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Abstract. A trajectory-front for a surface magnetic field is formed by terminuses of
trajectory-segments of given arc-radius which are emanating from a given point. In order to
show how trajectories are spreaded we give estimates of their arc-lengths of trajectory-fronts.
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Introduction

A closed 2-form on a Riemannian manifold is said to be a magnetic field
because it can be regarded as a generalization of a static magnetic field on
a Euclidean 3-space R3 (see [9, 12]). Typical examples of magnetic fields are
constant multiples of the Kähler form on a Kähler manifold (see [1]), constant
multiples of the canonical form on a real hypersurface in a Kähler manifold (see
[7]), and 2-forms on an orientable Riemann surface. Motions of charged particle
of unit mass and of unit speed under the influence of a magnetic field are said
to be trajectories for this magnetic field. It is needless to say that properties of
trajectories show the mixture of properties of a magnetic field and properties of
the underlying Riemannian manifold.

In this paper we study trajectory-fronts for surface magnetic fields. A traject-
ory-front of arc-radius r consists of terminuses of trajectory-segments of ar-
clength r which are emanating from a given point. It is also called a trajectory
sphere. It shows how trajectories are spreaded. In their paper ([6]) Bai-Adachi
gave estimates of areas of trajectory spheres for Kähler magnetic fields on a
Kähler manifold. We note that Kähler magnetic fields are uniform magnetic
fields. This means that the Lorentz force of a Kähler magnetic field does not
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depend on points. Hence trajectory spheres show essentially properties of un-
derlying manifolds. On contrary, surface magnetic fields are not uniform, and
are the simplest examples of non-uniform magnetic fields. We therefore study
lengths of trajectory-fronts by investigating the influence of properties of mag-
netic fields.

The author is grateful to Professor T. Adachi for his encouragements in
preparing this article.

1 Trajectory-fronts

Let M be an orientable Riemann surface. It is naturally regarded as a 1-
dimensional complex manifold with complex structure J . Given a smooth func-
tion h on M , we consider a 2-form Bh = h dvolM , where dvolM denotes the
volume form on M . We call this a surface magnetic field on M . A smooth curve
γ parameterized by its arc-length is said to be a trajectory for Bh if it satisfies
the differential equation ∇γ̇ γ̇ = h(γ)Jγ̇, where ∇γ̇ denotes the covariant dif-
ferentiation along γ with respect to the Riemannian connection ∇. For a unit
tangent vector u ∈ UpM at a point p ∈ M , we denote by γu a trajectory for a
surface magnetic field Bh with initial vector γ̇u(0) = u. We define a magnetic
exponential map Bhexpp : TpM →M of the tangent space at p by

Bhexpp(w) =

{
γw/‖w‖(‖w‖), if w 6= 0p,

p, if w = 0p.

For a trivial magnetic field B0 which is given as a surface magnetic field of
null function, it is an ordinary exponential map expp : TpM → M . By using

magnetic exponential maps, we define a trajectory-front F hr (p) of arc-radius r
centered at p as

F hr (p) =
{
Bhexpp(ru)

∣∣ u ∈ UpM}.
Since M of real dimension 2, we call it a trajectory-front. For a magnetic field
on a Riemannian manifold of real dimension greater than 2, we can define such a
set and call it a trajectory-sphere (cf. [5, 6]). We note that for a trivial magnetic
field, its trajectory-sphere is nothing but a geodesic sphere. Also, we note that
a trajectory-front F hr (p) is contained in a geodesic ball Br(p) = expp

(
{tu | 0 ≤

t ≤ r, u ∈ UpM}
)

of radius r centered at p.
We here recall trajectory-fronts on a real space form for a surface magnetic

field Bκ (κ ∈ R) of constant Lorentz force (see [5]). Here, a real space form
RM2(c) of constant sectional curvature c is either one of a standard sphere
S2(c), a Euclidean plane R2 or a real hyperbolic space H2(c) depending on c is
positive, zero or negative.
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Examples 1.1. On a Euclidean plane, the distance between two points γ(0)
and γ(r) of a trajectory γ for Bκ is given as d

(
γ(0), γ(r)

)
=
(
2/|κ|

)
sin
(
|κ|r/2

)
when r satisfies 0 < r < 2π/|κ|. Therefore, a trajectory-front F κr (p) coincides
with a geodesic sphere Sρ(p) of radius ρ =

(
2/|κ|

)
sin
(
|κ|r/2

)
.

