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Abstract. The purpose of this note is to give a synthetic description of the intrinsic metric
of a fiber F of the connection metric on a vector bundle E → M over a riemannian manifold
M endowed with a euclidean metric and a compatible connection. These metrics are described
in terms of the action of the holonomy group and several properties are derived thereafter. In
the process, a strong metric geometric meaning is given to the holonomy group.
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In modern geometry, the tangent bundle has been central and has been
extensively studied by Sasaki [16], Musso and Tricerri [11], Abbassi and Sarih
[1], Beyounes et al. [3], among many others. In order to understand the Gromov-
Hausdorff limits of tangent bundles, one must make a study of the properties
of such bundles from the viewpoint of Metric Geometry, that is the synthetic
properties of their induced metric-space structure. It is a well-known fact that
the differential geometry of the tangent bundle with its Sasaki metric is fairly
rigid. In particular, its fibers are totally geodesic and flat (see [13]). However,
here we see that the metric properties of the embedding of these fibres depend
very strongly upon the holonomy group of the manifold.

At any given point on a riemannian manifold there are three pieces of in-
formation that interplay: the tangent space, as a normed vector space V ; the
holonomy group, as a subgroup H of the isometry group of the fiber; and a
group-norm L on the holonomy group, given by considering the infimum

L(A) = inf
γ
`(γ) (1)

of the lengths of the loops γ that yield a given holonomy element A.

A holonomic space is a triplet (V,H,L) consisting of a normed vector space
V ; a group H of linear isometries of V ; and a group-norm L on such group;
satisfying a local convexity property that relates them: For any element u ∈ V
there is a ball around it such that for any two elements v, w in that ball the

iP. Solórzano is a CONACYT-UNAM National Researcher
http://siba-ese.unisalento.it/ c© 2017 Università del Salento
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following inequality holds:

‖v − w‖2 − ‖av − w‖2 ≤ L2(a) (2)

for any element a ∈ H. See Definition 2.
By considering the following distance function, dL : V × V → R,

dL(u, v) = inf
A

√
L2(A) + ‖Au− v‖2, (3)

one gets a modified metric-space structure on V that sheds light on the definition
of a holonomic space: A triplet (V,H,L) is a holonomic space if and only if dL
is locally isometric to usual distance on V . This is Theorem 2, proved in section
1.

The measure of nontriviality of a holonomic space is controlled by the holon-
omy radius, a continuous function on V , given by the supremum of the radii of
balls for which the local convexity property is satisfied. This function is finite if
and only if H is nontrivial [Proposition 2].

Considering the holonomy radius at the origin already yields some informa-
tion on the group-norm in the case when the normed vector space is actually
an inner product space. Namely the following result.

Theorem A. Given a holonomic space (V,H,L), the identity map on H
is Lipschitz between the left invariant metrics on H induced by L(A-1B) and√

2‖A−B‖ respectively, where ‖ · ‖ stands for the operator norm. Moreover,
the dilation is precisely the reciprocal of the holonomy radius ρ0 at the origin
of V . √

2‖A−B‖ ≤ 1

ρ0
L(A-1B). (4)

This is a consequence of Theorem 4 and Corollary 4 in section 1.
The relevance of this result is clear in the context of euclidean vector bundles.

Recall that a Sasaki-type metric g on a euclidean vector bundle with compatible
connections is given in terms of the connection map κ : TE → E, uniquely
determined by requiring that κ(σ∗x) = ∇Ex σ, as

g(ξ, η) = g(π∗ξ, π∗η) + h(κξ, κη), (5)

for vectors ξ, η ∈ TE.

Theorem B. Given a euclidean vector bundle with a compatible connec-
tion over a riemannian manifold, each point in the base space has a naturally
associated holonomic space, with the fiber over that point being the underlying
normed vector space.

Furthermore, if the total space is endowed with the corresponding Sasaki-
type metric then the aforementioned modified metric-space structure coincides
with the restricted metric on the fibers from the metric on the total space.
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This result is stated more precisely in Proposition 5, Theorem 5, and The-
orem 6.

The group-norm in Theorem B is given by (1). The study of this group-norm
was already hidden in the work of Tapp [20] and Wilkins [22].

