Non-existence of smooth rational curves of degree $d=13,14,15$ contained in a general quintic hypersurface of \mathbb{P}^{4} and in some quadric hypersurface

Edoardo Ballico ${ }^{\text {i }}$
Department of Mathematics, University of Trento
ballico@science.unitn.it

Received: 28.8.2016; accepted: 17.10.2016.

Abstract

Let $W \subset \mathbb{P}^{4}$ be a general quintic hypersurface. We prove that W contains no smooth rational curve $C \subset \mathbb{P}^{4}$ with degree $d \in\{13,14,15\}, h^{0}\left(\mathcal{I}_{C}(1)\right)=0$ and $h^{0}\left(\mathcal{I}_{C}(2)\right)>0$.

Keywords: General quintic 3 -fold, rational curve, Clemens' conjecture
MSC 2000 classification: primary 14J32, secondary 14M10, 14H50

Introduction

For any positive integer d let M_{d} be the set of all smooth and rational curves $C \subset \mathbb{P}^{4}$ with $\operatorname{deg}(C)=d$. Let Γ_{d} be the set of all non-degenerate $C \in M_{d}$ with $h^{0}\left(\mathcal{I}_{C}(2)\right)>0$. Clemens conjecture asks if for each d a general quintic hypersurface $W \subset \mathbb{P}^{4}$ contains only finitely many elements of M_{d} (a stronger form asks the same also for singular rational curves of degree $d>5$) ([1], [2], [4], [12], [13], [14], [15], [19], [20], [24], [25]). For higher genera cases (and also for more general Calabi-Yau 3 -folds), see [16], [17].

All the quoted finiteness results work for very low d, say $d \leq 12$. Here we add a very strong condition (to be contained in an integral quadric hypersurface) and prove the following result.

Theorem 1. If $13 \leq d \leq 15$, then a general quintic hypersurface of \mathbb{P}^{4} contains no element of Γ_{d}.

The proof requires a result on the splitting type of the normal bundle of a smooth rational curve $C \subset \mathbb{P}^{4}([3],[23])$ and its use when C is contained in quadric hypersurface.

[^0]Concerning elements of $C \in M_{d}$ contained in a hyperplane we prove the following result.

Proposition 1. Let $C \in M_{d}$ be a degenerate curve, say contained in a hyperplane H, and let α be the the minimal degree of a surface of H containing C. Assume that C is contained in a general quintic hypersurface. If $13 \leq d \leq 17$, then $\alpha \in\{4,5\}$. If $d \geq 18$, then $\alpha=5$.

1 Preliminaries

Let \mathcal{W} denote the set of all smooth quintic hypersurfaces $W \subset \mathbb{P}^{4}$ satisfying the thesis of [4]. In particular each $W \in \mathcal{W}$ contains only finitely many smooth rational curves D of degree ≤ 11 and all of them have as normal bundle $N_{D, W}$ the direct sum of two line bundles of degree -1 , i.e. $h^{i}\left(N_{D, W}\right)=0, i=0,1$.

For any scheme $A \subset \mathbb{P}^{4}$ let \mathcal{I}_{A} denote the ideal sheaf of A in \mathbb{P}^{4}.
Let X be any projective scheme, $N \subset X$ an effective Cartier divisor and $Z \subset X$ any closed subscheme. The residual scheme $\operatorname{Res}_{N}(Z)$ of Z with respect to N is the closed subscheme of X with $\mathcal{I}_{Z, X}: \mathcal{I}_{N, X}$ as its ideal sheaf. We always have $\operatorname{Res}_{N}(Z) \subseteq Z$. If Z is zero-dimensional, we have $\operatorname{deg}(Z)=\operatorname{deg}(Z \cap N)+$ $\operatorname{deg}\left(\operatorname{Res}_{N}(Z)\right)$. For any line bundle \mathcal{L} on X we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{N}(Z), X} \otimes \mathcal{L}(-N) \rightarrow \mathcal{I}_{Z, X} \otimes \mathcal{L} \rightarrow \mathcal{I}_{Z \cap N, N} \otimes \mathcal{L}_{\mid N} \rightarrow 0 \tag{1}
\end{equation*}
$$

(the residual exact sequence of N in X).
Lemma 1. Take any $C \in \Gamma_{d}, d \geq 6$, and any $Q \in\left|\mathcal{I}_{C}(2)\right|$. Let $a_{1} \geq a_{2}$ be the splitting type of the normal sheaf $N_{C, Q}$ of C in Q. Then $a_{1} \leq 3 d-8$.

