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Au(x) = f(u(x)) + k(x) + tv(x) imn @, Bu =0 su 3N ,

in funzione del parametro reale t.
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intende la soluzione 1in un opportuno senso multivoco, precitsamente nel

senso che
Au(x) - kix) - t¥(x) Ef{u(x)),

dove f(s) é Ll'intervallo chiuso avente per estremi 1 limiti di f per ¢ + s

da destra e da sinistra.
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INTRODUCTION AND STATEMENT OF THE MAIN RESULTS.

2 be a bounded open domain in R" with sufficiently smooth

2
boundary 9Q ,(for example of class C ), and let A be a linear uniformly

elliptic differential cnerator of the second order formally defined by

A(u) = - % D.(a..D.u) + £ D, (a.,u) + a.u.
ij 1 1) ] i 11 0
where aOE L (Q) and the coefficients a and aij=aji are continuosly

differentiable in Q . Let us denote by B either the Dirichlet or the

Neumann boundary operator.

Moreover let f : R-—R be a mapping of bounded wvariation on all
compact intervals such that f(s) belongs to the interval whose extremes are

f(s-) = lim, f((s-¢) and f(s+) = Ell{}n+ f(s+¢) for all s eR.

For a fixed keLlP(Q) with p>n, and for a fixed pe C(Q), wix) >0

in Q ,we are interested in the solvability of the “»undary value problem

(Au(x) ~ k(x) - t¥(x) € flulx)) in Q
(PJt {
Bu = O on 9Q,
where we have put f(s) :{f(SJ} if f(s-) < f(s+) and f(s) = [f(s+),f(s-)]

if f(s+) <f(s-).

In this frame, following an approach due to Kazdan and Warner, [7 ],

and a result of Stuart, [10], [ll] , we have the following

THEOREM 1. Assume that

i) limsup f(s]fs-c:ll < liminf f(s)/s ,

o G400
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w here 11 1s the first eigenvalue of Au = Au imn Q, Bu = 0 on
0Q . Then there exists 10 such that {P}t nas no solution for t > t0
and at least one solution for této.

In the case when f is continuously differentiable and satisfies i) and

ii) limsup f(s)/s <+ o )

St
then a multiplicity result holds, in the sense that the boundary wvalue
problem (P)I has at least two solutions for t <t , and at least one

O

solution for t = t{:j (see Dancer,[S |, Amann and Hess,[l’;], and their

remarks concerning related researchs).

However such a multiplicity result does not hold in the discontinuous
case as we show in Section 2. Therefore, if we wish to give a result of the
Amann-Hess type, we have to consider a weaker notion of solution, which
is obtained by filling up all the jumps of f rather than only  the

-t

downward ones. In other words we study the boundary value problem

(Au(x) - k(x) - t¥(x) € flu(x)) in 0

(P) ﬁ

\ Bu = 0 on 3Q ,

where we have denoted by f(s) the convex hull of {f(s—],f(sﬂ} for all

s € R,
Then we have the following

THEOREM 2. Assume that f has only finitely many discontinuities
in any compaet <interval and that all the Jjumps are upward. Moreover

assume that f satisfies conditions 1) , 11) and
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iii) for some M,r >0 the mapping f(s)+Ms s inecreasing on [—r,r].

Then thene exists t. such that the Dirichlet boundary value problem

0
(Au(x) - k(x) - typ(x) € fulx)) in 0
\
k u = 0 on 9Q
has no solution for t > IO’ at least one solution for t = IU and

at least two solutions for 1{10.

The same result holds in the Neumann case i1f we replace 11t) with the

stronger assumption

1ii)" for all r© > O there exists Mr > 0 such that f[5}+Mr5 18

increasing in the interval |-r,r)

Section 1. PROOF OF THEOREM 1.