This group-norm induces a new topological group structure on the holonomy
group that makes the group-norm continuous while retaining the continuity of
the holonomy action [Lemma 2]. It should be noted that with the standard
topology (i.e. that of a Lie group) of the holonomy group, this group-norm is not
even upper semicontinuous. Wilkins [22] had already noted this (an immediate
example is to consider a metric that is flat in a neighborhood of a point and
consider the group-norm associated at that point). He proved that if the Lie
group topology is compact then the group-norm topology is bounded, which is
a surprising result given that the group-norm topology is finer.

Tapp [20] defines a ‘size’ for a given holonomy element as an infimum over
acceptable smooth metrics on the holonomy group (quoted here as 7). As such,
he proved that holonomy ‘size’ and the length group-norm (1) are comparable
up to a constant that depends only on the base space and the norm of the
curvature (see Theorem 9). One observation is the following.

Theorem C. The holonomy group of a connection on a vector bundle is
compact if and only if the restricted holonomy group is compact and its associ-
ated length norm is bounded.

These results are discussed in more detail in the last section.
As an application of this constructions, the holonomy radius of a riemannian

manifold is defined by assigning to each point the holonomy radius at the origin
of the holonomic space associated to it by Theorem B in the case of its tangent
bundle with the Levi-Civita connection [Definition 8]. In view of Theorem A,
this function is positive [Theorem 11] and has a precise formulation in terms
of the group-norms and of the usual linear action of the holonomy groups. In
[18], this function is shown to be upper semicontinuous and to control the non
collapsing of the fibers of a convergent sequence of vector bundles.

More specifically, in [18], the study of the Gromov-Hausdorff convergence of
Sasaki-type metrics over a sequence of converging base spaces uses the notion of
holonomic space as part of the description of the limits. In essence, it is proved
that the fibers of a converging sequence of Sasaki-type metrics converge with
their restricted metrics to a fiber in the limit. The degeneracy of these limits
is determined by the action of a compact Lie group. This group is obtained by
looking at the set

G0 = { g ∈ O(V ) | g = lim
in→∞

ain , lim
in→∞

Lin(ain) = 0 }, (6)

and considering the largest subgroup G of O(V ) sharing the same orbits as G0.
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Of course, there are other groups that satisfy this. If the holonomy radius is
uniformly bounded away from zero along the sequence, then G0 is trivial and
the fibers of the limit remain vector spaces.

Similar ways to consider convergence of vector bundles—some imposing dif-
ferent conditions—have been proposed by Kasue [6], Rieffel [14], Tapp [21], or
Rong and Xu [15]. Kotschwar [8] notices that the holonomy group is preserved
under Ricci flow, hinting at the importance of understanding the metric geo-
metric interactions of holonomy. In particular when additional information is
known such as the presence of special holonomy, as in [2].

Another immediate application is the following result, the proof of which is
straightforward.

Theorem D. The completion of the Sasaki metric on the tangent bundle
TM is the total space of a submetry over the completion of M . All the new
fibers are exactly obtained as limits of holonomic space metrics.

1 Initial consequences

1.1 Definitions

The notion of a holonomic space is introduced in this section. It will be
seen in the sequel how these spaces occur as fibers of euclidean vector bundles
with suitable conditions imposed; several properties of holonomic spaces are also
analyzed here. Firstly, one important ingredient is that of group-norm.

Definition 1. Let G be a group. A function | · | : G → R is a group-norm
if it satisfies the following properties.

(1) For any g ∈ G, |g| ≥ 0. (Positivity)

(2) For any g ∈ G, |g| = 0 only when g is the identity. (Non-degeneracy)

(3) For any g ∈ G, |g-1| = |g|. (Symmetry)

(4) For any g, h ∈ G, |gh| ≤ |g|+ |h|. (Subadditivity)

By setting d(g, h) = |g-1h| one sees that a normed group is essentially the
same as a group with a left-invariant metric. There are examples (e.g. word
metrics for fundamental groups) where it is the norm which occurs first, while
the metric comes as an afterthought. A good reference is the recent work of
Bingham and Ostaszewski [5]. In this communication, it is also the case that
the natural concept is the group-norm. For reasons that will become apparent
by Theorem 5, the notation for a group-norm in the sequel is given by L(·)
rather than by | · |.
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Definition 2. Let (V, ‖ · ‖) be a normed vector space, H ≤ Aut(V ) a sub-
group of norm preserving linear isomorphisms, and L : H → R a group-norm
on H. The triplet (V,H,L) will be called a holonomic space if it further satisfies
the following convexity property:

(P) For all u ∈ V there exists r = ru > 0 such that for all v, ,w ∈ V with
‖v − u‖ < r, ‖w − u‖ < r, and for all A ∈ H,

‖v − w‖2 − ‖v −Aw‖2 ≤ L2(A). (7)

Definition 3. Let (V,H,L) be a holonomic space. The holonomy radius of
a point u ∈ V is the supremum of the radii r > satisfying the convexity property
(P) given by (7). It will be denoted by HolRad(u). It may be infinite.

