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Abstract. Let PDs 3(n) count the number of partitions of n with designated summands in
which parts are not multiples of 2 or 3. In this work, we establish congruences modulo powers of
2 and 3 for PDs 3(n). For example, foreach n >0anda >0 PDs3(6-4*2n+5-4*72) =0
(mod 2*) and PDs3(4-3*Tn +10-3°2) =0 (mod 3).
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. A partition is (2, 3)-regular partition of n if none of
the parts are divisible by 2 or 3.

Andrews, Lewis and Lovejoy [1] have investigated a new class of partition
with designated summands are constructed by taking ordinary partitions and
tagging exactly one of each part size. The total number of partitions of n with
designated summands is denoted by PD(n). Hence PD(4) = 10, namely

4 3+1, 27+2, 242/, 2'4+1+1, 2/+1+1, /+1+1+1, 1+1/+1+1,
I+1+17+1, 1+41+1+1".

Andrews et al. [1] have derived the following generating function of PD(n),
namely

S PD(m)g" = -2 (1)
n=0

 fifofs]
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where
oo

fo= [0 =¢Y)n > 1. (2)

j=1

Andrews et al. [1] and N. D. Baruah and K. K. Ojah [3] have also studied
PDO(n), the number of partitions of n with designated summands in which all
parts are odd. The generating function of PDO(n) is given by

i PDO(n)q" = fafs (3)
n=0

 fifsfi2

Mahadeva Naika et al. [12] have studied PD3(n), the number of partitions of n
with designated summands whose parts not divisible by 3 and the generating
function is given by

o0 2
Z PDs(n)q"™ = JoJo (4)
n=0

~ fifafis

In [13] Mahadeva Naika et al. have established many congruences for PDs(n),
the number of bipartitions of n with designated summands and the generating
function is given by

o0 2
n=0

Motivated by the above works, in this paper, we defined PD3 3(n), the num-
ber of partitions of n with designated summands in which parts are not multiples
of 2 or 3. For example PD53(4) = 4, namely

V+14+1+1, 1+41+141, 1+14+1+1, 1+1+1+1.

The generating function of PDs 3(n) is given by

 fafE fofse

= hib ©)

o0
Z PDs3(n)g"
n=0

Following Ramanujan, for |ab| < 1, we define his general theta function f(a,b)

as
00

f(a,b) = Z P (n+1)/2pn(n—1)/2. )

n=—oo

The important special cases of f(a,b) are

f3

2 r27
Jifs

plq) = fla.q) =1+2> ¢* =
n=1
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2
¥(q) = f(9,9%) Z‘IMH)/Q—?I 9)
and -
F(=q) = f(=q,=¢") = > (=1)"q"® V2= p, (10)

where the product representations arise from famous Jacobi’s triple product
identity [5, p. 35, Entry 19]

f(a,b) = (—a;ab)so(—b; ab) oo (ab; ab) . (11)

In this paper, we list few formulas which helps to prove our main results in
section 2. In section 3, we obtain several congruences modulo powers of 2 and
congruences modulo 3 in section 4.

2 Preliminary results

We list few dissection formulas to prove our main results.
Lemma 1. [14, p. 212] We have the following 5-dissection

fi = fos (a(d®) — g — ¢*/alq®)) (12)
where
ol o (@)
a:=alg)= (¢, 0% ¢°)oo (13)

Lemma 2. The following 2-dissection holds:

fo _ fisfh f36f6f4
f " a2 T ff (14)

Identity (2) is nothing but Lemma 3.5 in [16].
Lemma 3. The following 3-dissection holds:

o fafls | S35 f36 22f6f18f36‘

+q + (15)
fr F3 13 13 75 13
Identity (3) is nothing but Lemma 2.6 in [3].
Lemma 4. The following 3-dissection holds:
f2_ fefS +9g f6f9 +ag ngff)S. (16)

fl f3f18 fi?
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Equation (16) was proved by Hirschhorn and Sellers [10].
Lemma 5. [5, p. /9] We have

o(q) = o(d”) + 2af(¢*,¢"), (17)
¥(q) = f(q® ¢%) + qv(q). (18)

Lemma 6. The following 2-dissections holds:

o fofd . foffs
fl - fz%f%ﬁ 2C] f8 ) (19)
LR BR "
T TS (20)
R EA i
14 2 pd
i4 = 13 yia 4qf41{)8' (22)
fi 2 J8 2

Lemma (6) is a consequence of dissection formulas of Ramanujan, collected
in Berndt’s book [5, p. 40, Entry 25].

