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1 Harmonic maps, harmonic sections

The theory of harmonic maps offers a framework to determine best members
of a homotopy class. It has a prehistory in an unpublished 1954 MIT report of
J. H. Sampson and a conference proceedings article by J. Eells in 1958 [17],
describing the space of smooth maps between smooth manifolds as an infinite
dimensional smooth manifold (see testimonies at the 1993 Smalefest [32]). But
the real starting point is the seminal [22] where any map into a negatively curved
manifold is continuously deformed into a harmonic representative, i.e. a critical
point of the Dirichlet energy

E(φ) =
1

2

∫
M
|dφ|2 vg.
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This brought together under the same banner classic topics like harmonic
functions, geodesics, holomorphic maps (at least between Kähler manifolds)
and, decisively, minimal isometric immersions (cf. [18–20] for classic surveys).

In the late 70’s and early 80’s, some of the attention turned toward more
geometric environments, probably to offset the hard analytical problems which
had appeared. For nigh submersions, this has led, through conundrums, to har-
monic morphisms, but we are here interested in a sort of dual case with sections
of fibre bundles, beginning with vector fields. Here one must stress how the
geometrical significance of vector fields, in contrast with mere mappings from
M to TM , opens up the possibility of a second, weaker, notion of harmonic-
ity, since admissible variations could be restricted to sections. For this variant,
critical points of the energy are called harmonic vector fields or, more generally,
harmonic sections.

Unfortunately, once the tangent bundle (a manifold in its own rights, twice
the original dimension) has been equipped with its simplest Riemannian metric,
due to Sasaki, it easily turns out, at least for compact spaces, that both versions
of harmonicity imply parallel, with serious topological consequences ([8]).

Faced with the dilemma of relaxing the above set-up to allow a glimpse of
hope of a solution, one could modify the Sasaki metric on TM (and then uncork
a philosophical debate on the virtues of the replacements), opt for another func-
tional (volume, bi-energy), restrict to unit vector fields (done with a modicum
of success [37, 43]) or, more radical, change the bundle. This will be our course.

2 Homogeneous fibre bundles

Following C. M. Wood in [44], where details can be found, we describe the
general construction of homogeneous fibre bundles, though one could read this
section with the orthogonal group and the orthonormal frame bundle in mind.

Let G be a Lie group and ξ : Q → M a principal G-bundle. For a Lie sub-
group H of G, we consider the orbit space N = Q/H so that the H-orbit map
ζ : Q→ N is a principal H-bundle and π : N →M is a fibre bundle with fibre
G/H. Then ξ = π ◦ ζ and π is isomorphic to the associated bundle Q×G G/H.

To go further, we need to assume that G/H is reductive, i.e. the Lie algebras
satisfy g = h⊕m with AdG(H)m ⊂ m. The manifold M will be equipped with a
Riemannian metric g and G/H with a G-invariant Riemannian metric, which,
in other terms, is an AdG(H)-invariant positive-definite inner-product 〈, 〉 on
m. On the principal G-bundle ξ : Q → M we will have a connection with its
g-valued connection form denoted by ω. Then we can split the tangent bundle
of N = Q/H into its horizontal H and vertical V sub-bundles with

V = ker dπ = dζ(ker dξ), H = dζ(kerω).
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With this decomposition, we construct a Sasaki-type Riemannian metric h on
N by horizontally lifting the metric g on H and on the vertical sub-bundle,
its orthogonal complement, use 〈, 〉 as metric. Then π : (N,h) → (M, g) is a
Riemannian submersion with totally geodesic fibres.

To understand the tangent bundle TN , and especially the vertical sub-
bundle, we construct an isomorphism between V and mQ, the vector bundle
associated to ζ with fibre m. Let q ∈ Q and a ∈ m, then t 7→ q. exp ta is a curve
on Q whose tangent vector at Q is denoted by a∗(q) ∈ TqQ. Since ζ(q) ∈ N ,
it admits a fibre in mQ and q • a will denote the vector a ∈ m in this fibre.
Then dζ(a∗(q)) is in the sub-bundle V, since image by dζ of a vector tangent to
a fibre of Q → M , and the following map is a vector bundle isomorphism, the
canonical isomorphism:

I : V → mQ : dζ(a∗(q)) 7→ q • a.

