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Abstract. Let PD2,3(n) count the number of partitions of n with designated summands in
which parts are not multiples of 2 or 3. In this work, we establish congruences modulo powers of
2 and 3 for PD2,3(n). For example, for each n ≥ 0 and α ≥ 0 PD2,3(6·4

α+2n+5·4α+2) ≡ 0
(mod 24) and PD2,3(4 · 3

α+3n+ 10 · 3α+2) ≡ 0 (mod 3).
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. A partition is (2, 3)-regular partition of n if none of
the parts are divisible by 2 or 3.

Andrews, Lewis and Lovejoy [1] have investigated a new class of partition
with designated summands are constructed by taking ordinary partitions and
tagging exactly one of each part size. The total number of partitions of n with
designated summands is denoted by PD(n). Hence PD(4) = 10, namely

4′, 3′+1′, 2′+2, 2+2′, 2′+1′+1, 2′+1+1′, 1′+1+1+1, 1+1′+1+1,
1 + 1 + 1′ + 1, 1 + 1 + 1 + 1′.
Andrews et al. [1] have derived the following generating function of PD(n),
namely

∞∑

n=0

PD(n)qn =
f6

f1f2f3
, (1)

iThanks to UGC for providing National fellowship for higher education (NFHE), ref. no.F1-
17.1/2015-16/NFST-2015-17-ST-KAR-1376.

http://siba-ese.unisalento.it/ c© 2016 Università del Salento
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where

fn :=
∞∏

j=1

(1− qnj), n ≥ 1. (2)

Andrews et al. [1] and N. D. Baruah and K. K. Ojah [3] have also studied
PDO(n), the number of partitions of n with designated summands in which all
parts are odd. The generating function of PDO(n) is given by

∞∑

n=0

PDO(n)qn =
f4f

2
6

f1f3f12
. (3)

Mahadeva Naika et al. [12] have studied PD3(n), the number of partitions of n
with designated summands whose parts not divisible by 3 and the generating
function is given by

∞∑

n=0

PD3(n)q
n =

f26 f9
f1f2f18

. (4)

In [13] Mahadeva Naika et al. have established many congruences for PD2(n),
the number of bipartitions of n with designated summands and the generating
function is given by

∞∑

n=0

PD2(n)q
n =

f26
f21 f

2
2 f

2
3

. (5)

Motivated by the above works, in this paper, we defined PD2,3(n), the num-
ber of partitions of n with designated summands in which parts are not multiples
of 2 or 3. For example PD2,3(4) = 4, namely

1′ + 1 + 1 + 1, 1 + 1′ + 1 + 1, 1 + 1 + 1′ + 1, 1 + 1 + 1 + 1′.
The generating function of PD2,3(n) is given by

∞∑

n=0

PD2,3(n)q
n =

f4f
2
6 f9f36

f1f212f
2
18

. (6)

Following Ramanujan, for |ab| < 1, we define his general theta function f(a, b)
as

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2. (7)

The important special cases of f(a, b) are

ϕ(q) := f(q, q) = 1 + 2
∞∑

n=1

qn
2
=

f52
f21 f

2
4

, (8)
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ψ(q) := f(q, q3) =
∞∑

n=0

qn(n+1)/2 =
f22
f1

(9)

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = f1, (10)

where the product representations arise from famous Jacobi’s triple product
identity [5, p. 35, Entry 19]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (11)

In this paper, we list few formulas which helps to prove our main results in
section 2. In section 3, we obtain several congruences modulo powers of 2 and
congruences modulo 3 in section 4.

2 Preliminary results

We list few dissection formulas to prove our main results.

Lemma 1. [14, p. 212] We have the following 5-dissection

f1 = f25
(
a(q5)− q − q2/a(q5)

)
, (12)

where

a := a(q) :=
(q2, q3; q5)∞
(q, q4; q5)∞

. (13)

Lemma 2. The following 2-dissection holds:

f9
f1

=
f18f

3
12

f36f6f22
+ q

f36f6f
2
4

f12f32
. (14)

Identity (2) is nothing but Lemma 3.5 in [16].

Lemma 3. The following 3-dissection holds:

f4
f1

=
f12f

4
18

f33 f
2
36

+ q
f26 f

3
9 f36

f43 f
2
18

+ 2q2
f6f18f36
f33

. (15)

Identity (3) is nothing but Lemma 2.6 in [3].

Lemma 4. The following 3-dissection holds:

f2
f21

=
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
3
18

f63
. (16)
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Equation (16) was proved by Hirschhorn and Sellers [10].

Lemma 5. [5, p. 49] We have

ϕ(q) = ϕ(q9) + 2qf(q3, q15), (17)

ψ(q) = f(q3, q6) + qψ(q9). (18)

Lemma 6. The following 2-dissections holds:

f21 =
f2f

5
8

f24 f
2
16

− 2q
f2f

2
16

f8
, (19)

1

f21
=

f58
f52 f

2
16

+ 2q
f24 f

2
16

f52 f8
, (20)

f41 =
f104
f22 f

4
8

− 4q
f22 f

4
8

f24
, (21)

1

f41
=

f144
f142 f48

+ 4q
f24 f

4
8

f102
. (22)

Lemma (6) is a consequence of dissection formulas of Ramanujan, collected
in Berndt’s book [5, p. 40, Entry 25].