Lemma 7. The following 2-dissection holds:

f3 _ fafehefss | fef3fs
fi  fifshats +qf22f16f24' (23)

Xia and Yao [18] gave a proof of Lemma (7).

Lemma 8. The following 2-dissections holds:

3 fifef Jaf§ fsfoa
A T TR TP o
11 I f22f8f12f24' (25)

+

27 fifsfas L fufE

Xia and Yao[17] proved (24) by employing an addition formula for theta
functions. Replacing ¢ by —¢ in (20) and then using the fact that (—¢; —¢)o =

3
f—Q, we obtain (25).

f1fa
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Lemma 9. The following 2-dissections holds:

3R

S fifie e fa’ (26)
non LB

s fi2 3 fafd’ 27)
JER ML 3 [ fefi 9
A (25)

Hirschhorn, Garvan and Borwein [8] proved (26) and (27). For proof of (28),
see [4].
Lemma 10. The following 2-dissections holds:

= + q
fifs  fRfafdf3 £ fEfE fe
faf3 fi fifelfs
fifs = B2 — g hnth, (30)
fifefa VEVENT
Equation (29) was proved by Baruah and Ojah [3]. Replacing ¢ by —gq in
3
(29) and using the fact that (—¢; —¢)eo = Lff?f’ we get (30).
1/4
Lemma 11. The following 3-dissection holds:
fofd o J3fis
fife = —qfofis —2q : 31
fafis fof§ (3D
One can see this identity in [9].
Lemma 12. (Cui and Gu [7, Theorem 2.2]). For any prime p > 5,
p—1
2 9 a2 a2 (o _ 2_
= Z (_1)kq3k2+kf <—q3p +(gk+1)P7 _qap (gm—l)p) n (_Ui% lqullfp2,
k=1=P
et
(32)
where
tp—-1 %, ifp=1 (mod 6),
6 =L ifp=-1 (mod 6)
Furthermore, for _(”2_1) <k< % and k # (p—1)
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3 Congruences Modulo Powers of 2.

Theorem 1. Forn > 1 and a > 0, then

PDy3(18n) =0 (mod 4), (33)
PDy3(2-3°"n) =0 (mod 4). (34)
Proof. We have
3 n_ J1f3fofss
PD =
2 PP =T @

Substituting (14) into (35), we obtain

= fafefiz | F2f8 13
PD273 n q” = +q . 36
2 Pealnd" = T S T )
Extracting the even terms in the above equation
> PDys(2n)q" = f 2§3f 6. (37)
n=0 f1 f9
Substituting (16) into (37), we find
S B3I o fef8 o fifis
PDj3(2n)¢" = + 2¢q +4q . 38
2 PDaa(an)a’" = e 2Tt A 38)

Extracting the terms involving ¢3" from both sides of (38) and replacing ¢* by

q, we get

_ B
1

By the binomial theorem, it is easy to see that for positive integers k and m,

Z PD273 (Gn)q”

n=0

(39)

2m — flm o (mod 4) (40)
and
fak' = fi™ (mod 8). (41)
Invoking (41) into (39), we find that

> PDys(om)" =1 ljiif d
6

n=0

(mod 8). (42)
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Employing (31) into (42), we get
f3fs  f3fofs _9 2[5 11

PD> (6 n
2 PDas(bn)a" = gy — ™ — 20

n=0

(mod 8). (43)

Extracting the terms involving ¢ from both sides of (43) and replacing ¢ by
q, we have

NS

s 4
> PDy3(18n)q" = ; ;2}0 % (mod 8). (44)
n=0

Congruence (33) follow from (40) and (44).
Equation (44) can be rewritten as

iPD "= E ﬁ 2
2,3(18n)q _f62 T (mod 8). (45)

n=0

Replacing ¢ by —¢ in (17) and using the fact that

ot
we find that
_ 1, sl (47)

fo - fis fefy
Employing (47) into (45), we get
fsfo

2 £2
f6 18

f3fof1s
13

f3fis

+ 4q2
f813

(0.9}
> PDy3(18n)¢" =

n=0

—4q (mod 8). (48)

