Local controllability of trident snake robot based on sub-Riemannian extremals

Jaroslav Hrdina ${ }^{\text {i }}$
Institute of Mathematics, Brno University of Technology
hrdina@fme.vutbr.cz

Received: 29-07-2016; accepted: 04-11-2016.

Abstract

To solve trident snake robot local controllability by differential geometry tools, we construct a privileged system of coordinates with respect to the distribution given by Pffaf system based on local nonholonomic conditions and, furthermore, we construct a nilpotent approximation of the transformed distribution with respect to the given filtration. We compute normal extremals of sub-Riemanian structure, where the Hamiltonian point of view was used. We demonstrated that the extremals of sub-Riemannian structure based on this distribution play the similar role as classical periodic imputs in control theory with respect of our mechanism.

Keywords: local controllability, nonholonomic mechanics, planar mechanisms, sub-Riemannian geometry, differential geometry.

MSC 2010 classification: primary 53A17, secondary 70H05, 70Q05

1 Introduction

Originally, the general trident snake robot has been introduced in [5]. It is a planar robot with a body in the shape of a triangle and with three legs consisting of ℓ links. Then, its simplest non-trivial version (see figure 1), corresponding to $\ell=1$, has been mainly discussed, see e.g. [6],[4]. Local controllability of such robot is given by the appropriate Pfaff system of ODEs. The solution with respect to

$$
\dot{q}=\left(\dot{x}, \dot{y}, \dot{\theta}, \dot{\Phi}_{1}, \dot{\Phi}_{2}, \dot{\Phi}_{3}\right)
$$

gives a control system $\dot{q}=G u$. In the case length one links the control matrix G is a 6×3 matrix spanned by vector fields g_{1}, g_{2}, g_{3}, where
$g_{1}=\cos \theta \partial_{x}-\sin \theta \partial_{y}+\sin \Phi_{1} \partial_{\Phi_{1}}+\sin \left(\Phi_{2}+\frac{2 \pi}{3}\right) \partial_{\Phi_{2}}+\sin \left(\Phi_{3}+\frac{4 \pi}{3}\right) \partial_{\Phi_{3}}$,
$g_{2}=\sin \theta \partial_{x}+\cos \theta \partial_{y}-\cos \Phi_{1} \partial_{\Phi_{1}}-\cos \left(\Phi_{2}+\frac{2 \pi}{3}\right) \partial_{\Phi_{2}}-\cos \left(\Phi_{3}+\frac{4 \pi}{3}\right) \partial_{\Phi_{3}}$,
$g_{3}=\partial_{\theta}-\left(1+\cos \Phi_{1}\right) \partial_{\Phi_{1}}-\left(1+\cos \Phi_{2}\right) \partial_{\Phi_{2}}-\left(1+\cos \Phi_{3}\right) \partial_{\Phi_{3}}$

[^0]

Figure 1. 1-link trident snake robot model
and $u: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is the control of our system. It is easy to check that in regular points these vector fields define a (bracket generating) distribution H with growth vector $(3,6)$. It means that in each regular point the vectors g_{1}, g_{2}, g_{3} together with their Lie brackets span the whole tangent space. Consequently, the system is controllable by Chow-Rashevsky theorem.

The sub-Riemannian structure on manifold M is a generalization of Riemannian manifold. Given a distribution $H \subset T M$ equipped with metrics based on control u we can define so called Carnot-Carathéodory metric on M and sub-Remannian Hamiltonian.

2 Nilpotent aproximation

In order to simplify the trident snake robot control we construct a nilpotent approximation of the transformed distribution with respect to the given filtration. Note that all constructions are local in the neighborhood of 0 . Following [3], we group together the monomial vector fields of the same weighted degree and thus we express $g_{i}, i=1,2,3$ as a series

$$
g_{i}=g_{i}^{(-1)}+g_{i}^{(0)}+g_{i}^{(1)}+\cdots,
$$

where $g_{i}^{(s)}$ is a homogeneous vector field of order s. Then the following proposition holds, [7]. Set $X_{i}=g_{i}^{(-1)}, i=1,2,3$. The family of vector fields $\left(X_{1}, X_{2}, X_{3}\right)$ is a first order approximation of $\left(g_{1}, g_{2}, g_{3}\right)$ at 0 and generates a nilpotent Lie algebra of step $r=2$, i.e. all brackets of length greater than 2 are zero. In our case [3], we obtain the following vector fields:

