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1 Introduction

The study of homogeneous geodesics (see Definition 1) on homogeneous Rie-
mannian manifolds started a long time ago, in the works of E. Vinberg [39], B.
Kostant [23], O. Kowalski and L. Vanhecke [29]. The big development of this
study was done by O. Kowalski and his collaborators. In [28], O. Kowalski and
J. Szenthe proved that any homogeneous Riemannian manifold admits at least
one homogeneous geodesic. (For a Lie group this result was proved earlier by
J. Kajzer in [22].) They also proved that a homogeneous Riemannian manifold
M = G/H with semisimple group G admits n = dim(M) mutually orthogonal
homogeneous geodesics. Further, O. Kowalski, S. Nikčević and Z. Vlášek in [27]
and R. Marinosci in [33] studied 3-dimensional Lie groups with Riemannian
metrics and they illustrated the various possibilities for the number of homoge-
neous geodesics through the origin. In particular, for some of these examples,
there is just one homogeneous geodesic through the origin. In [30], O. Kowal-
ski and Z. Vlášek found such an example in arbitrary dimension n ≥ 4, which
proved that the first result from [28] cannot be improved in general.

A homogeneous Riemannian manifold whose all geodesics are homogeneous
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148 Z. Dušek

is called g.o. manifold. It is well known that all Riemannian symmetric spaces
and more generally all naturally reductive spaces are g.o. manifolds. Some years
ago, it was generally believed that every g.o. manifold is naturally reductive. The
first counter-example was given by A. Kaplan in [21]. The extensive study of g.o.
manifolds started just with this paper. O. Kowalski and L. Vanhecke proved in
[29], that up to dimension 5, every g.o. manifold is naturally reductive and they
also classified all 6-dimensional g.o. manifolds which are not naturally reductive.
In dimension 7, the examples of g.o. spaces which are not naturally reductive
were given by C. Gordon in [20] and by the present author, O. Kowalski and
S. Nikčević in [18]. One of the methods for describing g.o. spaces is based on
the concept of geodesic graphs and the degree of a g.o. manifold. For naturally
reductive manifolds, the degree is equal to zero. For the 6-dimensional and 7-
dimensional examples mentioned above, the degree is equal to 2. In [13], the
present author and O. Kowalski studied the 13-dimensional generalized Heisen-
berg group, which is a g.o. manifold, and they proved that its degree is equal
to 3. In [11], the present author proved that the degree of the flag g.o. manifold
SO(7)/U(3), is equal to 4.

The study of homogeneous geodesics on pseudo-Riemannian homogeneous
manifolds started with the papers [19] and [35], written by physicists J. Figueroa-
O’Farrill, P. Meessen, and S. Philip. They stated the Geodesic Lemma in the
generalized pseudo-Riemannian version, but they did not give the proof. The
refined, mathematical, formulation of the Geodesic Lemma with the proof was
given by the present author and O. Kowalski in [14]. In the pseudo-Riemannian
situation, for null (light-like) homogeneous geodesics, we observe a new phe-
nomenon which is not present in the Riemannian situation. Some of these
null homogeneous geodesics require a reparametrization and some do not (see
Lemma 3 and Example 29 later). In [7] and [8], G. Calvaruso and R. Marinosci
studied homogeneous geodesics on 3-dimensional Lie groups with Lorentzian
metrics. These groups provide examples which admit various number of homo-
geneous geodesics. The most interesting examples will be presented in Section 5.

In [15], [16] and [10], the present author and O. Kowalski generalized the
notion of a (Riemannian) g.o. space to the pseudo-Riemannian situation. Some
suggestions in this direction were made by P. Meessen in the private communi-
cations. In fact, there are two different ways of this generalization. In the first
one, the isotropy group remains compact, the corresponding pseudo-Riemannian
homogeneous space is a g.o. space and geodesic graph has similar properties as
in the Riemannian case. The examples in dimensions 6 and 7 were described in
[15]. The second generalization is more interesting. Here the isotropy group is
noncompact and the corresponding homogeneous space is no more a g.o. space.
There is a nonempty set (of measure zero) in the tangent plane, such that
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geodesics with these initial vectors are not homogeneous. Hence we call these
spaces almost g.o. spaces. The examples in dimensions 6 and 7 were given in [16]
and [10]. In [16] it was shown that the behaviour of the geodesic graph is dif-
ferent than in the Riemannian case. In [10], various conjectures which compare
pseudo-Riemannian g.o. spaces and almost g.o. spaces were formulated.

In this paper, the review of these results, important theorems, examples and
conjectures and the relevant references according to the author’s knowledge
are presented. The order of sections is organized historically, with the only
exception: In Section 4, pseudo-Riemannian g.o. spaces are included because
they are similar to Riemannian g.o. spaces. Historically, they should be between
Sections 5 and 6.

2 Preliminaries

In this section, we give the basic concepts and definitions. In Sections 3 and
4, special Riemannian versions are applicable, however, we give already here
the general pseudo-Riemannian versions which will be necessary in Sections 5
and 6.

Let M be a pseudo-Riemannian manifold. If there is a connected Lie group
G ⊂ I0(M) which acts transitively on M as a group of isometries, then M
is called a homogeneous pseudo-Riemannian manifold. Let p ∈ M be a fixed
point. If we denote by H the isotropy group at p, then M can be identified
with the homogeneous space G/H. In general, there may exist more than one
such transitive isometry group G ⊂ I0(M) and more presentations of M as a
homogeneous space. For any fixed choice M = G/H, G acts effectively on G/H
from the left. The pseudo-Riemannian metric g on M can be considered as a G-
invariant metric on G/H. The pair (G/H, g) is then called a pseudo-Riemannian
homogeneous space.