Extracting the terms involving ¢3" from both sides of (48) and replacing ¢* by
q, we obtain

fifs
1213

In view of the congruences (44) and (49), we get

o
Y " PDys(54n)q" =

n=0

(mod 8). (49)

PD273(54TL) = PD273(18TL) (mod 8) (50)
Utilizing (50) and by mathematical induction on «, we arrive
PDy3(2-3%"n) = PDy3(18n) (mod 8). (51)

Using (33) into (51), we get (34). QED
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Theorem 2. Forn >0 and o > 0, we have

PDy3(72n+42) =0 (mod 4), (52)
PD33(36n+30) =0 (mod 4), (53)
PDo3(144n +120) =0 (mod 4), (54)
PDs3(9-4°"3n +30-4°72) =0 (mod 4), (55)
PDy3(54n +18) =4 - PDy3(18n 4+ 6) (mod 8), (56)

PDy3(54n + 36) =2 - PDy3(18n+12) (mod 8),  (57)

PDy3(36n 4 30) = 2- PDy3(72n 4 60) (mod 8).  (58)

Proof. Extracting the terms involving ¢®"*! from (48), dividing by ¢ and then
replacing ¢ by ¢, we have

Z PD273(547L + 18)q = _4flff3f6
n=0 3

(mod 8). (59)

Extracting the terms involving ¢3"*! from (43), dividing by q and then replacing
¢ by ¢, we obtain

> " PDys(18n + 6)q" 12 It (mod 8). (60)

) == 3
n=0 f2

From (59) and (60), we arrive at (56).
Extracting the terms involving ¢*"*2 from (48), dividing by ¢* and then
replacing ¢ by ¢, we find

ZPDgg (54n + 36)q" fl s (mod 8). (61)

n=0 f2 f3

Extracting the terms involving ¢***2 from (43), dividing by ¢? and then replac-
ing ¢® by ¢, we obtain

6 £4
ZPD23 (18n +12)¢" = — e

d g). 62
2 i (mod 8) (62)

In view of the congruences (61) and (62), we get (57).
From (60), we have

ZPDQ;», (18n + 6)q" SURENL

> i (mod 8). (63)
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Invoking (41) into (63), we get

Z PD,5(18n + 6)¢" 712/ (mod 8). (64)
n=0 fl
Employing (28) into (64), we obtain
00 6 £4 2 £2 2
> PDy3(18n+6)q" =7 fg fg + 21qf4 f66f12 (mod 8). (65)
n=0 f5fis f2
Extracting the terms involving ¢?* from (65) and then replacing ¢? by ¢, we
have -
n_ oS3 15
> PDy3(36n+6)¢" =723 (mod 8). (66)
n=0 fl f6
Invoking (40) into (66), we get
> PDy3(36n+6)g" =3f; (mod 4). (67)

n=0

Extracting the terms involving ¢>**! from (67), we get (52).
Extracting the terms involving ¢?"*! from (65), dividing by ¢ and then
replacing ¢ by ¢, we obtain

Z PDo3(36n + 24)q" f 2 ; il” g (mod 8). (63)
n=0

Invoking (41) into (68), we get
ZPD2’3(36n +24)¢" = j}; (fifs)? (mod 8). (69)
n=0

Employing (30) into (69), we obtain

S n_ S5l o oS35 fa fi18 1

PDy3(36n +24)¢" = + 5q - 10 d 8). (70
2 PDaslatn 20" =5 R gy~ 0 (mod ®- (10

Extracting the terms involving ¢>"*! from (70), dividing by q and then replacing
¢ by q, we get

> PDy3(72n+60)q" = f2 131§ (mod 8). (71)

n=0 fl
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Invoking (41) into equation (62), we find that

> PDy3(18n+12)¢" = 6525 (mod 8).
n=0 fl f3
Invoking (40) into (72), we get
Z PDy3(18n 4 12)¢" = 228 (mod 4).
2

n=0

Congruence (53) fellows extracting the terms involving ¢>**! from (73).