Lemma 1. Given a holonomic space (V,H,L) as above, there exists r > 0
such that for u ∈ V , |u| < r, and for any B ∈ H,

‖u−Bu‖ ≤ L(B). (8)

Proof. Simply choose r = r0 as in 2, v = u, w = Bu and A = B-1. QED

Definition 4. Given a holonomic space (V,H,L), the largest radius of a
ball satisfying Lemma 1 is the convexity radius of a holonomic space. It may be
infinite.

Remark 1. The convexity radius is in general larger than the holonomy
radius at the origin, as can be seen in Example 1.

The group-norm L induces a metric topology on H, called here L-topology

Lemma 2. Given a holonomic space (V,H,L), the action H × V → V is
continuous with respect to the L-topology on H. Furthermore, the bound depends
only on the maximum norm when restricted to bounded domains.

Proof. Let r0 be the convexity radius. Let (a, u) ∈ H × V , with ‖u‖ ≥ r0. Fix

λ > 0 such that λ‖u‖` < r, and let ε > 0. Let K =
√

1 + 1
λ2

. Note that for any

positive real numbers x, y ∈ R,

x+
1

λ
y ≤ K

√
x2 + y2.

Now, if δ = min{ εK ,
r−λ‖u‖

λ } and
√
L2(a-1b) + ‖u− v‖2 < δ, notice that

‖λv‖ ≤ λ‖u− v‖+ ‖λu‖ < λδ + λ‖u‖ ≤ r0.
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Thus,

‖au− bv‖ = ‖u− a-1bv‖ =
1

λ
‖λu− a-1bλv‖

≤ 1

λ

(
‖λu− λv‖+ ‖λv − a-1bλv‖

)
≤ ‖u− v‖+

1

λ
L(a-1b)

≤ K
√
L2(a-1b) + ‖u− v‖2

= K
√
L2(a-1b) + ‖u− v‖2 < Kδ ≤ ε.

QED

Remark 2. This implies that the L-topology is necessarily finer than the
subgroup topology induced from O(V ). The fact that they be comparable is
already restrictive on what L can be.

Theorem 1. Let (V,H,L) be a holonomic space.

dL(u, v) = inf
A∈H

{√
L2(A) + ‖u−Av‖2

}
, (9)

is a metric on V .

Proof. By Lemma 2 one sees that the action H × V → V is continuous with
respect to the L-topology on H. Observe that the V is homeomorphic to H\(V ×
H) and that the induced metric on V is given by (9). QED

Definition 5. Given a holonomic space (V,H,L). The metric given by (9)
will be called holonomic space metric.

Theorem 2. A triplet (V,H,L) is a holonomic space if and only if the
identity map idV : (V, ‖ · ‖)→ (V, dL) is a locally isometry.

Proof. By property (P), given any point u ∈ V there exists a radius r > 0 such
that for all v, w ∈ V , with ‖v − u‖ < r and ‖w − u‖ < r, and for all A ∈ H,

‖v − w‖ ≤
√
L2(A) + ‖v −Aw‖2.

Hence, considering the infimum of the right-hand side, it follows that

‖v − w‖ ≤ dL(v, w) ≤
√
L2(idV ) + ‖v − w‖2 = ‖v − w‖.

Conversely, if the identity is a local isometry, property (P) in Definition 2 is also
satisfied: On any ball around u ∈ V on which the identity map idV restricts to
an isometry and for any B ∈ H and any pair of points v, w in said ball,

‖v − w‖ = inf
A∈H

{√
L2(A) + ‖v −Aw‖2

}
≤
√
L2(B) + ‖v −Bw‖2.



Holonomic spaces 147

QED

Remark 3. The holonomy radius is also the radius of the largest ball so
that the restricted dL-metric is euclidean.

