Estimates on arc-lengths of trajectory-fronts for surface magnetic fields

Qingsong Shi
Division of Mathematics and Mathematical Science
Graduate School of Engineering, Nagoya Institute of Technology
Gokiso, Nagoya, 466-8555, JAPAN
sqs120012@yahoo.co.jp

Received: 12-07-2016; accepted: 21-09-2016.

Abstract

A trajectory-front for a surface magnetic field is formed by terminuses of trajectory-segments of given arc-radius which are emanating from a given point. In order to show how trajectories are spreaded we give estimates of their arc-lengths of trajectory-fronts.

Keywords: surface magnetic fields, trajectory-fronts, magnetic Jacobi field, comparison theorems

MSC 2010 classification: Primary 53C22, Secondary 53C20

Introduction

A closed 2-form on a Riemannian manifold is said to be a magnetic field because it can be regarded as a generalization of a static magnetic field on a Euclidean 3 -space \mathbb{R}^{3} (see $[9,12]$). Typical examples of magnetic fields are constant multiples of the Kähler form on a Kähler manifold (see [1]), constant multiples of the canonical form on a real hypersurface in a Kähler manifold (see [7]), and 2-forms on an orientable Riemann surface. Motions of charged particle of unit mass and of unit speed under the influence of a magnetic field are said to be trajectories for this magnetic field. It is needless to say that properties of trajectories show the mixture of properties of a magnetic field and properties of the underlying Riemannian manifold.

In this paper we study trajectory-fronts for surface magnetic fields. A traject-ory-front of arc-radius r consists of terminuses of trajectory-segments of arclength r which are emanating from a given point. It is also called a trajectory sphere. It shows how trajectories are spreaded. In their paper ([6]) Bai-Adachi gave estimates of areas of trajectory spheres for Kähler magnetic fields on a Kähler manifold. We note that Kähler magnetic fields are uniform magnetic fields. This means that the Lorentz force of a Kähler magnetic field does not

[^0]depend on points. Hence trajectory spheres show essentially properties of underlying manifolds. On contrary, surface magnetic fields are not uniform, and are the simplest examples of non-uniform magnetic fields. We therefore study lengths of trajectory-fronts by investigating the influence of properties of magnetic fields.

The author is grateful to Professor T. Adachi for his encouragements in preparing this article.

1 Trajectory-fronts

Let M be an orientable Riemann surface. It is naturally regarded as a 1 dimensional complex manifold with complex structure J. Given a smooth function h on M, we consider a 2 -form $\mathbb{B}_{h}=h d v o l_{M}$, where $d v o l_{M}$ denotes the volume form on M. We call this a surface magnetic field on M. A smooth curve γ parameterized by its arc-length is said to be a trajectory for \mathbb{B}_{h} if it satisfies the differential equation $\nabla_{\dot{\gamma}} \dot{\gamma}=h(\gamma) J \dot{\gamma}$, where $\nabla_{\dot{\gamma}}$ denotes the covariant differentiation along γ with respect to the Riemannian connection ∇. For a unit tangent vector $u \in U_{p} M$ at a point $p \in M$, we denote by γ_{u} a trajectory for a surface magnetic field \mathbb{B}_{h} with initial vector $\dot{\gamma}_{u}(0)=u$. We define a magnetic exponential map $\mathbb{B}_{h} \exp _{p}: T_{p} M \rightarrow M$ of the tangent space at p by

$$
\mathbb{B}_{h} \exp _{p}(w)= \begin{cases}\gamma_{w /\|w\|}(\|w\|), & \text { if } w \neq 0_{p} \\ p, & \text { if } w=0_{p}\end{cases}
$$

For a trivial magnetic field \mathbb{B}_{0} which is given as a surface magnetic field of null function, it is an ordinary exponential map $\exp _{p}: T_{p} M \rightarrow M$. By using magnetic exponential maps, we define a trajectory-front $F_{r}^{h}(p)$ of arc-radius r centered at p as

$$
F_{r}^{h}(p)=\left\{\mathbb{B}_{h} \exp _{p}(r u) \mid u \in U_{p} M\right\} .
$$

Since M of real dimension 2, we call it a trajectory-front. For a magnetic field on a Riemannian manifold of real dimension greater than 2 , we can define such a set and call it a trajectory-sphere (cf. [5, 6]). We note that for a trivial magnetic field, its trajectory-sphere is nothing but a geodesic sphere. Also, we note that a trajectory-front $F_{r}^{h}(p)$ is contained in a geodesic ball $B_{r}(p)=\exp _{p}(\{t u \mid 0 \leq$ $\left.t \leq r, u \in U_{p} M\right\}$) of radius r centered at p.

