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Abstract. A family of decompositions {G0,G1, ...,Gk−1} of a complete bipartite graph Kn,n

is a set of k mutually orthogonal graph squares (MOGS) if Gi and Gj are orthogonal for all
i, j ∈ {0, 1, ..., k − 1} and i 6= j. For any subgraph G of Kn,n with n edges, N(n,G) denotes
the maximum number k in a largest possible set {G0,G1, ...,Gk−1} of (MOGS) of Kn,n by G.
Our objective of this paper is to compute N(n,G) = k ≥ 3 where G represents disjoint copies
of certain subgraphs of Kn,n.

Keywords: Orthogonal graph squares; Orthogonal double cover; Mutually orthogonal Latin
squares.

MSC 2000 classification: 05C70, 05B30.

1 Introduction

In this paper, Km,n denotes to the complete bipartite graph with partition
sets of sizes m and n, Pn for the path on n vertices, Cn for the cycle on n
vertices, s G for s disjoint copies of G and Kn for the complete graph on n
vertices.

An edge decomposition G = {G0, G1, . . . , Gs−1} of a graph H is a partition
of the edge set of H into edge-disjoint subgraphs (pages) G0, G1, . . . , Gs−1. If
Gi
∼= G for all i ∈ {0, 1, ..., s − 1}, then G is a decomposition of H by G.

Two decompositions G = {G0, G1, . . . , Gn−1} and F = {F0, F1, . . . , Fn−1} of
the complete bipartite graph Kn,n are orthogonal if |E(Gi)∩E(Fj)| = 1 for all
i, j ∈ {0, 1, ..., n− 1}. Orthogonality requires that |E(Gi)| = |E(Fi)| = n for all
i ∈ {0, 1, ..., n−1}. A family of decompositions {G0,G1, ...,Gk−1} of Kn,n is a set
of k mutually orthogonal graph squares (MOGS) if Gi and Gj are orthogonal
for all i, j ∈ {0, 1, ..., k − 1} and i 6= j. We use the notation N(n,G) for the
maximum number k in a largest possible set {G0,G1, ...,Gk−1} of (MOGS) of
Kn,n by G, where G is a bipartite graph with n edges.
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If two decompositions G and F of Kn,n by G are orthogonal, then G ∪ F is
an orthogonal double cover (ODC ) of Kn,n by G. Orthogonal decompositions of
graphs were studied by several authors; see the survey articles [1], [4],[5].

It is well-known that orthogonal Latin squares exist for every n 6∈ {2, 6}.
A family of k-orthogonal Latin squares of order n is a set of k Latin squares
any two of which are orthogonal. It is customary to denote N(n) = max{k :
∃k MOLS} by the maximal number of squares in the largest possible set of
mutually orthogonal Latin squares (MOLS) of side n. An edge decomposition
of Kn,n by nK2 is equal to a Latin square of side n; two edge decompositions
G and F of Kn,n by nK2 are orthogonal if and only if the corresponding Latin
squares of side n are orthogonal; thus N(n, nK2) = N(n). The computation of
N(n) is one of the most complicated problems in combinatorial designs; see the
survey articles by Abel et al. [2] and Colbourn and Dinitz in [3]. It is clear that
N(n, G) is a natural generalization of N(n). Many authors studied ODC of
Kn,n by G, which equal to N(n, G) = 2 (i.e., El-Shanawany et al. [5]). Here,
we have exposed the first results of N(n, G) = k ≥ 3 in the case of G 6= nK2.
El-Shanawany [6] could prove that N(p, K2 + ((p − 1)/2)P3) = p such that,
p > 2, is a prime number and N(p, (p− 2)K2 + P3) ≥ p− 1, where p is a prime
number. He also, conjectured that if p is a prime number, then N(p, Pp+1) = p.
This guess has been proved by Sampathkumar et al. [7]. In [8] El-Shanawany has
presented an interesting another proof of that guess. Also, he has given a new
result for N(n, G), where G = Pd+1 (F ) is a path of length d with d+1 vertices
(i.e., every edge of that path is one-to-one corresponding to an isomorphic to a
graph F ). The two sets {00, 10, ..., (n− 1)0} and {01, 11, ..., (n− 1)1} denote the
vertices of the partition sets of Kn,n. If there is no chance of confusion, we will
write (x, y) instead of {x0, y1} for the edge between the vertices x0 and y1.

In the following, we give now the formal basic definitions of a G-square over
additive group Zn.