Lemma 7. The following 2-dissection holds:

f3
f1

=
f4f6f16f

2
24

f22 f8f12f48
+ q

f6f
2
8 f48

f22 f16f24
. (23)

Xia and Yao [18] gave a proof of Lemma (7).

Lemma 8. The following 2-dissections holds:

f23
f21

=
f44 f6f

2
12

f52 f8f24
+ 2q

f4f
2
6 f8f24
f42 f12

, (24)

f21
f23

=
f2f

2
4 f

4
12

f56 f8f24
− 2q

f22 f8f12f24
f4f46

. (25)

Xia and Yao[17] proved (24) by employing an addition formula for theta
functions. Replacing q by −q in (20) and then using the fact that (−q;−q)∞ =
f32
f1f4

, we obtain (25).
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Lemma 9. The following 2-dissections holds:

f33
f1

=
f34 f

2
6

f22 f12
+ q

f312
f4
, (26)

f31
f3

=
f34
f12
− 3q

f22 f
3
12

f4f26
, (27)

f3
f31

=
f64 f

3
6

f92 f
2
12

+ 3q
f24 f6f

2
12

f72
. (28)

Hirschhorn, Garvan and Borwein [8] proved (26) and (27). For proof of (28),
see [4].

Lemma 10. The following 2-dissections holds:

1

f1f3
=

f28 f
5
12

f22 f4f
4
6 f

2
24

+ q
f54 f

2
24

f42 f
2
6 f

2
8 f12

(29)

f1f3 =
f2f

2
8 f

4
12

f24 f6f
2
24

− q f
4
4 f6f

2
24

f2f28 f
2
12

. (30)

Equation (29) was proved by Baruah and Ojah [3]. Replacing q by −q in

(29) and using the fact that (−q;−q)∞ =
f32
f1f4

, we get (30).

Lemma 11. The following 3-dissection holds:

f1f2 =
f6f

4
9

f3f218
− qf9f18 − 2q2

f3f
4
18

f6f29
. (31)

One can see this identity in [9].

Lemma 12. (Cui and Gu [7, Theorem 2.2]). For any prime p ≥ 5,

f1 =

p−1
2∑

k= 1−p
2

k 6=±p−1
6

(−1)kq 3k2+k
2 f

(

−q
3p2+(6k+1)p

2 ,−q
3p2−(6k+1)p

2

)

+ (−1)±p−1
6 q

p2−1
24 fp2 ,

(32)
where

±p− 1

6
:=

{
p−1
6 , if p ≡ 1 (mod 6),

−p−1
6 , if p ≡ −1 (mod 6).

Furthermore, for −(p−1)
2 ≤ k ≤ p−1

2 and k 6= (±p−1)
6 ,

3k2 + k

2
6≡ p2 − 1

24
(mod p).
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3 Congruences Modulo Powers of 2.

Theorem 1. For n ≥ 1 and α ≥ 0, then

PD2,3(18n) ≡ 0 (mod 4), (33)

PD2,3(2 · 3α+3n) ≡ 0 (mod 4). (34)

Proof. We have

∞∑

n=0

PD2,3(n)q
n =

f4f
2
6 f9f36

f1f212f
2
18

. (35)

Substituting (14) into (35), we obtain

∞∑

n=0

PD2,3(n)q
n =

f4f6f12
f22 f18

+ q
f34 f

3
6 f

2
36

f32 f
3
12f

2
18

. (36)

Extracting the even terms in the above equation

∞∑

n=0

PD2,3(2n)q
n =

f2f3f6
f21 f9

. (37)

Substituting (16) into (37), we find

∞∑

n=0

PD2,3(2n)q
n =

f56 f
5
9

f73 f
3
18

+ 2q
f46 f

2
9

f63
+ 4q2

f36 f
3
18

f53 f9
. (38)

Extracting the terms involving q3n from both sides of (38) and replacing q3 by
q, we get

∞∑

n=0

PD2,3(6n)q
n =

f52 f
5
3

f71 f
3
6

. (39)

By the binomial theorem, it is easy to see that for positive integers k and m,

f2m2k ≡ f4mk (mod 4) (40)

and
f4m2k ≡ f8mk (mod 8). (41)

Invoking (41) into (39), we find that

∞∑

n=0

PD2,3(6n)q
n ≡ f1f2f

5
3

f36
(mod 8). (42)
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Employing (31) into (42), we get

∞∑

n=0

PD2,3(6n)q
n ≡ f43 f

4
9

f26 f
2
18

− q f
5
3 f9f18
f36

− 2q2
f63 f

4
18

f46 f
2
9

(mod 8). (43)

Extracting the terms involving q3n from both sides of (43) and replacing q3 by
q, we have

∞∑

n=0

PD2,3(18n)q
n ≡ f41 f

4
3

f22 f
2
6

(mod 8). (44)