If the metric g is positive definite, then (G/H, g) is always a reductive homo-
geneous space in the following sense: we denote by g and h the Lie algebras of G
and H, respectively, and we consider the adjoint representation Ad: H × g→ g

of H on g. There exists a direct sum decomposition (reductive decomposition) of
the form g = m+h, where m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m.
We remark already here that if m itself is a Lie algebra, we will denote it by
n. If the metric g is indefinite, the reductive decomposition may not exist (see
for instance [19] for the example of nonreductive pseudo-Riemannian homoge-
neous space). For a fixed reductive decomposition g = m + h, there is a natural
identification of m ⊂ g = TeG with the tangent space TpM via the projection
π : G → G/H = M . Using this natural identification and the scalar product gp
on TpM , we obtain a scalar product 〈 , 〉 on m. This scalar product is obviously
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150 Z. Dušek

Ad(H)-invariant.
The definition of a homogeneous geodesic is well-known in the Riemannian

case (see, e.g., [29]). In the pseudo-Riemannian case, the necessary generalized
version was given in [14]:

1 Definition. Let M = G/H be a pseudo-Riemannian reductive homoge-
neous space, g = m+h a reductive decomposition and p the basic point of G/H.
The geodesic γ(s) through the point p defined in an open interval J (where s is
an affine parameter) is said to be homogeneous if there exists
1) a diffeomorphism s = ϕ(t) between the real line and the open interval J ;
2) a vector X ∈ g such that γ(ϕ(t)) = exp(tX)(p) for all t ∈ (−∞,+∞).
The vector X is then called a geodesic vector.

2 Remark. In the Riemannian situation, the diffeomorphism from the con-
dition 1 is always the identity map on the real line and hence the definition can
be formulated more simply. An example (pseudo-Riemannian) with the nontriv-
ial diffeomorphism ϕ will be shown in Section 5.

The basic formula characterizing geodesic vectors in the pseudo-Riemannian
case appeared in [19] and [35], but without a proof. The correct mathematical
formulation with the proof was given in [14]:

3 Lemma (Geodesic Lemma). Let M = G/H be a reductive homogeneous
pseudo-Riemannian space, g = m + h a reductive decomposition and p the basic
point of G/H. Let X ∈ g. Then the curve γ(t) = exp(tX)(p) (the orbit of
a one-parameter group of isometries) is a geodesic curve with respect to some
parameter s if and only if

〈[X,Z]m,Xm〉 = k〈Xm, Z〉 (1)

for all Z ∈ m, where k ∈ � is some constant.
Further, if k = 0, then t is an affine parameter for this geodesic. If k 	= 0, then
s = e−kt is an affine parameter for the geodesic. The second case can occur only
if the curve γ(t) is a null curve in a (properly) pseudo-Riemannian space.

4 Remark. The reparametrization s = e−kt is exactly the diffeomorphism
ϕ in Definition 1.

It is clear from Definition 1 and Lemma 3, that for a homogeneous space
G/H, we consider the isometry group G and homogeneous geodesics are con-
sidered with respect to this group. For a homogeneous manifold M = G/H,
there may exist another expression M = G′/H ′, where G � G′. To investigate
the properties of the homogeneous manifold M , it is necessary to consider the
expression M = G′/H ′, where G′ is the identity component of the maximal
isometry group (G′ = I0(M)).

___________________________________________________________________________



Survey on homogeneous geodesics 151

3 Homogeneous geodesics on homogeneous Rieman-
nian manifolds

In [22], V. Kajzer proved that every pseudo-Riemannian group space (G, g)
admits at least one homogeneous geodesics through the identity element e ∈ G.
In [28], O. Kowalski and J. Szenthe proved the following generalizations:

5 Theorem. A homogeneous Riemannian manifold (M,g) admits at least
one homogeneous geodesic through the origin o ∈M .

6 Theorem. A homogeneous Riemannian manifold (M = G/H, g) of di-
mension n with semi-simple group G admits n mutually orthogonal homogeneous
geodesics through the origin o ∈M .

Let us now study the situation with a Lie group in dimension 3, as in [27]
and [33]. First, we recall the results by J. Milnor:

7 Proposition ([34]). Let (G, g) be a 3-dimensional non-unimodular Lie
group equipped with a left-invariant Riemanian metric and let g be the corre-
sponding Lie algebra. Then there is an orthonormal basis {X,Y,Z} of g such
that the multiplication table has the form

[X,Y ] = αY + βZ, [X,Z] = γY + δZ, [Y,Z] = 0, (2)

where α, β, γ, δ are real numbers such that α + δ 	= 0 and αγ + βδ = 0.
The basis {X,Y,Z} also diagonalizes the Ricci form and the original paper

contains the expressions for the principal Ricci curvatures. See [34] or [27] for
details. In general, the principal Ricci curvatures are distinct.

8 Proposition ([34]). Let (G, g) be a 3-dimensional unimodular Lie group
equipped with a left-invariant Riemanian metric and let g be the corresponding
Lie algebra. Then there is an orthonormal basis {X,Y,Z} of g such that the
multiplication table has the form

[X,Y ] = λ1Z, [Y,Z] = λ2X, [Z,X] = λ3Y. (3)

The basis {X,Y,Z} also diagonalizes the Ricci form and the original paper
contains the expressions for the principal Ricci curvatures. See [34] or [33] for
details. Again, the principal Ricci curvatures are distinct, in general.

For non-unimodular Lie groups, O. Kowalski, S. Nikčević and Z. Vlášek
proved the following:

9 Theorem ([27]). Let (G, g) be a 3-dimensional non-unimodular Lie group
equipped with a left-invariant Riemanian metric and let g be the corresponding
Lie algebra with the multiplication table given by the formulas (2). Let α, β, γ, δ
be such that all principal Ricci curvatures are distinct. Denote D = (β + γ)2 −
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4αδ. Then, up to a reparametrization, the space (G, g) admits
a) just one homogeneous geodesic through a point if D < 0;
b) just two homogeneous geodesics through a point if D = 0; they are mutually
orthogonal;
c) just three homogeneous geodesics through a point if D > 0; they are linearly
independent but never mutually orthogonal.