We here recall trajectory-fronts on a real space form for a surface magnetic field $\mathbb{B}_{\kappa}(\kappa \in \mathbb{R})$ of constant Lorentz force (see [5]). Here, a real space form $\mathbb{R} M^{2}(c)$ of constant sectional curvature c is either one of a standard sphere $S^{2}(c)$, a Euclidean plane \mathbb{R}^{2} or a real hyperbolic space $H^{2}(c)$ depending on c is positive, zero or negative.

Examples 1.1. On a Euclidean plane, the distance between two points $\gamma(0)$ and $\gamma(r)$ of a trajectory γ for \mathbb{B}_{κ} is given as $d(\gamma(0), \gamma(r))=(2 /|\kappa|) \sin (|\kappa| r / 2)$ when r satisfies $0<r<2 \pi /|\kappa|$. Therefore, a trajectory-front $F_{r}^{\kappa}(p)$ coincides with a geodesic sphere $S_{\rho}(p)$ of radius $\rho=(2 /|\kappa|) \sin (|\kappa| r / 2)$.

Examples 1.2. On a standard sphere $S^{2}(c)$ of curvature c, when $0<r<$ $2 \pi / \sqrt{\kappa^{2}+c}$, the distance ρ between two points $\gamma(0)$ and $\gamma(r)$ of a trajectory γ for \mathbb{B}_{κ} satisfies

$$
\sqrt{\kappa^{2}+c} \sin (\sqrt{c} \rho / 2)=\sqrt{c} \sin \left(\sqrt{\kappa^{2}+c} r / 2\right)
$$

Therefore, a trajectory-front $F_{r}^{\kappa}(p)$ coincides with a geodesic sphere $S_{\rho}(p)$.
Examples 1.3. On a real hyperbolic space $H^{2}(c)$ of curvature c, the distance ρ between two points $\gamma(0)$ and $\gamma(r)$ of a trajectory γ for \mathbb{B}_{κ} satisfies

$$
\begin{cases}\sqrt{|c|-\kappa^{2}} \sinh (\sqrt{|c|} \rho / 2)=\sqrt{|c|} \sinh \left(\sqrt{|c|-\kappa^{2}} r / 2\right), & \text { when }|\kappa|<\sqrt{|c|} \\ 2 \sinh (\sqrt{|c|} \rho / 2)=\sqrt{|c|} r, & \text { when } \kappa= \pm \sqrt{|c|} \\ \sqrt{\kappa^{2}+c} \sinh (\sqrt{|c|} \rho / 2)=\sqrt{|c|} \sin \left(\sqrt{\kappa^{2}+c} r / 2\right), & \text { when }|\kappa|>\sqrt{|c|}\end{cases}
$$

where $0<r<2 \pi / \sqrt{\kappa^{2}+c}$ when $\kappa^{2}+c>0$.

2 Magnetic Jacobi fields

In order to study trajectory-fronts, we need to investigate magnetic exponential maps and so, variations of trajectories. A vector field Y along a trajectory γ for \mathbb{B}_{h} is said to be a magnetic Jacobi field if it satisfies

$$
\left\{\begin{array}{l}
\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} Y+R(Y, \dot{\gamma}) \dot{\gamma}-(Y h) J \dot{\gamma}-h(\gamma) J \nabla_{\dot{\gamma}} Y=0 \tag{1}\\
\left\langle\nabla_{\dot{\gamma}} Y, \dot{\gamma}\right\rangle \equiv 0
\end{array}\right.
$$

