global trivialization
of the canonical bundle must be a closed differential form.

In the more general case of solvmanifolds as far as we know no general result
about generalized Calabi-Yau structures is known.
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5 Generalized Kähler structures

Generalized Kähler structures have been introduced in [23] in the context of
generalized geometries as generalization of Kähler structures. These structures,
as showed in [20, 3], are strictly related to bi-Hermitian geometry.

We start by recalling the following
14 Definition. A generalized Kähler structure on a 2m-dimensional mani-

fold M is a pair (J1, J2) of generalized complex structures on M such that

(1) J1 and J2 commute;

(2) J1 and J2 are compatible with the indefinite metric ( , ) on TM ⊕ T ∗M ;

(3) the bilinear form −(J1J2 · , ·) is positive definite.

In terms of bi-Hermitian geometry, Apostolov and Gualtieri proved in [3]
the following

15 Theorem. A generalized Kähler structure on M is equivalent to a triple
(g, J+, J−) where:

(1) g is a Riemannian metric on M ;

(2) J+ and J− are two complex structures on M compatible with g such that

dc+F+ + dc−F− = 0 , ddc+F+ = ddc−F− = 0 , (3)

where dc± = i(∂±− ∂±) and F± is the fundamental form of the Hermitian
structure (J±, g).

In the context of theoretical physics the equations (3) appeared on the gen-
eral target space geometry for a (2, 2) supersymmetric sigma model [20].

The 3-form dc+F+ is called the torsion form of the generalized Kähler struc-
ture and the generalized Kähler structure is said to be untwisted if [dc+F+] ∈
H3(M) vanishes and twisted if [dc+F+] 	= 0.

A trivial example of generalized Kähler manifold is given by a Kähler man-
ifold (M,g, J). Indeed, setting J+ = J , J− = ±J, the triple (g, J+, J−) gives a
generalized Kähler structure on M .

A natural problem is to see when a compact complex (M,J) admits a gen-
eralized Kähler structure (g, J+, J−) with J = J+.

The interesting case is the one for which J+ 	= ±J−, i.e. the generalized
Kähler structure is not induced by a Kähler one on (M,J).

Constructions of non-trivial generalized Kähler structures are given for in-
stance in [23, 3, 6, 29, 35, 36, 11]. For example in [35] the generalized Kähler
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quotient construction is considered in relation with the hyperkähler quotient
construction and generalized Kähler structures are given on ��n, on some toric
varieties and on the complex Grassmannian.

An interesting problem is thus to look for compact examples of generalized
Kähler manifolds which do not admit any Kähler structure.

The requirement that a compact manifold admits a Kähler structure has
many topological implications, like for instance the evenness of the odd Betti
numbers, the hard Lefschetz property and the formality in the sense of Sullivan
[14, 40]. In the case of generalized Kähler structures some results about formal-
ity have been proved by Cavalcanti in [8], by using the Hodge theory developed
in [23] in the context of generalized Kähler structures and in the case the gen-
eralized complex structure of the pair giving the generalized Kähler structure
has holomorphically trivial canonical bundle.

If (M,J) has a generalized Kähler structure such that J = J+ and the
commutator [J+, J−] 	= 0, then [J+, J−] defines a holomorphic Poisson structure
on (M,J) (see [29]).

By [3], if [J+, J−] = 0, i.e. J+ and J− commute, then Q = J+J− is an
involution of the tangent bundle TM and one has the splitting

TM = T+M ⊕ T−M,

where the (±1)-eigenspaces T±M are holomorphic and integrable sub-bundles
of TM .

Related to Kähler-Einstein manifolds, in [3] it was proved that if (M,J, g) is
a compact Kähler-Einstein manifold such that the tangent bundle TM splits as
a direct sum of two holomorphic sub-bundles, then (M,J) admits generalized
Kähler structures compatible with J+ = J and J− = −J |T+M + J |T−M .

6 Link with strong Kähler with torsion geometry

If a 2m-dimensional manifold M has a generalized Kähler structure defined
by the pair of Hermitian structures (J±, g), then the two fundamental forms
F± are ∂±∂±-closed and there exists two Hermitian connections whose torsion
is the 3-form ±H, where H = dcF+. Therefore generalized Kähler geometry is
related with what in literature is called Kähler with torsion geometry.

In general, if (M,J, g) is an Hermitian manifold, then Gauduchon proved
in [22] that there is a 1-parameter family of canonical Hermitian connections
on M which can be distinguished by the properties of their torsion tensor. In
particular, the Bismut connection is the unique connection ∇ such that

∇g = 0 , ∇J = 0
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and g(X,T∇(Y,Z)) is totally skew-symmetric, where by T∇ we denote its tor-
sion tensor.