Congruence (33) follow from (40) and (44).
Equation (44) can be rewritten as

∞∑

n=0

PD2,3(18n)q
n ≡ f43

f26

(
f21
f2

)2

(mod 8). (45)

Replacing q by −q in (17) and using the fact that

φ(−q) = f21
f2
, (46)

we find that

f21
f2

=
f29
f18
− 2q

f3f
2
18

f6f9
. (47)

Employing (47) into (45), we get

∞∑

n=0

PD2,3(18n)q
n ≡ f43 f

4
9

f26 f
2
18

+ 4q2
f63 f

4
18

f46 f
2
9

− 4q
f53 f9f18
f36

(mod 8). (48)

Extracting the terms involving q3n from both sides of (48) and replacing q3 by
q, we obtain

∞∑

n=0

PD2,3(54n)q
n ≡ f41 f

4
3

f22 f
2
6

(mod 8). (49)

In view of the congruences (44) and (49), we get

PD2,3(54n) ≡ PD2,3(18n) (mod 8). (50)

Utilizing (50) and by mathematical induction on α, we arrive

PD2,3(2 · 3α+3n) ≡ PD2,3(18n) (mod 8). (51)

Using (33) into (51), we get (34). QED
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Theorem 2. For n ≥ 0 and α ≥ 0, we have

PD2,3(72n+ 42) ≡ 0 (mod 4), (52)

PD2,3(36n+ 30) ≡ 0 (mod 4), (53)

PD2,3(144n+ 120) ≡ 0 (mod 4), (54)

PD2,3(9 · 4α+3n+ 30 · 4α+2) ≡ 0 (mod 4), (55)

PD2,3(54n+ 18) ≡ 4 · PD2,3(18n+ 6) (mod 8), (56)

PD2,3(54n+ 36) ≡ 2 · PD2,3(18n+ 12) (mod 8), (57)

PD2,3(36n+ 30) ≡ 2 · PD2,3(72n+ 60) (mod 8). (58)

Proof. Extracting the terms involving q3n+1 from (48), dividing by q and then
replacing q3 by q, we have

∞∑

n=0

PD2,3(54n+ 18)qn ≡ −4f
5
1 f3f6
f32

(mod 8). (59)

Extracting the terms involving q3n+1 from (43), dividing by q and then replacing
q3 by q, we obtain

∞∑

n=0

PD2,3(18n+ 6)qn ≡ −f
5
1 f3f6
f32

(mod 8). (60)

From (59) and (60), we arrive at (56).
Extracting the terms involving q3n+2 from (48), dividing by q2 and then

replacing q3 by q, we find

∞∑

n=0

PD2,3(54n+ 36)qn ≡ 4
f61 f

4
6

f42 f
2
3

(mod 8). (61)

Extracting the terms involving q3n+2 from (43), dividing by q2 and then replac-
ing q3 by q, we obtain

∞∑

n=0

PD2,3(18n+ 12)qn ≡ −2f
6
1 f

4
6

f42 f
2
3

(mod 8). (62)

In view of the congruences (61) and (62), we get (57).
From (60), we have

∞∑

n=0

PD2,3(18n+ 6)qn ≡ 7
f51 f3f6
f32

(mod 8). (63)
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Invoking (41) into (63), we get

∞∑

n=0

PD2,3(18n+ 6)qn ≡ 7
f2f3f6
f31

(mod 8). (64)

Employing (28) into (64), we obtain

∞∑

n=0

PD2,3(18n+ 6)qn ≡ 7
f64 f

4
6

f82 f
2
12

+ 21q
f24 f

2
6 f

2
12

f62
(mod 8). (65)

Extracting the terms involving q2n from (65) and then replacing q2 by q, we
have ∞∑

n=0

PD2,3(36n+ 6)qn ≡ 7
f62 f

4
3

f81 f
2
6

(mod 8). (66)

Invoking (40) into (66), we get

∞∑

n=0

PD2,3(36n+ 6)qn ≡ 3f22 (mod 4). (67)

Extracting the terms involving q2n+1 from (67), we get (52).
Extracting the terms involving q2n+1 from (65), dividing by q and then

replacing q2 by q, we obtain

∞∑

n=0

PD2,3(36n+ 24)qn ≡ 5
f22 f

2
3 f

2
6

f61
(mod 8). (68)

Invoking (41) into (68), we get

∞∑

n=0

PD2,3(36n+ 24)qn ≡ 5
f26
f22

(f1f3)
2 (mod 8). (69)

Employing (30) into (69), we obtain

∞∑

n=0

PD2,3(36n+ 24)qn ≡ 5
f48 f

8
12

f44 f
4
24

+ 5q2
f84 f

4
6 f

4
24

f42 f
4
8 f

4
12

− 10q
f24 f

2
6 f

2
12

f22
(mod 8). (70)

Extracting the terms involving q2n+1 from (70), dividing by q and then replacing
q2 by q, we get

∞∑

n=0

PD2,3(72n+ 60)qn ≡ 6
f22 f

2
3 f

2
6

f21
(mod 8). (71)
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Invoking (41) into equation (62), we find that