Which implies that

3
n_of3

> PDy3(36n+12)q" = 5
1

n=0

Substituting (26) into (74), we have

(mod 4).

3
+ qua‘2 (mod 4).

= fifs
> PDy3(36n + 12)¢" = 2545
n=0 f2 f12

Which implies,

3
n_ols

Y PDy(T2n +48)q" = ;
2

n=0

(mod 4).

Congruence (54) fellows extracting the terms involving ¢>**! from (76).

From equation (76) and (73), we have
PDy3(72n +48) = PD23(18n +12) (mod 4).
By mathematical induction on «, we arrive at
PDo3(18-4%T! +3.4°%2) = PDy3(18n + 12) (mod 4).

Using (54) into (78), we get (55).
Equation (72) can rewritten as

00 2
Y PDy3(18n+12)¢" =6 <ﬁ) (mod 8).
1

n=0
Employing (26) into (79), we obtain
fits
fa 1ty

6
Itz

+ 6q2
/1

> PDy3(18n+12)¢" =6

n=0

f3

22 r2
+12qf4f6f12 (mod 8).

(73)

(77)

(78)

(80)
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Extracting the terms involving ¢>**! from (80), dividing by q and then replacing
q* by q, we get

i PDs3(36n + 30)¢" = 12'1022"%’062 (mod 8). (81)
n=0 fi
From (71) and (81), we get (58). QED
Theorem 3. For each n > 0 and o > 0, we have
PDy3(72-25%n +6-25°T1) = PDy3(72n +6)  (mod 4), (82)
P Do 3(360(5n 4 i) +150) =0 (mod 4), (83)
where i =1, 2, 3, 4.
Proof. From the equation (67), we have
i PDy3(72n+6)¢" = 3f2 (mod 4). (84)

n=0

Employing (12) in the above equation, and then extracting the terms containing
¢®" 2, dividing by ¢* and replacing ¢° by ¢, we get

> PDy3(360n + 150)¢" = 33 (mod 4), (85)
n=0
which yields
oo o0
> " PD,y3(1800n + 150)q™ = 3ff =Y " PDy3(72n+6)¢" (mod 4).  (86)
n=0 n=0

By induction on «, we obtain (82). The congruence (83) follows by extracting
the terms involving ¢°**% for i = 1, 2, 3, 4 from both sides of (85).

Theorem 4. For eachn > 0 and o > 0, we have

PDs3(24n+20) =0 (mod 16), (87)
PDy3(6-4°"?n+5-4°7?) =0 (mod 16). (88)
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Proof. Extracting the terms involving ¢3"*! from (38), dividing by ¢ and then
replacing ¢ by ¢, we get

2,3 n—|—2)q =2 f16 . (89)

n=0

Invoking (41) into equation (89), we get

> PDy3(6n+2)q" =2(f1f3)> (mod 16). (90)
n=0

Substituting (30) into (90), we arrive

Fi f6 fos

I 4gfiffy (mod 16). (91)

+ 2q2

> BN £ 5 0 i)
PD273 6n + 2 q = 2
2 PDas(bn +2)" =2 %

n=0
Extracting the terms involving ¢>**! from (91), dividing by ¢ and then replacing
q* by q, we get
o0
> PDys(12n+8)¢" = 12f5f¢  (mod 16). (92)
n=0

Extracting the terms involving ¢?**! from (92), we get (87).
Extracting the terms involving ¢?" from (92) and replacing ¢? by ¢, we get

> PDy3(24n+8)¢" = 12(f1fs)”  (mod 16). (93)
n=0

In view of the congruences (90) and (93), we get
PDy3(24n +8) =6 - PDy3(6n +2) (mod 16). (94)
Utilizing (94) and by mathematical induction on «, we arrive
PDo3(6-4°T +2.49T) = 69T . PDy3(6n +2) (mod 16).  (95)
Using (87) into (95), we arrive (88). QED
Theorem 5. For each n > 0 and o > 0, we have

PDs3(6-4°Tn +4°2) = PDy3(6n+4) (mod 32). (96)



Congruences for (2, 3)-regular partition with designated summands 111

Proof. Extracting the terms involving ¢3"*2 from (38), dividing by ¢? and then
replacing ¢> by ¢, we get