First of all notice that, by replacing (if necessary) A with A+ Al

and f with f + AI, we can always assume that ll >0.
For all k,q let us denote by || ¢ ”k q the usual norm in the Sobolev
¥
space Wk'qiﬁ), and by | Hq the usual norm in LY(Q). Moreover |« |
1

will denote the norm in C (Q). Since in the sequel we shall always assume

that p>n, we have the compact imbedding of Wz’p{ﬂ) into le_ﬁ),

By a subsolution {supersolution) of (ﬁ)t we mean an element of Wz'p(ﬂ}
such that
Au(x)-(k+ty) (x)<max flu(x)) (respectively > min flu(x))) in Q

Bu < O (respectively > 0) on 3Q.



About the existence of multiple ecc... 57

Evidently u € WZ.p(Q} is a solution cf (ﬁ)t if and only if wu is a sub- and

a supersolution for (F)t.

The assertion of Theorem 1 easily follows from the following three

lejnnas.

LEMMA 1.1. Let 1 = Il{P}t nas a supersolut{on}. Themn 1 1s
a nonempty interval which 18 unbounded from bellow and is bounded from

above.

LEMMA 1.2. For all K, t€R, there exists a subsolution v of

{P}I such trnat vix) < K in Q .

ot

LlkdmA 1.3, If v and w are a sub- and a supersolution for {P}t and
v<v,  then H”]t 1as a solution u with v < u < Ww.

Infact nut 10 = sup l. Then for every t::--—~t{:r the boundary value

problemn {TJUJI has no supersolution and therefore no solution. On the other

hand for t{IG, there exists a supersolution w of {P}t’ and by Lemma
1.2 there exists a subsolution v of [P}t with v < - ||w]| < w. Hence by

L
Lemina 1.3 there exists a solution u of (P}t with v < u < w.

The proof of Lemma 1.1 and Lemma 1.2 is essentially contained in [7],
whereas Lemmia 1.3 is a result due to C.Stuart,[lO] , [11] . (Notice that
Stuart considers only the case when B is the Dirichlet boundary operator,

but his arguments can be easily extended to the Neumann case).

Section 2. -

We give now an example of boundary value problems of type (ﬁ'}t,
which shows that the multiplicity result of Amann and Hess,[;}l. cannot be
extended to this kind of problems.

Consider the Neumann boundary value problem
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e

(N) ~u"(x) - te€flulx)) for x€]0,1[ u'(0) = u'(1) = 0,
where f : R—> R is defined by f(s) = s+1 for s>0, f(s) = -s-1
for s<0 and f(0) = ¢ e]-1,1[.

Evidently f is a mapping of bounded variation on ccuipact intervals
such that conditions i) and ii) hold and f(s) belongs to the interval of

extremes f(s=~), fl(s+) for all s € R. Then by Theorem 1 there exists 1,

Lo

such that {T‘E]t is solvable for t{to and is not solvable for 1 > t[‘r“?'L‘.
have tﬂ > 1, since the constant mapping u(x) = t - 1 is a solution of
{ﬁ]t for all t <1. We shall prove that {I“T][ has a unique solution for
t = -1, which proves our statement.
2,7 ~1 . Y . ,
In fact let u € W (] 0,1[ JcC {[D,l]} be a solutien of {i, [» l.c. such
that
ulx) + 1 in {x E[G,l]u[}:] > 01} ,.
“ut(x) + 1 = e €]-1,1[ in {x e[ 0,1]u(x) =01},
ux) - 1 in { xef0,1] u(x) < 0.
We shall prove that u(x) = -2, To do this it-1s sufficient tc prove

that u{x) < O in [U,l]. In fact one has that meas {XE [L},l] ulx) = U}:. U,
(since e £ 1}, and therefore u 1is the unique solution of the boundary
value problem u'"(x) - ui{x) - 2 = 0 in ]U,l[, u'(0) = u'(l}) = 0, and this

is just the constant mapping u{x) = - 2.