To deal with the connection form, we split ω into the sum of its h- and m-
components: ω = ωh + ωm. Then ωm is an H-equivariant and ζ-horizontal m-
valued one-form on Q, from which we define an mQ-valued one-form φ on N ,
called the homogeneous connection form:

φ(dζ(E)) = q • ωm(E), ∀E ∈ TqQ,

so that
φ|V = I and kerφ = H,

and the metric on N can be described as:

h = π∗g + 〈φ, φ〉,

so I becomes an isometry.
This description should remind the reader of the case of the bi-tangent bun-

dle of a Riemannian manifold.
The m-component of the curvature form Ω of ω projects to an mQ-valued

two-form Φ on N , called the homogeneous curvature form. As to ωh, it allows
the construction of a covariant derivative ∇c on mQ and, in turn, an exterior
differential operator dc on mQ-valued differential forms on N .

Let U denote the m-valued symmetric bilinear form on m:

〈U(a, b), c〉 = 〈[c, a]m, b〉+ 〈a, [c, b]m〉.

Recall that U vanishes if and only if G/H is naturally reductive. More results
on the differential geometry of homogeneous fibre bundles can be found in [44].

Assume now the existence of a reduction of the structure group G of ξ : Q→
M , to a sub-group H, i.e. there exists an H-sub-bundle ξ′ : Q′ → M (see also
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Figure 1. Reduction diagram

S. S. Chern’s take on G-structures in [8]). The manifold ζ(Q′) ⊂ N is transverse
to the fibres of π : N → M , since Tζ(Q′) will be contained in H. Moreover, as
the fibres of Q′ are copies of H, mapping Q′ onto N by ζ will identify each fibre
into a single point.

This allows a one-one correspondence between reductions of the structure
group to H and sections of π : N → M , as given a section σ, Q′ can be re-
constructed as ζ−1(σ(M)).

Pulling back by σ the homogeneous connection form gives the vertical com-
ponent of the differential of σ, crucial to the computation of the vertical tension
field:

σ∗φ = φ ◦ dσ = I ◦ dvσ.

and [44, Theorem 3.2]

I(τv(σ)) = −δ(σ∗φ) + 1
2 trace(σ∗φ∗U),

where δ is the coderivative for σ∗mQ-valued differential forms on M relative to
the σ-pull-back of ∇c.

Moreover, since [44, Theorem 3.4]

2g(π∗∇dσ(X,Y ), Z) = 〈σ∗φ⊗ σ∗Φ〉(X,Y, Z) + 〈σ∗φ⊗ σ∗Φ〉(Y,X,Z),

a harmonic section σ is a harmonic map if and only if

〈σ∗φ⊗ σ∗Φ〉 = 0.

Finally, C. M. Wood proved in 1990 an Eells-Sampson-type existence the-
orem for harmonic sections in [40], which extended a result of Donaldson on
twisted harmonic maps [14].
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3 Almost complex structures

The most accomplished example so far is taking G = SO(2n) and H = U(n)
on an even-dimensional manifold. We then recover the classical twistor space
π : N → M . Then, and the results on this page first appeared in [41, 42], the
Lie algebra h is the space of anti-symmetric matrices commuting with

J0 =

(
On −In
In On

)
and m the space of anti-symmetric matrices anti-commuting with J0. On the
vector bundle π∗TM → N , there is a universal almost Hermitian structure J
defined at y ∈ N by Jy ∈ End(Tπ(y)M) given, with respect to any orthonormal
frame of ζ−1(y), by J0.