∞∑

n=0

PD2,3(18n+ 12)qn ≡ 6
f83
f21 f

2
3

(mod 8). (72)

Invoking (40) into (72), we get

∞∑

n=0

PD2,3(18n+ 12)qn ≡ 2
f36
f2

(mod 4). (73)

Congruence (53) fellows extracting the terms involving q2n+1 from (73).
Which implies that

∞∑

n=0

PD2,3(36n+ 12)qn ≡ 2
f33
f1

(mod 4). (74)

Substituting (26) into (74), we have

∞∑

n=0

PD2,3(36n+ 12)qn ≡ 2
f34 f

2
6

f22 f12
+ 2q

f312
f4

(mod 4). (75)

Which implies,

∞∑

n=0

PD2,3(72n+ 48)qn ≡ 2
f36
f2

(mod 4). (76)

Congruence (54) fellows extracting the terms involving q2n+1 from (76).
From equation (76) and (73), we have

PD2,3(72n+ 48) ≡ PD2,3(18n+ 12) (mod 4). (77)

By mathematical induction on α, we arrive at

PD2,3(18 · 4α+1 + 3 · 4α+2) ≡ PD2,3(18n+ 12) (mod 4). (78)

Using (54) into (78), we get (55).
Equation (72) can rewritten as

∞∑

n=0

PD2,3(18n+ 12)qn ≡ 6

(
f33
f1

)2

(mod 8). (79)

Employing (26) into (79), we obtain

∞∑

n=0

PD2,3(18n+ 12)qn ≡ 6
f64 f

4
6

f42 f
2
12

+ 6q2
f612
f24

+ 12q
f24 f

2
6 f

2
12

f22
(mod 8). (80)
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Extracting the terms involving q2n+1 from (80), dividing by q and then replacing
q2 by q, we get

∞∑

n=0

PD2,3(36n+ 30)qn ≡ 12
f22 f

2
3 f

2
6

f21
(mod 8). (81)

From (71) and (81), we get (58). QED

Theorem 3. For each n ≥ 0 and α ≥ 0, we have

PD2,3(72 · 25α+1n+ 6 · 25α+1) ≡ PD2,3(72n+ 6) (mod 4), (82)

PD2,3(360(5n+ i) + 150) ≡ 0 (mod 4), (83)

where i = 1, 2, 3, 4.

Proof. From the equation (67), we have

∞∑

n=0

PD2,3(72n+ 6)qn ≡ 3f21 (mod 4). (84)

Employing (12) in the above equation, and then extracting the terms containing
q5n+2, dividing by q2 and replacing q5 by q, we get

∞∑

n=0

PD2,3(360n+ 150)qn ≡ 3f25 (mod 4), (85)

which yields

∞∑

n=0

PD2,3(1800n+ 150)qn ≡ 3f21 ≡
∞∑

n=0

PD2,3(72n+ 6)qn (mod 4). (86)

By induction on α, we obtain (82). The congruence (83) follows by extracting
the terms involving q5n+i for i = 1, 2, 3, 4 from both sides of (85). QED

Theorem 4. For each n ≥ 0 and α ≥ 0, we have

PD2,3(24n+ 20) ≡ 0 (mod 16), (87)

PD2,3(6 · 4α+2n+ 5 · 4α+2) ≡ 0 (mod 16). (88)
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Proof. Extracting the terms involving q3n+1 from (38), dividing by q and then
replacing q3 by q, we get

∞∑

n=0

PD2,3(6n+ 2)qn = 2
f42 f

2
3

f61
. (89)

Invoking (41) into equation (89), we get

∞∑

n=0

PD2,3(6n+ 2)qn = 2(f1f3)
2 (mod 16). (90)

Substituting (30) into (90), we arrive

∞∑

n=0

PD2,3(6n+ 2)qn ≡ 2
f22 f

4
8 f

8
12

f44 f
2
6 f

4
24

+ 2q2
f84 f

2
6 f

4
24

f22 f
4
8 f

4
12

− 4qf24 f
2
12 (mod 16). (91)

Extracting the terms involving q2n+1 from (91), dividing by q and then replacing
q2 by q, we get

∞∑

n=0

PD2,3(12n+ 8)qn ≡ 12f22 f
2
6 (mod 16). (92)

Extracting the terms involving q2n+1 from (92), we get (87).