N n_ 4 I5£8
D PDys(6n+4)q" =425 (97)
n=0 f1 f3
Invoking (41) into (97), we arrive
S n_ I 18
> PDy3(6n+4)q" =475 (mod 32). (98)
= fofs
Employing (27) into (98), we find
o0 3 r3 3
> PDy3(6n+4)q" = Jils _ 12qm (mod 32). (99)
= fafiz Ja
Extracting the terms involving ¢*" from (99) and replacing ¢? by ¢, we get
i D n_ 38
23(12n +4)¢" = oy (mod 32). (100)
1/6

n=0
Employing (26) into (100), we get

_ T3S 13 i
=1 Ji2 Jr4qf4f6

> PDy3(12n+4)q"

n=0

(mod 32). (101)
Extracting the terms involving ¢?"*! from (101), dividing by ¢ and then replac-
ing ¢% by ¢, we get

_ B
T fafs

In view of the congruences (98) and (102), we obtain

oo
> PDy3(24n +16)¢"

n=0

(mod 32). (102)

PD273(247’L + 16) = PD273(6’I’L + 4) (mod 32) (103)
Utilizing (103) and by mathematical induction on «, we get (96). QED

Theorem 6. Forn >0, we have

PDy3(48n+34) =0 (mod 8), (104)
PDs3(48n +46) =0 (mod 8), (105)
PDy5(96n +52) =0 (mod 8), (106)
PD23(96n +76) =0 (mod 8). (107)
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Proof. Extracting the terms involving ¢?"*! from (99), dividing by ¢ and then
replacing ¢2 by ¢, we get

© 3
> PDy3(12n+10)¢" = 20% (mod 32). (108)
2
n=0
Substituting (30) into (108), we obtain
e 2 £2 p4 4 4 2
> PDy3(12n+10)¢" = 2076 ‘;08 512 — 20qf‘§fgf224 (mod 32). (109)
f4 f24 f2 f8 f12

n=0

Extracting the terms involving ¢?" from (109) and replacing ¢ by ¢, we get

S n _ o0 3115
> PDy3(24n +10)¢" = 2025458 (mod 32). (110)
=0 f3fia
Invoking (40) into (110), we find that
> PDy3(24n +10)¢" = 4f5f; (mod 16). (111)

n=0
By the binomial theorem, it is easy to see that for positive integers k and m,
for= ™ (mod 2) (112)

Invoking (112) into (111), we get

> PDy3(24n+10)¢" = 4fsfs (mod 8). (113)

n=0

Congruences (104) follows that extracting the terms involving ¢?"*! from (113).
Extracting the terms involving ¢?"*! from (109), dividing by ¢ and then
replacing ¢2 by ¢, we get

ipD n_ 1o f2f3 1
2.3(24n 4 22)¢" = 1222312 (10d 32). (114)
o Jififs
Invoking (40) into (114), we have
S n_ 1o d3 18
> PDy3(24n + 22)q" = 12 (mod 16). (115)

fi

n=0
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Invoking (112) into (115), we obtain

Je fiz
fa

> PDy3(24n+22)¢" =4 (mod 8). (116)

n=0

Extracting the terms involving ¢?*! from (116), we get (105).
Extracting the terms involving ¢? from (101) and replacing ¢? by ¢, we get
oo 3
> PDy3(24n+4)q" = 4‘]01?2% (mod 32). (117)
6
n=0

Substituting (30) into (117), we find

o0
fsf3fis _, f31if5
PDy3(24n +4)¢" = 4q
2 i

(mod 32). (118)

Extracting the terms involving ¢" from (118) and replacing ¢ by ¢, we get

S pp W SRS
23(48n +4)¢" = 455 (mod 32). (119)
"e0 EYERIT
Invoking (40) into (119), we have
00 . ﬁ
> PDy3(48n+4)¢" =4~  (mod 16). (120)
n=0 f3
Invoking (112) into (120), we obtain
Y PDy3(48n+4)q" = 4?8 (mod 8). (121)
6

n=0

Congruences (106) obtained by extracting the term involving ¢***! from (121).
Extracting the terms involving ¢?"*! from (118), dividing by ¢ and then
replacing ¢2 by ¢, we get