Examples 1.2. On a standard sphere S2(c) of curvature c, when 0 < r <
2π/
√
κ2 + c, the distance ρ between two points γ(0) and γ(r) of a trajectory γ

for Bκ satisfies √
κ2 + c sin

(√
c ρ/2

)
=
√
c sin

(√
κ2 + c r/2

)
.

Therefore, a trajectory-front F κr (p) coincides with a geodesic sphere Sρ(p).

Examples 1.3. On a real hyperbolic space H2(c) of curvature c, the dis-
tance ρ between two points γ(0) and γ(r) of a trajectory γ for Bκ satisfies

√
|c| − κ2 sinh

(√
|c| ρ/2

)
=
√
|c| sinh

(√
|c| − κ2 r/2

)
, when |κ| <

√
|c|,

2 sinh
(√
|c| ρ/2

)
=
√
|c| r, when κ = ±

√
|c|,√

κ2 + c sinh
(√
|c| ρ/2

)
=
√
|c| sin

(√
κ2 + c r/2

)
, when |κ| >

√
|c|,

where 0 < r < 2π/
√
κ2 + c when κ2 + c > 0.

2 Magnetic Jacobi fields

In order to study trajectory-fronts, we need to investigate magnetic exponen-
tial maps and so, variations of trajectories. A vector field Y along a trajectory
γ for Bh is said to be a magnetic Jacobi field if it satisfies{

∇γ̇∇γ̇Y +R(Y, γ̇)γ̇ − (Y h)Jγ̇ − h(γ)J∇γ̇Y = 0,

〈∇γ̇Y, γ̇〉 ≡ 0.
(1)

We call a smooth map α : I × (−ε, ε) → M a variation of trajectory for Bh
if for each s ∈ (−ε, ε) the map αs = α( , s) : I → M is a trajectory for Bh.
Since αs is parameterized by its arc-length, we have

〈
∇ ∂α

∂t

∂α
∂s ,

∂α
∂t

〉
= 0. By

differentiating both sides of the equation ∇ ∂α
∂t

∂α
∂t = h(α)J ∂α∂t by s, we find that

a vector field ∂α
∂s (·, s) along a trajectory αs satisfies the equations (1). Thus, a

variation of trajectories gives a magnetic Jacobi field. One can easily check that
the converse holds (see [2, 11]). Since M of real dimension 2, we decompose a
vector field Y along γ into two components and denotes as Y = fY γ̇ + gY Jγ̇
with smooth functions fY , gY along γ. Then (1) turns to{

g′′Y + gY {K(γ) + h(γ)2 − (Jγ̇)h} = 0,

f ′Y = h(γ)gY ,
(2)
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where K(γ(t)) denotes the sectional curvature of the tangent plane at γ(t). A
point γ(t0) with t0 6= 0 is said to be a spherical magnetic conjugate point of
γ(0) along γ if there is a non-trivial magnetic Jacobi field Y for Bh along γ with
Y (0) = 0 and Y (t0) = 0. In this case we call t0 a spherical magnetic conjugate
value of γ(0) along γ. Putting p = γ(0) we denote by ths (p; γ) the minimal
positive spherical magnetic conjugate value of p along γ. When there are no
spherical magnetic conjugate points of p on the trajectory half-line γ(0,∞), we
set ths (p; γ) =∞. By definition the differential of the map

Bhexpp
∣∣
rUpM

: rUpM = {ru | u ∈ UpM} →M

is singular at ru if and only if r is a spherical magnetic conjugate value along a
trajectory γu.

Similarly, we say a point γ(tc) with tc 6= 0 to be a magnetic conjugate point
of p = γ(0) along γ if there is a non-trivial magnetic Jacobi field Y = fY γ̇+gY Jγ̇
for Bh along γ with Y (0) = 0 and gY (tc) = 0. In this case we call t0 a spherical
magnetic conjugate value of γ(0) along γ. We denote by thc (p; γ) the minimal
positive magnetic conjugate value of p along γ. When there are no magnetic
conjugate points of p on the trajectory half-line γ(0,∞), we set thc (p; γ) = ∞.
Clearly we have 0 < thc (p; γ) ≤ ths (p; γ). We set thc (p) = min

{
thc (p; γu)

∣∣ u ∈
UpM

}
.