$$
\begin{aligned}
& X_{1}=\partial_{x}+\left(-\frac{y}{2}\right) \partial_{a}+\left(-\frac{y}{2}-d\right) \partial_{b}+\left(-\frac{x}{2}\right) \partial_{c} \\
& X_{2}=\partial_{y}+\left(\frac{x}{2}\right) \partial_{a}-\left(\frac{x}{2}\right) \partial_{b}+\left(\frac{y}{2}-d\right) \partial_{c} \\
& X_{3}=\partial_{d}
\end{aligned}
$$

with respect to a new coordinates (x, y, d, a, b, c). In particular, the family of vector fields $\left(X_{1}, X_{2}, X_{3}\right)$ is the nilpotent approximation of $\left(g_{1}, g_{2}, g_{3}\right)$ at 0 associated with the coordinates (x, y, d, a, b, c). The remaining three vector fields are generated by Lie brackets of $\left(X_{1}, X_{2}, X_{3}\right)$. Note that due to linearity of the three latter coordinates of $\left(X_{1}, X_{2}, X_{3}\right)$, the coordinates of $\left(X_{4}, X_{5}, X_{6}\right)$ must be constant. We get

$$
\begin{aligned}
& X_{4}=\partial_{a}, \\
& X_{5}=\partial_{b}, \\
& X_{6}=\partial_{c} .
\end{aligned}
$$

Note that the vector fields $\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$ in $\left(x, y, \theta, \Phi_{1}, \Phi_{2}, \Phi_{3}\right)$ coordinates are of the form

$$
\begin{aligned}
& X_{1}=\partial_{x}+\theta \partial_{\Phi_{1}}-\left(-\frac{\sqrt{3}}{2}+\frac{\theta}{2}\right) \partial_{\Phi_{2}}-\left(-\frac{\sqrt{3}}{2}+\frac{\theta}{2}\right) \partial_{\Phi_{3}} \\
& X_{2}=\partial_{y}-\partial_{\Phi_{1}}+\left(-\frac{1}{2}+\frac{\sqrt{3} \theta}{2}\right) \partial_{\Phi_{2}}-\left(-\frac{1}{2}+\frac{\sqrt{3} \theta}{2}\right) \partial_{\Phi_{3}} \\
& X_{3}=\partial_{\theta}-2 \partial_{\Phi_{1}}-2 \partial_{\Phi_{2}}-2 \partial_{\Phi_{3}} \\
& X_{4}=\partial_{\Phi_{1}}+\partial_{\Phi_{2}}+\partial_{\Phi_{3}} \\
& X_{5}=-\frac{\sqrt{3}}{2} \partial_{\Phi_{2}}+\frac{\sqrt{3}}{2} \partial_{\Phi_{3}} \\
& X_{6}=-\partial_{\theta}+\frac{1}{2} \partial_{\Phi_{2}}+\frac{1}{2} \partial_{\Phi_{3}}
\end{aligned}
$$

To show how nilpotent approximation affects on integral curves of the distributions and the resulting control we computed the Lie brackets of relevant vector fields. In Fig. 2, there is a comparison of the Lie bracket g_{5} motions realized in $\left(x, y, \theta, \Phi_{1}, \Phi_{2}, \Phi_{3}\right)$ coordinates (dotted line) and in nilpotent approximation. Fig. 3 show the comparison of g_{6} motions. The following figures show the trajectories of the root center point, vertices and wheels when a particular Lie bracket motion is realized.

Figure 2. g_{5} motion

Figure 3. g_{6} motion

3 sub-Riemannian Hamiltonian

Note that the functions in $C^{\infty}(M)$ are in one-to-one correspondence with functions in $C^{\infty}\left(T^{*} M\right)$ that are constant on fibers:

$$
C^{\infty}(M) \cong C_{\text {const }}^{\infty}\left(T^{*} M\right)=\left\{\pi^{*} \alpha \mid \alpha \in C^{\infty}(M)\right\} \subset C^{\infty}\left(T^{*} M\right),
$$

where $\pi: T^{*} M \rightarrow M$ denotes the canonical projection. In what follows, with no abuse of notation, we often identify the function $\pi^{*} \alpha \in C^{\infty}\left(T^{*} M\right)$ with the function $\alpha \in C^{\infty}(M)$. In a similar way, smooth vector fields on M are in a one-to-one correspondence with functions in $C^{\infty}\left(T^{*} M\right)$ that are linear on fibers via the map $Y \mapsto a_{Y}$, where $a_{Y}(\lambda):=\langle\lambda, Y(q)\rangle$ and $q=\pi(\lambda)$, i.e.