An element β of g decomposes into its h- and m-components:

1
2J0[β, J0]− 1

2J0{β, J0},

where {A,B} = AB +BA is the anti-commutator.
The energy functional is

E(σ) =
dim(M)

2
+

1

2

∫
M

1

4
|∇J |2 vg,

so that Kähler structures are absolute minimisers and the corresponding Euler-
Lagrange equation is:

I(τv(σ)) =
1

4
[∇∗∇J, J ].

So J is a harmonic section if and only if it commutes with its rough Laplacian
and a harmonic map if it moreover satisfies

g(R(Ei, Z)J,∇EiJ) = 0, ∀Z ∈ TM.

The first examples of harmonic sections, but also of harmonic maps, have
been nearly Kähler structures [41], in part because of the curvature identities
of Gray [29, 30]. This forms a rather large and well-known class of spaces, with
Dubruille [16] showing that the only homogeneous examples of dimension six
are G2/SU(3), SU(3)/S1×S1, Sp(2)/S1×Sp(1) and Sp(1)×Sp(1)×Sp(1)/Sp(1),
and the study of the space of nearly Kähler structures, still in dimension six,
in terms of certain (1, 1)-eigenforms of a Laplace operator [34]. On the other
hand, (1, 2)-symplectic structures are harmonic sections if and only if the Ricci∗

operator is symmetric, where

Ricci∗(X,Y ) = 〈R(X,Ei)JEi, Y 〉,
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for an orthonormal frame {Ei}.
The Calabi-Eckmann complex structure on the product of odd-dimensional

spheres and the Abbena-Thurston almost-Kähler structure are harmonic sec-
tions (but not critical for the volume functional) [42]. Finally, we must mention
the impressive work of Davidov and Muskarov [10, 11], where they show the har-
monicity, as sections or maps, of the Atiyah-Hitchin-Singer and Eells-Salamon
almost Hermitian structures on the twistor space of an oriented Riemannian
four-manifold, a real mise en abyme.

These two almost complex structures, J1 and J2, are defined by decomposing
the tangent space to the twistor space into an horizontal subspace H isomorphic
to the tangent space of the base manifold, on which both J1 and J2 are defined
as the horizontal lift of the point of the twistor space (which is, by definition, an
almost complex structure), while on the vertical subspace J1 is taken to be the
complex structure defined by vector product with the base point of the twistor
space, while J2 is the conjugate. Note that [1] shows that J1 is integrable if and
only if M is self-dual and J2 plays an important role in harmonic map theory
[21].

By re-writing the equations in terms of the fundamental two-form, [11] shows
that J1 is a harmonic section if and only if (M, g) is self-dual, while, for J2,
(M, g) must moreover have constant scalar curvature. Besides, they both are
harmonic maps exactly when (M, g) is either self-dual and Einstein or self-
dual and locally the product of an open interval of R and a three-dimensional
manifold of constant curvature.

In the more usual sense, they also give conditions for the harmonicity of
integrable and almost Kähler structures on four-manifolds. This yields many
new examples (cf. [10, 12]): the complex structure on primary Kodaira surfaces
is a harmonic map mapping into its twistor space, left-invariant almost Kähler
four-dimensional Lie groups also define harmonic maps, while Inoue surfaces of
type S0 admit locally conformal Kähler metrics with a complex structure which
is a harmonic section but not an harmonic map.

4 Almost contact structures

An almost contact structure is given by the pairing of a unit vector field ξ
and a (1, 1)-tensor θ on a, necessarily odd-dimensional, Riemannian manifold
related by the equation:

θ2 = − Id +η ⊗ ξ, (1)

where η(ξ) = 1 and metric compatibility is taken as a blanket assumption. The
origin of this definition goes back to John W. Gray [31] and the best source
of examples is [3], but perhaps the most useful example to have in mind is the
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sphere S2n+1 ⊂ Cn+1. Note that warped-products of almost complex manifolds
with a line can be equipped with almost contact structures.

The distribution orthogonal to the ξ-direction will be denoted by F and we
will use the symbol J for the restriction of θ to F . The induced connection and
curvature on F will be denoted by ∇̄ and R̄.