We call a smooth map $\alpha: I \times(-\epsilon, \epsilon) \rightarrow M$ a variation of trajectory for \mathbb{B}_{h} if for each $s \in(-\epsilon, \epsilon)$ the map $\alpha_{s}=\alpha(, s): I \rightarrow M$ is a trajectory for \mathbb{B}_{h}.
 differentiating both sides of the equation $\nabla_{\frac{\partial \alpha}{}} \frac{\partial \alpha}{\partial t}=h(\alpha) J \frac{\partial \alpha}{\partial t}$ by s, we find that a vector field $\frac{\partial \alpha}{\partial s}(\cdot, s)$ along a trajectory α_{s} satisfies the equations (1). Thus, a variation of trajectories gives a magnetic Jacobi field. One can easily check that the converse holds (see $[2,11]$). Since M of real dimension 2 , we decompose a vector field Y along γ into two components and denotes as $Y=f_{Y} \dot{\gamma}+g_{Y} J \dot{\gamma}$ with smooth functions f_{Y}, g_{Y} along γ. Then (1) turns to

$$
\left\{\begin{array}{l}
g_{Y}^{\prime \prime}+g_{Y}\left\{K(\gamma)+h(\gamma)^{2}-(J \dot{\gamma}) h\right\}=0, \tag{2}\\
f_{Y}^{\prime}=h(\gamma) g_{Y}
\end{array}\right.
$$

where $K(\gamma(t))$ denotes the sectional curvature of the tangent plane at $\gamma(t)$. A point $\gamma\left(t_{0}\right)$ with $t_{0} \neq 0$ is said to be a spherical magnetic conjugate point of $\gamma(0)$ along γ if there is a non-trivial magnetic Jacobi field Y for \mathbb{B}_{h} along γ with $Y(0)=0$ and $Y\left(t_{0}\right)=0$. In this case we call t_{0} a spherical magnetic conjugate value of $\gamma(0)$ along γ. Putting $p=\gamma(0)$ we denote by $t_{s}^{h}(p ; \gamma)$ the minimal positive spherical magnetic conjugate value of p along γ. When there are no spherical magnetic conjugate points of p on the trajectory half-line $\gamma(0, \infty)$, we set $t_{s}^{h}(p ; \gamma)=\infty$. By definition the differential of the map

$$
\left.\mathbb{B}_{h} \exp _{p}\right|_{r U_{p} M}: r U_{p} M=\left\{r u \mid u \in U_{p} M\right\} \rightarrow M
$$

is singular at $r u$ if and only if r is a spherical magnetic conjugate value along a trajectory γ_{u}.

Similarly, we say a point $\gamma\left(t_{c}\right)$ with $t_{c} \neq 0$ to be a magnetic conjugate point of $p=\gamma(0)$ along γ if there is a non-trivial magnetic Jacobi field $Y=f_{Y} \dot{\gamma}+g_{Y} J \dot{\gamma}$ for \mathbb{B}_{h} along γ with $Y(0)=0$ and $g_{Y}\left(t_{c}\right)=0$. In this case we call t_{0} a spherical magnetic conjugate value of $\gamma(0)$ along γ. We denote by $t_{c}^{h}(p ; \gamma)$ the minimal positive magnetic conjugate value of p along γ. When there are no magnetic conjugate points of p on the trajectory half-line $\gamma(0, \infty)$, we set $t_{c}^{h}(p ; \gamma)=\infty$. Clearly we have $0<t_{c}^{h}(p ; \gamma) \leq t_{s}^{h}(p ; \gamma)$. We set $t_{c}^{h}(p)=\min \left\{t_{c}^{h}\left(p ; \gamma_{u}\right) \mid u \in\right.$ $\left.U_{p} M\right\}$.

We here make mention of magnetic Jacobi fields for uniform magnetic fields on a real space form $\mathbb{R} M^{2}(c)$. For constants κ and c, we define functions $\mathfrak{s}_{\kappa}(t ; c)$, $\mathfrak{u}_{\kappa}(t ; c):\left[0,2 \pi / \sqrt{\kappa^{2}+c}\right] \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \mathfrak{s}_{\kappa}(t ; c)= \begin{cases}\left(2 / \sqrt{\kappa^{2}+c}\right) \sin \left(\sqrt{\kappa^{2}+c} t / 2\right), & \text { if } \kappa^{2}+c>0, \\
t, & \text { if } \kappa^{2}+c=0, \\
\left(2 / \sqrt{|c|-\kappa^{2}}\right) \sinh \left(\sqrt{|c|-\kappa^{2}} t / 2\right), & \text { if } \kappa^{2}+c<0,\end{cases} \\
& \mathfrak{u}_{\kappa}(t ; c)= \begin{cases}\left(4 /\left(\kappa^{2}+c\right)\right)\left\{1-\cos \left(\sqrt{\kappa^{2}+c} t / 2\right)\right\}, & \text { if } \kappa^{2}+c>0, \\
t^{2} / 2, & \text { if } \kappa^{2}+c=0, \\
\left(4 /\left(|c|-\kappa^{2}\right)\right)\left\{\cosh \left(\sqrt{|c|-\kappa^{2}} t / 2\right)-1\right\}, & \text { if } \kappa^{2}+c<0 .\end{cases}
\end{aligned}
$$