Proof. Since C is a smooth curve and $N_{C, Q}$ is the dual of the conormal sheaf of C in $Q, N_{C, Q}$ is a rank 2 vector bundle and hence by the classification of vector bundles on \mathbb{P}^{1} it has a splitting type. Let $b_{1} \geq b_{2} \geq b_{3}$ be the splitting type of the normal bundle $N_{C, \mathbb{P}^{4}}$ of C in \mathbb{P}^{4}. We have $b_{1}+b_{2}+b_{3}=5 d-2$. By [3, case $r=1$ of Lemma 4.3] we have $b_{3} \geq d+3$ and hence $b_{1} \leq 3 d-8$. The injective $\operatorname{map} N_{C, Q} \rightarrow N_{C, \mathbb{P}^{4}}$ gives $a_{1} \leq 3 d-8$.

QED
Remark 1. Obviously $\Gamma_{d} \neq \emptyset$ if and only if $d \geq 4$. The aim of this remark is to prove that $\operatorname{dim} \Gamma_{d}=3 d+14$ and to prove a more precise result for the part associated to quadric hypersurfaces with a line as their singular locus. Let $Q \subset \mathbb{P}^{4}$ be an integral quadric and let $C \subset Q$ be a smooth and non-degenerate rational curve of degree d. Let $N_{C, Q}$ be the normal sheaf of C in Q and $N_{C, \mathbb{P}^{4}}$ the normal bundle of C in \mathbb{P}^{4}. Since C is a smooth curve and by its definition $N_{C, Q}$ is the dual of the conormal sheaf of C in $Q, N_{C, Q}$ is locally free. Since C is not contained in the singular locus of $Q, N_{C, Q}$ has rank 2 . There is a natural
map $j: N_{C, Q} \rightarrow N_{C, \mathbb{P}^{4}}$, which is injective outside the finite set $C \cap \operatorname{Sing}(Q)$. Hence j is injective. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow N_{C, Q} \xrightarrow{j} N_{C, \mathbb{P}^{4}} \xrightarrow{u} \mathcal{O}_{C}(2) \tag{2}
\end{equation*}
$$

with $\Delta:=\operatorname{coker}(u)$ supported on the finite set $\operatorname{Sing}(Q) \cap C$. Set $e:=\operatorname{deg}(\Delta)$. If $\operatorname{Sing}(Q)$ is a point, o, then blowing up it we get that $e=1$ if $o \in C$ and $e=0$ if $o \notin C$. Since $Q \backslash \operatorname{Sing}(Q)$ is homogeneous, $N_{C, Q}$ is spanned. Since $p_{a}(C)=0$, we get $h^{1}\left(N_{C, Q}\right)=0$ and hence $h^{0}\left(N_{C, Q}\right)=3 d+e$. Hence the subset of all Γ parametrizing curves contained either in smooth quadrics or in quadric cones with 0 -dimensional vertex has dimension $3 d+14$. Let $\Gamma_{d, e}^{\prime}$ be the subset of all non-degenerate $C \in M_{d}$ contained in some integral quadric hypersurface with singular locus a line R with $\operatorname{deg}(R \cap C)=e$. Now assume that Q has the line R as its singular locus. We consider only the part of the Hilbert scheme of Q formed by curves C^{\prime} with $\operatorname{deg}\left(R \cap C^{\prime}\right)=e$ (it contains C by assumption). Let $a_{1} \geq a_{2}$ be the splitting type of $N_{C, Q}$. Since $a_{1} \leq 3 d-8$ (Lemma 1), we have $a_{2} \geq e+6$. Hence $h^{1}\left(N_{C, Q}(-Z)\right)=0$ and so $\operatorname{dim} H(Q, Z, d)=3 d+e-2 e$. Since R has ∞^{e} subschemes of degree e and \mathbb{P}^{4} has ∞^{11} rank 3 quadrics, we get that the part coming from quadrics with rank 3 has dimension $\leq 3 d+11$.

Lemma 2. Let $\Gamma_{d, 2}$ be the set of all non-degenerate $C \in M_{d}, d>12$, with $h^{0}\left(\mathcal{I}_{C}(2)\right)=2$ and contained in a smooth quintic hypersurface. Then $\operatorname{dim} \Gamma_{d, 2} \leq$ $d+25$.