- 0 _ oo fifa It
> PDy3(48n + 28)¢" = 282712 (mod 32). (122)
n=0 ‘f4 f6
Invoking (40) into (122), we have
> PDy3(48n+28)¢" = 1277 (mod 16). (123)

n=0
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Invoking (112) into (123), we have

oo
> PDy3(48n +28)¢" = 4faf12 (mod 8). (124)
n=0

Extracting the terms involving ¢?" ! from (124), we get (107). QED

Theorem 7. For any primep =5, a« > 1 and n > 0, we have
(o]
> PDy3(48p**n + 10p™)q" = 4fafs (mod 8). (125)
n=0

Proof. Extracting the terms involving ¢?" from (113) and replacing ¢* by ¢, we
get

i PDs3(48n +10)¢" = 4fafs (mod 8). (126)
n=0
Define ~
> f(n)g" = fofs (mod 8). (127)
n=0
Combining (126) and (127), we find that
Z P Doy 3(48n + 10)¢" = 4 Z f(n (mod 8). (128)
n=0

Now, we consider the congruence equation

3k +k 3m? +m 5p -5
2.
5 T3 T 24

(mod p), (129)

which is equivalent to
(2-(6k+1))2+6-(6m+1)>=0 (mod p),

where # < km < % and p is a prime such that (_76) = —1. Since
(_76) = —1 for p =5 (mod 6), the congruence relation (129) holds if and only
if both &k = m = ip_l Therefore, if we substitute (32) into (127) and then

extracting the terms in which the powers of ¢ are congruent to 5 - o= L modulo

W21
p and then divide by ¢° 27, we find that

S p2_1
E f<pn—|—5~24 >qpn:f2pf3p>
n=0
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which implies

= 2 P2—1
> f(pn+5- o >q”—f2f3 (130)
n=0
and for n > 0,
P -1
flp’n+pi+5- =0, 131
24

where 7 is an integer and 1 <4 < p— 1. By induction, we see that for n > 0 and
a >0,

f (p%‘n+5.p2a24_ 1) = f(n). (132)

. 20 . pQO‘_l . . 5
Replacing n by p“*n +5 - P51 in (128), we arrive at (125). QED

Corollary 1. For each n >0 and a > 0, we have

PDy3(3-4°T3n +34-4°T) =0 (mod 8), (133)
PDo3(3-4%T3n +46-4°T) =0 (mod 8), (134)
PDy3(6-4%T3n +13-4°T2) =0 (mod 8), (135)
PDy3(6-4%T3n +19-4°72) =0 (mod 8). (136)
Proof. Corollary (1) follows from the Theorem (5) and Theorem (6). QED
Theorem 8. Forn > 0, we have
PD33(12n+11) =0 (mod 4), (137)
PDy3(24n+19) =0 (mod 4), (138)
PDy3(24n+17) =0 (mod 4), (139)
PD33(108n +63) =0 (mod 4), (140)
PDy5(108n+99) =0 (mod 4), (141)
PDy3(216n +27)¢" = 2¢(¢q) (mod 4), (142)
PDy5(72n + 6) = PDys(36n +3)  (mod 4), (143)
PDy5(96n +28) =2 PDy3(24n+7) (mod 4). (144)
Proof. Extracting the odd terms in (36), we get
N F3 £3 1
PDy3(2n+1)¢" = : 145
2 PDrslen s 00" = gy )
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Invoking (40) into (145), we obtain

Y PDys(2n+1)q" = W (mod 4). (146)

n=0
Substituting (31) into (146), we find that
2 16 33 4 p4
no Jsly _ Ssfohs o alshe (mod 4).  (147)

[e.@]
PD273(27’L + l)q = —q
2 I
Extracting the terms involving ¢*" from (147) and replacing ¢ by ¢, we get
= 15
> PDys(6n+1)q" = 1°3  (mod 4). (148)
n=0 f2 f6