Extracting the terms involving q2n from (92) and replacing q2 by q, we get

∞∑

n=0

PD2,3(24n+ 8)qn ≡ 12(f1f3)
2 (mod 16). (93)

In view of the congruences (90) and (93), we get

PD2,3(24n+ 8) ≡ 6 · PD2,3(6n+ 2) (mod 16). (94)

Utilizing (94) and by mathematical induction on α, we arrive

PD2,3(6 · 4α+1 + 2 · 4α+1) ≡ 6α+1 · PD2,3(6n+ 2) (mod 16). (95)

Using (87) into (95), we arrive (88). QED

Theorem 5. For each n ≥ 0 and α ≥ 0, we have

PD2,3(6 · 4α+1n+ 4α+2) ≡ PD2,3(6n+ 4) (mod 32). (96)
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Proof. Extracting the terms involving q3n+2 from (38), dividing by q2 and then
replacing q3 by q, we get

∞∑

n=0

PD2,3(6n+ 4)qn = 4
f32 f

3
6

f51 f3
. (97)

Invoking (41) into (97), we arrive

∞∑

n=0

PD2,3(6n+ 4)qn ≡ 4
f31 f

3
6

f2f3
(mod 32). (98)

Employing (27) into (98), we find

∞∑

n=0

PD2,3(6n+ 4)qn ≡ 4
f34 f

3
6

f2f12
− 12q

f2f6f
3
12

f4
(mod 32). (99)

Extracting the terms involving q2n from (99) and replacing q2 by q, we get

∞∑

n=0

PD2,3(12n+ 4)qn ≡ 4
f32 f

3
3

f1f6
(mod 32). (100)

Employing (26) into (100), we get

∞∑

n=0

PD2,3(12n+ 4)qn ≡ 4
f2f

3
4 f6
f12

+ 4q
f32 f

3
12

f4f6
(mod 32). (101)

Extracting the terms involving q2n+1 from (101), dividing by q and then replac-
ing q2 by q, we get

∞∑

n=0

PD2,3(24n+ 16)qn ≡ 4
f31 f

3
6

f2f3
(mod 32). (102)

In view of the congruences (98) and (102), we obtain

PD2,3(24n+ 16) ≡ PD2,3(6n+ 4) (mod 32). (103)

Utilizing (103) and by mathematical induction on α, we get (96). QED

Theorem 6. For n ≥ 0, we have

PD2,3(48n+ 34) ≡ 0 (mod 8), (104)

PD2,3(48n+ 46) ≡ 0 (mod 8), (105)

PD2,3(96n+ 52) ≡ 0 (mod 8), (106)

PD2,3(96n+ 76) ≡ 0 (mod 8). (107)
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Proof. Extracting the terms involving q2n+1 from (99), dividing by q and then
replacing q2 by q, we get

∞∑

n=0

PD2,3(12n+ 10)qn ≡ 20
f1f3f

3
6

f2
(mod 32). (108)

Substituting (30) into (108), we obtain

∞∑

n=0

PD2,3(12n+ 10)qn ≡ 20
f26 f

2
8 f

4
12

f24 f
2
24

− 20q
f44 f

4
6 f

2
24

f22 f
2
8 f

2
12

(mod 32). (109)

Extracting the terms involving q2n from (109) and replacing q2 by q, we get

∞∑

n=0

PD2,3(24n+ 10)qn ≡ 20
f23 f

2
4 f

4
6

f22 f
2
12

(mod 32). (110)

Invoking (40) into (110), we find that

∞∑

n=0

PD2,3(24n+ 10)qn ≡ 4f22 f
2
3 (mod 16). (111)

By the binomial theorem, it is easy to see that for positive integers k and m,

fm2k ≡ f2mk (mod 2) (112)

Invoking (112) into (111), we get

∞∑

n=0

PD2,3(24n+ 10)qn ≡ 4f4f6 (mod 8). (113)

Congruences (104) follows that extracting the terms involving q2n+1 from (113).

Extracting the terms involving q2n+1 from (109), dividing by q and then
replacing q2 by q, we get

∞∑

n=0

PD2,3(24n+ 22)qn ≡ 12
f42 f

4
3 f

2
12

f21 f
2
4 f

2
6

(mod 32). (114)

Invoking (40) into (114), we have

∞∑

n=0

PD2,3(24n+ 22)qn ≡ 12
f43 f

2
6

f21
(mod 16). (115)
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Invoking (112) into (115), we obtain

∞∑

n=0

PD2,3(24n+ 22)qn ≡ 4
f26 f12
f2

(mod 8). (116)

Extracting the terms involving q2n+1 from (116), we get (105).
Extracting the terms involving q2n from (101) and replacing q2 by q, we get

∞∑

n=0

PD2,3(24n+ 4)qn ≡ 4
f1f

3
2 f3
f6

(mod 32). (117)

Substituting (30) into (117), we find

∞∑

n=0

PD2,3(24n+ 4)qn ≡ 4
f42 f

2
8 f

4
12

f24 f
2
6 f

2
24

− 4q
f22 f

4
4 f

2
24

f28 f
2
12

(mod 32). (118)

Extracting the terms involving q2n from (118) and replacing q2 by q, we get

∞∑

n=0

PD2,3(48n+ 4)qn ≡ 4
f41 f

2
4 f

4
6

f22 f
2
3 f

2
12

(mod 32). (119)

Invoking (40) into (119), we have

∞∑

n=0

PD2,3(48n+ 4)qn ≡ 4
f24
f23

(mod 16). (120)

Invoking (112) into (120), we obtain

∞∑

n=0

PD2,3(48n+ 4)qn ≡ 4
f8
f6

(mod 8). (121)

