G_2 fibre bundle structure on an oriented 3-dimensional manifold

Hideya Hashimoto i

Department of Mathematics, Meijo University hhashi@meijo-u.ac.jp

Misa Ohashi

Department of Mathematics, Nagoya Institute of Technology ohashi.misa@nitech-u.ac.jp

Received: 01-08-2016; accepted: 09-11-2016.

Abstract. By using algebraic structures of Clifford algebras and octonions, we show that there exists the G_2 principal fibre bundle structure on any oriented 3-dimensional C^{∞} Riemannian manifold.

Keywords: Clifford algebras, Octonions

MSC 2010 classification: Primary 53C30; Secondary 53C15.

Introduction

The purpose of this paper is to construct the G_2 principal fibre bundle of any oriented 3-dimensional C^{∞} Riemannian manifold, by using Clifford algebras and octonions.

1 Clifford algebra

We give a brief review of Clifford algebra. Let V be an n-dimensional vector space with the fixed positive definite inner product $\langle \ , \ \rangle$. The tensor algebra $\mathcal{T}(V)$ is given by

$$\mathcal{T}(V) = \mathbf{R} \cdot 1 \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots \oplus (\otimes^k V) \cdots$$

We define the two sided ideal \mathcal{I} as follows

 \mathcal{I} = the two sided ideal of the set $\{x \otimes x + \langle x, x \rangle \cdot 1 | x \in V\}$.

The Clifford algebra $Cl_n = Cl(V)$ is defined as a factor ring

$$Cl_n = Cl(V) = \mathcal{T}(V)/\mathcal{I}.$$

ⁱThis work is partially supported by JSPS KAKENHI Grant Number 15K04860. http://siba-ese.unisalento.it/ © 2017 Università del Salento

In particular, we explain Clifford algebra Cl_3 of degree 3. Let V be a 3-dimensional vector space over \mathbf{R} and let $(e_1 \ e_2 \ e_3)$ be an orthonormal frame of V. An element $x \in Cl_3$, is represented by

$$x = \alpha_0 \ 1 + \alpha_1 \ e_1 + \alpha_2 \ e_2 + \alpha_{12} \ e_{12} + \alpha_3 \ e_3 + \alpha_{13} \ e_{13} + \alpha_{23} \ e_{23} + \alpha_{123} \ e_{123},$$

$$\tag{1}$$

where $\alpha_* \in \mathbf{R}$ and $e_{ij} = e_i \cdot e_j$ and $e_{123} = e_1 \cdot e_2 \cdot e_3$. Here the symbol \cdot is the multiplication of Clifford algebra. The multiplication table is given by

	1	e_1	e_2	e_{12}	e_3	e_{13}	e_{23}	e_{123}
1	1	e_1	e_2	e_{12}	e_3	e_{13}	e_{23}	e_{123}
e_1	e_1	-1	e_{12}	$-e_2$	e_{13}	$-e_3$	e_{123}	$-e_{23}$
e_2	e_2	$-e_{12}$	-1	e_1	e_{23}	$-e_{123}$	$-e_3$	e_{13}
e_{12}	e_{12}	e_2	$-e_1$	-1	e_{123}	e_{23}	$-e_{13}$	$-e_3$
e_3	e_3	$-e_{13}$	$-e_{23}$	e_{123}	-1	e_1	e_2	$-e_{12}$
e_{13}	e_{13}	e_3	$-e_{123}$	$-e_{23}$	$-e_1$	-1	e_{12}	e_2
e_{23}	e_{23}	e_{123}	e_3	e_{13}	$-e_2$	$-e_{12}$	-1	$-e_1$
e_{123}	e_{123}	$-e_{23}$	e_{13}	$-e_3$	$-e_{12}$	e_2	$-e_1$	1

Table 1. the multiplication table of Cl_3

We note the algebraic properties of Clifford algebra. The Clifford algebra is an associative algebra.

$$Cl_1 \simeq \mathbf{C}$$
 (Complex), $Cl_2 \simeq \mathbf{H}$ (Quaternions).