The case with only two distinct principal Ricci curvatures was investigated
by R. Marinosci:

10 Theorem ([33]). Let (G, g) be a 3-dimensional non-unimodular Lie
group equipped with a left-invariant Riemanian metric and with two distinct
principal Ricci curvatures.
If both principal curvatures are nonzero, then there exist always three linearly
independent homogeneous geodesics through each point, they are never mutually
orthogonal and there are no other homogeneous geodesics.
If one principal curvature is equal to zero, then the geodesic vectors form a
2-dimensional subspace of the Lie algebra g, i.e., there are infinitely many ho-
mogeneous geodesics through each point but every three of them are linearly
dependent.

For the unimodular Lie group, O. Kowalski, S. Nikčević and Z. Vlášek in-
vestigated in [27] only one special situation, the general situation was described
by R. Marinosci:

11 Theorem ([33]). In a 3-dimensional, connected and unimodular Lie
group G endowed with a left invariant metric g, there always exist three mutually
orthogonal homogeneous geodesics through each point. Moreover, if all λi in
formulas (3) are distinct, then there are no other homogeneous geodesics.

Further, in [27], the authors study homogeneous geodesics on the 4-dimensio-
nal homogeneous Riemannian manifold (M = G/H, g), where G is the 5-
dimensional group of equiaffine transformations of an Euclidean space and H
is the subgroup of all rotations of the plane around the origin. The manifold
itself is diffeomorphic to �4 and at the Lie algebra level it can be described with
the orthonormal basis {X1, Y1,X2, Y2} of m, the generator B of h and the Lie
bracket on g = m + h given by the formulas

[X1, Y1] = 0, [X1,X2] = −X1, [X1, Y2] = X1,
[Y1,X2] = Y1, [Y1, Y2] = X1, [X2, Y2] = −2B,
[B,X1] = −Y1, [B,Y1] = X1,
[B,X2] = 2Y2, [B,Y2] = −2X2 (4)

(see [24], [25] for details about this manifold). The result is the following:
12 Theorem ([27]). (�4, g) admits a continuum of quadruplets of linearly
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independent homogeneous geodesics through the origin o but never an orthogonal
quadruplet.

In [6], G. Calvaruso, O. Kowalski and R. Marinosci study a class of uni-
modular solvable Lie groups (Gn, g) with left-invariant metric in arbitrary odd
dimension 2n+1, introduced by M. Božek in [3]. Their result is connected with
the well-known conjecture on Hadamard matrices:

13 Conjecture. A Hadamard matrix of degree k > 2 exists if and only if
k is divisible by four.

14 Theorem ([6]). Suppose that the conjecture about Hadamard matrices
is true. Then the ”Božek space” (Gn, g) of dimension 2n + 1 has the following
maximal number of mutually orthogonal geodesics through a point:
(i) exactly n + 1 geodesics if n + 1 is odd;
(ii) exactly n + 2 geodesics if n + 1 is even but not divisible by 4;
(iii) 2n + 1 = dimG geodesics if n + 1 is divisible by 4.

In [30], O. Kowalski and Z. Vlášek constructed the following example: Con-
sider for each n ≥ 3 a Lie algebra gn of dimension n + 1 given with respect to
the basis {X1, . . . ,Xn+1} by the multiplication table

[Xi,Xj ] = 0 for i, j = 1, . . . , n,
[Xn+1,Xi] = aiXi + Xi+1 for 1 ≤ i ≤ n− 1,
[Xn+1,Xn] = anXn, (5)

where a1, . . . , an+1 are arbitrary parameters. Define a scalar product on gn for
which the above basis is orthonormal. The family of the algebras gn give rise to
an n-parameter family of solvable Lie groups Gn with an invariant Riemannian
metrics g. We can assume that Gn is always diffeomorphic to �(n+1). In [30], it
is shown that we can choose the parameters a1, . . . , an+1 such that all principal
Ricci curvatures of (Gn, g) are distinct and hence the group Gn acting on itself
by the left translations is the identity component of the full isometry group.
Hence, the group Gn admits only the expression Gn = Gn/{e} and all geodesic
vectors belong to gn. Then, by applying Geodesic Lemma, we obtain:

15 Theorem ([30]). For the space (Gn, g) as above, the parameters
a1, . . . , an+1 can be chosen in a way that all geodesic vectors are multiples of
the vector Xn+1. Consequently, there is (up to a reparametrization) only one
homogeneous geodesic through each point.

4 Riemannian g.o. manifolds

In this section, we present results about Riemannian g.o. spaces and g.o.
manifolds. It appears that pseudo-Riemannian g.o. spaces (with compact isotro-
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py group) have similar properties, hence we adapt the notation also to this
situation and we include pseudo-Riemannian examples here.

16 Definition. A pseudo-Riemannian homogeneous space (G/H, g) is called
a g.o. space if every geodesic of (G/H, g) is homogeneous. A homogeneous
pseudo-Riemannian manifold (M,g) is a g.o. manifold if M = G/H is a g.o.
space for G = I0(M). Here “g.o.” means “geodesics are orbits”.

17 Remark. If a homogeneous manifold M admits several transitive groups
of isometries, and hence several expressions M = G/H and M = G′/H ′ as a
homogeneous space, it may happen that G/H is not a g.o. space and G′/H ′

(where G � G′) is a g.o. space (see [18] for an example).

One of the techniques used for the characterization of g.o. spaces is based
on the concept of “geodesic graph”. The original idea (not using any explicit
name) comes from J. Szenthe [38]:

18 Definition. Let (G/H, g) be a pseudo-Riemannian g.o. space with com-
pact isotropy group H and let g = m + h be an Ad(H)-invariant decomposition
of the Lie algebra g. A geodesic graph is an Ad(H)-equivariant map η : m → h

which is rational on an open dense subset U of m and such that X + η(X) is a
geodesic vector for each X ∈ m.