Proof. Fix $C \in \Gamma_{d, 2}$ and let $T \subset \mathbb{P}^{4}$ be the intersection of two different elements of $\left|\mathcal{I}_{C}(2)\right|$. Let S be the irreducible component of T containing C. Since C is non-degenerate, we have $\operatorname{deg}(S) \geq 3$. Hence either $\operatorname{deg}(S)=3$ or $S=T$ and T is irreducible.
(a) Assume $\operatorname{deg}(S)=3$. Since S spans \mathbb{P}^{4}, it is a minimal degree surface, i.e. either a cone over a rational normal curve of \mathbb{P}^{3} or an embedding of the Hirzebruch surface F_{1}.
(a1) Assume that S is a cone with vertex o and let $m: U \rightarrow S$ be its minimal desingularization. U is isomorphic to the Hirzebruch surface F_{3} and m is induced by the complete linear system $\left|\mathcal{O}_{F_{3}}(h+3 f)\right|$, where h is the section of the ruling of F_{3} with negative self-intersection and f is a fiber of the ruling of F_{3}. We have $f^{2}=0, f \cdot h=1$ and $h^{2}=-3$. Let C^{\prime} be the strict transform of C in U and take positive integers a, b with $b \geq 3 a$ and $C^{\prime} \in|a h+b f|$. Since m is induced by $|h+3 f|$, we have $b=d$. Since $\omega_{F_{3}} \cong \mathcal{O}_{F_{3}}(-2 h-5 f)$, the adjunction formula gives $\omega_{C^{\prime}} \cong \mathcal{O}_{C^{\prime}}((a-2) h+(d-5) f)$. Since C is smooth, we have $C^{\prime} \cong C$ and in particular $p_{a}\left(C^{\prime}\right)=0$. Hence $-2=(a h+d f) \cdot((a-2) h+(d-5) f)=$ $(a-2)(d-3 a)+a(d-5)$. Hence $a=1$. Since $d \geq 7$, the curve $C=f\left(C^{\prime}\right)$ has a singular point at o, a contradiction.
(a2) Assume $S \cong F_{1}$ and take integers a, b with $b \geq a>0$ and $C \in \mid a h+$ $b f \mid$, where h is the section of the ruling of F_{1} with negative intersection and f is a ruling of F_{1}. We have $\left|\mathcal{O}_{F_{1}}(1)\right|=\left|\mathcal{O}_{F_{1}}(h+2 f)\right|$ and $\omega_{F_{1}} \cong \mathcal{O}_{F_{1}}(-2 h-3 f)$ and so $\omega_{C} \cong \mathcal{O}_{C}((a-2) h+(b-3) f)$. Hence $d=a+b$ and $-2=(a-2)(b-a)+a(b-3)$. Hence $a=1$ and $b=d-1$. Since $d-1>5$, every quintic hypersurface W containing C contains S. If W is smooth, then its Picard group is generated by $\mathcal{O}_{W}(1)$, by the Lefschetz theorem and so it contains only surfaces whose degree is divisible by 5 . Hence $S \nsubseteq W$, a contradiction.
(b) Assume $S=T$, i.e. assume that T is irreducible. For a general hyperplane $H \subset \mathbb{P}^{4}, T \cap H$ is an integral curve with $p_{a}(T \cap H)=1$ and hence it has at most one singular point. Hence the one-dimensional part of $\operatorname{Sing}(T)$ is either empty or a line.
(b1) Assume that $\operatorname{Sing}(T)$ contains a line L. A general hyperplane section of T is an irreducible and singular curve with arithmetic genus 1 . Hence if T is a cone with vertex o, then T is the image of a minimal degree cone T^{\prime} of \mathbb{P}^{5} by a birational, but not isomorphic linear projection. If T is not a cone, then it is the image of a minimal degree smooth surface F of \mathbb{P}^{5} by a birational, but not isomorphic linear projection ([8, Theorem 19.5]).
(b1.1) Assume that T is the image of a minimal degree non-degenerate cone $T^{\prime} \subset \mathbb{P}^{5}$ and let $u: U \rightarrow T^{\prime}$ be its minimal desingularization. We have $U \cong F_{4}$ and u is induced by the complete linear system $\left|\mathcal{O}_{F_{4}}(h+4 f)\right|$. Let $D \subset U$ be the strict transform of the curve, whose image in \mathbb{P}^{4} is C. Write $D \in|a h+b f|$ with $b \geq 4 a>0$. As in step (a1) we first get $b=d$ and then $a=1$. We get that $u(D)$ is singular and hence C is singular, a contradiction.
(b1.2) Assume that T is the image of a minimal degree smooth surface F of \mathbb{P}^{5} and let $D \subset F$ be the curve with image C. Since C is smooth, D is smooth. There is $e \in\{0,2\}$ such that $F \cong F_{e}$ embedded by the complete linear system $|h+(e+1) f|$. Take positive integers a, b such that $D \in\left|\mathcal{O}_{F_{e}}(a h+b f)\right|$ and $b \geq e a$. As in step (a) we first get $a=1$ and then $b=d-1$. If $e=$ 0 we get that every quintic hypersurface containing D contains F and hence every quintic hypersurface containing C contains T, contradicting the Lefschetz theorem as in step (a2). Now assume $e=2 . F_{2}$ has no smooth plane conic and its lines are either the elements of $|f|$ or h. Since $h \cdot(h+(d-1) f)=d-3$, we have $\operatorname{deg}(L \cap C)=d-3$. Since 3 is a prime integer, the linear projection $\ell_{L}: \mathbb{P}^{4} \backslash L \rightarrow \mathbb{P}^{2}$ maps C birationally onto an integral plane cubic. Hence C is contained in the intersection of T with a cubic hypersurface, contradicting the assumption $d>12$ by Bezout.
(b2) Assume that $\operatorname{Sing}(T)$ is finite. Since T is a complete intersection, it is a locally complete intersection. Hence T is a normal Del Pezzo surface of degree 4. Let $u: V \rightarrow T$ be a minimal desingularization and D the strict
transform of C in V. Since D is smooth and rational, the adjunction formula gives $-2=\omega_{V} \cdot D+D^{2} . V$ is rational and it is classified ([6]). Since V is a weak del Pezzo, u is induced by the complete linear system $\left|\omega_{V}^{\vee}\right|$. Hence $d=$ $\mathcal{O}_{T}(C) \cdot \mathcal{O}_{T}(1)=u^{*}(C) \cdot \omega_{C}^{\vee}$. Write $u^{*}(C)=D+\sum c_{i} D_{i}$ with $c_{i} \geq 0$ and D_{i} contracted by u. Since ω_{V}^{\vee} is spanned ($[6, I V, \S 3$, Théorème 1]), we get $\omega_{V}^{\vee} \cdot D_{i}=0$. Hence $\omega_{V} \cdot D=-d$. Hence $D^{2}=d-2$. Hence $h^{0}\left(\mathcal{O}_{D}(D)\right)=d-1$. Thus the set of all $C \subset T$ depends on $d-1$ parameters. Since the Grassmannian $G(2,15)$ of all lines of $\left|\mathcal{O}_{\mathbb{P}^{4}}(2)\right|$ has dimension 26 , this part of $\Gamma_{d, 2}$ has dimension at most $d+25$.