Congruences (106) obtained by extracting the term involving q2n+1 from (121).
Extracting the terms involving q2n+1 from (118), dividing by q and then

replacing q2 by q, we get

∞∑

n=0

PD2,3(48n+ 28)qn ≡ 28
f21 f

4
2 f

2
12

f24 f
2
6

(mod 32). (122)

Invoking (40) into (122), we have

∞∑

n=0

PD2,3(48n+ 28)qn ≡ 12f21 f
2
6 (mod 16). (123)
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Invoking (112) into (123), we have

∞∑

n=0

PD2,3(48n+ 28)qn ≡ 4f2f12 (mod 8). (124)

Extracting the terms involving q2n+1 from (124), we get (107). QED

Theorem 7. For any prime p ≡ 5, α ≥ 1 and n ≥ 0, we have

∞∑

n=0

PD2,3(48p
2αn+ 10p2α)qn ≡ 4f2f3 (mod 8). (125)

Proof. Extracting the terms involving q2n from (113) and replacing q2 by q, we
get

∞∑

n=0

PD2,3(48n+ 10)qn ≡ 4f2f3 (mod 8). (126)

Define ∞∑

n=0

f(n)qn = f2f3 (mod 8). (127)

Combining (126) and (127), we find that

∞∑

n=0

PD2,3(48n+ 10)qn ≡ 4
∞∑

n=0

f(n)qn (mod 8). (128)

Now, we consider the congruence equation

2 · 3k
2 + k

2
+ 3 · 3m

2 +m

2
≡ 5p2 − 5

24
(mod p), (129)

which is equivalent to

(2 · (6k + 1))2 + 6 · (6m+ 1)2 ≡ 0 (mod p),

where −(p−1)
2 ≤ k,m ≤ p−1

2 and p is a prime such that (−6
p ) = −1. Since

(−6
p ) = −1 for p ≡ 5 (mod 6), the congruence relation (129) holds if and only

if both k = m = ±p−1
6 . Therefore, if we substitute (32) into (127) and then

extracting the terms in which the powers of q are congruent to 5 · p2−1
24 modulo

p and then divide by q5·
p2−1
24 , we find that

∞∑

n=0

f

(

pn+ 5 · p
2 − 1

24

)

qpn = f2pf3p,
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which implies
∞∑

n=0

f

(

p2n+ 5 · p
2 − 1

24

)

qn = f2f3 (130)

and for n ≥ 0,

f

(

p2n+ pi+ 5 · p
2 − 1

24

)

= 0, (131)

where i is an integer and 1 ≤ i ≤ p− 1. By induction, we see that for n ≥ 0 and
α ≥ 0,

f

(

p2αn+ 5 · p
2α − 1

24

)

= f(n). (132)

Replacing n by p2αn+ 5 · p2α−1
24 in (128), we arrive at (125). QED

Corollary 1. For each n ≥ 0 and α ≥ 0, we have

PD2,3(3 · 4α+3n+ 34 · 4α+1) ≡ 0 (mod 8), (133)

PD2,3(3 · 4α+3n+ 46 · 4α+1) ≡ 0 (mod 8), (134)

PD2,3(6 · 4α+3n+ 13 · 4α+2) ≡ 0 (mod 8), (135)

PD2,3(6 · 4α+3n+ 19 · 4α+2) ≡ 0 (mod 8). (136)

Proof. Corollary (1) follows from the Theorem (5) and Theorem (6). QED

Theorem 8. For n ≥ 0, we have

PD2,3(12n+ 11) ≡ 0 (mod 4), (137)

PD2,3(24n+ 19) ≡ 0 (mod 4), (138)

PD2,3(24n+ 17) ≡ 0 (mod 4), (139)

PD2,3(108n+ 63) ≡ 0 (mod 4), (140)

PD2,3(108n+ 99) ≡ 0 (mod 4), (141)

PD2,3(216n+ 27)qn ≡ 2ψ(q) (mod 4), (142)

PD2,3(72n+ 6) ≡ PD2,3(36n+ 3) (mod 4), (143)

PD2,3(96n+ 28) ≡ 2 · PD2,3(24n+ 7) (mod 4). (144)

Proof. Extracting the odd terms in (36), we get

∞∑

n=0

PD2,3(2n+ 1)qn =
f32 f

3
3 f

2
18

f31 f
3
6 f

2
9

. (145)
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Invoking (40) into (145), we obtain

∞∑

n=0

PD2,3(2n+ 1)qn ≡ f1f2f
3
3 f

2
9

f36
(mod 4). (146)

Substituting (31) into (146), we find that

∞∑

n=0

PD2,3(2n+ 1)qn ≡ f23 f
6
9

f26 f
2
18

− q f
3
3 f

3
9 f18
f36

− 2q2
f43 f

4
18

f46
(mod 4). (147)

Extracting the terms involving q3n from (147) and replacing q3 by q, we get

∞∑

n=0

PD2,3(6n+ 1)qn ≡ f21 f
6
3

f22 f
2
6

(mod 4). (148)

Invoking (40) into (148), we have

∞∑

n=0

PD2,3(6n+ 1)qn ≡ f23
f21

(mod 4). (149)