$$
V e c(M) \cong C_{l i n}^{\infty}\left(T^{*} M\right)=\left\{a_{Y} \mid Y \in \operatorname{Vec}(M)\right\} \subset C^{\infty}\left(T^{*} M\right) .
$$

Our mechanism can be understood as a model of sub-Riemannian structure of constant rank, i.e. the triple ($M, D,\langle\cdot, \cdot\rangle$), where D is a vector subbundle of $T M$ locally generated by family of vector fields $\left\{f_{1}, \ldots, f_{m}\right\}$ (in our case generated by X_{1}, X_{2} and $\left.X_{3}\right)$ and $\langle\cdot, \cdot\rangle_{q}$ is a family of scalar products on D_{q}. Then the sub-Riemannian Hamiltonian is the function on $T^{*} M$ defined as follows [1]

$$
\begin{aligned}
& h: T^{*} M \rightarrow \mathbb{R} \\
& h(\lambda)=\max _{u \in U_{q}}\left(\left\langle\lambda, f_{u}(q)\right\rangle-\frac{1}{2}|u|^{2}\right), q=\pi(\lambda),
\end{aligned}
$$

where $f_{u}=\sum_{i} u_{i} f_{i}$. For every generating family $\left\{f_{1}, \ldots, f_{m}\right\}$ of the subRiemannian structure, the sub-Riemannian Hamiltonian H can be rewritten [1] as follows

$$
h(\lambda)=\frac{1}{2} \sum_{i}\left\langle\lambda, f_{i}(q)\right\rangle^{2}, \lambda \in T_{q}^{*} M, q=\pi(\lambda) .
$$

To simplify our equations below we can define the Poisson bracket as an binary operation $\{$,$\} on functions in C^{\infty}\left(T^{*} M\right)$. In fact, we can define

$$
\begin{equation*}
\left\{a_{X}, a_{Y}\right\}:=a_{[X, Y]} \tag{1}
\end{equation*}
$$

and there exists a unique bilinear and skew-symmetric map

$$
\{\cdot, \cdot\}: C^{\infty}\left(T^{*} M\right) \times C^{\infty}\left(T^{*} M\right) \rightarrow C^{\infty}\left(T^{*} M\right)
$$

that extends Poisson bracket (1) on $C^{\infty}\left(T^{*} M\right)$, and that is a derivative (i.e. satisfies the Lipschitz rule) in each argument. Let (x, p) denote coordinates on $T^{*} M$, the formula for Poisson bracket of two functions $a, b \in C^{\infty}\left(T^{*} M\right)$ reads

$$
\{a, b\}=\sum_{i=1}^{n} \frac{\partial a}{\partial p_{i}} \frac{\partial b}{\partial x_{i}}-\frac{\partial a}{\partial x_{i}} \frac{\partial b}{\partial p_{i}}
$$

and the Hamiltonian vector field associated with the smooth function $a \in$ $C^{\infty}\left(T^{*} M\right)$ is defines as the linear operation

$$
\vec{a}: C^{\infty}\left(T^{*} M\right) \rightarrow C^{\infty}\left(T^{*} M\right), \quad \vec{a}(v)=\{a, b\} .
$$

We can easily write the coordinate expression of \vec{a} for an arbitrary function $a \in C^{\infty}\left(T^{*} M\right)$ as

$$
\vec{a}=\{a, \cdot\}=\sum_{i=1}^{n} \frac{\partial a}{\partial p_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial a}{\partial x_{i}} \frac{\partial}{\partial p_{i}} .
$$