We here make mention of magnetic Jacobi fields for uniform magnetic fields
on a real space form RM2(c). For constants κ and c, we define functions sκ(t; c),
uκ(t; c) :

[
0, 2π/

√
κ2 + c

]
→ R by

sκ(t; c) =


(
2/
√
κ2 + c

)
sin
(√
κ2 + c t/2

)
, if κ2 + c > 0,

t, if κ2 + c = 0,(
2/
√
|c| − κ2

)
sinh

(√
|c| − κ2 t/2

)
, if κ2 + c < 0,

uκ(t; c) =


(
4/(κ2 + c)

) {
1− cos

(√
κ2 + c t/2

)}
, if κ2 + c > 0,

t2/2, if κ2 + c = 0,(
4/(|c| − κ2)

) {
cosh

(√
|c| − κ2 t/2

)
− 1
}
, if κ2 + c < 0.

Here, we regard 2π/
√
κ2 + c as infinity when κ2 + c ≤ 0 (see [3]). We use such

a convention throughout of this paper. We note that if κ2
1 + c1 < κ2

2 + c2 we see
sκ1(t; c1) > sκ2(t; c2). For a trajectory γ on a real space form RM2(c), by solving
the equations (2) under the condition that Y (0) = 0 (i.e. fY (0) = gY (0) = 0),
we obtain that a magnetic Jacobi field Y along γ with Y (0) = 0 is given as

Y (t) = g′Y (0)
{
κuκ(t; c)γ̇(t) + s(t;κ, c)Jγ̇(t)

}
.
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In particular, for an arbitrary trajectory γ for Bκ have ths
(
γ(0); γ

)
= 2π/

√
κ2 + c.

Since a trajectory-front is given as F κr (p) = Bκexpp(rUpM), its arclength is given
as 2πΘκ(r; c), where

Θκ(r; c) =
√
κ2uκ(r; c)2 + sκ(r; c)2

=



2

κ2 + c
sin
√
κ2 + cr/2

√
κ2 + c cos2 1

2

√
κ2 + cr, if κ2 + c > 0,

r
√
κ2r2 + 4

/
2, if κ2 + c = 0,

2

|c| − κ2
sinh

√
|c| − κ2r/2

√
|c| cosh2

√
|c| − κ2r/2− κ2, if κ2 + c < 0.

when M = RM2(c) and r ≤ 2π/
√
κ2 + c.

We now give estimate of arclengths of trajectory-fronts for surface magnetic
fields on a general Riemann surface. For positive constants a, b we define a
function Θ(r; a, b, c) by

Θ(r; a, b, c)

=
√
a2ub(r; c)2 + sb(r; c)2

=


1

b+c

√
a2(1− cos

√
b+c r)2 + (b+c) sin2

√
b+c r, if b+ c > 0,

r
√
br2 + 4

/
2, if b+ c = 0,

1

|c|−b

√
a2(cosh

√
|c|−b r − 1)2 + (|c|−b) sinh2

√
|c|−b r, if b+ c < 0.

Clearly it satisfies Θ(t; |κ|, κ2, c) = Θκ(t; c). Our results are the following.

Theorem 2.1. Let Bh be a surface magnetic field on a complete orientable
Riemannian surface M whose sectional curvatures satisfy RiemM ≤ c with some
constant c. For an arbitrary point p ∈ M , we take a positive r with r ≤ thc (p).
If we set a = maxx∈Br(p) |h(x)| and b := minx∈Br(p)

(
h(x)2−‖∇h(x)‖

)
, then the

arclength of the curve of the trajectory-front F hr (p) is estimated from above as
length

(
F hr (p)

)
≤ 2πΘ(r; a, 0, b+ c).

Theorem 2.2. Let Bh be a surface magnetic field on a complete orientable
Riemannian surface M whose sectional curvatures satisfy RiemM ≥ c with some
constant c. For an arbitrary point p ∈ M , we take a positive r with r ≤ thc (p).
Suppose â := minx∈Br(p) |h(x)| > 0. If we set b̂ = maxx∈Br(p)

(
h(x)2 +‖∇h(x)‖

)
,

then the arclength of the curve of the trajectory-front F hr (p) is estimated from
below as length

(
F hr (p)

)
≥ 2πΘ(r; â, b̂, c).
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3 Proofs of Theorems

Let dS denote the ordinary area element of a standard circle S1 = UpM ⊂
R2. When r < th0(p) = min{th0(p; γv) | v ∈ UpM}, we have

length
(
F hr (p)

)
=

∫
UpM

∥∥(dBhexpp
)
rv

∥∥ dS(v).