Definition 1. (see [6]) Let G be a subgraph of Kn,n. A square matrix L
of order n is called a G-square if every element in Zn occur exactly n times and
the graphs Gγ , γ ∈ Zn with E(Gγ) = {(x, y) : L(x, y) = γ; x, y ∈ Zn} are
isomorphic to graph G.

For an edge decomposition Gi we may associate bijectively a n× n−square
with entries belonging to Zn denoted by Li = Li(x, y), 0 ≤ i ≤ k − 1;x, y ∈ Zn

with

Li(x, y) = γ ⇔ (x, y) ∈ E(Giγ), γ ∈ Zn (1)

Similar to Definition 1, we define:

Definition 2. Let i, j be different positive integers. Two square matrices Li
and Lj of order n are said to be orthogonal if for any ordered pair (a, b), there
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is exactly one position (x, y) for Li(x, y) = a and Lj(x, y) = b.

Theorem 1. (see [1])There exist a set of n − 1 pairwise orthogonal Latin
squares of order n whenever n is a prime power.

In [8] El-Shanawany presented an immediate result of the Definition 2 ,
N (3, P4) = 3. Define the 3 MOLSs of order 4 ( 3 mutually orthogonal decom-
positions (MOD) of K3,3 by P4) as follows:

K0 =





0 0 1
2 1 1
2 0 2



 , K1 =





0 2 2
0 1 0
1 1 2



 , K2 =





0 1 0
1 1 2
0 2 2



 (2)

Applying Theorem 1 which satisfy as a special case of the Definition 2. We
immediately get the following result, N (4) = N (4, 4K2) = 3. Define the 3
MOLSs of order 4 ( 3 mutually orthogonal decompositions (MOD) of K4,4 by
4K2) as follows:

L0 =







1 0 3 2
2 3 0 1
3 2 1 0
0 1 2 3






, L1 =







2 3 0 1
3 2 1 0
1 0 3 2
0 1 2 3






, L2 =







3 2 1 0
1 0 3 2
2 3 0 1
0 1 2 3







(3)

2 Mutually Orthogonal Disjoint Copies
of Graph Squares

In this section, we discuss new constructions for MOGS: one of which is
direct and the others recursive. The following theorem mentions the building of
MOGS, using MOLS.

Theorem 2. Let k andm 6= 2, 6 be positive integers with N (m, (m− 1)K2) =
k. Suppose that N (n, G) = k, where G is a subgraph of Kn,n, then N (m n,m G) ≥
k, where m G is a subgraph of Km n,m n.

Proof. Since m ≥ 3, m 6= 6, suppose that there are k mutually orthogonal Latin
squares

Ls = (asij), s = 1, 2, · · · , k, 0 ≤ i, j ≤ m− 1

of order m on the set {0, 1, ...,m− 1}.
For any l ∈ {0, 1, ...,m− 1} and Gl

∼= G, let

Ls
l = (bs,lij ), s = 1, 2, · · · , k, 0 ≤ i, j ≤ n− 1,

be k mutually orthogonal Gl-squares of order n.
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Now we construct k mutually orthogonal (mG)-squares Ms = (csij), s =
1, 2, · · · , k, and 0 ≤ i, j ≤ mn−1. For given i, j ∈ {0, 1, ...,mn−1}, let α, β, γ, δ
be defined by

i = α · n+ β, 0 ≤ α ≤ m− 1, 0 ≤ β ≤ n− 1

j = γ · n+ δ, 0 ≤ γ ≤ m− 1, 0 ≤ δ ≤ n− 1,

then the entries csij of Ms are as follows:

csij = csα·n+β,γ·n+δ = n · asα,γ + bs,αβ,δ . (4)

We prove that this construction of Ms has the desired properties.
Firstly, we show that Ms is an (mG)-square. Let i ∈ {0, 1, ...,mn− 1} be arbi-
trarily chosen. Then, let αs and β

s
be

i = n · αs + β
s
, 0 ≤ αs ≤ m− 1, 0 ≤ βs ≤ n− 1.