Lemma 3. There is no non-degenerate $C \in M_{d}$, $d>12$, with $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 3$ and contained in a smooth quintic hypersurface.

Proof. Take a non-degenerate $C \in M_{d}, d>12$, with $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 3$. Let T be the intersection of two general elements of $\left|\mathcal{I}_{C}(2)\right|$ and let S be the irreducible component of T containing C. Since C is non-degenerate, we have $\operatorname{deg}(S) \geq 3$. Hence either $\operatorname{deg}(S)=3$ or $S=T$ and T is irreducible. We exclude the case $S=T$, because $d>8$ and $h^{0}\left(\mathcal{I}_{T}(2)\right)=2$. We exclude the case $\operatorname{deg}(S)=3$ as in step (a) of the proof of Lemma 2.

Lemma 4. Let $\Delta(d)$ be the set of all $C \in \Gamma_{d}$ for which there exists a line $L \subset \mathbb{P}^{4}$ with $\operatorname{deg}(L \cap C) \geq 5$. Then $\operatorname{dim} \Delta(d) \leq 12+3 d$.

Proof. We take $C \in \Gamma_{d}$ and a line $L \subset \mathbb{P}^{4}$ such that $\operatorname{deg}(L \cap C) \geq 5$. Take $Q \in\left|\mathcal{I}_{C}(2)\right|$. Bezout implies $L \subset Q$. If Q has a line as its singular locus, then we use Remark 1. Hence we may assume that either Q is smooth or it is a cone with vertex a single point, o. We write $e=1$ if Q is singular and $o \in C$ and $e=0$ otherwise. Take $Z \subseteq C \cap L$ with $\operatorname{deg}(Z)=5$. Let $a_{1} \geq a_{2}$ be the splitting type of $N_{C, Q}$. Since $a_{1} \leq 3 d-8$ (Lemma 1), we have $a_{2} \geq 4$. Hence $h^{1}\left(N_{C, Q}(-Z)\right)=0$. Use that L has ∞^{5} subschemes of degree 5 and that Q has ∞^{3} lines. QED

2 Proof of Theorem 1

Fix any non-degenerate $C \in M_{d}$ and let $H \subset \mathbb{P}^{4}$ be any hyperplane. We often use the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{C}(t-1) \rightarrow \mathcal{I}_{C}(t) \rightarrow \mathcal{I}_{C \cap H, H}(t) \rightarrow 0 \tag{3}
\end{equation*}
$$

Lemma 5. Let $Z \subset \mathbb{P}^{3}$ be a degree d curvilinear scheme spanning \mathbb{P}^{3}. Assume $d \leq 15$ and $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Z}(5)\right)>0$. Then either there is a line $L \subset \mathbb{P}^{3}$ with $\operatorname{deg}(L \cap Z) \geq 7$ or there is a conic D with $\operatorname{deg}(D \cap C) \geq 12$.