Therefore, in order to show our theorems it is enough to give estimates of norms
of magnetic Jacobi fields. In the preceding paper ([11]), we give comparison
theorems on magnetic Jacobi fields for surface magnetic fields (see [2, 4]). We
here partially extend one of them by comparing magnetic Jacobi fields with
ordinary Jacobi fields along geodesics.

Proposition 3.1. Let M a complete orientable Riemann surfaces whose
sectional curvatures satisfy RiemM ≥ c with some constant c. We take a non-
trivial magnetic Jacobi field Y along a trajectory γ for a surface magnetic field
Bh which satisfies gY (0) = 0. For a positive T with T ≤ th0

(
γ(0); γ), we set

bTγ = min0≤t≤T
{
h(γ(t))2 − ‖(∇h)(γ(t))‖

}
. For 0 ≤ t ≤ T , We then have

(1) |gY (t)|/s0(t; c+ bTγ ) is monotone decreasing.

(2) g′(t)/g(t) ≤ s′0(t; c+ bTγ )/s0(t; c+ bTγ ).

(3) |gY (t)| ≤ |g′Y (0)| s0(t; c+ bTγ ).

In particular, we have T ≤ π/
√
c+ bTγ .

We study magnetic Jacobi fields along the same lines as for ordinary Jacobi
fields (see [8, 10]). To show Proposition 1 we introduce a function of the set of
vector fields along a trajectory which are orthogonal to the velocity vectors. Let
γ be a trajectory for Bh on M and S be a positive number. For a vector field
X = gXJγ̇ we set

IndS0 (X) =

∫ S

0

{
g′X(t)2 + gX(t)2

{(
(Jγ̇)h

)
(t)−K

(
γ(t)

)
− h
(
γ(t)

)2}}
dt.

When Y = fY γ̇ + gY Jγ̇ is a magnetic Jacobi field along γ, its component
Y ⊥ = gY Jγ̇ orthogonal to γ̇ satisfies

g′Y (S)gY (S)− g′Y (0)gY (0)

=

∫ S

0

{
g′Y (t)gY (t)

}′
dt =

∫ S

0

{
g′′Y (t)gY (t) + g′Y (t)2

}′
dt = IndS0 (Y ⊥)

by (2). Moreover we have the following:
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Lemma 3.2 ([11]). Let Y be a magnetic Jacobi field along γ satisfying
Y (0) = 0. If 0 < S ≤ thc

(
γ(0); γ

)
and a vector field X = gXJγ̇ satisfies X(0) = 0

and X(S) = Y ⊥(S), then we have IndS0 (X) ≥ IndS0 (Y ⊥).

Proof. Since gY (t) 6= 0 for 0 < t ≤ thc
(
γ(0); γ

)
, we can choose a smooth function

ϕ along γ so that gX(t) = ϕ(t)gY (t) holds on the interval
[
0, thc

(
γ(0); γ

)]
. As

ϕ(S) = 1 and gY (0) = 0, by direct calculation we obtain

IndS0 (X) =

∫ S

0

{
(ϕ′gY + ϕg′Y )2 + ϕ2g2

Y

{
(Jγ̇)h−K(γ)− h(γ)2

}}
dt

=

∫ S

0
ϕ2
{
g′Y

2
+ g2

Y

{
(Jγ̇)h−K(γ)− h(γ)2

}}
dt

+

∫ S

0

{
g′Y gY (ϕ2)′ + ϕ′

2
g2
Y

}
dt

=

∫ S

0
ϕ2
{
g′Y

2
+ g2

Y

{
(Jγ̇)h−K(γ)− h(γ)2

}}
dt

+ g′Y (S)gY (S)−
∫ S

0
ϕ2{g′Y

2
+ g′′Y gY } dt+

∫ S

0
ϕ′

2
gY

2 dt

= IndS0 (Y ⊥) +

∫ S

0
ϕ′

2
gY

2 dt ≥ IndS0 (Y ⊥),

by making use of (2). QED

Proof of Proposition 3.1. We take a geodesic γ̂ on a real space form M̂ =
RM2(c+ bTγ ) and take a Jacobi field ĝJ ˙̂γ along this geodesic satisfying ĝ(0) = 0

and ĝ′(0) = |g′Y (0)|. That is, we put ĝ(t) = |g′Y (0)| s0(t; c+ bTγ ). We here study
the function F (t) = ĝ(t)2/g(t)2. By de l’Hôspital’s rule, we have

lim
t↓0

F (t) = lim
t↓0

ĝ′(t)ĝ(t)

g′(t)g(t)
= lim

t↓0

ĝ′′(t)ĝ(t) + ĝ′(t)2

g′′(t)g(t) + g′(t)2
= 1.