While there is no integrability comparable to the complex case, contact
structures are defined with the condition η ∧ (dη)n 6= 0, i.e. the contact sub-
bundle F is as far from being integrable as possible [3].

Almost contact structures have been studied through the lens of the har-
monicity of the unit vector field ξ in [35, 36] and the reader can refer to [27]
and [15]

Recently, Casals, Pancholi and Presas proved in [7] that, in dimension five,
an almost contact structure on a closed manifold, whose existence is only ob-
structed by the third integral Steifel-Whitney class, can always be homotopi-
cally deformed into a contact structure. This was already known to Geiges for
simply-connected manifolds [25] and spin closed manifolds with π1 = Z2 [26]. By
Gromov’s h-principle, this is also valid in higher dimensions for open manifolds.

We summarise [38] and refer to this article for further details.

The general approach of harmonicity via reduction of the structure group
applies to almost contact structures if one chooses the groups G = SO(2n+ 1)
and H = U(n), included as

A+ iB 7→

A −B 0

B A
...

0 · · · 1

 .

Let

φ0 =

On −In 0

In On
...

0 · · · 0


in the Lie algebra g of G, then H = {A ∈ G : Aφ0A

−1 = φ0} and its Lie algebra
is h = {a ∈ g : [a, φ0] = 0}. The orthogonal complement of h in g, with respect
to the Killing form, splits naturally into m1 and m2:

m1 = {a ∈ g : {a, φ0} = 0}, m2 = {{a, η0 ⊗ ξ0} : a ∈ g},

where ξ0 = (0, . . . , 0, 1) ∈ R2n+1 and η0 is the dual of ξ0. Then g = h⊕m1⊕m2

is an Ad(H)-invariant splitting with:

[h,m1] ⊂ m1, [h,m2] ⊂ m2
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[m1,m1] ⊂ h, [m2,m2] ⊂ h⊕m1, [m1,m2] ⊂ m2.

If a ∈ g then a = ah + am1 + am2 with

ah = −1
2(φ0{a, φ0}+ a ◦ (η0 ⊗ ξ0)),

am1 = 1
2(φ0[a, φ0]− a ◦ (η0 ⊗ ξ0)), am2 = {a, η0 ⊗ ξ0}.

Crucial to obtain the harmonicity equations in terms of tensors are the “hat”
isomorphisms:

h⊕m1 → Skew(R2n) : a 7→ â = a|R2n

m2 → R2n : a2 7→ â2 = a2(ξ0).

Let µ : P → M be the principal G-bundle of oriented orthonormal frames
over the Riemannian manifold (M, g) and ν : P → P/H = N a principal
H-bundle, with π : N → M , naturally isomorphic to the homogeneous G/H-
bundle associated to µ. The pull-back bundle E by π of the tangent bundle
(though [38] actually deals with the more general case of Riemannian vector
bundles) admits an induced universal almost contact structure defined by ξ and
Φ, coming from ξ0 and φ0.

Each H-module h, m1 and m2 are fibres of vector bundles H, M1 and M2,
associated to ν : P → N and the “hat” isomorphisms induce isomorphisms
of these bundles with the sub-bundles of SkewF → N which commute and
anti-commute with Φ (restricted to F) and with F . Then, the homogeneous
connection form, cf. [38], is the M1⊕M2-valued one-form θ on N obtained by
projecting the (m1 +m2)-component of the connection form ω ∈ Ω1(P, g). Then
its M1- and M2-components are [38, Lemma 2.1]:

θ1 = 1
2Φ ◦ (∇Φ)1; θ2 = [Φ, (∇Φ)2],

and applying the “hat” isomorphisms yields [38, Proposition 2.2]:

θ̂1 = 1
2J∇̄J; θ̂2 = ∇ξ.