The above two cases, they are division algebras and **H** is a skew field. However

$$Cl_3 \simeq \mathbf{R}^8, Cl_4 \simeq \mathbf{R}^{16}, \dots, Cl_n \simeq \mathbf{R}^{2^n}, \dots$$

are not division algebras. In fact, we have

$$(1 + e_{123})(1 - e_{123}) = 1 - e_{123}^2 = 0.$$

In particular, note that $Cl_3 \simeq \mathbf{R}^8$. Cl_3 is a direct sum of two quaternions as follows. We set

$$v_0^+ = 1/2(1 - e_{123}), v_0^- = 1/2(1 + e_{123}), v_1^+ = 1/2(e_1 + e_{23}), v_1^- = 1/2(e_1 - e_{23}), v_2^+ = 1/2(e_2 + e_{31}), v_2^- = 1/2(e_2 - e_{31}), v_3^+ = 1/2(e_3 + e_{12}), v_3^- = 1/2(e_3 - e_{12}). (2)$$

Then we have

$$Cl_{3} = \operatorname{span}_{\mathbf{R}} \{ v_{0}^{+}, \ v_{1}^{+}, \ v_{2}^{+}, \ v_{3}^{+} \} \oplus \operatorname{span}_{\mathbf{R}} \{ v_{0}^{-}, \ v_{1}^{-}, \ v_{2}^{-}, \ v_{3}^{-} \}$$

$$\simeq Cl_{2} \oplus Cl_{2} \simeq \mathbf{H} \oplus \mathbf{H}.$$
(3)

In fact, we easily see that the Clifford multiplication of $\mathrm{span}_{\mathbf{R}}\{v_0^+,\ v_1^+,\ v_2^+,\ v_3^+\}$ (or $\mathrm{span}_{\mathbf{R}}\{v_0^-,\ v_1^-,\ v_2^-,\ v_3^-\}$) coincides with the multiplication of the quaternions.

2 Oriented 3-manifolds

Let M^3 be an oriented 3-dimensional C^∞ Riemannian manifold with Riemannian metric $\langle \ , \ \rangle$. Then there exists a principal SO(3)-frame bundle $\mathscr{F}^{SO(3)}$ over M^3 , that is

$$\mathscr{F}^{SO(3)} \to M^3$$

with fibre SO(3). For any $p \in \mathscr{F}^{SO(3)}$, p is a pair $p = (m, (e_1 e_2 e_3))$ where $m \in M$ and $(e_1 e_2 e_3)$ is an oriented orthonormal frame at m. Let U be an open subset of M^3 with local triviality, that is, $\mathscr{F}^{SO(3)}|_{U} \simeq U \times SO(3)$. Since the tangent space T_mM^3 at $m \in M^3$ is isomorphic to 3-dimensional Euclidean space \mathbb{R}^3 , we can construct the Clifford algebra $Cl_3(T_mM^3)$. Therefore we obtain Clifford bundle $\mathbb{C}l_3$ over M^3 with fibre Cl_3 as

$$\mathbf{Cl}_3 = \bigcup_{m \in M^3} Cl_3(T_m M^3).$$

If we take an orthonormal local frame field (\mathfrak{e}_1 \mathfrak{e}_2 \mathfrak{e}_3) on some open subset U. Then, the basis of local sections of \mathbf{Cl}_3 are given by

$$(1 e_1 e_2 e_{12} e_3 e_{13} e_{23} e_{123}).$$

We change the order and the sign of this base. Let σ be the new base of Cl_3 define by

$$\sigma(m) = (1 \mathfrak{e}_1(m) \mathfrak{e}_2(m) \mathfrak{e}_3(m) \mathfrak{e}_{23}(m) \mathfrak{e}_{31}(m) \mathfrak{e}_{12}(m) \mathfrak{e}_{123}(m)).$$