To prove that nix) < 0 in [0,1] , assuine on the centrary that u(x) >0

for some x € [0,1]. Then there exist 0 < Xg< Xy < 1 such that u(x) >0
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in ]xo,xli, and uixo) = 0, (respectively u(xl) = 0}, if Xy > 0,
(respectively X4 < 1). Then u is a solution in | xo,x][ of u" + u =20, i.e
ul(x) = clcosx+c25enx where the constants CI'CZ are such that
{0 — ' = f = 0, — ]'
u'(0) u'(l) X, X,
"0 = 0, = 1 f = 0 <l,
u'(0) u{xl} 0 if Xy 1
) = 0, ulx) =0 ' , :
u(hﬂ] u(‘(lj if O < X, :{1-:::1
== » ! = ] ’ = 1...
u{xo} 0, u'(l) 0 if 0:::(0 X,
3 ! < - T - ~ _ - .
But since O X, Xg < 1 < ™/2, it is easy to see that <, <, 0 in all
cases, so that u(x) = 0 in J){O,xli, contraddicting our assumption.
Section 3. - PROOF OF THEOREM 2.
Without lost of generality we can assume that f(s) = f(s-) = min f(s)
for all s € R. Then if we put 10 = sup{t |(F}I has a supersolution } since

A,

any solution of (Tj}t is a solution of “311 and any solution of {P}l is a
supersolution for {F)t, from Theorem 1 it follows that l%’)t is solvahle for

I-r-:to, and not solvable for t:rto. Hence we have only to prove that

ay

(1) (P)t is solvable for t t

i

UI‘

(I11) (P)t has at least two solutions for t*::to.

The proof of (1) is essentially contained in [3], and we shall not

reproduce it here.

To prove (I1) assume on the contrary that for some t* <t. the problem

0
(P)t* has a unique solution u*. We shall reach a centraddiction through

several steps.
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First of all notice that by assumptions i) and ii), and by the fact that
f 1s of bounded variation on compact intervals, there exist 1i1' , 1', ¢

stich that 0 <ai'< ,11<: A" and
(3.1) f(s)>max (A's + ¢, A'"s + ¢} for all s eR,

LEGMA 3.1, Je can assume tnat there exicts XK €R  such tnhat f

s continuous in &  and f(s) = cost. = fiKi ‘or all s = K.
Procf. Let u, be the solution of Au(x) - A'u(x)} = c+k{x) + (t*=1)¢ (x)
in £, #Bu = 0, and let K< - || 1.,11 ” such fthat f 1s continuous in K,

Then we consider the voundary value problei

( Au(x? = k(x) -t¥(x) € f*u(x)) n Q

T
I"D "
i
#a
T

( Hu = (@ on 30 ,

where f* is defined by f*(s) = f(s) fer s> X and f*(s) = f(K)

for s < . Bv (3.1) and by the maximum principle one easily proves that

Y

for t > %] any sclution of {P}t is a sclution of (P*) and viceversa,

{
(see [:ﬂ]

ecticn 3, fer a sitmilar situation). Since in the sequel we shall

(i

be interested in the solvability of [P}t fer t*-] <t <t +1, we can replace

L

f with f*¥ and the lemma is proved.

Now, since { 1s of bounded variation on ccwupact intervals and all the

jumps are upward, f has the formm f = g - h, where g and h are

strictly increasineg and h is continuous, {(see [IL}}, ,rll}}.

1‘.:.'- § r e : Fﬂ.r"-"\ a o~ JW A ] 1 |r"' [ ] o~ ; : % B r - .F-..r'H
LEMMA 3.2, Tnere exist a subsolution v and a csunersoLution W

L % . W I & - a
of (P) . sueh that vi(x) < win(¥,wlx)) ana u* <5 ‘nterior to the set

{
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X = {uECI(ﬁ)|Bu =0, v<u gw}.

Proof. For an € sufficiently small by Theorem 1 there exists a solution w

of (P}t*ﬂ;; then w is a supersolution of {F)t*' Then by Lemma 1.2 there

exists a subsolution v of (11-.'5“]?!r such that v < min®,- || wl] ,- || u*||-1)

and therefore Vv < w. Since v < w and u* is the unique solution of

b

{P}t*’ we have that v < u*¥ < w, and therefore u*eX. Moreover,

since v < - ” u* ” -1, one has v(x)<u®*(x) in Q : hence for some r >0

we have that

(3.2) zeCt@ |z - (- V)| <r > z >0.