On the other hand, the h-component of ω is a connection form in ν : P → N ,
and induces a canonical connection∇c on the associated bundles M1,M2 → N .
If αi ∈Mi (i = 1, 2)

(∇cα1)̂ = 1
2J[∇̄α̂1,J]; (∇cα2)̂ = ∇̄α̂2 − 1

2J∇̄J(α̂2). (2)

From these considerations, one can derive the harmonicity equations of a section
σ : M → N . The corresponding almost contact structure on TM is obtained by
pulling back the universal structure (Φ, ξ,F ,J). Similarly, the bundles M1 and
M2 can be pulled back to obtain sub-bundles Mi (i = 1, 2) of Skew TM → M
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which anti-commute with J and swap F and 〈ξ〉. Then, ψ, the pull-back by
σ of the homogeneous connection form θ, splits into M1- and M2-components
which, after applying the “hat” isomorphisms, yield

ψ̂1 = 1
2J∇̄J and ψ̂2 = ∇ξ.

Applying the pull-back of Equation (2) to ψ1 and ψ2, we obtain

(∇cψ1)̂ = 1
4 [J, ∇̄2J ];

(∇cψ2)̂ = ∇2ξ + 〈∇ξ ⊗∇ξ〉ξ − 1
2J∇̄J ⊗∇ξ.

The vertical tension field of σ is

τv(σ) = trace∇vdvσ

and it vanishes if and only if σ is a harmonic section. From [44, Equation (3.2)],
the canonical vector bundle isomorphism I : V = ker dπ →M1⊕M2 sends dvσ
to ψ = σ∗θ and

I ◦ τv(σ) = ∇cEiψ(Ei).

Projecting onto M̂1 and M̂2 gives the two harmonic section equations [38, The-
orem 3.2]:

(I1τ
v(σ))̂ = 1

4 [∇̄∗∇̄J, J ];

(I2τ
v(σ))̂ = −∇∗∇ξ + |∇ξ|2ξ − 1

2J trace ∇̄J ⊗∇ξ.

For the third equation, which harmonic sections have to satisfy in order to be
harmonic maps, we use [44] to obtain:

1
4〈R(Ei, X), J∇̄EiJ〉+ 〈R(Ei, X)ξ,∇Eiξ〉 = 0.

Alternatives of the above equations, based on the intrinsic torsion, were
given by Gonzalez-Davila and Martin-Cabrera (cf. [28]), in their study of the
harmonicity of the classes of Chinea and Gonzalez-Davila [9].

The energy functional of an almost contact structure can be computed to
be:

E(σ) =
dim(M)

2
+

1

2

∫
M

1

4
|∇̄J |2 + |∇ξ|2 vg

and since variations are to be taken among unit vector fields and (1, 1)-tensors
related by (1), this could be seen as a constrained variational problem.

Examples are rather numerous, even counting out the systematic approach
of [28]. The canonical almost contact structure of a hypersurface of a Kähler
manifold is harmonic if the Reeb vector field is harmonic and for the unit sphere
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it is also a harmonic map, as for Sasakian manifolds. Of the hyperspheres of
the nearly Kähler S6, only the equator defines a harmonic section, which is
also a harmonic map. This easily extends to nearly cosymplectic manifolds with
parallel characteristic vector field and the general case is the subject of the next
section.

More detailed results, especially on trans-Sasakian manifolds and hypersur-
faces of nearly Kähler manifolds can be found in [38], while the case of contact
structures was studied in [39], where one will also find a comparison of the
harmonicity of the total space (almost contact) and the base manifold (almost
Hermitian) of a Boothby-Wang fibration, later extended to a warped-product
construction.

5 Nearly cosymplectic structures

The class of nearly cosymplectic structures was introduced by Blair in 1971
in [2] and Blair and Showers in 1974 [4] as contact counterparts of nearly Kähler
manifolds. Defined by the condition that θ is Killing, i.e. ∇θ is anti-symmetric,
one immediate consequence is that the Reeb vector field ξ is Killing.

The best-known example is the equator sphere S5 in S6, as an hypersurface
of a nearly Kähler manifold with second fundamental form proportional to η⊗η.