Proposition 1. Let (V,H,L) be a holonomic space. The original norm on
V is recovered by the equation

‖v‖ = dL(v, 0) (10)

Proof. Because H acts by isometries on V ,

dL(v, 0) = inf
A∈H

{√
L2(A) + ‖v‖2

}
.

The conclusion now follows by letting A = idV . QED

Corollary 1. Given a holonomic space (V,H,L) the rays emanating from
the origin are geodesic rays with respect to dL.

1.2 Properties of the associated radii

Proposition 2. Let (V,H,L) be a holonomic space. Then H = {idV } if
and only if there exists u ∈ V for which the holonomy radius is not finite.

Proof. If H is trivial, then L ≡ 0, and so V is globally isometric to V , hence for
any u ∈ V the holonomy radius is infinite. Conversely, if there exists u ∈ V with
HolRad(u) =∞, and there is a ∈ H with L(a) > 0 (i.e. a 6= idV ), then for any
v ∈ V , ‖v− av‖ ≤ L(a) should hold. This is a contradiction since v 7→ ‖v− av‖
is clearly not bounded unless a = idV . QED

Corollary 2. Let (V,H,L) be a holonomic space. Then the function u 7→
HolRad(u) is positive. Furthermore, it is finite provided H is nontrivial.

Proposition 3. Let (V,H,L) be a holonomic space. The function u 7→
HolRad(u) is continuous.

Proof. By Proposition 2 one can assume, with no loss of generality, that H 6=
{idV }. Let u ∈ V and let %(u) be the holonomy radius at u. Let v ∈ V with
‖v − u‖ < %(u), i.e. v ∈ B%(u)(u), then by maximality of %(v), it has to be at
least as large as the radius of the largest ball around v completely contained in
B%(u)(u),

%(v) ≥ %(u)− ‖u− v‖.
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Also, by maximality of %(u), if follows that %(v) cannot be strictly larger than
the smallest ball around v that contains B%(u)(u),

%(v) ≤ %(u) + ‖u− v‖.

Therefore, at any given point u ∈ V and any ε > 0, there exists δ = min{%(u), ε}
such that for any v ∈ V , ‖u− v‖ ≤ δ it follows that

|%(u)− %(v)| ≤ ‖u− v‖ ≤ ε.

QED

Theorem 3. Let (V,H,L) be a holonomic space. Then the convexity radius
is given by

CvxRad = inf
A∈H
A 6=idV

L(A)

‖idV −A‖
, (11)

where for any T : V → V , ‖T‖ denotes its operator norm.

Proof. Let u ∈ V with ‖u‖ ≤ L(A)
‖idV −A‖ , then

‖Au− u‖ ≤ ‖A− idV ‖‖u‖ ≤ L(A)

which proves that

CvxRad ≥ inf
A∈H
A 6=idV

L(A)

‖idV −A‖
.

Now, let % > L(A)
‖idV −A‖ and let ε > 0 be such that

ε < ‖A− idV ‖%− L(A) = ‖A− idV ‖
(
%− L(A)

‖A− idV ‖

)
> 0. (12)

Then, by the definition of operator norm, there exists u ∈ V with ‖u‖ = % such
that

‖A− idV ‖% ≥ ‖Au− u‖ > ‖A− idV ‖%− ε.

The second inequality, together with (12), yields that

‖Au− u‖ > ‖A− idV ‖%− ε > L(A).

This proves that CvxRad cannot be strictly larger than L(A)
‖idV −A‖ for any A, and

thus for all. QED
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Notice that the operator norm and any composition of it with a non de-
creasing subadditive function is a group-norm; and that given a group-norm N ,
a left-invariant metric is obtained by dN (g, h) = N(g-1h). With this, the group
norm in the definition of a holonomic space, the usual operator norm and the
convexity radius are related in the following Lipschitz condition.

Corollary 3. Given a holonomic space (V,H,L), with V an inner product
space, then

‖A−B‖ ≤ 1

CvxRad
L(A-1B),

for all A,B ∈ H.

Theorem 4. Let (V,H,L) be a holonomic space and suppose further that
V is an inner product space and that the norm is given by ‖ · ‖2 = 〈·, ·〉. Then
the holonomy radius at the origin is given by

HolRad(0) = inf
A∈H
A 6=idV

L(A)√
2‖idV −A‖

, (13)

where for any T : V → V , ‖T‖ denotes its operator norm.