Here, we regard $2 \pi / \sqrt{\kappa^{2}+c}$ as infinity when $\kappa^{2}+c \leq 0$ (see [3]). We use such a convention throughout of this paper. We note that if $\kappa_{1}^{2}+c_{1}<\kappa_{2}^{2}+c_{2}$ we see $\mathfrak{s}_{\kappa_{1}}\left(t ; c_{1}\right)>\mathfrak{s}_{\kappa_{2}}\left(t ; c_{2}\right)$. For a trajectory γ on a real space form $\mathbb{R} M^{2}(c)$, by solving the equations (2) under the condition that $Y(0)=0$ (i.e. $f_{Y}(0)=g_{Y}(0)=0$), we obtain that a magnetic Jacobi field Y along γ with $Y(0)=0$ is given as

$$
Y(t)=g_{Y}^{\prime}(0)\left\{\kappa \mathfrak{u}_{\kappa}(t ; c) \dot{\gamma}(t)+\mathfrak{s}(t ; \kappa, c) J \dot{\gamma}(t)\right\} .
$$

In particular, for an arbitrary trajectory γ for \mathbb{B}_{κ} have $t_{s}^{h}(\gamma(0) ; \gamma)=2 \pi / \sqrt{\kappa^{2}+c}$. Since a trajectory-front is given as $F_{r}^{\kappa}(p)=\mathbb{B}_{\kappa} \exp _{p}\left(r U_{p} M\right)$, its arclength is given as $2 \pi \Theta_{\kappa}(r ; c)$, where

$$
\begin{aligned}
& \Theta_{\kappa}(r ; c)=\sqrt{\kappa^{2} \mathfrak{u}_{\kappa}(r ; c)^{2}+\mathfrak{s}_{\kappa}(r ; c)^{2}} \\
& \quad= \begin{cases}\frac{2}{\kappa^{2}+c} \sin \sqrt{\kappa^{2}+c} r / 2 \sqrt{\kappa^{2}+c \cos ^{2} \frac{1}{2} \sqrt{\kappa^{2}+c} r}, & \text { if } \kappa^{2}+c>0, \\
r \sqrt{\kappa^{2} r^{2}+4} / 2, & \text { if } \kappa^{2}+c=0, \\
\frac{2}{|c|-\kappa^{2}} \sinh \sqrt{|c|-\kappa^{2}} r / 2 \sqrt{|c| \cosh ^{2} \sqrt{|c|-\kappa^{2}} r / 2-\kappa^{2}}, & \text { if } \kappa^{2}+c<0 .\end{cases}
\end{aligned}
$$

when $M=\mathbb{R} M^{2}(c)$ and $r \leq 2 \pi / \sqrt{\kappa^{2}+c}$.
We now give estimate of arclengths of trajectory-fronts for surface magnetic fields on a general Riemann surface. For positive constants a, b we define a function $\Theta(r ; a, b, c)$ by

$$
\begin{array}{rlr}
\Theta & (r ; a, b, c) \\
& =\sqrt{a^{2} \mathfrak{u}_{b}(r ; c)^{2}+\mathfrak{s}_{b}(r ; c)^{2}} \\
& = \begin{cases}\frac{1}{b+c} \sqrt{a^{2}(1-\cos \sqrt{b+c} r)^{2}+(b+c) \sin ^{2} \sqrt{b+c} r}, & \text { if } b+c>0, \\
r \sqrt{b r^{2}+4} / 2, & \text { if } b+c=0, \\
\frac{1}{|c|-b} \sqrt{a^{2}(\cosh \sqrt{|c|-b} r-1)^{2}+(|c|-b) \sinh ^{2} \sqrt{|c|-b} r,} & \text { if } b+c<0 .\end{cases}
\end{array}
$$

Clearly it satisfies $\Theta\left(t ;|\kappa|, \kappa^{2}, c\right)=\Theta_{\kappa}(t ; c)$. Our results are the following.
Theorem 2.1. Let \mathbb{B}_{h} be a surface magnetic field on a complete orientable Riemannian surface M whose sectional curvatures satisfy Riem ${ }^{M} \leq c$ with some constant c. For an arbitrary point $p \in M$, we take a positive r with $r \leq t_{c}^{h}(p)$. If we set $a=\max _{x \in B_{r}(p)}|h(x)|$ and $b:=\min _{x \in B_{r}(p)}\left(h(x)^{2}-\|\nabla h(x)\|\right)$, then the arclength of the curve of the trajectory-front $F_{r}^{h}(p)$ is estimated from above as length $\left(F_{r}^{h}(p)\right) \leq 2 \pi \Theta(r ; a, 0, b+c)$.