Proof. Since Z spans \mathbb{P}^{3}, we have $\operatorname{deg}(Z \cap N) \leq 14$ for every plane N. Assume for the moment the existence of a plane $N \subset \mathbb{P}^{3}$ such that $h^{1}\left(N, \mathcal{I}_{Z \cap N, N}(5)\right)>0$, then N contains either a line $L \subset \mathbb{P}^{3}$ with $\operatorname{deg}(L \cap Z) \geq 7$ or a conic D with $\operatorname{deg}(D \cap C) \geq 12$ ([7, Corollaire 2]). Now assume $h^{1}\left(N, \mathcal{I}_{Z \cap C, N}(t)\right)=0$ for all planes $N \subset \mathbb{P}^{3}$. We may assume $h^{1}\left(\mathcal{I}_{Z^{\prime}}(5)\right)=0$ for all $Z^{\prime} \subsetneq Z$ (taking if necessary a smaller non-degenerate Z), because $h^{1}\left(N, \mathcal{I}_{Z \cap C, N}(t)\right)=0$ for all planes N. Set $Z_{0}:=Z$. Let $N_{1} \subset \mathbb{P}^{3}$ be a plane such that $e_{1}:=\operatorname{deg}\left(Z_{0} \cap N_{1}\right)$ is maximal. Set $Z_{1}:=\operatorname{Res}_{N_{1}}\left(Z_{0}\right)$. Define recursively for each integer $i \geq 2$ the plane $N_{i} \subset \mathbb{P}^{3}$, the integer e_{i} and the scheme Z_{i} in the following way. Let N_{i} be any plane such that $e_{i}:=\operatorname{deg}\left(Z_{i-1} \cap N_{i}\right)$ is maximal. Set $Z_{i}:=\operatorname{Res}_{N_{i}}\left(Z_{i-1}\right)$. We have $e_{i} \leq e_{i-1}$ for all $i \geq 2$. For each $i \geq 1$ we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{Z_{i}}(5-i) \rightarrow \mathcal{I}_{Z_{i-1}}(6-i) \rightarrow \mathcal{I}_{Z_{i-1} \cap N_{i}, N_{i}}(6-i) \rightarrow 0 \tag{4}
\end{equation*}
$$