Therefore in order to prove that u* 1is interior to X it is sufficient to

prove that there exists r >0 such that

(3.3) zECl{El, Bz = 0, ”z - (w—u*)”f;r = z > 0.

We prove first that u*(x) < w(x) in Q . Assume on the contrary that

u*{xo) = w{xol for some }EOEQ . By the continuity of h,u*,w and ¢ there
exists r >0 such that B(xo,r)(‘_ﬁ and h(u*(x))=-h(w(x))+eyp({x)>0 for all
X € B(x.,r)., Now, since u* and w are solutions of (P) and (P)

0 t* t*+ e

respectively and f has no downward jump, then we have (u*-w)(x) 2 O

on BB{xD,r] and A(u*-w)(x) = f(u*(x)) - f(w(x)) -eyp (x) = glu*(x)) -

-g(w(x)) - h(u*({x)) + h(w(x)) -e¢ (x) <0 in B(xD,rJ. From this, by
the maximum principle, it follows u*(x)<w(x) in B{xD,r) contrarily to

our assumption .

We distinguish now the case that B is the Dirichlet operator from the

case when B is the Neumann one. In the first case we have u*(x) =
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w(x) = 0 on 3Q . Then with the same argument of Lemma 1 Df[&]cne
proves that Ju* - w)/3v >0 on 93, and by Lemma 2 of [4] one has

that (3.3) holds for some r 0.

In the case that Bu = 3u/dv , then we prove that u*(x) < w(x) in Q,
and from tnis (3.3) easily fellows. In fact let r >0 such that u*(x)|<r

and |w(x)| < r for all xe Q. Then we have by iii)' that f(u*(x)) -

-flw(x)) < —hlr{u*[x) - wi(x)) and therefore A{u‘f"—w}{x]ﬂ-ir{u*-wﬂx] < A(u*-
-w) (x)=-f(u*(x)) + flw(x)} = -ep(x) <0 for all xeQ . From this, since
we have d3(u-w)/3v = 0 on 3Q, by the strong maximum principle, (see

[2], Lemmma 1), it fcllows that u*(x) <w(x) in Q, as desired.

LExMNMA 3.3. laere exists a cequence (f ) of continuous marpings such

nn
that!
(3.4) f (s) < fts=) = f(s),
" =
(3.5) fn{s} > wmax (A's+c), A"s+c),
{2.0) » o= f + h g {nereasing,
n N
(3.7 S —s = [liriinf f (s ), limsup [ (s }]CF{SJ.
n n o n n n

T | mas

Proof, Let z. <« 2z, < ... 2, < ... De the sequence of the ncints where f

1 Z 1
is discontinuous; (obviously & {zl}. Let us fix i and put fer all
n € N and for all 5 € Iz..z_ ], (witn the convention that 2z = Z. + ]
-1 141 1+1 1
if f is continuous on f ?._,-I-Cﬂf- )
- 1 -

y. (s8)=(2n/(z. .-z )){(flz +(z. =z )}/2n)-f(z ))(s-z )+f(z )
i,n i+l i i i+] i i i i

5. =5up{z E[Zi'zi+{zi

i,n +1

-—zi)/ZnI I?i’n(s] < f(s) for sE[zi,z]}
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vy, _(s) for EE[Z_,EL :l
i,n i’ i,n
f. (s) = !
i,n ) |
f(s) for s € [6_ y Z. l
\ i,n 1+l
It is easily seen that f. is continuous in [z_,z_ ] On the other
i,n 1 i+l
hand since f is continuous on the left, one has f (z. .) = fiz. .) =
i,n i+l i+1
filn 21
Hence the mapping f_] defined by fn(S) = f(s) if s <z and fn(E} =
:f (s) if selz,,z, 1, is continuous. Moreover one easily proves that f
1,n 1 1+l n
satisfies conditions (3.4), (3.5) and (3.6). Finally assume that 5~ . 83
s # z for all i, we have f (s ) = f(s ) for n great and therefore f (s )=
i n n n n n
+flc) e f(s). Let now s = Z, for some i and let [fﬂ {Srn J}k be a converging
k k