Proof. Using the inner product, the symmetry of the group-norm L, L(A-1) =
L(A), and that H acts by isometries, (7) is equivalent to

‖v − w‖2 − ‖Av − w‖2 ≤ L2(A),

which when expanded out yields,

‖v‖2 + ‖w‖2 − 2〈v, w〉 − ‖v‖2 − ‖w‖2 + 2〈Av,w〉 ≤ L2(A),

whence
2〈Av − v, w〉 ≤ L2(A).

Thus, if ‖v‖, ‖w‖ ≤ L(A)√
2‖idV −A‖

then

2〈Av − v, w〉 ≤ 2‖A− idv‖‖v‖‖w‖ ≤ L2(A).

Since the inequality has to hold for any A, it follows that

HolRad(0) ≥ inf
A∈H
A 6=idV

L(A)√
2‖idV −A‖

.

Furthermore, for ρ > L(A)√
2‖idV −A‖

, let ε > 0 such that

ε < ‖idV −A‖ρ−
L2(A)

2ρ
=
‖idV −A‖

ρ

(
ρ2 − L2(A)

2‖idV −A‖

)
> 0.
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By the definition of operator norm, there exists v ∈ V , with ‖v‖ = ρ and

‖idV −A‖ρ ≥ ‖Av − v‖ > ‖idV −A‖ρ− ε.

Set w = ρ
‖Av−v‖(Av − v). It now follows that

2〈Av − v, w〉 = 2ρ‖Av − v‖ > 2ρ(‖idV −A‖ρ− ε) > L2(A),

by the previous second inequality.
Thus, (7) cannot hold for ρ > L(A)√

2‖idV −A‖
and the claim follows. QED

Corollary 4 (cf. Corollary 3). Given a holonomic space (V,H,L), with V
an inner product space, then√

2‖A−B‖ ≤ 1

HolRad(0)
L(A-1B),

for all A,B ∈ H.

1.3 Examples

Example 1. The existence of an r > 0 satisfying (8) (guaranteed for holo-
nomic spaces by 1) is not equivalent to the existence of an r′ > 0 satisfying (7).
This follows from (13) by considering the following action: Let V = C2, H = R,

t · (z, w) = (eitz, e
√

2itw),

and L(t) = |t|. Indeed, by Theorem 4,

HolRad(0) = inf
A∈H
A 6=idV

L(A)√
2‖idV −A‖

= lim
t→0+

|t|√
2
√

2− 2 cos(
√

2t)

= 0,

whereas, any positive r ≤ 1√
2

will make (8) hold. Hence, by Theorem 3,

CvxRad ≥
√

2

2
.

Finally, consider the following example.

Example 2. Let r > 0 and let H be the group generated by a rotation by
0 < α < π. Let Lr be the group-norm given by

L(A) =

{
2r a 6= e,

0 otherwise.
(14)
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Consider V to be R2 with the standard inner product. Then (V,H,Lr) is a
holonomic space. This can be verified directly. It will also follow from Theorem
6 by considering the flat metric

ds2 = dr2 +
(αr

2π

)2
dθ2

on R2 \ {0} (see [18]).

1.4 Fibers as holonomic spaces

A euclidean vector bundle E is a vector bundle with a fiberwise positive-
definite inner product h. A compatible connection ∇ is then a derivation with
respect to which h is parallel. Let α : [0, 1] → M be a piecewise smooth curve.
Denote by Pαt the parallel translation transformation from the fiber at α(0) to
the fiber at α(t). Let e, u be vectors on the same fiber in E. Denote by ev(u)
the tangent vector at t = 0 to the curve t 7→ u+ te. Given a vector u in E and
a tangent vector x at π(x), denote by xh(u) the tangent vector at t = 0 to the
curve t 7→ Pαt (u) along any α such that π(u) = α(0) and x = α̇(0).

Definition 6 ([16]). Given a vector bundle with metric and compatible
connection (E, π, h,∇E) over a riemannian manifold (M, g), the Sasaki-type
metric g = g(g, h,∇E) is defined as follows

g(ev, fv) = h(e, f) (15)

g(ev, xh) = 0 (16)

g(xh, yh) = g(x, y), (17)

Remark 4. An equivalent phrasing of g can be given in terms of the con-
nection map [7], κ : TE → E, uniquely determined by requiring that

κ(σ∗x) = ∇Ex σ; (18)

so that g becomes
g(ξ, η) = g(π∗ξ, π∗η) + h(κξ, κη), (19)

for vectors ξ, η ∈ TeTE.