We are looking for all edges of the given graph by the entries i in Ms. By
construction we have n · asα,γ + bs,αβ,δ = n · αs + β

s
. By the ranges of α, β, α, β,

it follows that asα,γ = αs and bs,αβ,δ = β
s
. For any α ∈ {0, 1, ...,m− 1} there is a

unique γ, with asα,γ = αs, since Ls is a Latin square. For fixed α, γ the graph
induced by the vertices

n · α+ β, n · γ + δ, where β, δ ∈ {0, 1, ...,m− 1}
is exactly Gα. Since α is running from 0 to m − 1 the graph given by the
entries i in Ms is the vertex disjoint union of mG. Secondly, we show that Ms,
s = 1, 2, · · · , k are mutually orthogonal. Assume the contrary, i.e., there are
two equal pairs of entries of Mr and Mt where 1 ≤ r < t ≤ k. That is, there
are (x, y) and (x′, y′) with x, y, x′, y′ ∈ {0, 1, ...,mn− 1}, (x, y) 6= (x′, y′) and
(Cr

x,y, C
t
x,y) = (Cr

x′,y′ , C
t
x′,y′). Hence Cr

x,y = Cr
x′,y′ and C

t
x,y = Ct

x′,y′ and

n · arα,γ + br,αβ,δ = n · arα′,γ′ + br,α
′

β′,δ′

n · atα,γ + bt,αβ,δ = n · atα′,γ′ + bt,α
′

β′,δ′ .

According to the range of a′s and b′s is follows

br,αβ,δ = br,α
′

β′,δ′ , arα,γ = arα′,γ′

bt,αβ,δ = bt,α
′

β′,δ′ , atα,γ = atα′,γ′ .

Since Lr and Lt are orthogonal, from (arα,γ , a
t
α,γ) = (arα′,γ′ , atα′,γ′) follows that

α = α′ and γ = γ′.Since Lr
α and Lt

α are orthogonal, from (br,αβ,δ, b
t,α
β,δ) = (br,α

′

β′,δ′ , b
t,α′

β′,δ′)
follow that β = β′ and δ = δ′, i.e. x = x′ and y = y′ contradicting the
assumption. QED
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Until now, N (n, Cn) = 2 still remains open for all n, except for the special
cases n = 6, and n = 2m ( m ≥ 2 is a positive integer) have been solved by El-
Shanawany [6]. In the following, we give a direct construction of N (n, Cn) ≥ 3
as the first result in this sense for n = 4.

Corollary 1. N (4, C4) ≥ 3.

Proof. Applying Definition 2 with n = 4, and for all 0 ≤ s ≤ 2, there exist three
mutually orthogonal decompositions (MOD) of K4,4 by C4 iff there exist three
mutually orthogonal C4−squares Ns of order 4 which defined as follows:

N0 =







0 0 1 1
0 0 1 1
2 2 3 3
2 2 3 3






, N1 =







0 1 0 1
2 3 2 3
0 1 0 1
2 3 2 3






, N2 =







0 2 2 0
3 1 1 3
3 1 1 3
0 2 2 0







(5)

We prove that the page obtained from the entries in N0 equal to 0 is isomorphic
to C4. Also, A similar argument applies to the other pages in N0, N1, and
N2.There are exactly the two rows (columns) contain two 0-entry. That is, for
all x ∈ Z4, there are exactly two vertices x0 (x1) have degree two and zero,
respectively. QED

Conjecture 1. If n ≥ 3 a positive integer, then N (2n, C2n) ≥ 3.

The next two new results follow immediately from Theorem 2 and Equa-
tion (3).

Corollary 2. Let qλ ≥ 4 be a prime power for λ ∈ Z+. Then N
(
3qλ, qλP4

)
≥

3.

Proof. Since qλ ≥ 4, applying Theorem 1 to choose arbitrarily 3 mutually or-
thogonal Latin squares of order qλ on the set {0, 1, ..., qλ− 1}, define as follows:

Ls = (asij), 0 ≤ s ≤ 2 , 0 ≤ i, j ≤ qλ − 1

For any l ∈ {0, 1, ..., qλ − 1} and Gl
∼= P4, let

Ls
l = (bs,lij ), 0 ≤ s ≤ 2, 0 ≤ i, j ≤ 2,

be 3 mutually orthogonal P4-squares of order 3. Now we construct 3 of mutually
orthogonal (qλP4)-squares Ms = (csij), 0 ≤ s ≤ 2, and 0 ≤ i, j ≤ 3qλ − 1. For

given i, j ∈ {0, 1, ..., 3qλ − 1}, let α, β, γ, δ be defined by

i = α · n+ β, 0 ≤ α ≤ qλ − 1, 0 ≤ β ≤ 2
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j = γ · n+ δ, 0 ≤ γ ≤ qλ − 1, 0 ≤ δ ≤ 2

then the entries csij of Ms are as follows:

csij = csα·n+β,γ·n+δ = 3 · asα,γ + bs,αβ,δ . (6)

We prove that the page obtained from the entries inM0 equal to 0 is isomorphic
to qλP4. Also, a similar argument applies to the other pages inM0, M1, andM2.
There are exactly qλ rows (columns) contain two 0-entry and qλ rows (columns)
contain one 0-entry, and qλ rows (columns) contain no 0-entry. That is, for all
x ∈ Z3qλ , there are exactly qλ vertices x0 (x1) have degree two, one and zero,
respectively. QED

As a direct construction of this Corollary, for n = 3, m = qλ = 4. For all
0 ≤ s ≤ 2, applying Equation (6) using the 3 mutually orthogonal Latin squares
Ls of order 4 as in Equation (3) with the corresponding 3 mutually orthogonal
P4−squares Ks of order 3 as in Equation (2) to define the 3 mutually orthogonal
4P4−squares Ms of order 12 as follows.