According to Lemma 10 in [38], for every reductive g.o. space (G/H, g) as
above, there exists at least one geodesic graph. The construction of canonical
and general geodesic graphs is based on Geodesic Lemma and is described in
details in [26] or [13]. We will show the construction of the canonical geodesic
graph on the example later in this section. On the open dense subset U of
m, with respect to a basis {E1, . . . , En} of m and a basis {F1, . . . , Fh} of h, the
components of a geodesic graph η are rational functions of the coordinates on m.
They are of the form ηk = Pk/P , where Pk and P are homogeneous polynomials
and deg(Pk) = deg(P ) + 1.

19 Definition. Let (G/H, g) be a Riemannian g.o. space and let g = m+ h

be an Ad(H)-invariant decomposition of the Lie algebra g. Let E1, . . . En and
F1, . . . Fh be the bases of m and h, respectively. Let η : m → h be a geodesic
graph with the components ηk = Pk/P , where Pk and P have no nontrivial
common factor. The degree of the geodesic graph η is deg(η) = deg(P ). The
degree of the g.o. space G/H is

deg(G/H) = min{deg(η) : η is a geodesic graph on G/H}.

Let (M,g) be a homogeneous Riemannian manifold. The degree of M is

deg(M) = min{deg(G/H) : M = G/H}.
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20 Remark. We recall that a homogeneous space (G/H, g) is naturally
reductive if there exist a reductive decomposition g = m + h such that

〈[X,Y ]m, Z〉+ 〈[X,Z]m, Y 〉 = 0 (6)

for all X,Y,Z ∈ m. A homogeneous Riemannian manifold (M,g) is naturally
reductive if M = G/H is naturally reductive for G = I0(M). According to
Proposition 2.10 in [29], the homogeneous space G/H is naturally reductive
if there exists a linear geodesic graph (and, according to Definition 19 above,
deg(G/H) = 0).

In [29], O. Kowalski and L. Vanhecke obtained the following results:
21 Theorem ([29]). Every simply connected Riemannian g.o. space (G/H,g)

of dimension n ≤ 5 is a naturally reductive Riemannian manifold.
22 Remark. In dimension 5, there are examples such that G/H is a g.o.

space of degree 2, but it becomes naturally reductive if we extend the group G
(see [29] or [26]).

23 Theorem ([29]). The following 6-dimensional simply connected Rie-
mannian g.o. spaces (and only those) are never naturally reductive:
(i) (M,g) is a two-step nilpotent Lie group with 2-dimensional center, pro-
vided with a left-invariant Riemannian metric such that the maximal connected
isotropy group is isomorphic to SU(2) or U(2). All these Riemannian g.o. spaces
depend on three real parameters;
(ii) (M̃ , g) is the universal covering space of a homogeneous Riemannian man-
ifold of the form M = SO(5)/U(2) or M = SO(1, 4)/U(2), where SO(5), or
SO(1, 4), respectively, is the identity component of the full isometry group. In
each case, all admissible Riemannian metrics depend on two real parameters.

We will show here the 6-dimensional nilpotent example in the generalized
pseudo-Riemannian form, as it was presented in [15]. For ε1 = ε2 = 1, we
obtain the Riemannian examples considered in [29], [26] and in the first part of
Theorem 23. For ε1 = ε2 = 1, α = γ = 1 and β = 0, we obtain the first example
of a g.o. space which is not naturally reductive, given by A. Kaplan in [21].

24 Example. Let us consider the 6-dimensional vector space n with the
pseudo-orthonormal basis {E1, . . . , E4, Z1, Z2}with the signature (1,1,1,1,ε1 ,ε2),
where ε1, ε2 = ±1. We denote Aij (for 1 ≤ i < j ≤ 4) the elements of so(n),
with the corresponding action given by the formulas

Aij(Ek) = δikEj − δjkEi for k = 1, . . . , 4. (7)

Further, we denote

A = A34 −A12, B = A13 + A24, C = A14 −A23. (8)
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We notice the Lie bracket relations

[A,B] = 2C, [B,C] = 2A, [C,A] = 2B (9)

and we consider the algebra h = span(A,B,C) ! su(2) of the operators on n.
We put g = n+ h and we define the Lie bracket on g by the additional relations

[E1, E2] = 0, [E2, E3] = βZ1 + γZ2,
[E1, E3] = αZ1, [E2, E4] = −αZ1,

[E1, E4] = βZ1 + γZ2, [E3, E4] = 0,

[Z1, Ei] = [Z2, Ei] = [Z1, Z2] = 0 for i = 1, . . . , 4 (10)

for arbitrary parameters α, β, γ (α 	= 0 	= γ). The scalar product on n is ad(H)-
invariant for all possibilities of ε1, ε2 = ±1. If we consider N as the unique
connected and simply connected group whose Lie algebra is n, H = SU(2) and
G = N�SU(2), we obtain a 3-parameter family of invariant pseudo-Riemannian
metrics on the homogeneous space G/H.

With respect to the above bases of n and h, we can write each vector X ∈ n

in the form X = x1E1 + · · · + x4E4 + z1Z1 + z2Z2 and each vector ξ(X) ∈ h

in the form ξ(X) = ξ1A + ξ2B + ξ3C. In this way, we identify these vectors
with the arithmetic vectors X = (x1, . . . , x4, z1, z2) and ξ(X) = (ξ1, . . . , ξ3).
The components of the canonical geodesic graph, which is denoted by ξ instead
of η, are

ξ1 =
−2αε1z1(x1x4 + x2x3) + 2(βε1z1 + γε2z2)(x1x3 − x2x4)

‖x‖2 ,

ξ2 =
αε1z1(x2

1 − x2
2 + x2

3 − x2
4) + 2(βε1z1 + γε2z2)(x1x2 + x3x4)

‖x‖2 ,

ξ3 =
2αε1z1(x3x4 − x1x2) + (βε1z1 + γε2z2)(x2

1 − x2
2 − x2

3 + x2
4)

‖x‖2 , (11)

where we put ‖x‖2 = x2
1 + x2

2 + x2
3 + x2

4. (See [26] or [15] for details.) The
formulas (11) describe the canonical geodesic graph of degree 2 on the sub-
set U = {X ∈ n; ‖x‖2 	= 0}. For ‖x‖2 = 0 we can put ξ(X) = 0. It was
proved in [15] that the geodesic graph ξ is continuous at the origin. On the
subset V = {(0, 0, 0, 0, z1 , z2) ∈ n; z2