Then the resulting torsion form

T (X,Y,Z) = g(X,T∇(Y,Z))

coincides with JdF , where F is the fundamental form of the Hermitian structure
(J, g).

We recall the following (see [31])

16 Definition. An Hermitian metric g on (M,J) is said to be strong Kähler
with torsion if the 3-form JdF is d-closed, or equivalently if

ddcF = 0 or ∂∂F = 0 .

In the literature a strong Kähler with torsion metric is also called pluriclosed
(see [15]).

We recall that an Hermitian metric on a 2m-dimensional compact complex
manifold (M,J) is standard in the sense of [21] if the (2m − 2)-form Fm−1 is
ddc-closed. By [21] the conformal class of every Hermitian structure contains a
standard structure, which is unique if m > 2. Examples of such structures are
given by the semi-Kähler and the homogeneous Hermitian structures.

In particular, if (M,J) is a compact complex surface, then a metric g satis-
fying the strong Kähler with torsion condition is standard and a strong Kähler
with torsion metric can be found in the conformal class of any given Hermitian
metric. The theory is completely different in higher dimensions and not many
examples are known.

By [39] any real compact semisimple Lie group G of even dimension ad-
mits a natural strong Kähler with torsion metric and a twisted generalized
Kähler structure (see [23]). Indeed, by [38] G has left and right invariant com-
plex structures JL and JR, which can be chosen to be Hermitian with respect to
the bi-invariant metric induced by the Killing form. Both (JL, g) and (JR, g) are
strong Kähler with torsion structures and the Bismut connection ∇ is the flat
connection with skew-symmetric torsion g(X, [Y,Z]) corresponding to an invari-
ant 3-form on the Lie algebra of the compact Lie group. Moreover, (JL, JR, g)
is a generalized Kähler structure.

Other examples of homogeneous strong Kähler with torsion manifolds have
been found in [16] and they are 6-dimensional nilmanifolds N/Γ, i.e. compact
quotients of 6-dimensional nilpotent Lie groups N . In this case both the com-
plex structure J and the Riemannian metric g arise from corresponding left-
invariant tensors on N . By the classification obtained in [16] it turns out that
only 4 classes of 6-dimensional nilpotent Lie algebras admit a strong Kähler
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with torsion structure and that the existence of an invariant strong Kähler with
torsion structure on the nilmanifold N/Γ depends only on the complex structure
on the Lie algebra.

In general, it is well known that a nilmanifold cannot admit any Kähler
structure unless it is a torus (see for instance [4]). Moreover, by [8] there are
no nilmanifolds, except tori, carrying an invariant generalized Kähler structure,
since every generalized complex structure on a nilpotent Lie algebra has holo-
morphically trivial canonical bundle.

Very few examples of solvmanifolds which admit a strong Kähler with torsion
structure are known. Indeed, as far as we know, the known strong Kähler with
torsion solvmanifolds are either complex surfaces or the 6-dimensional manifold
constructed in [17], that will be reviewed in the last section. Complex surfaces
diffeomorphic to solvmanifolds have been classified by Hasegawa in [25], showing
that 4-dimensional solvmanifolds admit only left-invariant complex structures.
By its classification a complex surface, diffeomorphic to a solvmanifold, has to
be one of the following: a Complex torus, an Hyperelliptic surface, an Inoue
surface of type SM and S± [30], a Primary and Secondary Kodaira surface
[33, 34].

By [17] a 
2-bundle over a Inoue surface admits a generalized Kähler struc-
ture, so in particular a Kähler with torsion structure. In [18] blow ups and
resolutions of orbifolds are investigated in relation to Kähler with torsion ge-
ometry.

In the case of solvmanifolds, Hasegawa proved in [25, 26] that a solvmanifold
carries a Kähler metric if and only if it is covered by a finite quotient of a complex
torus, which has the structure of a complex torus bundle over a complex torus.
No general result is known in general for the existence of a generalized Kähler
structure on a solvmanifold except the case of a complex surface [3].

7 Generalized Kähler structures on complex surfaces

Not any compact complex surface admits a generalized Kähler structure.
Indeed, there is a classification theorem by Apostolov and Gualtieri [3]:

17 Theorem. A compact complex surface (M,J) carries a generalized Käh-
ler structure (J±, g) with J+ = J , J− 	= ±J and [J+, J−] = 0 if and only if the
holomorphic tangent bundle of (M,J) splits as a direct sum of two holomorphic
sub-bundles. Moreover, (M,J) is biholomorphic to one of the following:

(1) a geometrically ruled complex surface or;

(2) a bi-elliptic complex surface or;
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(3) a compact complex surface of Kodaira dimension 1 and even first Betti
number b1 or;

(4) a compact complex surface of general type, uniformized by the product of
two hyperbolic planes H ×H or;

(5) a Hopf surface or;

(6) an Inoue surface of type SM .