Employing (24) into (149), we get

∞∑

n=0

PD2,3(6n+ 1)qn ≡ f44 f6f
2
12

f52 f8f24
+ 2q

f4f
2
6 f8f24
f42 f12

(mod 4). (150)

Extracting the terms involving q2n+1 from (150), dividing by q and then replac-
ing q2 by q, we get

∞∑

n=0

PD2,3(12n+ 7)qn ≡ 2
f2f

2
3 f4f12
f41 f6

(mod 4). (151)

Invoking (112) into (151), we obtain

∞∑

n=0

PD2,3(12n+ 7)qn ≡ 2f2f12 (mod 4). (152)

Extracting the terms involving q2n+1 from (152), we obtain (137).
Extracting the terms involving q2n from (152), we get

∞∑

n=0

PD2,3(24n+ 7)qn ≡ 2f1f6 (mod 4). (153)
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Extracting the terms involving q2n from (124) and replacing q2 by q, we get

∞∑

n=0

PD2,3(96n+ 28)qn ≡ 4f1f6 (mod 8). (154)

In view of congruences (154) and (153), we obtain (144).
Extracting the terms involving q3n+1 from (147), dividing by q and then

replacing q3 by q, we have

∞∑

n=0

PD2,3(6n+ 3)qn ≡ 3
f31 f

3
3 f6
f32

(mod 4). (155)

Invoking (40) into (155), we find

∞∑

n=0

PD2,3(6n+ 3)qn ≡ 3
f33 f6
f1f2

(mod 4). (156)

Employing (26) into (156), we get

∞∑

n=0

PD2,3(6n+ 3)qn ≡ 3
f34 f

3
6

f32 f12
+ 3q

f6f
3
12

f2f4
(mod 4). (157)

Extracting the terms involving q2n from (157) and replacing q2 by q, we obtain

∞∑

n=0

PD2,3(12n+ 3)qn ≡ 3
f32 f

3
3

f31 f6
(mod 4). (158)

Invoking (40) into (158), we have

∞∑

n=0

PD2,3(12n+ 3)qn ≡ 3
f1f2f

3
3

f6
(mod 4). (159)

Substituting (31) into (159), we find

∞∑

n=0

PD2,3(12n+ 3)qn ≡ 3
f23 f

4
9

f218
− 3q

f33 f9f18
f6

− 6q2
f43 f

4
18

f26 f
2
9

(mod 4). (160)

Extracting the terms involving q3n from (160) and replacing q3 by q, we obtain

∞∑

n=0

PD2,3(36n+ 3)qn ≡ 3
f21 f

4
3

f26
(mod 4). (161)
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Invoking (40) into (161), we have

∞∑

n=0

PD2,3(36n+ 3)qn ≡ 3f21 (mod 4). (162)

Extracting the terms involving q2n from (67) and replacing q2 by q, we obtain

∞∑

n=0

PD2,3(72n+ 6)qn ≡ 3f21 (mod 4). (163)

In view of congruences (163) and (162), we obtain (143).
Extracting the terms involving q3n+2 from (160), dividing by q2 and then

replacing q3 by q, we have

∞∑

n=0

PD2,3(36n+ 27)qn ≡ 2
f41 f

4
6

f22 f
2
3

(mod 4). (164)

Invoking (40) into (164), we have

∞∑

n=0

PD2,3(36n+ 27)qn ≡ 2
f46
f23

(mod 4). (165)

Congruences (140) and (141) follows extracting the terms involving q3n+1 and
q3n+2 from (165).

Invoking (112) into (165), we get

∞∑

n=0

PD2,3(36n+ 27)qn ≡ 2
f212
f6

(mod 4). (166)

Extracting the terms involving q6n from (166) and replacing q6 by q, we get
(142).

Extracting the terms involving q3n+2 from (147), dividing by q2 and then
replacing q3 by q, we have

∞∑

n=0

PD2,3(6n+ 5)qn ≡ 2
f41 f

4
6

f42
(mod 4). (167)

Invoking (40) into (167), we have

∞∑

n=0

PD2,3(6n+ 5)qn ≡ 2
f46
f22

(mod 4). (168)
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Congruences (137) follows that extracting the terms involving q2n+1 from (168).

Extracting the terms involving q2n from (168) and replacing q2 by q, we get

∞∑

n=0

PD2,3(12n+ 5)qn ≡ 2
f43
f21

(mod 4). (169)

Substitute (26) and (23) in (169)

∞∑

n=0

PD2,3(12n+ 5)qn

≡ 2
f44 f

3
6 f16f

2
24

f42 f8f
2
12f48

+ 2q
f34 f

3
6 f

2
8 f48

f42 f12f16f24
+ 2q

f6f
2
12f16f

2
24

f22 f8f48
+ 2q2

f6f
2
8 f

3
12f48

f22 f16f24
(mod 4).