1 + z2
2 	= 0} it cannot be continuous:

For example, for z1 	= 0 we can consider the component ξ2 and the curves
γ1(t) = (t, 0, 0, 0, z1 , z2) and γ2(t) = (0, t, 0, 0, z1 , z2), which lie in U for t 	= 0
and go through (0, 0, 0, 0, z1 , z2) ∈ V for t = 0. If we calculate limits of the
component ξ2 along γ1 and along γ2, we obtain

lim
t→0

ξ2(γ1(t)) = lim
t→0

αεz1t
2 + 0

t2
= αεz1,
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lim
t→0

ξ2(γ2(t)) = lim
t→0

−αεz1t
2 + 0

t2
= −αεz1 (12)

and we see that the limits are different. Other points in V can be treated simi-
larly.

Because ξ is the unique geodesic graph on G/H, we obtain deg(G/H) = 2.
In the Riemannian case, if α2 	= γ2 or β 	= 0, then G is the identity component
of the maximal isometry group. If α2 = γ2 and β = 0, then G can be enlarged to
G′ = N � U(2). In the corresponding isotropy algebra h′ ! u(2), the additional
operator is D = 2B12 + A12 + A34 (where B12(Z1) = Z2 and B12(Z2) = −Z1).
But, from Geodesic Lemma it follows that the component of any geodesic graph
to this operator is zero. Hence also deg(G′/H ′) = 2 and deg(M) = 2 for any
α, β, γ.

There are other examples of Riemannian g.o. manifolds of degree 2. Here we
will only make a list of them:
– H-type groups (2-step nilpotent Lie groups with a special left-invariant Rie-
mannian metric) of dimension 2 + 4n with 2-dimensional center and H-type
groups of dimension 3+4n with 3-dimensional center. (For n = 1 we obtain the
6-dimensional example by A. Kaplan.) Geodesic graphs on these groups were
described in [11].
– The 6-dimensional compact example M = SO(5)/U(2) (and its dual M =
SO(1, 4)/U(2)) with a 2-parameter family of left-invariant Riemannian metrics
from the second part of Theorem 23. Geodesic graphs were described in [26];
– The 7-dimensional nilpotent group N = N �SU(2)/SU(2) with a 3-parameter
family of left-invariant Riemannian metrics constructed by C. Gordon in [20].
Geodesic graph was described in [26];
– The 7-dimensional compact example M =

(
SO(5)×SO(2)

)
/
(
SU(2)×SO(2)ϕ

)
(and its dual M = (SO(1, 4) × SO(2))/(SU(2) × SO(2)ϕ)) with a 2-parameter
family of left-invariant Riemannian metrics constructed by the present author,
O. Kowalski and S. Nikčević in [18] and in special cases considered in [17].

25 Remark. The general Riemannian metrics in the first part of Theorem
23 correspond to the so called modified H-type groups. These manifolds were
investigated by J. Lauret in [31]. He described which of modified H-type groups
are g.o. manifolds. The result is a generalization of the result for H-type groups,
which will be mentioned later in this section.

26 Remark. In [18], the authors stated a conjecture that in dimension 7,
except the two kinds of examples in the above list, there are no other g.o.
manifolds which are not naturally reductive.

In [15], the present author and O. Kowalski generalized the metrics on the
above examples and obtained pseudo-Riemannian g.o. spaces (with compact
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isotropy group). The generalization of the metric was similar to the possibili-
ties for ε1, ε2 in Example 24. Geodesic graphs on these g.o. spaces are similar
to the geodesic graph described by the formulas (11). All geodesic graphs are
continuous at the origin and for each example, there are points in m, such that
geodesic graph is discontinuous there. These features will be described later in
Conjecture 40.

In [13], the present author and O. Kowalski investigated the 13-dimensional
generalized Heisenberg group (H-type group) with 5-dimensional center. H-type
groups which are g.o. manifolds were classified by C. Riehm in [37]. There
are 2 series and 5 additional examples. The 2 series with 2-dimensional or 3-
dimensional center were mentioned earlier in the list of g.o. manifolds of degree
2. The dimensions of the 5 additional examples are 13, 14, 15, 23 and 31. (For
modified H-type groups which are g.o. manifolds, the dimensions are the same,
only the H-type metric is generalized to the family of modified H-type metrics
in each case.) The 13-dimensional H-type group admits 2 transitive groups of
isometries, G = I0(M) and G′ � G. The isotropy groups H and H ′ correspond-
ing to G and G′, respectively, are H = SO(5)× SO(2) and H ′ = SO(5). Hence,
the group N admits two presentations N = G/H and N = G′/H ′ as a homoge-
neous space and both these spaces are g.o. spaces. In G′/H ′, geodesic graph is
unique and deg(G′/H ′) = 6. In G/H, there are more geodesic graphs. For the
canonical geodesic graph ξ it holds deg(ξ) = 6, but there is a general geodesic
graph of degree 3. Hence, deg(M) = deg(G/H) = 3 (see [13] for details about
general geodesic graphs). Unfortunately, the other examples of H-type groups
cannot be described by this method. To solve the equations given by Geodesic
Lemma, it is necessary to calculate big determinants. In dimension 13, this was
at the limits of the computer possibilities.

In [1] and [2], D. Alekseevsky and A. Arvanitoyeorgos classified Rieman-
nian flag manifolds which are g.o. manifolds. There are two series, namely
SO(2n + 1)/U(n) and Sp(n)/U(1) · Sp(n − 1), for n ≥ 2. For n = 2, both
these manifolds coincide with the 6-dimensional compact example in the classi-
fication in Theorem 23. In [12], the present author described the second example
in the first series, namely SO(7)/U(3), explicitly in terms of Lie algebras and
calculated the canonical geodesic graph. The group SO(7) is the maximal isom-
etry group and the canonical geodesic graph ξ is unique in this example and
hence it holds deg(M) = deg(SO(7)/U(3)) = deg(ξ) = 4. For the example
Sp(3)/U(1) · Sp(2), there is not unique geodesic graph and the computation of
the canonical geodesic graph is again too complicated for the computer.