Theorem 2.2. Let \mathbb{B}_{h} be a surface magnetic field on a complete orientable Riemannian surface M whose sectional curvatures satisfy Riem ${ }^{M} \geq c$ with some constant c. For an arbitrary point $p \in M$, we take a positive r with $r \leq t_{c}^{h}(p)$. Suppose $\hat{a}:=\min _{x \in B_{r}(p)}|h(x)|>0$. If we set $\hat{b}=\max _{x \in B_{r}(p)}\left(h(x)^{2}+\|\nabla h(x)\|\right)$, then the arclength of the curve of the trajectory-front $F_{r}^{h}(p)$ is estimated from below as length $\left(F_{r}^{h}(p)\right) \geq 2 \pi \Theta(r ; \hat{a}, \hat{b}, c)$.

3 Proofs of Theorems

Let $d S$ denote the ordinary area element of a standard circle $S^{1}=U_{p} M \subset$ \mathbb{R}^{2}. When $r<t_{0}^{h}(p)=\min \left\{t_{0}^{h}\left(p ; \gamma_{v}\right) \mid v \in U_{p} M\right\}$, we have

$$
\operatorname{length}\left(F_{r}^{h}(p)\right)=\int_{U_{p} M}\left\|\left(d \mathbb{B}_{h} \exp _{p}\right)_{r v}\right\| d S(v)
$$

Therefore, in order to show our theorems it is enough to give estimates of norms of magnetic Jacobi fields. In the preceding paper ([11]), we give comparison theorems on magnetic Jacobi fields for surface magnetic fields (see [2, 4]). We here partially extend one of them by comparing magnetic Jacobi fields with ordinary Jacobi fields along geodesics.

Proposition 3.1. Let M a complete orientable Riemann surfaces whose sectional curvatures satisfy $\operatorname{Riem}^{M} \geq c$ with some constant c. We take a nontrivial magnetic Jacobi field Y along a trajectory γ for a surface magnetic field \mathbb{B}_{h} which satisfies $g_{Y}(0)=0$. For a positive T with $T \leq t_{0}^{h}(\gamma(0) ; \gamma)$, we set $b_{\gamma}^{T}=\min _{0 \leq t \leq T}\left\{h(\gamma(t))^{2}-\|(\nabla h)(\gamma(t))\|\right\}$. For $0 \leq t \leq T$, We then have
(1) $\left|g_{Y}(t)\right| / \mathfrak{s}_{0}\left(t ; c+b_{\gamma}^{T}\right)$ is monotone decreasing.
(2) $g^{\prime}(t) / g(t) \leq \mathfrak{s}_{0}^{\prime}\left(t ; c+b_{\gamma}^{T}\right) / \mathfrak{s}_{0}\left(t ; c+b_{\gamma}^{T}\right)$.
(3) $\left|g_{Y}(t)\right| \leq\left|g_{Y}^{\prime}(0)\right| \mathfrak{s}_{0}\left(t ; c+b_{\gamma}^{T}\right)$.

In particular, we have $T \leq \pi / \sqrt{c+b_{\gamma}^{T}}$.
We study magnetic Jacobi fields along the same lines as for ordinary Jacobi fields (see $[8,10]$). To show Proposition 1 we introduce a function of the set of vector fields along a trajectory which are orthogonal to the velocity vectors. Let γ be a trajectory for \mathbb{B}_{h} on M and S be a positive number. For a vector field $X=g_{X} J \dot{\gamma}$ we set

$$
\operatorname{Ind} d_{0}^{S}(X)=\int_{0}^{S}\left\{g_{X}^{\prime}(t)^{2}+g_{X}(t)^{2}\left\{((J \dot{\gamma}) h)(t)-K(\gamma(t))-h(\gamma(t))^{2}\right\}\right\} d t
$$