subsequence. If the set {k|5 < z
n, =
has lim f (s ) = f{zi}E f(s). If the set {k[sn £ z_ 1is finite, then

k**m nk nk K B '

for k great one has z. <S_ and therefore by (3.4), (3.6) one has

k

f(zi} = fn iziJ =8 (zi} - h{zi}(gn {sn ) - h(z,) = f (s ) + hi(s )-
K k kK Tk : " "k "k

- h(z,) < f(s ) + h(s ) - h{(z.). From this and from the continuity of
i - n, n, i

} is infinite, then one

h it follows that f(s-) « lim fn (sn ) ¢ fis+), which nroves the assertion.

k k

LEMMA 3.4. Put for convenience fO = f and consider for all n &€ NU

{O},te[[*-—l.toﬂl the boundary value problem

s

(P ) Au(x) - ki(x) - t¥(x) Efn(xn in @, Bu=0 on 3Q.
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Tnen tnere exists Py >0 such that for any solution u of | *1)1
H
one nasa U < .
':’ || “2,\"} Pl EG
Proof. Assui.e on the contrary that fer all j €N there exist
t,Eﬁ*-d,T +1] . n, € NU {U} such that (P ) has a solution u
j - 0 j n. t, ]
] )
witn “U, | 9 2 J+ Since fn (s) < A's+c fer all s €R, by the waximuin
J ' .
J
principle one has again uj > K, for all jeNk, On the other hand, by ii)
and tne fact that f is of bounded variation on compact intervals, there
exist A>,¢c' >0 such that f(s) < As+c' for all s >K. From this and
from (3.4) it fcllows that fn(5+} < As+c' for ail s >X, and therefore
(3.8) A'u ixgee < f (ux)) <« f (ulx)+) < qu (x)+c!
] = ”i ] = ”j ] - J

for all j€ N. llence, il we put ﬁ,:uj/ I v, W, o w=AG +(t bk /flu

J <o B I 17 5P
we have
(3.9) Aiu (x) + o/ Jlu.ll < w.(x) < ra.ix) +c'/] ull., _.
j iv2Zp — ] = ) I 2,p
Froin this it follows that muj}jEN is hounded in L7{Q). Since the inverse
-1 P, A i )
A is compact from. LT (Q) to {u € C Q) Bu = J} , W€ can assume that
. | A 1, = _ L
[u_},EI, converaes ta U in C (Q), ‘crecver by the taaxuuuis principle
J JEN
-1 .
A is increasing. Hence by (3.9) one huas
-1 . \ -] . -1, .
AT(amaae/ ull L ) A T w2 ou = Tt k3 ul L
J J LapP T ] 1 ] ] 2yD
: , . -1 . . TS N .
By passing tc the iimilt one has A A"us < u 1.e. (I-A"A u > C, where
0#0, since || & ” _o=lim || 4] =1, and GOx=lim u (x)/Hu || > 0, fer
£y} Jo | 2:]3' j-a-m J ] 2, —
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. . . -1 . o
all x € Q . This 1is impossible since A is a strongly positive compact

¢}, and A" > Ay (see [1],

1 -
endomorphism on the space {u e C (Q)] Bu

Theorem 3.2).

LEMMA 3.5. Let tE[t*-l,tUH], and let Y be a closed subset of the

1] —

space {u € C (ﬂ)lBu-:O}. For all j let uj € Y be a solution of
(Pn )t w here {nj]jEN . 18 a strictly increasing sequence of natural numbers.

]

Then (P]t has a solution in Y.