In order to define the G_2 -fibre bundle structure whole on M^3 (in the next section), and to prove the well-definedness of G_2 -local frame field, we prepare the following: Let $(e_1 \ e_2 \ e_3)$, $(e_1' \ e_2' \ e_3')$ be two orthonormal basis of $T_m M^3$. Then there exists $A \in SO(3)$ such that

$$(e_1' e_2' e_3') = (e_1 e_2 e_3)A.$$

Then we can show that

$$(1 e'_1 e'_2 e'_3 e'_{23} e'_{31} e'_{12} e'_{123}) = (1 e_1 e_2 e_3 e_{23} e_{31} e_{12} e_{123})\tilde{A}$$
 (4)

where

$$\tilde{A} = \begin{pmatrix} 1 & 0_{1\times3} & 0_{1\times3} & 0\\ 0_{3\times1} & A & 0_{3\times3} & 0_{3\times1}\\ 0_{3\times1} & 0_{3\times3} & A & 0_{3\times1}\\ 0 & 0_{1\times3} & 0_{1\times3} & 1 \end{pmatrix} \in M_{8\times8}(\mathbf{R}).$$
 (5)

By (2), we define

We note that vector fields \mathfrak{v}_0^+ and \mathfrak{v}_0^- , and distributions $\operatorname{span}_{\mathbf{R}}\{\mathfrak{v}_1^+,\mathfrak{v}_2^+,\mathfrak{v}_3^+\}$ $\operatorname{span}_{\mathbf{R}}\{\mathfrak{v}_1^-,\mathfrak{v}_2^-,\mathfrak{v}_3^-\}$, are invariant under the above action of SO(3). Then we obtain the following identification

$$Cl_3(T_mM^3) \simeq \mathbf{H} \oplus \mathbf{H}.$$

By (5), this splitting does not depend on the choice of the orthonormal frame of $T_m M^3$. From this construction, we also obtain the principal $(1 \oplus \Delta SO(3) \oplus 1)$ fibre bundle over M^3 , where

$$\Delta SO(3) = \left(\begin{array}{cc} A & 0_{3\times3} \\ 0_{3\times3} & A \end{array}\right)$$

for $A \in SO(3)$.

3 Octonionic structure on an oriented 3-manifold

The octonions (or Cayley algebra) $\mathfrak C$ over $\mathbf R$ can be considered as a direct sum $\mathbf H \oplus \mathbf H = \mathfrak C$ with the following multiplication

$$(a+b\varepsilon)(c+d\varepsilon) = ac - \bar{d}b + (da+b\bar{c})\varepsilon,$$

where $\varepsilon = (0,1) \in \mathbf{H} \oplus \mathbf{H}$ and $a,b,c,d \in \mathbf{H}$. The symbol "-" denotes the conjugation of the quaternion. The octonions is a non-commutative, non-associative alternative division algebra. Hence the multiplication of \mathfrak{C} is different from that

of Cl_3 . The group of automorphisms of the octonions is the exceptional simple Lie group

$$G_2 = \{ g \in SO(8) \mid g(uv) = g(u)g(v) \text{ for any } u, v \in \mathfrak{C} \}.$$

Since $\Delta SO(3)$ is a closed subgroup of G_2 , by (6), we can identify the basis of the octonions and the above basis (as an orthonormal basis of \mathfrak{C})

$$1 \leftrightarrow 1_{\mathfrak{C}}, \quad \mathfrak{v}_{1}^{+} \leftrightarrow i, \quad \mathfrak{v}_{2}^{+} \leftrightarrow j, \quad \mathfrak{v}_{3}^{+} \leftrightarrow k,$$

$$e_{123} \leftrightarrow \varepsilon, \quad \mathfrak{v}_{1}^{-} \leftrightarrow i\varepsilon, \quad \mathfrak{v}_{2}^{-} \leftrightarrow j\varepsilon, \quad \mathfrak{v}_{3}^{-} \leftrightarrow k\varepsilon.$$