An important observation shows that the denominator P in the components
of a geodesic graph is always an algebraic invariant with respect to the action of
H on m. In Example 24 and formulas (11) it is obvious. For the 13-dimensional
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H-type group, in the canonical geodesic graph, there is an invariant of degree
6 and for the general geodesic graph, there is an invariant of degree 3. For the
flag manifold SO(7)/U(3), there is an invariant of degree 4. All these invariants
are more complicated than in the formula (11), but they can be expressed using
the Hilbert basis of invariants. See [13] and [12] for details.

27 Conjecture ([13]). For the components ηk of a geodesic graph written
in the form ηk = Pk/P , where Pk and P have no nontrivial common factor, the
denominator P is always an algebraic invariant.

5 Homogeneous geodesics on homogeneous pseudo-
Riemannian manifolds

As it was mentioned in Introduction, the first result about homogeneous
geodesics on homogeneous pseudo-Riemannian manifolds was the generaliza-
tion of Geodesic Lemma. The formula (1) first appeared in [19] and [35], the
proof was given in [14]. The first examples were given by G. Calvaruso and R.
Marinosci in [4], [7] and [8]. In [4], G. Calvaruso proved that any 3-dimensional
complete, connected and simply connected homogeneous Lorentzian manifold
is either symmetric or it is a Lie group with the left-invariant metric. Using
the classification of 3-dimensional unimodular Lie groups given by S. Rahmani
in [36] and the results on non-unimodular Lie algebras by L. Cordero and P.
Parker in [9], he obtained the following theorem:

28 Theorem ([4]). Let (M,g) be a 3-dimensional connected, simply con-
nected, complete homogeneous Lorentzian manifold. If (M,g) is not symmetric,
then M = G is a 3-dimensional Lie group, g is the left-invariant metric and
one of the following cases occurs:
1) If G is unimodular, then there exists a pseudo-orthonormal frame field
{e1, e2, e3} with e3 timelike such that the Lie algebra g of G is one of the fol-
lowing:

g1 : [e1, e2] = αe1 − βe3,
[e1, e3] = −αe1 − βe2,
[e2, e3] = βe1 + αe2 + αe3, (α 	= 0);

g2 : [e1, e2] = γe2 − βe3,
[e1, e3] = −βe2 + γe3,
[e2, e3] = αe1, (γ 	= 0);

g3 : [e1, e2] = −γe3,
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[e1, e3] = −βe2,
[e2, e3] = αe1;

g4 : [e1, e2] = −e2 + (2ε − β)e3,
[e1, e3] = −βe2 + e3,
[e2, e3] = αe1, (ε = ±1);

2) If G is non-unimodular, then there exists a pseudo-orthonormal frame field
{e1, e2, e3} with e3 timelike such that the Lie algebra g of G is one of the fol-
lowing:

g5 : [e1, e2] = 0,
[e1, e3] = αe1 + βe2,
[e2, e3] = γe1 + δe2, α + δ 	= 0, αγ + βδ = 0;

g6 : [e1, e2] = αe2 + βe3,
[e1, e3] = γe2 + δe3,
[e2, e3] = 0, α + δ 	= 0, αγ − βδ = 0;

g7 : [e1, e2] = −αe1 − βe2 − βe3,
[e1, e3] = αe1 + βe2 + βe3,
[e2, e3] = γe1 + δe2 + δe3, α + δ 	= 0, αγ = 0.

In [7] and [8], these cases were studied separately and for every algebra, the
sets of homogeneous geodesics were described. The results are very variable, we
will show here just two interesting cases which were treated separately in [14]
and in [5]. In Example 29, we will show the Lie group with the Lorentzian metric
which admits just two homogeneous geodesics through the origin, both these
geodesics are light-like and for one of them we have k = 0 and for the other we
have k 	= 0. Hence, for the second geodesic, the parameter of the orbit is not
the affine parameter of the geodesic and it must be reparametrized. In Example
30, we will show the Lie group N which admits the presentation N = G/H
where initial vectors of homogeneous geodesics form just the light-cone and a
hyperplane in the tangent space. In particular, N = G/H is not a g.o. space,
but all light-like geodesics are homogeneous (with nonzero k).

29 Example ([14]). Let us consider the 3-dimensional unimodular Lie
group G = E(1, 1) with a left-invariant Lorentzian metric whose Lie algebra
g admits the pseudo-orthonormal basis {E1, E2, E3} with E3 timelike and the
Lie bracket given by the formulas

[E1, E2] = E1, [E1, E3] = −E1, [E2, E3] = E2 + E3. (13)
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(This is a special case of the algebra g1 above.) We consider G acting on itself as
group of isometries by left translations. We see easily (from Geodesic Lemma)
that geodesic vectors are just the vectors X = E2+E3

2 and Z = E2−E3
2 , if we put,

in the formula (1), k = 0 or k = −1, respectively. Both these vectors are light-
like. We are going to investigate the orbits of the 1-parameter groups exp(tX)
and exp(tZ).