If $e_{i} \leq 2$, then $Z_{i-1} \subset N_{i}$ and hence $Z_{i}=\emptyset$. Since $\operatorname{deg}(Z) \leq 15$, we get $\operatorname{deg}\left(Z_{6}\right) \leq 0$, i.e. $Z_{6}=\emptyset$. Since $h^{1}\left(N_{6}, \mathcal{O}_{N_{6}}\right)=0$, there is an integer i such that $1 \leq i \leq 5$ and $h^{1}\left(\mathcal{I}_{Z_{i-1} \cap N_{i}, N_{i}}(6-i)\right)>0$. We call f such a minimal integer. Since $h^{1}\left(N, \mathcal{I}_{Z \cap C, N}(5)\right)=0$ for all planes N, we have $f \geq 2$. Hence $f \in\{2,3,4,5\}$. We have $e_{f} \geq 8-f$. Since the sequence $\left\{e_{i}\right\}$ is non-increasing, we get $f(8-f) \leq 15$. Since $f \geq 2$, we get that $f \in\{2,3,5\}$.
(a) Assume $f=3$. Since $e_{1} \geq e_{2} \geq e_{3} \geq 5$, we get $e_{1}=e_{2}=e_{3}=5$. Since $e_{3} \leq 7$ and $h^{1}\left(N_{3}, \mathcal{I}_{Z_{2} \cap N_{3}, N_{3}}(3)\right)>0$, there is a line $R \subset N_{3}$ with $\operatorname{deg}\left(R \cap Z_{2}\right) \geq$ 5. Taking a plane F containing R and with maximal $\operatorname{deg}\left(M \cap Z_{1}\right)$ we get $e_{2} \geq 6$, a contradiction.
(b) Assume $f=2$. We have $e_{2} \geq 6$. Since $e_{1} \geq e_{2}$ and $e_{1}+e_{2} \leq 15$, we have $e_{2} \leq 7$. Hence there is a line $R \subset N_{2}$ such that $\operatorname{deg}\left(R \cap Z_{1}\right) \geq 6$. Assuming that L does not exists, then $\operatorname{deg}(R \cap Z)=6$. Let $M_{1} \subset \mathbb{P}^{3}$ be a plane containing R and with maximal $g_{1}:=\operatorname{deg}\left(M_{1} \cap Z\right)$ among the planes containing R. Since Z spans \mathbb{P}^{3}, we have $g_{1} \geq 7$. Set $W_{1}:=\operatorname{Res}_{M_{1}}(Z)$. By assumption $h^{1}\left(M_{1}, \mathcal{I}_{Z \cap M_{1}, M_{1}}(5)\right)=0$. Hence the residual sequence of $M_{1} \subset$ \mathbb{P}^{3} gives $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{W_{1}}(4)\right)>0$. Let $M_{2} \subset \mathbb{P}^{3}$ be a plane with maximal $g_{2}:=$ $\operatorname{deg}\left(W_{1} \cap M_{2}\right)$. Set $W_{2}:=\operatorname{Res}_{M_{2}}\left(W_{1}\right)$. Let $M_{3} \subset \mathbb{P}^{3}$ be a plane with maximal $g_{3}:=\operatorname{deg}\left(W_{2} \cap M_{3}\right)$. Set $W_{3}:=\operatorname{Res}_{M_{3}}\left(W_{2}\right)$. In this way we get a non-decreasing sequence $\left\{g_{i}\right\}_{i \geq 2}$ with $\sum_{i \geq 2} g_{i}=d-g_{1} \leq 8$. We get an integer $h \in\{2,3\}$ with $h^{1}\left(M_{h}, \mathcal{I}_{M_{h} \cap W_{h-1}, M_{h}}(6-\bar{h})\right)>0$ and $g_{h} \geq 8-h$. As in step (a) we exclude the case $h=3$. Hence $h=2$. As in the first part of step (b) we get a line $D \subset \mathbb{P}^{3}$ such that $\operatorname{deg}\left(D \cap W_{1}\right)=6$.
(b1) Assume $D \cap R=\emptyset$. Let $T \subset \mathbb{P}^{3}$ be a general quadric surface containing $D \cup R$. Since $\mathcal{I}_{D \cup R}(2)$ is spanned and Z is curvilinear, T is smooth and $T \cap Z=$ $(D \cup R) \cap Z$ (as schemes). Hence $h^{1}\left(T, \mathcal{I}_{Z \cap T, T}(5)\right)=0$. Since $\operatorname{deg}\left(\operatorname{Res}_{T}(Z)\right)=$ $d-12 \leq 3$, we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{T}(Z)}(3)\right)=0$. The residual sequence of T gives a
contradiction.
(b2) Assume $D \cap R \neq \emptyset$ and $D \neq R$. Let N be the plane spanned by $D \cup R$. Since $\operatorname{deg}\left(\operatorname{Res}_{N}(Z)\right) \leq d-11$, we have $h^{1}\left(N, \mathcal{I}_{\operatorname{Res}_{N}(Z), N}(4)\right)=0$. The residual sequence of N gives $h^{1}\left(N, \mathcal{I}_{Z \cap N, N}(5)\right)>0$, contradicting one of our assumptions.
(b3) Assume $D=R$. Let $H, M \subset \mathbb{P}^{3}$ be general planes containing R. Since $\operatorname{Res}_{H \cup M}(Z)=\operatorname{Res}_{H}\left(\operatorname{Res}_{M}(Z)\right)$, we have $\operatorname{deg}\left(\operatorname{Res}_{H \cup R}(Z)\right) \leq d-12 \leq 3$. Hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H \cup M}(Z)}(3)\right)=0$. The residual sequence of $H \cup M$ gives $h^{1}(H \cup$ $\left.M, \mathcal{I}_{Z \cap(H \cup M), H \cup M}(5)\right)>0$. The minimality condition of Z gives $Z \cap(H \cup R)=$ Z. Hence $d=12$. For any $q \in Z_{\text {red }}$ let Z_{q} be the connected component of Z containing q. Since $\operatorname{Res}_{H}(Z)$ has degree 6 and it is supported by D, we have $2 \operatorname{deg}\left(\operatorname{Res}_{H}\left(Z_{q}\right)\right)=\operatorname{deg}\left(Z_{q}\right)$ for all q. In particular we may take q with $Z_{q} \nsubseteq R$. Since Z is curvilinear, we may find a plane $N \supset R$ with $\operatorname{deg}\left(N \cap Z_{q}\right)>$ $\operatorname{deg}\left(R \cap Z_{q}\right)$. Since $\operatorname{deg}\left(\operatorname{Res}_{N}(Z)\right) \leq 12-7$, we have $h^{1}\left(N, \mathcal{I}_{\operatorname{Res}_{N}(Z), N}(4)\right)=0$. The residual sequence of N gives $h^{1}\left(N, \mathcal{I}_{Z \cap N, N}(5)\right)>0$, contradicting one of our assumptions.
(c) Assume $f=5$. Since $\operatorname{deg}\left(Z_{t-1}\right) \leq 4$, we get the existence of a line $R \subset N_{5}$ such that $\operatorname{deg}\left(R \cap Z_{4}\right) \geq 3$. Since $\operatorname{deg}\left(R \cap Z_{3}\right) \geq 3$, the maximality property of N_{4} implies $e_{4} \geq 4$. Hence $15 \geq 4 \cdot 4+3$, a contradiction. QQD

Lemma 6. Fix a non-degenerate $C \in M_{d}$ contained in some $W \in \mathcal{W}$ and assume the existence of a conic $D \subset \mathbb{P}^{4}$ with $\operatorname{deg}(D \cap C) \geq 12$ and that $\operatorname{deg}(L \cap$ $C) \leq 6$ for each line $L \subseteq D_{\text {red }}$. Then D is smooth.