Proposition 4. Given a curve α : I →M (parametrized by arc length), the
(trivial) pullback bundle α∗E is further isometric to I ×Rk where k is the rank
of E.

Proof. By parallel translation one gets that

α∗g = `(α)2dt2 + α∗hp,

where p = α(0), and ` denotes the length of α. QED
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Proposition 5. The length distance on (E,g) is expressed as follows. Let
u, v ∈ E, then

dE(u, v) = inf

√`(α)2 + ‖Pα1 u− v‖2

∣∣∣∣∣∣
α : [0, 1]→M
α(0) = πu
α(1) = πv

 . (20)

Furthermore, if πu = πv then

dE(u, v) = inf{
√
L(a)2 + ‖au− v‖2 : a ∈ Holp}, (21)

with L being the infimum of lengths of loops yielding a given holonomy element.

Proof. The first expression is essentially the definition of distances in view of 4.
In the case πu = πv, (21) follows by partitioning the set of all curves α according
to the holonomy element they generate. QED

Theorem 5. Let Holp be the holonomy group over a point p ∈ M of a
bundle with metric and connection and suppose that M is riemannian. Then
the function Lp : Holp → R,

Lp(A) = inf{ `(α) | α ∈ Ωp, P
α
1 = A }, (22)

is a group-norm for Holp, where Ωp denotes the space of piecewise smooth loops
based at p.

Proof. Positivity is immediate from the fact that it is defined as an infimum
of positive numbers. To prove non-degeneracy suppose that an element A 6= I
has zero length. There exists u ∈ Ep such that Au 6= u; thus, by (21), choosing
a = A yields d(u,Au) = 0. A contradiction.

The length of the inverse of any holonomy element is the same because
the infimum is taken essentially over the same set. Finally, to establish the
triangle inequality, note that the set of loops that generate AB contains the
concatenation of loops generating A ∈ Holp with loops generating B ∈ Holp.

QED

Definition 7. The function Lp, defined by (22) will be called length-norm
of the holonomy group induced by the riemannian metric at p.

Remark 5. The fact that the connection be metric is used twice in proof
that Lp is indeed non-degenerate. This is because once can then produce a
riemannian metric on the total space of the bundle, namely that of Sasaki type.
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Theorem 6. Let Ep be the fiber of a vector bundle E with metric and
connection over a riemannian manifold M at a point p. Let Holp denote the as-
sociated holonomy group at p and let Lp be the group-norm given by (22). Then
(Ep, Holp, Lp) is a holonomic space. Moreover, if E is endowed with the cor-
responding Sasaki-type metric, the associated holonomic space metric coincides
with the restricted metric on Ep from E.

Proof. According to the definition given in 2, the only remaining condition
is given by (7). To see this, one needs only to note that the fiber Ep is a
totally geodesic submanifold of E. With this, given any point u ∈ Ep, let r =
CvxRadp(E) > 0, the convexity radius; thus, for any pair of points v, w ∈
BE
r (p)∩Ep there exists a unique geodesic from v to w. This geodesic is necessarily

t 7→ u− t(v − u) ∈ Ep, and thus the distance

d(u, v) = ‖u− v‖.

QED

2 Further constructions

2.1 Length of loops—New topologies for the holonomy group

Controlling the length of loops that generate a given holonomy element
has many applications, as pointed out by Montgomery [9] , in Control Theory,
Quantum Mechanics, or sub-riemannian geometry (see [10]).

Considering the infimum L(A) of lengths of loops that generate a given
holonomy element a is a natural pick, and exhibits the fibers the vector bundle
as a holonomic space as seen in 6.

Although the function A 7→ L(A) is in general not even upper-semiconti-
nuous when regarded as a function on the holonomy group with the subspace
topology (or even its Lie group topology), as pointed out by Wilkins [22], the
following results gives a more positive outcome.

Theorem 7. Let H be the holonomy group of a metric connection on a
vector bundle E over a riemannian manifold. There exists a finer metrizable
topology on H, given by d(A,B) = L(A-1B), so that the function A 7→ L(A)
is continuous with respect to this topology and furthermore, the group action
H × Ep → Ep remains continuous.