Let $\gamma:[0, T] \rightarrow M$ be an admissible curve with respect to controlling distribution which is lenght-minimizer, parametrized by constant speed. Let \bar{u} be the corresponding minimal control. Then there exists a Lipschitz curve $\lambda(t) \in T_{\gamma(t)}^{*} M$ such that

$$
\dot{\lambda}=\sum_{i=1}^{m} \bar{u}_{i}(t) \vec{h}_{i}(\lambda(t))=\vec{h}(t)(\lambda(t))=\{h, \lambda\},
$$

where $\vec{h}=\sum_{i=1}^{m} \bar{u}_{i}(t) \vec{h}_{i}$. On the controlling vector fields X_{1}, X_{2} and X_{3} and the general 1-form $\lambda \in T^{*} M$

$$
\lambda=\lambda_{x} \mathrm{~d} x+\lambda_{y} \mathrm{~d} y+\lambda_{d} \mathrm{~d} d+\lambda_{a} \mathrm{~d} a+\lambda_{b} \mathrm{~d} b+\lambda_{c} \mathrm{~d} c
$$

we define functions $h_{i}=\left\langle\lambda, X_{i}\right\rangle$

$$
\begin{aligned}
h_{1}(\lambda) & :=\lambda_{x}-\frac{y}{2} \lambda_{a}-\left(\frac{y}{2}+d\right) \lambda_{b}-\frac{x}{2} \lambda_{c}, \\
h_{2}(\lambda) & :=\lambda_{y}+\frac{x}{2} \lambda_{a}-\frac{x}{2} \lambda_{b}+\left(\frac{y}{2}-d\right) \lambda_{c}, \\
h_{3}(\lambda) & :=\lambda_{d} .
\end{aligned}
$$

In our case the sub-Riemannian Hamiltonian with respect to corresponding minimal control is then of the form

$$
\begin{aligned}
h(\lambda) & =u_{1} h_{1}(\lambda)+u_{2} h_{2}(\lambda)+u_{3} h_{3}(\lambda) \\
& =u_{1}\left(\lambda_{x}-\frac{y}{2} \lambda_{a}-\left(\frac{y}{2}+d\right) \lambda_{b}-\frac{x}{2} \lambda_{c}\right) \\
& +u_{2}\left(\lambda_{y}+\frac{x}{2} \lambda_{a}-\frac{x}{2} \lambda_{b}+\left(\frac{y}{2}-d\right) \lambda_{c}\right)+u_{3} \lambda_{d} .
\end{aligned}
$$

In canonical coordinates (p, x), the Hamiltonian vector filed associated with h is expressed as follows

$$
\vec{h}=\{h, \cdot\}=\sum_{i=1}^{n} \frac{\partial h}{\partial p_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial h}{\partial x_{i}} \frac{\partial}{\partial p_{i}}
$$

and the Hamiltonian system $\dot{\lambda}=\vec{h}(\lambda)$ is rewritten as

$$
\dot{x_{i}}=\frac{\partial h}{\partial p_{i}}, \quad \dot{p_{i}}=-\frac{\partial h}{\partial x_{i}}
$$

i.e. in our case

$$
\begin{gathered}
\dot{x}=\frac{\partial h}{\partial \lambda_{x}}=\frac{\partial\left(u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}\right)}{\partial \lambda_{x}}=u_{1} \\
\dot{y}=\frac{\partial h}{\partial \lambda_{y}}=\frac{\partial\left(u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}\right)}{\partial \lambda_{y}}=u_{2} \\
\dot{d}=\frac{\partial h}{\partial \lambda_{d}}=\frac{\partial\left(u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}\right)}{\partial \lambda_{d}}=u_{3} \\
\dot{\lambda}_{x}=-\frac{\partial h}{\partial x}=-\frac{\partial\left(u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}\right)}{\partial x}=\frac{1}{2}\left(-\lambda_{c} u_{1}+\left(\lambda_{a}-\lambda_{b}\right) u_{2}\right) \\
\left.\dot{\lambda}_{y}=-\frac{\partial h}{\partial y}=-\frac{\partial\left(u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}\right)}{\partial y}=\frac{1}{2}\left(\lambda_{a}-\lambda_{b}\right) u_{1}+\left(\lambda_{c}\right) u_{2}\right) \\
\dot{\lambda}_{d}=-\frac{\partial h}{\partial d}=-\frac{\partial\left(u_{1} h_{1}+u_{2} h_{2}+u_{3} h_{3}\right)}{\partial d}=\frac{1}{2}\left(-\lambda_{b} u_{1}-\left(\lambda_{c}\right) u_{2}\right) \\
\dot{b}=-\left(\frac{y}{2}+d\right) u_{1}-\frac{x}{2} u_{2} \\
\dot{c}=-\frac{x}{2} u_{1}-\left(\frac{y}{2}-d\right) u_{2}
\end{gathered}
$$