(170)

Extracting the terms involving q2n+1 from (170), dividing by q and then replac-
ing q2 by q, we have

∞∑

n=0

PD2,3(24n+ 17)qn ≡ 2
f32 f

3
3 f

2
4 f24

f41 f6f8f12
+ 2

f3f
2
6 f8f

2
12

f21 f4f24
(mod 4). (171)

Invoking (112) into (171), we get

∞∑

n=0

PD2,3(24n+ 17)qn ≡ 2f2f3f12 + 2f2f3f12 (mod 4), (172)

which implies (139). QED

Theorem 9. For n ≥ 0, α ≥ 0

PD2,3(648n+ 459) ≡ 0 (mod 4), (173)

PD2,3(8 · 9α+3n+ 51 · 9α+2) ≡ 0 (mod 4). (174)

Proof. Employing (18) into (142), we get

PD2,3(216n+ 27)qn ≡ 2f(q3, q6) + 2qψ(q9) (mod 4). (175)

Congruences (173) follows extracting the terms involving q3n+2 from (175).

Extracting the terms involving q3n+1 from (175), dividing by q and then
replacing q3 by q, we have

PD2,3(648n+ 243)qn ≡ 2ψ(q3) (mod 4). (176)
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Extracting the terms involving q3n from (176) and replacing q3 by q, we obtain

PD2,3(1944n+ 243)qn ≡ 2ψ(q) (mod 4). (177)

In view of congruences (142) and (177), we have

PD2,3(1944n+ 243) ≡ PD2,3(216n+ 27) (mod 4). (178)

Utilizing (178) and by mathematical induction on α, we get

PD2,3(24 · 9α+2n+ 3 · 9α+2) ≡ PD2,3(216n+ 27) (mod 4). (179)

Using (173) into (179), we obtain (174). QED

4 Congruences Modulo 3.

Theorem 10. For n ≥ 0 and α ≥ 0, then

PD2,3(6n+ 3) ≡ 0 (mod 3), (180)

PD2,3(6n+ 5) ≡ 0 (mod 3), (181)

PD2,3(36n+ 30) ≡ 0 (mod 3), (182)

PD2,3(4 · 3α+3n+ 10 · 3α+2) ≡ 0 (mod 3). (183)

Proof. Substituting (15) into (35), we obtain

∞∑

n=0

PD2,3(n)q
n =

f26 f9f
2
18

f33 f12f36
+ q

f46 f
4
9 f

2
36

f43 f
2
12f

4
18

+ 2q2
f36 f9f

2
36

f33 f
2
12f18

. (184)

Extracting the terms involving q3n from (184) and replacing q3 by q, we get

∞∑

n=0

PD2,3(3n)q
n =

f22 f3f
2
6

f31 f4f12
. (185)

By the binomial theorem, it is easy to see that for positive integers k and m,

fm3k ≡ f3mk (mod 3). (186)

Invoking (186) into (185), we have

∞∑

n=0

PD2,3(3n)q
n ≡ f82

f44
(mod 3). (187)
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Extracting the terms involving q2n from (187) and replacing q2 by q, we get

∞∑

n=0

PD2,3(6n)q
n ≡ f81

f42
(mod 3). (188)

But
f81
f42

=
f21 f

2
3

f42
. (189)

∞∑

n=0

PD2,3(6n)q
n ≡ f21 f

2
3

f42
(mod 3). (190)

Substituting (30) into (190), we obtain

∞∑

n=0

PD2,3(6n)q
n ≡ f48 f

8
12

f22 f
4
4 f

2
6 f

4
24

+ q2
f84 f

2
6 f

4
24

f62 f
4
8 f

4
12

− 2q
f24 f

2
12

f42
(mod 3). (191)

Extracting the terms involving q2n+1 from (191), dividing by q and then replac-
ing q2 by q, we get

∞∑

n=0

PD2,3(12n+ 6)qn ≡ f22 f
2
6

f41
(mod 3). (192)

Invoking (186) into (192), we obtain

∞∑

n=0

PD2,3(12n+ 6)qn ≡ f22 f
2
6

f1f3
(mod 3), (193)

which implies

∞∑

n=0

PD2,3(12n+ 6)qn ≡ ψ(q)ψ(q3) (mod 3). (194)

Employing (18) into (194), we have

∞∑

n=0

PD2,3(12n+ 6)qn ≡ ψ(q3)f(q3, q6) + qψ(q3)ψ(q9) (mod 3). (195)

Congruences (182) follows by extracting the terms involving q3n+2 from (195).
Extracting the terms involving q3n+1 from (195), dividing by q and then

replacing q3 by q, we get

∞∑

n=0

PD2,3(36n+ 18)qn ≡ ψ(q)ψ(q3) (mod 3). (196)
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In view of congruences (194) and (196), we obtain

PD2,3(36n+ 18)qn ≡ PD2,3(12n+ 6) (mod 3). (197)

Utilizing (197) and by mathematical induction on α, we get

PD2,3(4 · 3α+2n+ 2 · 3α+2) ≡ PD2,3(12n+ 6) (mod 3). (198)

Using (182) into (198), we get (183).
Invoking (186) into (145), we get

∞∑

n=0

PD2,3(2n+ 1)qn ≡ f46
f43

(mod 3). (199)

Congruences (180) and (181) follows by extracting the terms involving q3n+1

and q3n+2 from (199). QED
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