Proof. By 2 the action map H×Ep → Ep, is continuous. Thus, the identity map
is continuous from the L-topology to the Lie topology. Furthermore, clearly L
is continuous with respect to the L-topology. QED
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Now, the following fact hints a type of ‘wrong way’ inheritance.

Proposition 6 (Schroeder and Strake [22], Wilkins [17]). Let π : P →M be
a smooth principal bundle over a smooth manifold M , let a smooth connection
on π : P →M be given, and let Hp denote the holonomy group of this connection
attached to some element p of P . Suppose that Hp is compact. Then there exists
a constant K such that every element of Hp can be generated be a loop of length
not exceeding K.

So, in the language of the induced length structure the following is true.

Theorem 8. Let E → M be a vector bundle with bundle metric and com-
patible connection. Let H be the holonomy group of this connection. If H is
compact with the standard Lie group topology (in particular bounded with re-
spect to any —invariant— metric), then H with the induced length metric given
by (22) is bounded.

Tapp [20] introduces a way to measure the size of a holonomy transformation
as a supremum over acceptable left invariant metrics. A smooth invariant metric
m is acceptable if for any X ∈ k = g(Φ), the Lie algebra of Φ,

‖X‖m ≤ sup
v,‖v‖=1

‖X(v)‖, (23)

where X(v) means the evaluation of the fundamental vector on F associated
with X. The size of a holonomy transformation A is then defined as the supre-
mum of its distances to the identity distm(A, Id) over acceptable metrics m.
And the following fact relates this ‘size’ to the norm defined by (22), whenever
there are curvature bounds.

Proposition 7 (Tapp [20]. Proposition 7.1). Let E → B be a riemannian
vector bundle over a compact simply connected manifold B. Let ∇ be a compati-
ble metric connection and let its curvature R be bounded in norm, |R| ≤ CR. Fix
a point x ∈ B and let Hol(∇) be the corresponding holonomy group at x. Then
there exists a constant C(B) such that for any loop α in B, |Pα| ≤ C ·CR · `(α),
where Pα ∈ Hol(∇) stands for the holonomy transformation induced by α.

Theorem 9. With the assumptions as in the previous statement, the norm
given by (22) and Tapp’s holonomy size are related by |g| ≤ C · CR · L(g), so
that the induced length topology is finer than that of Tapp’s holonomy size.

Proof. This is immediate from the inequality, since the infimum is taken over
loops with the same holonomy transformation associated. QED

Finally, with the additional assumption of completeness, the following result
gives a converse to Proposition 6.
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Theorem 10. Let E → B be a riemannian vector bundle with compati-
ble connection over a complete riemannian manifold B. The holonomy group is
compact if and only if the restricted holonomy group is compact and its associ-
ated length norm is bounded.

Proof. The necessity is the content of Proposition 6. For the sufficiency, suppose
that the holonomy group has infinitely many connected components. Consider
a sequence {Ai} of inequivalent classes. Let γi be a loop generating Ai such that
L(Ai) = `(γi); these exist by the completeness of the metric and an application
of Arzelà-Ascoli Theorem as pointed out by Montgomery [9]. Since the lengths
of the γi’s are bounded by assumption, another application of Arzelà-Ascoli
Theorem, now to the sequence γi, yields a uniformly convergent subsequence,
also denoted by {γi}. Therefore, for i >> 0, all loops are homotopic. This is
a contradiction to the following fact: different connected components of the
holonomy group represent different homotopy classes. QED

Corollary 5. In the case of complete riemannian manifolds, the holonomy
group is compact if and only if the length norm is bounded.

Proof. By virtue of the classification theorem of Berger [4], the restricted holon-
omy group is always compact. QED

Remark 6. Completeness is really essential as looking again at a cone met-
ric on the punctured plane shows (Solórzano [18]).

2.2 Holonomy radius of a riemannian manifold

Given a riemannian manifold (M, g), in view of the fundamental theorem of
riemannian Geometry, one immediately obtains a vector bundle, a connection
and a bundle metric compatible with the connection; i.e. the tangent bundle,
the Levi-Civita connection and the metric itself. This is the metric introduced
by Sasaki [16].

Definition 8. Let (M, g) be a riemannian manifold and let p ∈ M . The
holonomy radius of M at p and denoted by HolRadM (p) is defined to be the
supremum of r > 0 such that for all u, v ∈ TpM with ‖u‖, ‖v‖ ≤ r and for all
A ∈ Holp

‖u− v‖2 − ‖Au− v‖2 ≤ L2
p(A), (24)

where Lp is the associated length norm on Holp.