A function $a \in C^{\infty}\left(T^{*} M\right)$ is a constant of the motion of the Hamiltonian system associated with $h \in C^{\infty}\left(T^{*} M\right)$ if and only if $\{h, a\}=0$. If $\gamma:[0, T] \rightarrow M$ is a length minimizer on sub-Riemannian manifold, associated with a control $u(\cdot)$, then due the Pontryagin maximum principle there exists $\lambda_{0} \in T_{\gamma(0)}^{*} M$ such that defining

$$
\lambda(t)=\left(P_{0, t}^{-1}\right)^{*} \lambda_{0}, \quad \lambda(t) \in T_{\gamma(t)}^{*} M,
$$

where $P_{0, t}$ is the flow of the nonautonomous vector field

$$
X_{u(t)}=\sum_{i=1}^{m} u_{i}(t) X_{i}(\gamma(t))
$$

and one of the following condition is satisfied

$$
\begin{aligned}
(N) u_{i}(t) & =\left\langle\lambda(t), X_{i}(\gamma(t))\right\rangle, \quad \forall i=1, \ldots, m, \\
(A) \quad 0 & =\left\langle\lambda(t), X_{i}(\gamma(t))\right\rangle, \quad \forall i=1, \ldots, m .
\end{aligned}
$$

If $\lambda(t)$ satisfies (N) then it is called normal extremal (and $\gamma(t)$ a normal extremal trajectory). If $\lambda(t)$ satisfies (A) then it is called abnormal extremal (and $\gamma(t)$ a abnormal extremal trajectory).

4 Normal extremals

Following [1], every normal extremal is a solution of the Hamiltonian system $\dot{\lambda}=\vec{h}(\lambda(t))$, i.e. in our case of the system

$$
\dot{\lambda}=\vec{h}(\lambda(t))=\frac{1}{2}\left(h_{1}^{2}(\lambda)+h_{2}^{2}(\lambda)+h_{3}^{2}(\lambda)\right), \quad h_{i}(\lambda)=\left\langle\lambda, X_{i}(q)\right\rangle,
$$

and let us introduce

$$
\begin{aligned}
h_{4}(\lambda) & :=\left\langle\lambda, X_{4}(q)\right\rangle, \\
h_{5}(\lambda) & :=\left\langle\lambda, X_{5}(q)\right\rangle, \\
h_{6}(\lambda) & :=\left\langle\lambda, X_{6}(q)\right\rangle .
\end{aligned}
$$

Since X_{1}, \ldots, X_{6} are linearly independent then $\left\{h_{1}, \ldots, h_{6}\right\}$ defines a system coordinates on $T^{*} M$ and thus we can consider λ to be parametrized by h_{i}
consequently, we are looking for a solution of the system $\dot{h}_{i}=\left\{h, h_{i}\right\}$, i.e.
$\dot{h}_{1}=\left\{h, h_{1}(t)\right\}=\left\{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}, h_{1}\right\}=\left\{h_{2}, h_{1}\right\} h_{2}+\left\{h_{3}, h_{1}\right\} h_{3}=-h_{4} h_{2}-h_{5} h_{3}$
$\dot{h}_{2}=\left\{h, h_{2}(t)\right\}=\left\{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}, h_{2}\right\}=\left\{h_{1}, h_{2}\right\} h_{1}+\left\{h_{3}, h_{2}\right\} h_{3}=h_{4} h_{1}-h_{6} h_{3}$
$\dot{h}_{3}=\left\{h, h_{3}(t)\right\}=\left\{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}, h_{3}\right\}=\left\{h_{1}, h_{3}\right\} h_{1}+\left\{h_{2}, h_{3}\right\} h_{2}=h_{5} h_{1}+h_{6} h_{2}$
$\dot{h}_{4}=\vec{h}\left(h_{4}(t)\right)=\left\{h, h_{4}(t)\right\}=\left\{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}, h_{4}\right\}=0$
$\dot{h}_{5}=\vec{h}\left(h_{5}(t)\right)=\left\{h, h_{5}(t)\right\}=\left\{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}, h_{5}\right\}=0$
$\dot{h}_{6}=\vec{h}\left(h_{6}(t)\right)=\left\{h, h_{4}(t)\right\}=\left\{h_{1}^{2}+h_{2}^{2}+h_{3}^{2}, h_{6}\right\}=0$