$$(7)$$

Here we use the multiplication of \mathfrak{C} only. By using this identification, we define the new octonionic multiplication on $Cl_3(T_mM^3)$. Therefore, we can define the G_2 local frame field as follows

$$u = g(e_{123}),$$

$$f_1 = 1/2\{g(\mathfrak{v}_1^+) - \sqrt{-1}g(\mathfrak{v}_1^-)\}, \qquad \overline{f_1} = 1/2\{g(\mathfrak{v}_1^+) + \sqrt{-1}g(\mathfrak{v}_1^-)\},$$

$$f_2 = 1/2\{g(\mathfrak{v}_2^+) - \sqrt{-1}g(\mathfrak{v}_2^-)\}, \qquad \overline{f_2} = 1/2\{g(\mathfrak{v}_2^+) + \sqrt{-1}g(\mathfrak{v}_2^-)\},$$

$$f_3 = -1/2\{g(\mathfrak{v}_3^+) - \sqrt{-1}g(\mathfrak{v}_3^-)\}, \qquad \overline{f_3} = -1/2\{g(\mathfrak{v}_3^+) + \sqrt{-1}g(\mathfrak{v}_3^-)\}, \qquad (8)$$

for any $g \in G_2$. The multiplication table of the product of the complexfied octonions $\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{C}$ is given by

	u	f_1	f_2	f_3	$ar{f}_1$	$ar{f}_2$	$ar{f}_3$
u	-1	$-\sqrt{-1}f_1$	$-\sqrt{-1}f_2$	$-\sqrt{-1}f_3$	$\sqrt{-1}\bar{f}_1$	$\sqrt{-1}\bar{f}_2$	$\sqrt{-1}\bar{f}_3$
f_1	$\sqrt{-1}f_1$	0	$-ar{f}_3$	$ar{f}_2$	$-\bar{n}$	0	0
f_2	$\sqrt{-1}f_2$	$ar{f}_3$	0	$-ar{f}_1$	0	$-\bar{n}$	0
f_3	$\sqrt{-1}f_3$	$-ar{f}_2$	$ar{f}_1$	0	0	0	$-\bar{n}$
$ar{f}_1$	$-\sqrt{-1}\bar{f}_1$	-n	0	0	0	$-f_3$	f_2
$ar{f}_2$	$-\sqrt{-1}\bar{f}_2$	0	-n	0	f_3	0	$-f_1$
\bar{f}_3	$-\sqrt{-1}\bar{f}_3$	0	0	-n	$-f_2$	f_1	0

Table 2. the multiplication table of $\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{C}$

where
$$n = 1/2(1 - \sqrt{-1}u)$$
. We set

$$\mathscr{F}^{G_2}=\{(m,(\ u,f_1,f_2,f_3,\overline{f_1},\overline{f_2},\overline{f_3})|_m)\mid\ (\ u,f_i,\overline{f_i})|_m\text{ is a }G_2\text{ frame at }m\}.$$

We can see that

$$\mathscr{F}^{G_2} \to M^3$$

is a principal fibre bundle on M^3 with fibre G_2 .

Theorem 1. There exists the G_2 fibre bundle structure on any oriented 3-dimensional manifold M^3 .

References

- [1] R. L. Bryant. Submanifolds and special structures on the octonions. J. Diff. Geom., 17 (1982) 185–232.
- [2] R.HARVEY AND H.B.LAWSON. Calibrated geometries. Acta Math., 148 (1982) 47–157.
- [3] H.HASHIMOTO AND M.OHASHI. Orthogonal almost complex structures of hypersurfaces of purely imaginary octonions. Hokkaido Math. J., 39 (2010) 351–387.
- [4] K.Mashimo Homogeneous totally real submanifolds of S^6 . Tsukuba J. Math., 1 (1985) 185–202.