Invoking (40) into (148), we have

(mod 4). (149)

d

i B

o0
Y PDys(6n+1)q" =
n=0

Employing (24) into (149), we get

oo 4 2 2
> " PDys(6n+1)g" = f%ﬁﬁi + qf4;§;j524 (mod 4). (150)

n=0

Extracting the terms involving ¢2"*! from (150), dividing by ¢ and then replac-

ing ¢® by ¢, we get

o0 2
> PDys(12n+7)q" = z%f“f” (mod 4). (151)
n=0 fl f6
Invoking (112) into (151), we obtain
(152)

o0
N PDys(120+ 7)g" = 2f2f12 (mod 4).
n=0

Extracting the terms involving ¢?"*! from (152), we obtain (137)

Extracting the terms involving ¢?" from (152), we get

> PDy3(24n+7)q" =2f1fs (mod 4). (153)

n=0
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Extracting the terms involving ¢>" from (124) and replacing ¢ by ¢, we get

> PDy3(96n +28)¢" = 4f1fs (mod 8). (154)

n=0

In view of congruences (154) and (153), we obtain (144).
Extracting the terms involving ¢3"*! from (147), dividing by ¢ and then
replacing ¢ by ¢, we have

o0 3 ¢3
> " PDys(6n+3)¢" = g/i fgfﬁ (mod 4). (155)
n=0 f2
Invoking (40) into (155), we find
= n_ oS5 16
> PDy3(6n+3)q" =322 (mod 4). (156)
= Jife
Employing (26) into (156), we get
o0 3 43 3
> PDy3(6n+3)q" = fg Jo | 3qf6fl2 (mod 4). (157)
o 15 fi2 fafa

Extracting the terms involving ¢? from (157) and replacing ¢ by g, we obtain

> PDy3(12n+3)q" = g“ﬁ (mod 4). (158)

n=0
Invoking (40) into (158), we have

iPD n_ 123
23(12n 4+ 3)¢" = Bif (mod 4). (159)

n=0 6

Substituting (31) into (159), we find

_ I3

- 2
fis

f3fofis 642 f3 fis

> PDys(12n + 3)q" T 250
6J9

n=0

—3q (mod 4).  (160)

Extracting the terms involving ¢ from (160) and replacing ¢ by g, we obtain

fifs
12

> PDy3(36n+3)¢" =3

n=0

(mod 4). (161)
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Invoking (40) into (161), we have
o0
3" PDy3(36n +3)¢" =3f7 (mod 4). (162)
n=0

Extracting the terms involving ¢?" from (67) and replacing ¢* by ¢, we obtain
o0
Z PDo3(72n+6)¢" = 3f% (mod 4). (163)
n=0

In view of congruences (163) and (162), we obtain (143).
Extracting the terms involving ¢***2 from (160), dividing by ¢ and then
replacing ¢ by ¢, we have

f1f6

Z PDs3(36n + 27)q" (mod 4). (164)
n=0 f2 f3

Invoking (40) into (164), we have
> PDy3(36n +27)¢" = ;‘; (mod 4). (165)
n=0

Congruences (140) and (141) follows extracting the terms involving ¢*"*! and

¢>"2 from (165).

Invoking (112) into (165), we get

Z P Dy 3(36n + 27)q" J;” (mod 4). (166)

n=0

Extracting the terms involving ¢®" from (166) and replacing ¢® by ¢, we get
(142).

Extracting the terms involving ¢®"*? from (147), dividing by ¢ and then
replacing ¢ by ¢, we have

i PDy3(6n 4+ 5)¢" = ! }‘: 6 (mod 4). (167)
n=0

Invoking (40) into (167), we have

> PDy3(6n+5)q" = 1 (mod 4). (168)

b - 2
n=0 f2
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Congruences (137) follows that extracting the terms involving ¢ *! from (168).
Extracting the terms involving ¢? from (168) and replacing ¢* by ¢, we get

o0 4
> PDy3(12n+5)q" = }035 (mod 4). (169)
n=0 1
Substitute (26) and (23) in (169)

> PDy3(12n+5)q"

n=0

_ TS helf3y fi18 18 1 foftaf16/34 o o3 [ s 44

= s i nhehn 0 Bl 0 Bhefa MO0

(170)

Extracting the terms involving ¢?"*! from (170), dividing by ¢ and then replac-
ing ¢* by ¢, we have