When $Y=f_{Y} \dot{\gamma}+g_{Y} J \dot{\gamma}$ is a magnetic Jacobi field along γ, its component $Y^{\perp}=g_{Y} J \dot{\gamma}$ orthogonal to $\dot{\gamma}$ satisfies

$$
\begin{aligned}
& g_{Y}^{\prime}(S) g_{Y}(S)-g_{Y}^{\prime}(0) g_{Y}(0) \\
& \quad=\int_{0}^{S}\left\{g_{Y}^{\prime}(t) g_{Y}(t)\right\}^{\prime} d t=\int_{0}^{S}\left\{g_{Y}^{\prime \prime}(t) g_{Y}(t)+g_{Y}^{\prime}(t)^{2}\right\}^{\prime} d t=\operatorname{Ind} d_{0}^{S}\left(Y^{\perp}\right)
\end{aligned}
$$

by (2). Moreover we have the following:

Lemma 3.2 ([11]). Let Y be a magnetic Jacobi field along γ satisfying $Y(0)=0$. If $0<S \leq t_{c}^{h}(\gamma(0) ; \gamma)$ and a vector field $X=g_{X} J \dot{\gamma}$ satisfies $X(0)=0$ and $X(S)=Y^{\perp}(S)$, then we have $\operatorname{Ind} d_{0}^{S}(X) \geq \operatorname{Ind} d_{0}^{S}\left(Y^{\perp}\right)$.

Proof. Since $g_{Y}(t) \neq 0$ for $0<t \leq t_{c}^{h}(\gamma(0) ; \gamma)$, we can choose a smooth function φ along γ so that $g_{X}(t)=\varphi(t) g_{Y}(t)$ holds on the interval $\left[0, t_{c}^{h}(\gamma(0) ; \gamma)\right]$. As $\varphi(S)=1$ and $g_{Y}(0)=0$, by direct calculation we obtain

$$
\begin{aligned}
\operatorname{Ind}_{0}^{S}(X)= & \int_{0}^{S}\left\{\left(\varphi^{\prime} g_{Y}+\varphi g_{Y}^{\prime}\right)^{2}+\varphi^{2} g_{Y}^{2}\left\{(J \dot{\gamma}) h-K(\gamma)-h(\gamma)^{2}\right\}\right\} d t \\
= & \int_{0}^{S} \varphi^{2}\left\{g_{Y}^{\prime}{ }^{2}+g_{Y}^{2}\left\{(J \dot{\gamma}) h-K(\gamma)-h(\gamma)^{2}\right\}\right\} d t \\
& +\int_{0}^{S}\left\{g_{Y}^{\prime} g_{Y}\left(\varphi^{2}\right)^{\prime}+\varphi^{\prime 2} g_{Y}^{2}\right\} d t \\
= & \int_{0}^{S} \varphi^{2}\left\{g_{Y}^{\prime}{ }^{2}+g_{Y}^{2}\left\{(J \dot{\gamma}) h-K(\gamma)-h(\gamma)^{2}\right\}\right\} d t \\
& +g_{Y}^{\prime}(S) g_{Y}(S)-\int_{0}^{S} \varphi^{2}\left\{g_{Y}^{\prime}{ }^{2}+g_{Y}^{\prime \prime} g_{Y}\right\} d t+\int_{0}^{S}{\varphi^{\prime}}^{2} g_{Y}^{2} d t \\
= & \operatorname{Ind}_{0}^{S}\left(Y^{\perp}\right)+\int_{0}^{S} \varphi^{\prime 2} g_{Y}^{2} d t \geq \operatorname{In} d_{0}^{S}\left(Y^{\perp}\right)
\end{aligned}
$$

by making use of (2).
QED

Proof of Proposition 3.1. We take a geodesic $\hat{\gamma}$ on a real space form $\widehat{M}=$ $\mathbb{R} M^{2}\left(c+b_{\gamma}^{T}\right)$ and take a Jacobi field $\hat{g} J \dot{\hat{\gamma}}$ along this geodesic satisfying $\hat{g}(0)=0$ and $\hat{g}^{\prime}(0)=\left|g_{Y}^{\prime}(0)\right|$. That is, we put $\hat{g}(t)=\left|g_{Y}^{\prime}(0)\right| \mathfrak{s}_{0}\left(t ; c+b_{\gamma}^{T}\right)$. We here study the function $F(t)=\hat{g}(t)^{2} / g(t)^{2}$. By de l'Hôspital's rule, we have

$$
\lim _{t \downarrow 0} F(t)=\lim _{t \downarrow 0} \frac{\hat{g}^{\prime}(t) \hat{g}(t)}{g^{\prime}(t) g(t)}=\lim _{t \downarrow 0} \frac{\hat{g}^{\prime \prime}(t) \hat{g}(t)+\hat{g}^{\prime}(t)^{2}}{g^{\prime \prime}(t) g(t)+g^{\prime}(t)^{2}}=1 .
$$