Remark 7. This is simply the holonomy radius at the origin of the holo-
nomic space (TpM,Holp, Lp) (see Definition 3).
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Theorem 11. Given a riemannian manifold M . The function that assigns
to each point its holonomy radius is strictly positive.

Proof. This is a direct consequence of 2 and the fact that the tangent spaces
are holonomic by 6. QED

Remark 8. This fact also follows directly from geometric considerations
given that 0 < CvxRadTM (0p) ≤ HolRadM (p), where CvxRadTM is the con-
vexity radius of TM with its Sasaki metric.

Remark 9. The continuity of HolRad : M → R is addressed in [18]. In
particular, its upper semicontinuity is established.

Proposition 8. If there exists a point p in a Riemanian manifold M for
which the holonomy radius is not finite, then M is flat.

Proof. by 2, the existence of such point is equivalent to the group being trivial.
In particular, the restricted holonomy group is trivial, which in turn is equivalent
to flatness. QED

Remark 10. The converse is certainly not true. Consider for example a
cone metric on R2 \ {0} [18].

Corollary 6. Let M be a simply connected riemannian manifold. If there is
a point on M with infinite holonomy radius, then M is isometric to a euclidean
space.

2.3 Two-dimensional examples

In the two-dimensional case more can be obtained from the Gauß-Bonnet
Theorem. Furthermore, in the particular case of the S2 orH2, L can be computed
explicitly by virtue of the isoperimetric inequality.

Recall the following classical result.

Lemma 3. Let (M2, g) be a 2-dimensional riemannian manifold and let
γ : [0, `] ⊆ R → M be any curve parametrized by arc length. Let k be a signed
geodesic curvature of γ with respect to an orientation of γ∗TM . Let θ(t) be the
angle between γ̇ and its parallel translate at time t. Then

2π − θ(t) =

∫ t

0
k (25)

Assume further that γ is a loop. Then, possibly up to a reversal in orientation,
the holonomy action of γ at p = γ(0) is the rotation by 2π −

∫ `
0 k − α, where α

is the angle between γ̇(0) and γ̇(1).
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Proof. Consider a compatible parallel almost complex structure on γ∗TM , J .
With respect to the orthonormal frame given by {γ̇, J(γ̇)}, ∇γ̇ γ̇ = kJ(γ̇), and
thus the equation for any parallel vector field P = aγ̇ + bJ(γ̇) along γ is given
by

ȧ = kb

ḃ = −ka

which integrates to a rotation by −
∫
k as claimed. QED

Theorem 12. Let M2 be a complete simply connected two-dimensional non-
flat space-form with curvature K. Let L : S1 → R be the associated length-norm
on the holonomy group. Then

L(θ) =

√
4π|θ| ± θ2√
|K|

, (26)

for −π ≤ θ ≤ π, where the sign is opposite to the sign of the curvature.

Proof. By the Gauß-Bonnet Theorem, θ = 2π −
∫
k − α = KA, where A is the

area of the region enclosed by any loop γ, so that

A =

∣∣∣∣ θK
∣∣∣∣ . (27)

Now, the isoperimetric inequality in this case (see [12]) is given by

`2 ≥ 4πA−KA2, (28)

where the equality is achieved when γ is a metric circle. So, by direct substitution
of (27) into (28) the claim follows. QED

Corollary 7. Let M2 be a simply connected two-dimensional non-flat space-
form with curvature K. The holonomy radius at any point p ∈M is given by

HolRadM ≡ inf
0<θ≤π

√
4πθ ± θ2

2|K|
√

2− 2cos(θ)
. (29)

Proof. In view of (13), the only remain part is to compute ‖a − id‖ for any
holonomy element a. Since all of them are rotations by some angle θ, if follows
that ‖au−u‖ = ‖a− id‖‖u‖ for any given u ∈ TpM . Hence a direct application
of the law of cosines yields that

‖a− idV ‖ =
√

2− 2 cos θ (30)

and hence the result. QED
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Remark 11. In particular, for the hyperbolic plane H2(−K),

HolRadH2(−K) ≡
√

2π

K
, (31)

whereas for the spheres S2(K) it is a more elusive minimum of (29).

(32)
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