However more examples can be deduced from the work of Cappelleti-
Montano and Dileo [6], as they proved that, in dimension five, any nearly
Sasakian manifold also admits a nearly cosymplectic structure, necessarily Ein-
stein, and every Einstein-Sasaki manifold admits a one-parameter family of
nearly cosymplectic structures. Moreover, in higher dimensions, De Nicola, Dileo
and Yudin [13] proved that a nearly cosymplectic manifold is locally isometric
to the Riemannian product of a nearly Kähler manifold with either a nearly
cosymplectic five-manifold or a line.

Combined with recent results on nearly Kähler manifolds (cf. Section 3), this
allows a large number of examples, including co-Kähler, called cosymplectic by
Blair.

Note also the results of Endo [24] on the first Betti number of nearly cosym-
plectic manifolds.

The objective of this section is to give an outline of the proof appearing
in [33] that nearly cosymplectic structures are harmonic maps. The strategy
is inspired by [41] where the same conclusion was reached for nearly Kähler
structures. First, one has to rewrite the equations, two for the harmonicity of
sections plus one for maps, in terms of curvature. Then, as Gray did in [29, 30],
take second covariant derivatives of the fundamental equation:

θ2 = − Id +η ⊗ ξ,
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and, in a time-honoured fashion, make curvature terms appear, in various com-
binations. Plugging these formulas into the equations of harmonicity leads to
the result.

The first of the two harmonic section equations is, in its initial form, given
by:

[∇̄∗∇̄J, J ] = 0, (3)

and, using repeatedly the anti-symmetry of ∇θ, it can be re-written as:

Ricci∗(θX, θY ) = Ricci∗(X,Y ), ∀X,Y ∈ F .

This expression is also valid for the case of nearly Kähler structures, which
should not be so surprising as it does not involve the vector field ξ and the
Cartesian product of a nearly Kähler manifold and a circle is nearly cosym-
plectic. On the other hand, unless ξ is parallel, the second harmonic section
equation is, in general, given by:

∇∗∇ξ − |∇ξ|2 = −1
2J ◦ trace(∇̄J ⊗∇ξ), (4)

and, for nearly cosymplectic structures, can be re-worked into

∇∗∇ξ − |∇ξ|2ξ = −1
2 [R(Fi, θFi), θ]ξ,

where {Fi}i=1,...,2n is a local orthonormal frame of the F-distribution.
Following Gray in taking second derivatives of the defining formula of almost

contact structures yields the relation:

|(∇Xθ)(Y )|2+g2(Y,∇Xξ) = −R(X,Y,X, Y )+R(X,Y, θX, θY ), ∀X,Y ∈ TM,
(5)

which, after refinement and polarisation extends to

R(W,X, Y, Z)−R(θW, θX, θY, θZ) = 1
3 [A(W,X, Y, Z)−B(W,X, Y, Z)], (6)

where

A(W,X, Y, Z) = 1
2 [T (W + Y, Z +X)− T (W + Y,X) + T (W,X) + T (Y,X)

− T (W,Z +X)− T (W + Y,Z) + T (W,Z) + T (Y, Z)

− T (Y, Z +X)],

B(W,X, Y, Z) = 1
2 [T (W + Z,X + Y )− T (W,X + Y )− T (Z,X + Y )

− T (W + Z,X) + T (W,X) + T (Z,X)− T (W + Z, Y )

+ T (W,Y ) + T (Z, Y )]
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and

T (X,Y ) = −2g(Y, ξ)g(θ(∇Xθ)(Y ),∇Xξ) + 2g(X, ξ)g(θ(∇Xθ)(Y ),∇Y ξ)
− 2g(X, ξ)g(Y, ξ)g(∇Xξ,∇Y ξ) + g2(Y, ξ)|∇Xξ|2 + g2(X, ξ)|∇Y ξ|2

+ g(Y, ξ)R(θX, θY,X, ξ)− g(X, ξ)R(θX, θY, Y, ξ).