As we have

$$
F^{\prime}(t)=\frac{\hat{g}(t)^{2}}{g(t)^{2}}\left(\frac{\hat{g}^{\prime}(t)}{\hat{g}(t)}-\frac{g^{\prime}(t)}{g(t)}\right)
$$

in order to show our assertion, it is enough to show that $\hat{g}^{\prime}(t) / \hat{g}(t) \geq g^{\prime}(t) / g(t)$ holds for an arbitrary t with $0<t \leq T$.

For an arbitrary positive S with $S \leq \min \left\{T, \pi / \sqrt{c+b_{\gamma}^{T}}\right\}$, we set a function $\widehat{G}_{S}(t):=g(t) / g(S)$. Since $\widehat{G}_{S}(t) J \dot{\hat{\gamma}}(t)$ is a Jacobi field along $\hat{\gamma}$ and $X=\widehat{G}_{S} J \dot{\gamma}$
is a vector field along γ, we have

$$
\begin{aligned}
\frac{\hat{g}^{\prime}(S)}{\hat{g}(S)} & =\widehat{G}_{S}^{\prime}(S) \widehat{G}_{S}(S) \\
& =\int_{0}^{S}\left\{\widehat{G}_{S}^{\prime}(t) \widehat{G}_{S}(t)\right\}^{\prime} d t=\int_{0}^{S}\left\{\widehat{G}_{S}^{\prime}(t)^{2}-\left(c+b_{\gamma}^{T}\right) \widehat{G}_{S}(t)^{2}\right\} d t \\
& \geq \int_{0}^{S}\left\{\widehat{G}_{S}^{\prime}(t)^{2}-\left\{\operatorname{Riem}(\gamma(t))+h(\gamma(t))^{2}-\|(\nabla h)(\gamma(t))\|\right\} \widehat{G}_{S}(t)^{2}\right\} d t \\
& =\operatorname{Ind} d_{0}^{S}(X)
\end{aligned}
$$

If we set a vector field Y_{S} by $Y_{S}(t)=Y(t) / g_{Y}(S)$, we have $g_{Y_{S}}(S)=1=g_{X}(S)$, hence obtain

$$
\operatorname{Ind}_{0}^{S}(X) \geq \operatorname{Ind} d_{0}^{S}\left(Y_{S}^{\perp}\right)=g_{Y_{S}}^{\prime}(S) g_{Y_{S}}(S)=\frac{g_{Y}^{\prime}(S)}{g_{Y}(S)}
$$

by using Lemma 3.2. Thus we get the conclusion.
Remark 3.3. Since $\mathfrak{s}_{0}\left(t ; C_{1}\right)>\mathfrak{s}_{0}\left(t ; C_{2}\right)$ if $C_{1}<C_{2}$, when $b_{\gamma}^{T}>b$ we have $\left|g_{Y}(t)\right| \leq\left|g_{Y}^{\prime}(0)\right| \mathfrak{s}_{0}(t ; c+b)$ for $0 \leq t \leq T$ in Proposition 3.1. In particular, if we set $b=\inf _{p \in M}\left\{h(p)^{2}-\|(\nabla h)(p)\|\right\}$, this estimate holds for $0 \leq t \leq t_{c}^{h}(\gamma(0) ; \gamma)$.

We are now in the position to prove Theorem 2.1. For $v \in U_{p} M$, we denote by Y_{v} the magnetic Jacobi field along γ_{v} satisfying $Y_{v}(0)=0,\left\|\left(\nabla_{\dot{\gamma}_{v}} Y_{v}\right)(0)\right\|=1$. Since $\left\|\left(d \mathbb{B}_{h} \exp _{p}\right)_{r v}\right\|^{2}=f_{Y_{v}}(r)^{2}+g_{Y_{v}}(r)^{2}$, we apply Proposition 3.1 by noticing $\left|g_{Y_{v}}^{\prime}(0)\right|=1$. As $r \leq t_{c}^{h}\left(p ; \gamma_{v}\right)$, we have

$$
\left|f_{Y_{v}}(r)\right| \leq \int_{0}^{r}|h(\gamma(t))|\left|g_{Y_{v}}(t)\right| d t \leq a \int_{0}^{r} \mathfrak{s}_{0}(t ; c+b) d t=a \mathfrak{u}_{0}(r ; c+b)
$$

We hence get the conclusion of Theorem 2.1.
Next we obtain Theorem 2.2. Corresponding to Proposition 3.1 we have the following.