Proof. Take $W \in \mathcal{W}$ containing C. Let N be the plane spanned by D. First assume that $D \subset N$ is a double line. Set $L:=D_{\text {red }}$. Since $\operatorname{deg}(L \cap C) \leq 6$ by assumption, we have $\operatorname{deg}(L \cap C)=6$. Bezout implies $L \subset W$. Since $W \in \mathcal{W}$, we have $N_{L, W} \cong \mathcal{O}_{L}(-1) \oplus \mathcal{O}_{L}(-1)$. Bezout implies that $D \subseteq W \cap N$. Fix a general hyperplane $H \supset N$. Since W is smooth $W \cap H$ has isolated singularities. We have an injective map $N_{L, H \cap W} \rightarrow N_{L, W}$, contradicting the inclusion $D \subset H \cap W$. Now assume that $D=R \cup L$ with R, L lines and $R \neq L$. Since $\operatorname{deg}(L \cap C) \leq 6$ and $\operatorname{deg}(R \cap C) \leq 6$ by assumption, we have $\operatorname{deg}(L \cap C)=\operatorname{deg}(R \cap C) \leq 6$. Hence $L \cup R \subset W$, contradicting the fact that any two lines of W are disjoint. QED $^{Q E D}$

Lemma 7. Take a non-degenerate $C \in M_{d}$ contained in some $W \in \mathcal{W}$. Assume $h^{1}\left(\mathcal{I}_{C}(5)\right)>0$ and that there is either a line L with $\operatorname{deg}(L \cap C) \geq 7$ or a conic D with $\operatorname{deg}(D \cap C) \geq 12$. Then $h^{1}\left(\mathcal{I}_{C}(4)\right)>h^{1}\left(\mathcal{I}_{C}(5)\right)$.

Proof. Let S_{1} be the set of all lines L with $\operatorname{deg}(L \cap C) \geq 7$ and let S_{2} be the set of all conics D such that $\operatorname{deg}(D \cap C) \geq 10$. Assume for the moment that the sets S_{1} and S_{2} are finite. Let $N \subset \mathbb{P}^{4}$ be a general plane and let $M \subset \mathbb{P}^{4}$ be any hyperplane containing N. Set $V:=H^{0}\left(\mathcal{I}_{N}(1)\right)$. We have $\operatorname{dim}(V)=2$. Since S_{1}
is finite and N is general, then $N \cap L=\emptyset$ for all $L \in S_{1}$ and hence $L \nsubseteq M$ for all $L \in S_{2}$. Since S_{2} is finite, then N contains a unique point of the plane spanned by any $D \in S_{2}$ and hence $D \nsubseteq M$. Lemma 5 gives $\left.h^{1}\left(M, \mathcal{I}_{C \cap M, M}(5)\right)\right)=0$. Hence the bilinear map $H^{0}\left(\mathcal{I}_{C}(5)\right)^{\vee} \times V \rightarrow H^{0}\left(\mathcal{I}_{C}(4)\right)^{\vee}$ is non-degenerate in the second variable. By the bilinear lemma we have $h^{1}\left(\mathcal{I}_{C}(4)\right) \geq h^{1}\left(\mathcal{I}_{C}(5)\right)-1+\operatorname{dim} V$.

Now assume that S_{1} is infinite and call Δ an irreducible positive dimensional family of its elements. Take a general $(R, L) \in \Delta$. We have $L \cap R=\emptyset$, unless either there is $o \in \mathbb{P}^{4}$ with $o \in J$ for all $J \in \Delta$ or there is a plane N with $J \subset N$ for all $J \in \Delta$. The second case is not possible, because $C \nsubseteq N$. The first case is excluded, because the linear projection from o would map C onto a non-degenerate curve of \mathbb{P}^{3} with degree $\leq(d-1) / 6<3$.

Now assume that S_{2} is infinite. Let S_{2}^{\prime} be the set of all $D \in S_{2}$ with D a smooth conic. As in the proof just given we find that the set of all lines R with $\operatorname{deg}(R \cap C)=6$ and supporting a component of some $D \in S_{2}$ is finite. Hence it is sufficient to prove that S_{2}^{\prime} is finite. For each $D \in S_{2}^{\prime}$ let $\langle D\rangle$ be the plane spanned by D. If $D_{1} \neq D_{2}$, no hyperplane contains $D_{1} \cup D_{2}$ by Bezout and hence $\left\langle D_{1}\right\rangle \cap\left\langle D_{2}\right\rangle=\emptyset$. Since any two planes of \mathbb{P}^{4} meet, we have $\sharp\left(S_{2}^{\prime}\right) \leq 1$. QQED