- [313f8fa | J38 fslts
PDy3(24n +17)¢" = +2 mod 4). 171
2_ PDasl = ke T g et (T
Invoking (112) into (171), we get
> PDy3(24n+17)¢" = 2fafsfro + 2fafsfrz  (mod 4), (172)
n=0
which implies (139). QED
Theorem 9. Forn >0, a >0
PDj3(648n +459) =0 (mod 4), (173)
PDy3(8-9%Tn +51-9%T2) =0 (mod 4). (174)
Proof. Employing (18) into (142), we get
PDo3(216n + 27)¢" = 2f(¢*, ¢°) + 2¢1(¢”)  (mod 4). (175)

Congruences (173) follows extracting the terms involving ¢"*2 from (175).
Extracting the terms involving ¢3"*! from (175), dividing by ¢ and then
replacing ¢ by ¢, we have

PDs 3(648n + 243)¢" = 246(¢%)  (mod 4). (176)
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Extracting the terms involving ¢ from (176) and replacing ¢ by ¢, we obtain
PD;3(1944n +243)¢" = 2¢(q) (mod 4). (177)
In view of congruences (142) and (177), we have
P Dy 3(1944n + 243) = PDy3(216n 4 27)  (mod 4). (178)
Utilizing (178) and by mathematical induction on «, we get
PDy3(24-9%"2n +3-9°%2) = PDy3(216n +27) (mod 4). (179)

Using (173) into (179), we obtain (174). QED

4 Congruences Modulo 3.

Theorem 10. Forn > 0 and o > 0, then

PDy3(6n+3)=0 (mod 3), (180)
PDy3(6n+5)=0 (mod 3), (181)
PD33(36n+30) =0 (mod 3), (182)
PDs3(4-3*"3n +10-3*") =0 (mod 3). (183)

Proof. Substituting (15) into (35), we obtain

- n __ f62f9f128 f6f9f36 2f6f9f36
D PDasm)d" = o b g 1200 T (180

Extracting the terms involving ¢3" from (184) and replacing ¢ by ¢, we get

- n 131318
;)PDQ,B,(:sn)q T (185)

By the binomial theorem, it is easy to see that for positive integers k and m,
fii = f™ (mod 3). (186)

Invoking (186) into (185), we have

co

> PDy3(3n)q" = %1 (mod 3). (187)
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Extracting the terms involving ¢>" from (187) and replacing ¢ by ¢, we get

> PDy3(6n)q" = fé (mod 3). (188)
n=0 2
But f8 f2f2
fé‘ = } 513 : (189)
> PDy3(6n)q" = / fcf (mod 3). (190)
n=0

Substituting (30) into (190), we obtain

By 2 fSR, JiTh
2rirer TS T

> PDy3(6n)q" = (mod 3).  (191)
n=0

Extracting the terms involving ¢?"*1 from (191), dividing by ¢ and then replac-
ing ¢® by ¢, we get

S n_ f3£8
> PDy3(12n+6)¢" = 2235 (mod 3). (192)
n=0 fl
Invoking (186) into (192), we obtain
= 1313
> PDy3(12n+6)¢" = 225 (mod 3), (193)
= fifs
which implies
> PDy3(12n+6)q" = 1(q)1h(¢®) (mod 3). (194)
n=0

Employing (18) into (194), we have

> PDys(12n+6)¢" = ¢(¢°) f(¢*,¢°) + qv(¢*)P(¢”) (mod 3).  (195)

n=0

Congruences (182) follows by extracting the terms involving ¢***2 from (195).
Extracting the terms involving ¢3"*! from (195), dividing by ¢ and then
replacing ¢> by ¢, we get

Y " PDy3(36n + 18)¢" = 1h(q)1h(¢®) (mod 3). (196)

n=0
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In view of congruences (194) and (196), we obtain
PDy3(36n + 18)¢" = PDy3(12n+6)  (mod 3). (197)
Utilizing (197) and by mathematical induction on «, we get
PDy3(4-3%"2n +2.3%") = PDy3(12n 4 6) (mod 3). (198)

Using (182) into (198), we get (183).
Invoking (186) into (145), we get

Z PDy3(2n+1)¢" = =5 (mod 3). (199)
n=0 f3
Congruences (180) and (181) follows by extracting the terms involving gt
and ¢3"2 from (199). QED
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