This formula should be compared with Endo’s in [24], much simpler and, hope-
fully, irrelevant to our case.

Since T (X,Y ) = 0 for vectors in F , one can deduce that

R(θW, θX, θY, θZ) = R(W,X, Y, Z),

and therefore that Ricci∗(θX, θY ) = Ricci∗(X,Y ), so that the first harmonic
section equation is satisfied.

Judicious choices of vectors in (6), W = Fi, X = θFi, Y = ξ, Z = θW and
then W = ξ,X = Y = Fi,W ∈ F , will show that, first the vector field ξ must
be a unit harmonic vector field i.e.:

∇∗∇ξ − |∇ξ|2 = 0,

and, second, that the right-hand side of (4) must vanish. The section must
therefore be harmonic and, as by-product, so is ξ, as a unit vector field.

To establish that the third equation is also satisfied and be able to conclude
that the section is indeed a harmonic map, we need to apply Equation (5) and
combine it with the Bianchi identity to obtain

R(Y,X,W,Z)−R(Y,X, θW, θZ) = −g((∇W θ)(Z), (∇Y θ)(X)) (7)

+ g(Y,∇Xξ)g(Z,∇W ξ), ∀X,Y, Z,W ∈ F .
(8)

Using this formula, we are able to show that for X ∈ F

g((∇̄EiJ)(Fj), [R(Ei, X), θ]Fj) = 0,

where {Fi}i=1,...,2n is an orthonormal basis of F and

{Ei}i=1,...,2n+1 = {Fi}i=1,...,2n ∪ {ξ},

while going back to (6) we can establish the ξ-counterpart i.e.:

g([R(Ei, ξ), θ]Fj , (∇̄EiJ)(Fj)) = 0, (9)

and conclude that the first term in the harmonic map equation vanishes for all
tangent vectors.
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Remark 1. One may notice a slight discrepancy in [33] on the curvature
term of this equation. First, wrongly stated with the induced curvature of the
F-distribution in the introduction and Section 4 of [33], the correct curvature
is used in the crucial Proposition 4.2 and Proposition 4.3. Compare with [38,
Theorem 3.4] where it is formulated slightly differently but is clear as to the
required curvature. An easy direct computation links the two conditions.

For the second term of the harmonic map equation, we first derive, from (5)
and the Bianchi identity, an expression for g(R(W,Z)Y, ξ) and repeated use of
(5) and (6) for various vectors yields the equation:

3
2g(R(W,Z)Y, ξ) = 18

7 g(∇Y ξ, θ(∇Zθ)(W )) + 9
7g(∇W ξ, θ(∇Zθ)(Y ))

− 9
7g(∇Zξ, θ(∇W θ)(Y )).

If we take W = Fi, Y = ∇Fiξ and Z = X ∈ F , this formula shows that the
second term of the harmonic map equation vanishes for all vector in F , while
for the ξ-direction, we need to go back and exploit an intermediate equation

−2g((∇W θ)(Z), θ∇W ξ) = −2g(R(W, ξ)W,Z) + g(R(W, ξ)θW, θZ), (10)

to conclude that the section corresponding to a nearly cosymplectic structure
is a harmonic map.

Theorem 1. Let (M, θ, ξ, η, g) be a nearly cosymplectic almost contact met-
ric manifold then its corresponding section of the associated homogeneous fibre
bundle is a harmonic map.

This extends the results of [41]on the harmonicity of nearly Kähler structures
and of [38] where the cases of S5 and nearly cosymplectic structures with parallel
Reeb vector fields were established.

The next logical task would be to investigate other classes of almost contact
structures, and work on normal almost contact structures is in progress, but,
in general, there is no reason why they should behave like nearly cosymplectic
and be harmonic without extra conditions.

Another interesting question would be the stability of such harmonic sections
or maps, but for the moment this remains difficult to fathom and [41] and [5]
are the only examples known to us in that direction.
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