The group G can be identified with the matrices of the form⎛⎝ e−x3
0 x1

0 ex
3

x2

0 0 1

⎞⎠ , (14)

where (x1, x2, x3) form a global coordinate system. The 1-parameter subgroups
of G generated by the vectors X and Z are

exp(tX) =

⎛⎝ 1 0 t
0 1 0
0 0 1

⎞⎠ , exp(tZ) =

⎛⎝ e−t 0 0
0 et 0
0 0 1

⎞⎠ . (15)

The unit matrix corresponds to the origin p = (0, 0, 0) of the coordinate system
(x1, x2, x3). The orbits of the subgroups (15) starting at the origin are

γ1(t) = exp(tX)(p) = (t, 0, 0), γ2(t) = exp(tZ)(p) = (0, 0, t). (16)

Because the nonzero components of the Levi-Civita connection are

Γ1
22 = −2e−3x3

, Γ2
23 = Γ2

32 = −Γ3
33 = −1, (17)

we obtain for the tangent vectors γ′
1(t) = ∂

∂x1 and γ′
2(t) = ∂

∂x3 the relations

∇γ′1(t)γ
′
1(t) = Γk11

∂

∂xk
= 0, ∇γ′2(t)γ

′
2(t) = Γk33

∂

∂xk
=

∂

∂x3
= γ′

2(t). (18)

We see that the curve γ1 is a geodesic with the affine parameter t. The direct
computation shows that the curve

γ3(t) = (0, 0, log(t)) (19)

is the reparametrization of the curve γ2 by the affine parameter.
30 Example ([5]). Let us consider the 3-dimensional Lie algebra n with the

pseudo-orthonormal basis {E1, E2, E3} with E3 timelike and the multiplication
defined by the relations

[E1, E2] = 0, [E1, E3] = αE1 + βE2, [E2, E3] = −βE1 + αE2, (20)
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for α 	= 0 (the special case of the algebra g5 above). We denote by N the
unique connected and simply connected Lie group corresponding to n. Now we
introduce a linear operator A on n, which acts by the relations

A(E1) = E2, A(E2) = −E1, A(E3) = 0. (21)

This is the unique operator on n which preserves the scalar product and the
Lie algebra structure on n. We put h = span(A) ! so(2). Then, g = n + h is
a reductive decomposition and the scalar product on n induces a left-invariant
Lorentzian metric g on N = G/H = (N � SO(2))/SO(2).

Again, we write each vector X ∈ n and each vector η(X) ∈ h in the form
X =

∑
xiEi and η(X) = η1A and we consider the coordinates (x1, . . . , x3)

on n and (η1) on h. Now, a “geodesic graph” on n can be defined only on the
hyperplane x1 = x2 = 0, for example as a zero map, and on the light-cone, by
the formula

k = −αx3, η1 = βx3. (22)

On the other hand, (N, g) is a space of constant sectional curvature α2 > 0.
Having supposed N is connected and simply connected, it is a Lorentzian sphere
of constant curvature and in particular, it is a symmetric space. It is well-known
that its isometry group is O(1, 3) and so, N can be realized as N = G′/H ′, where
G′ = I0(M) is a 6-dimensional Lie group (the identity component of O(1, 3))
and H ′ is the identity component of the group O(1, 2). For a symmetric space
G′/H ′, all geodesics are homogeneous (with respect to the group G′). However,
g′ can not be obtained by adding some derivations to g, hence the Lie group
structure on G′ is not compatible with the Lie group structure on G (and on N).

6 Pseudo-Riemannian almost g.o. spaces

Now we present the modification of Example 24 and we obtain the homo-
geneous space with the noncompact isotropy group. This example and other
examples in dimensions 6 and 7 lead us to new definitions.

31 Example ([16]). Let us consider the 6-dimensional vector space n

with the pseudo-orthonormal basis {E1, . . . , E4, Z1, Z2} and with the signature
(−1,−1, 1, 1, ε, 1), where ε = ±1. Let us define the Lie bracket on n by the
relations

[E1, E2] = 0 , [E1, E3] = Z1 , [E1, E4] = Z2,
[E2, E3] = Z2, [E2, E4] = −Z1, [E3, E4] = 0,

[Z1, Ei] = [Z2, Ei] = [Z1, Z2] = 0 for i = 1, . . . , 4. (23)
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We denote by N the unique connected and simply connected Lie group whose Lie
algebra is n. Further, we denote by Aij (for 1 ≤ i < j ≤ 4) the endomorphisms
of n as before and we denote by Āij (for 1 ≤ i < j ≤ 4) the endomorphisms of
n, with the corresponding action given by the formulas

Āij(Ek) = δikEj + δjkEi for k = 1, . . . , 4.

We consider the operators

A = A34 −A12, B = Ā13 + Ā24, C = Ā14 − Ā23 (24)

whose Lie bracket satisfy the relations

[A,B] = 2C, [B,C] = −2A, [C,A] = 2B. (25)

We obtain the isomorphism h = span(A,B,C) ! so(1, 2) and we choose H =
SO(1, 2). It is easy to verify that the algebra h acts on n by derivations and
the scalar product on n is invariant with respect to this action (for both choices
ε = ±1). Hence, the manifold N can be expressed as a homogeneous space G/H,
where G = N � H.

In this case, the components of the canonical geodesic graph are

ξ1 =
2εz1(x1x4 + x2x3)− 2z2(x1x3 − x2x4)

−‖x‖2 ,

ξ2 =
εz1(x2

1 − x2
2 − x2

3 + x2
4) + 2z2(x1x2 − x3x4)

−‖x‖2 ,

ξ3 =
−2εz1(x1x2 + x3x4) + z2(x2

1 − x2
2 + x2

3 − x2
4)

−‖x‖2 . (26)

Here we put ‖x‖2 = x2
3 +x2

4−x2
1−x2

2. The above formulas describe the geodesic
graph on U = {X ∈ n; ‖x‖2 	= 0}.

32 Remark. In accordance with Conjecture 27, ‖x‖2 is an invariant with
respect to the transformation group Ad(H).

Further, we put V = n \ U = {X ∈ n; ‖x‖2 = 0}. For a g.o. space, it must
be possible to define a geodesic graph also on V . However, the next theorem
shows that it is not possible in this case.

33 Theorem ([16]). Let (G/H, g) be the homogeneous space from Exam-
ple 31. The subset V = n \ U of n can be decomposed as V = V0 + V1, where
V0 is an open dense subset of V . The geodesic graph can be defined on V1 and
it cannot be defined on V0. In particular, because V0 is nonempty, G/H is not
a g.o. space (for each ε = ±1).
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34 Remark. If the denominator in the components (26) of geodesic graph
ξ is zero, then geodesic graph can be defined only if all the numerators are zero
as well (the set V1). If the denominator is zero and at least one of the numerators
is nonzero, then the system of equations given by the Geodesic Lemma and the
formula (1) is unsolvable (the set V0).