M0 =
























3 5 5 0 2 2 9 11 11 6 8 8
3 4 3 0 1 0 9 10 9 6 7 6
4 4 5 1 1 2 10 10 11 7 7 8
6 8 8 9 11 11 0 2 2 3 5 5
6 7 6 9 10 9 0 1 0 3 4 3
7 7 8 10 10 11 1 1 2 4 4 5
9 11 11 6 8 8 3 5 5 0 2 2
9 10 9 6 7 6 3 4 3 0 1 0
10 10 11 7 7 8 4 4 5 1 1 2
0 2 2 3 5 5 6 8 8 9 11 11
0 1 0 3 4 3 6 7 6 9 10 9
1 1 2 4 4 5 7 7 8 10 10 11
























,

M1 =
























6 6 7 9 9 10 0 0 1 3 3 4
8 7 7 11 10 10 2 1 1 5 4 4
8 6 8 11 9 11 2 0 2 5 3 5
9 9 10 6 6 7 3 3 4 0 0 1
11 10 10 8 7 7 5 4 4 2 1 1
11 9 11 8 6 8 5 3 5 2 0 2
3 3 4 0 0 1 9 9 10 6 6 7
5 4 4 2 1 1 11 10 10 8 7 7
5 3 5 2 0 2 11 9 11 8 6 8
0 0 1 3 3 4 6 6 7 9 9 10
2 1 1 5 4 4 8 7 7 11 10 10
2 0 2 5 3 5 8 6 8 11 9 11
























,
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M2 =
























9 10 9 6 7 6 3 4 3 0 1 0
10 10 11 7 7 8 4 4 5 1 1 2
9 11 11 6 8 8 3 5 5 0 2 2
3 4 3 0 1 0 9 10 9 6 7 6
4 4 5 1 1 2 10 10 11 7 7 8
3 5 5 0 2 2 9 11 11 6 8 8
6 7 6 9 10 9 0 1 0 3 4 3
7 7 8 10 10 11 1 1 2 4 4 5
6 8 8 9 11 11 0 2 2 3 5 5
0 1 0 3 4 3 6 7 6 9 10 9
1 1 2 4 4 5 7 7 8 10 10 11
0 2 2 3 5 5 6 8 8 9 11 11
























.

Corollary 3. Let λ ≥ 0, be an integer number. Then N
(
22(λ+1), 22λC4

)
≥

3.

Proof. Note that for λ = 0, see Corollary 1. For λ > 0, applying Theorem 1 to
choose arbitrarily 3 mutually orthogonal Latin squares of order 22λ on the set
{0, 1, ..., 22λ − 1}, define as follows:

Ls = (asij), 0 ≤ s ≤ 2 , 0 ≤ i, j ≤ 22λ − 1

For any l ∈ {0, 1, ..., 22λ − 1} and Gl
∼= C4 , let

Ls
l = (bs,lij ), 0 ≤ s ≤ 2, 0 ≤ i, j ≤ 3,

be 3 mutually orthogonal C4-squares of order 4. Now we construct 3 of mutually
orthogonal (22λC4)-squares Ms = (csij), 0 ≤ s ≤ 2, and 0 ≤ i, j ≤ 22(λ+1) − 1.

For given i, j ∈ {0, 1, ..., 22(λ+1) − 1}, let α, β, γ, δ be defined by

i = α · n+ β, 0 ≤ α ≤ 22λ − 1, 0 ≤ β ≤ 3

j = γ · n+ δ, 0 ≤ γ ≤ 22λ − 1, 0 ≤ δ ≤ 3

then the entries csij of Ms are as follows:

csij = csα·n+β,γ·n+δ = 4 · asα,γ + bs,αβ,δ . (7)

We prove that the page obtained from the entries inM0 equal to 0 is isomor-
phic to 22λC4. Also, a similar argument applies to the other pages in M0, M1,
and M2.There are exactly 22λ+1 rows (columns) contain two 0-entry and 22λ+1

rows (columns) contain no 0-entry. That is, for all x ∈ Z22(λ+1) , there are exactly
22λ+1 vertices x0 (x1) have degree two and zero, respectively. QED
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As a direct construction of this Corollary, for n = 4, m = 22λ = 4. For all
0 ≤ s ≤ 2, applying Equation (7) using the 3 mutually orthogonal Latin squares
Ls of order 4 as in Equation (3) with the corresponding 3 mutually orthogonal
C4−squaresNs of order 4 as in Equation (5) to define, the 3 mutually orthogonal
4C4−squares Ms of order 16 as follows.