Proof. By Lemma 3.4 one has H uj H 2,p <P, for all j €N. Since
wz’p(fl) is reflexive and is compactly imbedded into C (Q), we can assume

: 2,P . 1, =

that (uj}j converges weakly in W (Q) and strongly in C'(Q) to a

mapping u € 1&‘2’p{ Q). From this it follows that wu €Y and Bu = 0. On

the other hand, by (3.8) we have that {fn (uj)]j is bounded in
)

(Q) and therefore we can assume that {fn {u_}}j is weakly convergent
J
in LP(Q) tc a mapping 8 . From this and from Fatou's lemma it fellows that

LP

liminf f {uj(:{)} < 8 (x) < lmsup f_ (uj{}:}), and therefore by (3.7) one

v D

] J=ee ]

has 68(x)e€ f(ul(x)).

The proof will be reached if we prove that Au(x) = typ(x)+k(x)+0 (x).

1 1

In fact all ® € W'P(Q) or #eW 'P(Q) according to whether B is the

Dirichlet or the Neumann boundary operator, one has

L j a_,D.ube + & S D+(a.u-)¢+ au.e =
Ly Wik 1 4 1 1) AOJ

H

él (ty+ k+fnj{uj))¢
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for all j€N. Passing to the limit as j —» o , one has

D_{E_U}'@ +I a._ ugeg =

>
L. a. ,DuD,eo+ ij 5

1 £ i£ i £ g 1 i a

- ! {113!¢+ k + 8)9 .
{2

. . . 2,p, .
From this, since u €W ’pl,(l) and Bu = 0, one has the assertion.

. - , C 2 . l, , . ,
REMARK 3.1. 8y thne <mbecding of W 'P(Q) into C () and 0 lamma
3.4 tnere exists a constant, (which will be denoted again by o ./,

L)

such that for any solutiwon u of (Pﬁ}I with te t*—1,10+1] one has |ul] _f._i'pij.

In the sequel the balls considered have to be intended into the sndace

{uECl{ﬁJ |Bu = C}.

Then there exists N, sucn that for all n > n, one has:
1) (P ) has no solution,
N to+1

ol
11) every solution of (Pn)t* belongs to B(u‘*’",pl}.

Proof of 1). Assuuie on the contrary that there exists a strictly increasing

sequence {n.). of natural nuimbers such that {F‘n )t o has a sclution u,

] ] i 0 ]

for all j. Then by Remark 3.1 we nave ” uj || < nU;frrmn this and f{roi.

Le.una 3.5 it follows that '{?]TL 1 has a sclution u E'L}:.Lj!,pol. contraddict-
0

ing the definition of tD.

“roof of ll). Assume on the contrary that there exists a strictly increasing

-~

scquence {nj}jC—N of natural nuuibers such that (i-’n -1’1-.& has a solution uj in
]

INB(u*,p.) for all j. Then by Lemma 3.5 there exists a solution of

10,
0 1
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[P)t* in B(0, GO}‘“B{U*,ﬂl}, contraddicting the assumption that u* 1is the

unique solution of {P}t*'

REMARK 3.2. By modifying, (if necessary), the mapping g and
h in Rx]p,p[ ' w here o = max(p 0’ N v |, ” w ||), we ecan assu-

me from now on that h s continuous, strictly increasing and bounded.

(Obviously now g and g = fn + h are 1increasing only into the
. - N ! I . —~ 1.'2"1-} Y

interval 1-p 0 [). Then we have that the map All: { ueW ' 7 (Q) | Bu=0 }—
Lp(ﬁ}, (where il is the Nemytskii operator associated te h), is onto by

a degree argument and 8 one-to-one by the maximum principle. Moreover

¥ ’ _1 # » L PRl ! =
its inverse (A+li) 78 continuous from L) to wP(Q) and therefore