Proposition 3.4. Let M a complete orientable Riemann surfaces whose sectional curvatures satisfy $\operatorname{Riem}^{M} \leq c$ with some constant c. We take a magnetic Jacobi field Y along a trajectory γ for a surface magnetic field \mathbb{B}_{h} which satisfy $g_{Y}(0)=0$. For a positive T with $T \leq t_{0}^{h}(\gamma(0) ; \gamma)$, we set $\hat{b}_{\gamma}^{T}:=\max _{0 \leq t \leq T}\left\{h(\gamma(t))^{2}+\|(\nabla h)(\gamma(t))\|\right\}$. We then have

$$
\left|g_{Y}(t)\right| \geq\left|g_{Y}^{\prime}(0)\right| \sqrt[\mathfrak{s}_{\hat{b}_{\gamma}^{T}}^{T}]{ }(t ; c) \quad \text { for } 0 \leq t \leq T
$$

Proof of Theorem 2.2. We use the same notations as in the above proof of Theorem 2.1. We apply Proposition 3.4. Since $\hat{a}>0$, we see that $h(\gamma(t))$ does not vanish. Therefore

$$
\left|f_{Y_{v}}(r)\right|=\int_{0}^{r}|h(\gamma(t))|\left|g_{Y_{v}}(t)\right| d t \geq \hat{a} \int_{0}^{r} \mathfrak{s}_{\sqrt{\hat{b}_{\gamma}^{T}}}(t ; c) d t=\hat{a} \mathfrak{u _ { \widehat { \hat { b } _ { \gamma } ^ { T } } }}(r ; c) .
$$

Thus we get the conclusion.
QED
Remark 3.5. In Theorem 2.2, if we drop the assumption that $\hat{a}>0$, we can only estimate the arclength as length $\left(F_{r}^{h}(p)\right) \geq 2 \pi \sqrt[s]{\sqrt{b_{\gamma}^{T}}}(r ; c)$.

4 Bibliography

References

[1] T. Adachi, Kähler magnetic flows for a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (1995), 473-483
[2] T. Adachi, A comparison theorem for magnetic Jacobi fields, Proc. Edinburgh Math. Soc. 40 (1997), 293-308.
[3] T. Adachi, A comparison theorem on sectors for Kähler magnetic fields, Proc. Japan Acad. Sci. 81 Ser. A(2005), 110-114
[4] T. Adachi, Magnetic Jacobi fields for Kähler magnetic fields, Recent Progress in Differential Geometry and its Related Fields, T. Adachi, H. Hashimoto and M. Hristov eds., World Scientific, Singapole 41-53, 2011
[5] T. Adachi, A theorem of Hadamard-Cartan type for Kähler magnetic fields, J. Math. Soc. Japan 64 (2012), 969-984.
[6] P. Bai \& T. Adachi, An estimate of the spread of trajectories for Kähler magnetic fields, Hokkaido Math. J. 42 (2013), 445-462
[7] T. Bao \& T. Adachi, Circular trajectories on real hypersurfaces in a nonflat complex space form, J. Geom. 96 (2009), 41-55
[8] R.L. Bishop and R. Crittenden, Geometry of Manifolds, Academic Press 1964, New York.
[9] A. Comtet, On the Landou levels on the hyperbolic plane, Ann. of Phys. 173(1987), 185-209.
[10] T. Sakai, Riemannian Geometry, Shokabo 1992 (in Japanese) and Translations Math. Monographs 149, A.M.S. 1996
[11] Q. Shi, Magnetic Jacobi fields for surface magnetic fields, Current Developments in Differential Geometry and its Related Fields, T. Adachi, H. Hashimoto and M. Hristov eds., World Scientific, Singapore 2015, 215-224.
[12] T. Sunada, Magnetic flows on a Riemann surface, Proc. KAIST Math. Workshop 8(1993), 93-108.

[^0]: http://siba-ese.unisalento.it/ © 2017 Università del Salento