As we have

F ′(t) =
ĝ(t)2

g(t)2

( ĝ′(t)
ĝ(t)

− g′(t)

g(t)

)
,

in order to show our assertion, it is enough to show that ĝ′(t)/ĝ(t) ≥ g′(t)/g(t)
holds for an arbitrary t with 0 < t ≤ T .

For an arbitrary positive S with S ≤ min
{
T, π/

√
c+ bTγ

}
, we set a function

ĜS(t) := g(t)/g(S). Since ĜS(t)J ˙̂γ(t) is a Jacobi field along γ̂ and X = ĜSJγ̇
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is a vector field along γ, we have

ĝ′(S)

ĝ(S)
= Ĝ′S(S)ĜS(S)

=

∫ S

0
{Ĝ′S(t)ĜS(t)}′ dt =

∫ S

0

{
Ĝ′S(t)2 − (c+ bTγ )ĜS(t)2

}
dt

≥
∫ S

0

{
Ĝ′S(t)2 −

{
Riem

(
γ(t)

)
+ h(γ(t))2 − ‖(∇h)(γ(t))‖

}
ĜS(t)2

}
dt

= IndS0 (X).

If we set a vector field YS by YS(t) = Y (t)/gY (S), we have gYS (S) = 1 = gX(S),
hence obtain

IndS0 (X) ≥ IndS0 (Y ⊥S ) = g′YS (S)gYS (S) =
g′Y (S)

gY (S)

by using Lemma 3.2. Thus we get the conclusion. QED

Remark 3.3. Since s0(t;C1) > s0(t;C2) if C1 < C2, when bTγ > b we have
|gY (t)| ≤ |g′Y (0)|s0(t; c+ b) for 0 ≤ t ≤ T in Proposition 3.1. In particular, if we
set b = infp∈M{h(p)2 − ‖(∇h)(p)‖}, this estimate holds for 0 ≤ t ≤ thc

(
γ(0); γ

)
.

We are now in the position to prove Theorem 2.1. For v ∈ UpM , we denote
by Yv the magnetic Jacobi field along γv satisfying Yv(0) = 0, ‖(∇γ̇vYv)(0)‖ = 1.

Since
∥∥(dBhexpp

)
rv

∥∥2
= fYv(r)

2 +gYv(r)
2, we apply Proposition 3.1 by noticing

|g′Yv(0)| = 1. As r ≤ thc (p; γv), we have

|fYv(r)| ≤
∫ r

0
|h
(
γ(t)

)
| |gYv(t)| dt ≤ a

∫ r

0
s0(t; c+ b) dt = au0(r; c+ b).

We hence get the conclusion of Theorem 2.1.

Next we obtain Theorem 2.2. Corresponding to Proposition 3.1 we have the
following.

Proposition 3.4. Let M a complete orientable Riemann surfaces whose
sectional curvatures satisfy RiemM ≤ c with some constant c. We take a
magnetic Jacobi field Y along a trajectory γ for a surface magnetic field
Bh which satisfy gY (0) = 0. For a positive T with T ≤ th0

(
γ(0); γ), we set

b̂Tγ := max0≤t≤T
{
h(γ(t))2 + ‖(∇h)(γ(t))‖

}
. We then have

|gY (t)| ≥ |g′Y (0)| s√
b̂Tγ

(t; c) for 0 ≤ t ≤ T .
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Proof of Theorem 2.2. We use the same notations as in the above proof of The-
orem 2.1. We apply Proposition 3.4. Since â > 0, we see that h

(
γ(t)

)
does not

vanish. Therefore

|fYv(r)| =
∫ r

0
|h
(
γ(t)

)
| |gYv(t)| dt ≥ â

∫ r

0
s√
b̂Tγ

(t; c) dt = âu√
b̂Tγ

(r; c).

Thus we get the conclusion. QED

Remark 3.5. In Theorem 2.2, if we drop the assumption that â > 0, we
can only estimate the arclength as length

(
F hr (p)

)
≥ 2πs√

b̂Tγ
(r; c).
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