To analyze the system of ordinary differential equations above we have the following assignments:

$$
\begin{aligned}
& \dot{h}_{4}=0 \leadsto h_{4} \text { is a constant function } \leadsto h_{4}=k_{1} \\
& \dot{h}_{5}=0 \leadsto h_{5} \text { is a constant function } \leadsto h_{5}=k_{2} \\
& \dot{h}_{6}=0 \leadsto h_{6} \text { is a constant function } \leadsto h_{6}=k_{3}
\end{aligned}
$$

and the system of linear ordinary differential equations, which can be written in the matrix form as

$$
\left(\begin{array}{c}
\dot{h}_{1} \\
\dot{h}_{2} \\
\dot{h}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -k_{1} & k_{2} \\
k_{1} & 0 & -k_{3} \\
-k_{2} & k_{3} & 0
\end{array}\right)\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)
$$

The main tool to analyze the systems of linear ODEs, is eigenvalues and eigenvectors computations. In our case, the straightforward computation

$$
\left|\begin{array}{ccc}
-\lambda & -k_{1} & k_{2} \\
k_{1} & -\lambda & -k_{3} \\
-k_{2} & k_{3} & -\lambda
\end{array}\right|=-\lambda^{3}-\lambda\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)=-\lambda\left(\lambda^{2}+\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)\right)=0
$$

leads to one real and two complex conjugated eigenvalues:

$$
\lambda_{1}=0, \quad \lambda_{ \pm i}= \pm i \sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}
$$

where the eigenvectors are

$$
\begin{aligned}
v_{0} & :=\left(\begin{array}{c}
k_{3} \\
k_{2} \\
k_{1}
\end{array}\right), v_{i}^{2}:=\left(\begin{array}{c}
k_{2}^{2} \\
-i \sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}} k_{1}+k_{2} k_{3} \\
i \sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}} k_{2}-k_{1} k_{3}
\end{array}\right) \\
v_{-i} & :=\left(\begin{array}{c}
k_{1}^{2}+k_{2}^{2} \\
i \sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}} k_{1}-k_{2} k_{3} \\
-i \sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}} k_{2}-k_{1} k_{3}
\end{array}\right)
\end{aligned}
$$

respectively. From the theory of linear systems of ODEs in matrix form, the solution can be described as a linear combination of real and imaginary part of $u=v_{o} \exp (0 t)+v_{i} \exp (i t)+v_{-i} \exp (-i t)$. The straightforward computation leads to

$$
\begin{aligned}
\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) & =\left(\begin{array}{c}
v_{0}^{x} \\
v_{0}^{y} \\
v_{0}^{d}
\end{array}\right)+\left(\begin{array}{c}
v_{i}^{x} \exp (i t) \\
v_{i}^{y} \exp (i t) \\
v_{i}^{d} \exp (i t)
\end{array}\right)+\left(\begin{array}{c}
v_{-i}^{x} \exp (-i t) \\
v_{-i}^{y} \exp (-i t) \\
v_{-i}^{d} \exp (-i t)
\end{array}\right) \\
& =\left(\begin{array}{c}
k_{3} \\
k_{2} \\
k_{1}
\end{array}\right)+\left(\begin{array}{c}
\left(k_{1}^{2}+k_{2}^{2}\right)(\cos (t)+i \sin (t)) \\
\left(-i k k_{1}+k_{2} k_{3}\right)(\cos (t)+i \sin (t)) \\
\left(i k k_{2}-k_{1} k_{3}\right)(\cos (t)+i \sin (t))
\end{array}\right) \\
& +\left(\begin{array}{c}
\left(k_{1}^{2}+k_{2}^{2}\right)(\cos (t)-i \sin (t)) \\
\left(i k k_{1}-k_{2} k_{3}\right)(\cos (t)-i \sin (t)) \\
\left(-i k k_{2}-k_{1} k_{3}\right)(\cos (t)-i \sin (t))
\end{array}\right) \\
& =\left(\begin{array}{c}
k_{3} \\
k_{2} \\
k_{1}
\end{array}\right)+\left(\begin{array}{c}
2\left(k_{1}^{2}+k_{2}^{2}\right) \cos (t) \\
2 k k_{1} \sin (t) \\
-2 k_{1} k_{3} \cos (t)-2 k k_{2} \sin (t)
\end{array}\right)+i\left(\begin{array}{c}
0 \\
2 k_{2} k_{3} \sin (t) \\
0
\end{array}\right)
\end{aligned}
$$