This observation lead us to the following definition:
35 Definition. A pseudo-Riemannian homogeneous space (G/H, g) with

the reductive decomposition g = m + h is called an almost g.o. space if geodesic
graph can be defined on the open dense subset U ⊂ m, but not on all m.

The next feature of the above example is the following:
36 Theorem ([16]). Let (G/H, g) be the homogeneous space from Exam-

ple 31. Let us denote by N the null-cone in n. For ε = 1, it holds N∩V = N∩V1.
In particular, all null geodesics are homogeneous. For ε = −1, the set N ∩V0 is
nonempty and there are null geodesics which are not homogeneous.

37 Definition ([32], reformulated). A pseudo-Riemannian homogeneous
space (G/H, g) with the reductive decomposition g = m + h is called a n.g.o.
space if geodesic graph can be defined on the null cone N ⊂ m, but not on all
m. Here “n.g.o.” means “null geodesics are orbits”.

38 Remark. It is worth mentioning that the homogeneous space G/H from
Example 31 (for ε = 1) is a n.g.o. space and an almost g.o. space. The homoge-
neous space from Example 30 is a n.g.o. space and not an almost g.o. space.

The last feature of the above example are infinite limits of geodesic graph:
39 Theorem ([16]). Let (G/H, g) be the homogeneous space from Exam-

ple 31. For any vector X̊ ∈ V , there is a curve γ(t) with the values in n and
defined on an interval 〈0, δ) such that γ(0) = X̊, γ(t) ∈ U for t ∈ (0, δ) and the
limit of ξ1(γ(t)) is infinite for t→ 0+.

For example, let X̊ = (x1, x2, x3, x4, z1, z2) ∈ V0 and let us consider the
curve

γ = (x1 + t2, x2, x3, x4, z1 + t, z2), (27)

which lies in U for t 	= 0 and which goes through X̊ ∈ V for t = 0. Now we
calculate

ξ1(γ1(t)) =
2ε(z1 + t)((x1 + t2)x4 + x2x3) + 2z2(−(x1 + t2)x3 + x2x4)

(x1 + t2)2 + x2
2 − x2

3 − x2
4

=

=
2ε(z1 + t)(x4t

2 + x1x4 + x2x3) + 2z2(−x3t
2 − x1x3 + x2x4)

t4 + 2x1t2 + x2
1 + x2

2 − x2
3 − x2

4

=

=
2εt3x4 + 2t2(εz1x4 − z2x3) + 2εt(x1x4 + x2x3) + P1

t4 + 2x1t2
, (28)
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where P1 is exactly the numerator in the component of ξ1 in formulas (26). We
see that the limit of ξ1(γ(t)) for t→ 0 is infinite for P1 	= 0. Other points in V
can be treated similarly, see [16] for details.

In [10], the present author modified other 6-dimensional and 7-dimensional
g.o. spaces and obtained other homogeneous spaces with the noncompact isotro-
py group. There are 6-dimensional examples
- SO(2, 3)/U(1, 1) with the signature (2, 4);
- SO(2, 3)/(SU(1, 1) × �) with the signature (3, 3);
and 7-dimensional examples
- (SO(2, 3) × SO(2))/(SU(1, 1) × SO(2)ϕ), with signatures (2, 5) or (3, 4);
- (SO(2, 3) × �)/(SU(1, 1) × �ϕ), with the signature (3, 4).
All these homogeneous spaces are almost g.o. spaces. The 6-dimensional example
with the signature (2, 4) and the 7-dimensional example with the signature (2, 5)
are n.g.o. spaces, other examples are not n.g.o. spaces. For all these examples, the
components of geodesic graphs are very similar to the components of geodesic
graph (26). It is not hard to find curves analogous to curves (27) with similar
properties. If we compare g.o. spaces and geodesic graphs on them with these
almost g.o. spaces, we are led to the following conjecture:

40 Conjecture ([10]). Let (G/H, g) be a pseudo-Riemannian homogeneous
space, let g = m + h be a fixed reductive decomposition. Let ξ be the geodesic
graph which is nonlinear and unique on an open dense subset U ⊂ m.
1) If the isotropy group H is compact, then geodesic graph can be defined also on
V = m \ U and (G/H, g) is a g.o. space. Further, geodesic graph is continuous
at the origin and if geodesic graph ξ is discontinuous at some point X̊ ∈ V , then
the limits of ξ(X) for X → X̊ are finite.
2) If the isotropy group H is noncompact, then there is a set V0 ⊂ V = m \ U ,
where geodesic graph cannot be defined and hence (G/H, g) is not a g.o. space,
but only an almost g.o. space. Further, for any point X̊ ∈ V , there is a curve
γ(t) with the values in m and defined on an interval 〈0, δ) such that γ(0) =
X̊, γ(t) ∈ U for t ∈ (0, δ) and the limit of some component ξk(γ(t)) of geodesic
graph ξ is infinite for t→ 0+.

For all examples of pseudo-Riemannian homogeneous spaces with noncom-
pact isotropy group, there is a family of metrics. For some of these metrics,
we observed that a geodesic graph can be defined linearly on all m (and the
existence of a linear geodesic graph implies natural reductivity).

41 Conjecture ([10]). If a pseudo-Riemannian reductive homogeneous space
G/H with noncompact isotropy group H is a g.o. space, then it is naturally re-
ductive.

And finally, for all our examples of almost g.o. spaces, for all null homo-
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geneous geodesics it holds k = 0. There are examples of homogeneous spaces
where null homogeneous geodesics with nonzero k exist (see Example 30), but
these examples are not g.o. spaces or almost g.o. spaces.

42 Conjecture ([10]). Let G/H be a pseudo-Riemannian g.o. space or al-
most g.o. space. For all null homogeneous geodesics it holds k = 0 in Lemma 3.
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