M0 =
































4 4 5 5 0 0 1 1 12 12 13 13 8 8 9 9
4 4 5 5 0 0 1 1 12 12 13 13 8 8 9 9
6 6 7 7 2 2 3 3 14 14 15 15 10 10 11 11
6 6 7 7 2 2 3 3 14 14 15 15 10 10 11 11
8 8 9 9 12 12 13 13 0 0 1 1 4 4 5 5
8 8 9 9 12 12 13 13 0 0 1 1 4 4 5 5
10 10 11 11 14 14 15 15 2 2 3 3 6 6 7 7
10 10 11 11 14 14 15 15 2 2 3 3 6 6 7 7
12 12 13 13 8 8 9 9 4 4 5 5 0 0 1 1
12 12 13 13 8 8 9 9 4 4 5 5 0 0 1 1
14 14 15 15 10 10 11 11 6 6 7 7 2 2 3 3
14 14 15 15 10 10 11 11 6 6 7 7 2 2 3 3
0 0 1 1 4 4 5 5 8 8 9 9 12 12 13 13
0 0 1 1 4 4 5 5 8 8 9 9 12 12 13 13
2 2 3 3 6 6 7 7 10 10 11 11 14 14 15 15
2 2 3 3 6 6 7 7 10 10 11 11 14 14 15 15
































M1 =
































8 9 8 9 12 13 12 13 0 1 0 1 4 5 4 5
10 11 10 11 14 15 14 15 2 3 2 3 6 7 6 7
8 9 8 9 12 13 12 13 0 1 0 1 4 5 4 5
10 11 10 11 14 15 14 15 2 3 2 3 6 7 6 7
12 13 12 13 8 9 8 9 4 5 4 5 0 1 0 1
14 15 14 15 10 11 10 11 6 7 6 7 2 3 2 3
12 13 12 13 8 9 8 9 4 5 4 5 0 1 0 1
14 15 14 15 10 11 10 11 6 7 6 7 2 3 2 3
4 5 4 5 0 1 0 1 12 13 12 13 8 9 8 9
6 7 6 7 2 3 2 3 14 15 14 15 10 11 10 11
4 5 4 5 0 1 0 1 12 13 12 13 8 9 8 9
6 7 6 7 2 3 2 3 14 15 14 15 10 11 10 11
0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13
2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15
0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13
2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15
































,
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M2 =
































12 14 14 12 8 10 10 8 4 6 6 4 0 2 2 0
15 13 13 15 11 9 9 11 7 5 5 7 3 1 1 3
15 13 13 15 11 9 9 11 7 5 5 7 3 1 1 3
12 14 14 12 8 10 10 8 4 6 6 4 0 2 2 0
4 6 6 4 0 2 2 0 12 14 14 12 8 10 10 8
7 5 5 7 3 1 1 3 15 13 13 15 11 9 9 11
7 5 5 7 3 1 1 3 15 13 13 15 11 9 9 11
4 6 6 4 0 2 2 0 12 14 14 12 8 10 10 8
8 10 10 8 12 14 14 12 0 2 2 0 4 6 6 4
11 9 9 11 15 13 13 15 3 1 1 3 7 5 5 7
11 9 9 11 15 13 13 15 3 1 1 3 7 5 5 7
8 10 10 8 12 14 14 12 0 2 2 0 4 6 6 4
0 2 2 0 4 6 6 4 8 10 10 8 12 14 14 12
3 1 1 3 7 5 5 7 11 9 9 11 15 13 13 15
3 1 1 3 7 5 5 7 11 9 9 11 15 13 13 15
0 2 2 0 4 6 6 4 8 10 10 8 12 14 14 12
































.

3 Conclusion

This paper is devoted to computing to N (n,G) , where G represents disjoint
copies of graph squares as in Theorem 2, and introduce constructions of new
results as in Corollaries 1,2,3, respectively.

Acknowledgements. The aouther is very grateful to referee for his valu-
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