1
completely continuous from LP(Q)  to the space K :{UE‘;C (Q) [Bu = U}

In fact assume on the contrary that (A+11) is not continuous in
sorite zELp(Q]. Then there exist e > 0 and a sequence zne LPEQ] such
-1 -1
that z—-2z as n-— o and | (A+H) “(z ) -  (A+H) "z || > ¢ for all
n n 2p
. -1
n. If we put u_o= (A+H) (zn), then we have that the sequence
Auszi(un)+zn is bounded in L?(Q). Therefore by the cowmpactness of
A :Lp(ﬂ)—+E, there exists a subsequence u_ which converges to soine u€E.
K
Hence by the continuity of H, we have that f"aun—-—r z-H(u). From this
1 2 X 2
by the continuity of A from LP(Q) to W ’p'iﬂ), it follow that ueWw'P(q)
-1 _ 2,p -1
and u —> u=A ~(z-Hu) in W "(Q). Hence one has u = (A+H) (z) and
k
u_ =(A+H) -1[zn ) converges to u, contraddicting the assumption
k k

(A+H)”1{z )-u || 5 €,
n 2,p —

Finally notice that by using the maximum principle one easily has that

(A+H)—1 1S an increasing mapping.
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LEMMA  3.7. For all neN and for all t €] t*—l,t0+1] Ut

Gn(t,u){x}=gn[u(x}}+t¢(x}+kix} forn all xX€EQ.

[ —‘1'1 i L L] L]
Then the mapping (A+H) Lrn(t,.) 18 completely continuous in L.

Yoreover ‘for n great one nas

~1 o .
deg(1-(A+H) Gn{t,.l :rll,u,pll,{JJ = 1.

Proof, Tne first part of the assertion follows fromw xenark 3.2 and froua: the

continuity of g

N
vow  put i'q = (A+I-i]_1£‘3n(t*,.} for all n. Hv (3,07 and the fact rthat

h
fn(s} = f(s) for s < K and v(x) < K in Q , we have tnat w and v are
respectively a supersolution and a subsolution for i.:l'"'lfll-'l" for all n, and
therefore we have v < Tn{v} and Tn(w] < w. ™n the cther nand, Sinc:-;ﬁ-,i_in
is increasina in J -p,p [, we have that Tn 1< increasinag in X. Therefore
one has that Tn{}'{] C X. Finally since X is beounded in <(Q), bv the
continuity cof 2 and the ccmplete continuity of L;‘*,-.L‘_:';JTIGH[I..J, we have

that T (X) is relatively compact. Let z?_l}ﬂl sucn that TW{I‘{'}CH{u"‘,Hn} and

let r be a retraction of E on X, (see [En ], Theoren, Z.1:. Then we have

u l.‘.p'l"n(r[u‘iLHI-—L“u for all ueaii{u,iinl, uelo, 1],

and therefore by the homotopy invariance property cf the Leray-Schauder

degree one has for all neN

des{(1-T r,B(u*,R ),0) = deg(l-u*,B(u*,R ),0) = 1.
n n : n

Now let neN and u € Hlu*,iin} such that u = Tn[r(u)}. Then ueX and
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therefore u = Tn(u) since r(u)=u. Hence by Lemma 3.6 one has ui’:B(u*,ﬂl)
for n >N, From this, from the properties of the degree and from the fact
that r(u) = u for all uEB(u*,ﬂl]CX, one has for nzn,

deg(1 Tn.B(u .ﬂl),D) deg(1 an.B(u ,ﬂl},O)
deg(1-T r, B(u*,R ),0) = 1.
n n

We are now in a position of concluding the proof of Theorem 2. In fact

by part (1) of Lemma 3.6 one has for all n>n.

-1
deg(1-(A+H) Gn(10+1,.},8(0,ﬂ0},0)

|
-

and therefore

deg(l—{h+H)*1Gn(t*,.), B{O.DO),U}

il
-

by the homotopy invariance property. From this and from part (11) of

Lemma 3.6 it follows that

deg{I-Tn,B{u*,ﬂi},O = deg(I—Tn,B{O,ﬂ ),0) = 0,

0

contraddicting the assertion of Lemma 3.7. Hence Theorem 2 is completely

proved.
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