By using the previous result and the classification of complex solvmanifolds
in [25], it turns out that an Inoue surface of type SM is the only solvmanifold
admitting a generalized Kähler structure.

The Inoue surfaces SM are quotients of the form H × �/GM , where

H = {w ∈ � | #mw > 0}

is the upper-half of the complex plane � and M ∈ SL(3,�) is an unimodular
matrix with eigenvalues α,α and a irrational eigenvalue c > 1 such that |α|2c = 1
(see [30]).

If we denote by (α1,α2,α3) an eigenvector corresponding to α and by (c1,c2,c3)
the real eigenvector corresponding to c, then the group GM is generated by the
transformations

ϕ0 : (w, z) �→ (cw, αz),
ϕj : (w, z) �→ (w + cj , z + αj), j = 1, 2, 3.

By [30] GM acts freely and properly discontinuously on H × �. Therefore, SM
is a compact complex surface, the total space of a 
3-bundle over the circle S1.

In [30] Inoue proved that the surfaces SM do not admit any Kähler metric
and any symplectic structure since their Betti numbers are

b1(SM ) = 1, b2(SM ) = 0.

In [41] Tricerri showed that the Hermitian metric

1
w2

2

dw ⊗ dw + w2dz ⊗ dz

on H× � induces a locally conformally Kähler metric on SM with non-parallel
Lee form.

Due to [25] an Inoue surface SM can be also viewed also as solvmanifold
��(�×�2)/��(�×�2), as we already remarked previously. The corresponding
4-dimensional solvable Lie group has structure equations
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
de1 = a e1 ∧ e2 ,

de2 = 0 ,

de3 = 1
2a e2 ∧ e3 ,

de4 = 1
2a e2 ∧ e4 ,

where a is a non-zero real number.
By the classification obtained in [12] this solvable Lie group admits only

generalized complex structures of type 1 and 2.

8 A 6-dimensional generalized Kähler solvmanifold

In this section we review the construction of the 6-dimensional generalized
Kähler example given in [17] as 
2-bundle over an Inoue surface od type SM .

Let sa,b be the 2-step solvable Lie algebra with structure equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = a e1 ∧ e2 ,

de2 = 0 ,

de3 = 1
2a e2 ∧ e3 ,

de4 = 1
2a e2 ∧ e4 ,

de5 = b e2 ∧ e6 ,

de6 = −b e2 ∧ e5 ,

where a and b are non-zero real numbers.
If we denote by Sa,b the simply-connected solvable Lie group with Lie algebra

sa,b, then the product on the Lie group, in terms of the global coordinates
(t, x1, x2, x3, x4, x5) on �6, is expressed by:

(t, x1, x2, x3, x4, x5) · (t′, x′
1, x

′
2, x

′
3, x

′
4, x

′
5) = (t + t′, e−a tx′

1 + x1, e
a
2
tx′

2 + x2,

e
a
2
tx′

3 + x3, x
′
4 cos(b t)− x′

5 sin(b t) + x4, x
′
4 sin(b t) + x′

5 cos(b t) + x5).
(4)

Note that by the previous structure equations it turns out that the Lie group
Sa,b is unimodular and Sa,b can be viewed as a semi-direct product of the form

��ϕ (�× �2 × �2) ,

where ϕ = (ϕ1, ϕ2) is the diagonal action of � on (�×�2)×�2 described above
by (4).
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In contrast with the nilpotent case, there are no existence theorems for
uniform discrete subgroups of a solvable Lie group and, if the Lie group is non-
completely solvable and admits a compact quotient, one cannot apply Hattori’s
theorem [27] to compute the de Rham cohomology of the solvmanifold.

In our case the Lie group Sa,b is non-completely solvable, since ade2 has
complex eigenvalues, and as shown in [17] it admits a compact quotient. Indeed
one has the following

18 Theorem ([17]). Let S1,π
2

be the simply-connected solvable Lie group
with Lie algebra s1,π

2
. Then

(1) S1,π
2

has a compact quotient M6 = S1,π
2
/Γ by a uniform discrete subgroup

Γ.

(2) The compact manifold M6 is the total space of a 
2-bundle over an Inoue
surface SM .

(3) M6 has first Betti number equal to 1, thus it has no Kähler structures.

(4) The solvmanifold M6 carries a left-invariant (non-trivial) twisted gener-
alized Kähler structure.