where $k=\sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}$.

5 Local controllability

To perform the Lie bracket motions we apply a periodic input, i.e. for the vector fields $X_{4}=\left[X_{1}, X_{2}\right], X_{5}=\left[X_{1}, X_{3}\right], X_{6}=\left[X_{2}, X_{3}\right]$, respectively, the input

$$
\begin{aligned}
& v_{1}(t)=(-A \omega \sin \omega t, A \omega \cos \omega t, 0), \\
& v_{2}(t)=(0,-A \omega \sin \omega t, A \omega \cos \omega t), \\
& v_{3}(t)=(-A \omega \sin \omega t, 0, A \omega \cos \omega t)
\end{aligned}
$$

is applied, because, according to [6], the Lie bracket of a pair of vector fields corresponds to the direction of a displacement in the state space as a result of a periodic input with sufficiently small amplitude A, i.e. the bracket motions are generated by periodic combination of the vector controlling fields. The theoretic approach above leads to four new control sequences with respect to the parameters k_{1}, k_{2} and k_{3}. These control sequences are the following:

$$
\begin{aligned}
e_{1}(t) & =\left(2 k_{1}^{2} \cos (t), 2 k k_{1} \sin (t),-2 k_{1} k_{3} \cos (t)\right), \\
e_{2}(t) & =\left(\left(k_{1}^{2}+k_{2}^{2}\right) \cos (t), 2 k_{1} k_{3} \sin (t),-2 k k_{2} \sin (t)\right), \\
e_{3 A}(t) & =\left(2 k_{2}^{2} \cos (t), 0,-2 k k_{2} \sin (t)\right), \\
e_{3 B}(t) & =\left(0,2 k_{1} k_{3} \sin (t), 0\right) .
\end{aligned}
$$

It is easy to see that by appropriate choice of coordinates k_{1}, k_{2} and k_{3} we can get classical periodic inputs as a normal extremal of the underlying subRiemannian structure. For example, the choice $k_{1} \mapsto-\sqrt{A \omega}, k_{2}=k_{3}=0$ and $t \mapsto \omega t$ leads to identification $e_{1}(t) \cong-v_{1}(t)$.

References

[1] A. Agrachev, D. Barilari, U. Boscain, Introduction to Riemannian and subRiemannian geometry, Preprint SISSA, 2016
[2] A A Ardentov, Yu L Sachkov, Extremal trajectories in a nilpotent subRiemannian problem on the Engel group, Russian Academy of Sciences Sbornik Mathematics 202(11):1593,2012.
[3] Hrdina, J, Návrat, A, Vašík, P: Nilpotent approximation of a trident snake robot controlling distribution, arXiv:1607.08500 [math.DG], 2016.
[4] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control, Adv.Appl. Clifford Algebr. (in print), 1-12 online (2016).
[5] Ishikawa, M.: Trident snake robot: locomotion analysis and control. NOLCOS, IFAC Symposium on Nonlinear Control Systems 6, 1169-1174 (2004).
[6] Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake robot. IEEE/ASME Trans. Mechatronics 15(1), 9-15 (2010).
[7] Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer, 2014.
[8] Murray,R. M., Zexiang,L., Sastry, S. S.: A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994.
[9] Selig, J.M.: Geometric Fundamentals of Robotics, Springer, Monographs in Computer Science, 2004.

[^0]: ${ }^{i}$ This work was supported by a grant of the Czech Science Foundation (GAČR) no. 1721360S.
 http://siba-ese.unisalento.it/ © 2017 Università del Salento