We will give a sketch of the proof.
First of all in order to obtain an explicit description of the uniform discrete

subgroup Γ, in [17] we showed that the solvable Lie group S1,π
2

is isomorphic to
(�6 = �� (�× �× �), ∗) with product ∗ given by

(t, u, z, w) ∗ (t′, u′, z′, w′) = (t + t′, ctu′ + u, αtz′ + z, ei
π
2
tw′ + w),

for any t, t′, u, u′ ∈ � and z, z′, w,w′ ∈ �.
It turns out that the discrete subgroup Γ is isomorphic to �� (�3×�2) and

it is generated by the transformations

g0 : (t, u, z, w) �→ (t + 1, cu, αz, iw),
gj : (t, u, z, w) �→ (t, u + cj, z + αj , w), j = 1, 2, 3,
g4 : (t, u, z, w) �→ (t, u, z, w + 1),
g5 : (t, u, z, w) �→ (t, u, z, w + i).

It can be checked that the previous subgroup Γ acts freely and properly dis-
continuously on S1,π

2
and that the quotient manifold is compact. Moreover, the

map
π : �� (�× �× �) → �� (�× �),

(t, u, z, w) �→ (t, u, z)
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inherits to M6 the structure of a 
2-bundle over an Inoue surface of type SM .
The generators of Γ satisfy the following relations:

gjgk = gkgj,

for any j, k = 1, . . . , 5.
Moreover,

[g0, gj ] = g0gjg
−1
0 g−1

j : (t, u, z, w) �→ (t, u− cj + c cj , z − αj + ααj, w),

j = 1, 2, 3,

[g0, g4] = g0g4g
−1
0 g−1

4 : (t, u, z, w) �→ (t, u, z, w − 1 + i),

[g0, g5] = g0g5g
−1
0 g−1

5 : (t, u, z, w) �→ (t, u, z, w − 1− i)

Therefore
[g0, gj ] = g

mj1

1 g
mj2

2 g
mj3

3 g−1
j , j = 1, 2, 3,

[g0, g4] = g4
−1g5,

[g0, g5] = g4
−1g5

−1.

By the fact that the discrete subgroup Γ is 2-step solvable, it follows that [Γ,Γ]
is a torsion-free abelian subgroup of Γ and the rank of [Γ,Γ] is equal to 5. By
definition (see [37])

rankΓ = rankΓ/[Γ,Γ] + rank [Γ,Γ].

Then
Γ/[Γ,Γ] ∼= �

and consequently the first Betti number of M6 is equal to 1.
This ends the sketch of the proof of (1), (2), (3).

In order to prove (4), we consider the pair of Hermitian structures (J±, g)
on the Lie algebra s1,π

2
, defined by the two integrable complex structures J±

associated with the (1, 0)-forms

ω1
+ = e1 + ie2, ω2

+ = e3 + ie4, ω3
+ = e5 + ie6,

ω1− = e1 − ie2, ω2− = e3 + ie4, ω3− = e5 + ie6.

and compatible with the inner product

g =
6∑

α=1

eα ⊗ eα.
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By a direct computation we get that

dc+F+ = −dc−F− = e1 ∧ e3 ∧ e4,

which is a closed (but non-exact) 3-form. Therefore, the corresponding left-
invariant generalized Kähler structure on M6 is twisted.

The metric g is not flat since the Ricci component Ric(e2, e2) = −3
2 . More-

over, the Hermitian structures (J±, g) are not locally conformally Kähler since

dF± = e2 ∧ e3 ∧ e4,

according to the general result in [1, Remark 1] and [16] that a strong Kähler
with torsion (non-Kähler) metric on a compact manifold of dimension greater
than 4 cannot be locally conformally Kähler.

The previous construction of the 6-dimensional solvmanifold can be ex-
tended in order to get a non-trivial generalized Kähler structure on a 
2n-bundle
over an Inoue surface SM , by considering the solvable Lie algebra of dimension
2n + 4 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1 = a e1 ∧ e2,

de2 = 0,

de3 = 1
2a e2 ∧ e3,

de4 = 1
2a e2 ∧ e4,

de2k+3 = b e2 ∧ e2k+4,

de2k+4 = −b e2 ∧ e2k+3, k = 1, . . . , n,

with a = 1 and b = π
2 .

In this case the two integrable complex structures J± are given by setting

ω1
+ = e1 + ie2, ω2

+ = e3 + ie4, ωk+2
+ = e2k+3 + ie2k+4,

ω1− = e1 − ie2, ω2− = e3 + ie4, ωk+2
− = e2k+3 + ie2k+4, k = 1, . . . , n,

as the associated (1, 0)-forms.
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