Proof of Theorem 1: Fix $C \in M_{d}, d \leq 15$.
By Remark 1 we may assume $h^{1}\left(\mathcal{I}_{C}(5)\right) \geq 2 d-13$.
(a) Assume $h^{0}\left(\mathcal{I}_{C}(2)\right)=1$, say $\{Q\}=\left|\mathcal{I}_{C}(2)\right|$. Fix a general hyperplane $H \subset \mathbb{P}^{4}$.
(a1) Assume that there is no line $L \subset \mathbb{P}^{4}$ with $\operatorname{deg}(L \cap C) \geq 7$ and no conic D with $\operatorname{deg}(D \cap C) \geq 12$. Lemma 5 gives $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(5)\right)=0$ for every hyperplane $H \subset \mathbb{P}^{4}$. Hence the bilinear lemma gives $h^{1}\left(\mathcal{I}_{C}(4)\right) \geq h^{1}\left(\mathcal{I}_{C}(5)\right)+4 \geq$ $2 d-9$. Since $C \cap H$ is in uniform position, we have $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(4)\right) \leq d-13 \leq 2$ ([10, Lemma 3.9]). By (3) we have $h^{1}\left(\mathcal{I}_{C}(3)\right) \geq 2 d-11$. Hence $h^{0}\left(\mathcal{I}_{C}(3)\right) \geq$ $35-3 d-1+2 d-11 \geq 8$. Since $h^{0}\left(\mathcal{I}_{C}(2)\right)=1$, the general $M \in\left|\mathcal{I}_{C}(3)\right|$ has not Q as a component. Set $F:=Q \cap M$. First assume that F is irreducible. The curve $D:=F \cap H$ is a complete intersection curve with degree 6 and arithmetic genus 4. In particular $h^{1}\left(H, \mathcal{I}_{C, H}(3)\right)=0$. Thus $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(3)\right)=$ $h^{1}\left(D, \mathcal{I}_{C \cap H, D}(3)\right)$. We have $h^{1}\left(D, \mathcal{I}_{C \cap H, D}(3)\right) \leq 1$, because $\operatorname{deg}\left(\mathcal{I}_{C \cap H, D}(3)\right)=$ $18-d \geq 3$. Hence $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(3)\right) \leq 1$. Since $h^{1}\left(\mathcal{I}_{C}(2)\right) \geq 2 d-12$, we have $h^{0}\left(\mathcal{I}_{C}(2)\right)=15-2 d-1+h^{1}\left(\mathcal{I}_{C}(2)\right) \geq 2$, contradicting the assumption of step (a).

Now assume that F is not irreducible. Call T the irreducible component of F containing $C . T$ is a non-degenerate surface and hence $\operatorname{deg}(T) \geq 3$. Since $h^{0}\left(\mathcal{I}_{C}(2)\right)=1$, we have $h^{0}\left(\mathcal{I}_{T}(2)\right)=1$ and hence neither $\operatorname{deg}(T)=3$ nor T is the complete intersection of two quadrics.

Assume $\operatorname{deg}(T)=4$. Since T is not a complete intersection, a general hyperplane section of T is a smooth rational curve of degree 4 . Since $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(t)\right)=$

0 for all $t \geq 2$ and $h^{0}\left(\mathcal{O}_{C \cap H}(t)\right)=4 t+1, t=3$, 4, we get $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(3)\right) \leq$ $d-13$ and $h^{1}\left(\mathcal{I}_{C \cap H, H}(4)\right)=0$. We get $h^{1}\left(\mathcal{I}_{C}(3)\right) \geq h^{1}\left(\mathcal{I}_{C}(4)\right)$ and $h^{1}\left(\mathcal{I}_{C}(2)\right) \geq$ $h^{1}\left(\mathcal{I}_{C}(3)\right)+13-d \geq d+4$. Hence $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 18-d$, a contradiction.

Now assume $\operatorname{deg}(T)=5$. In this case T is linked to a plane by the complete intersection T and hence $T \cap H$ is linked to a line by a complete intersection of a quadric and a cubic. Hence $T \cap H$ is arithmetically Cohen-Macaulay with degree 5 and arithmetic genus 2 ([18, Theorem 1.1 (a)], [22], [21, Proposition 3.1]). Thus $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(4)\right)=h^{1}\left(T \cap H, \mathcal{I}_{C \cap H, H}(4)\right)=0$ and $h^{1}\left(H, \mathcal{I}_{C \cap H, H}(3)\right) \leq 2$. We get $h^{1}\left(\mathcal{I}_{C}(2)\right) \leq 2 d-11$ and hence $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 3$, a contradiction.
(a2) Now assume that there is a line $L \subset \mathbb{P}^{4}$ with $\operatorname{deg}(L \cap C) \geq 7$. By Lemma 4 we may assume $h^{1}\left(\mathcal{I}_{C}(5)\right) \geq 2 d-11$. Lemma 7 gives $h^{1}\left(\mathcal{I}_{C}(4)\right) \geq$ $2 d-10$ and hence $h^{1}\left(\mathcal{I}_{C}(3)\right) \geq 2 d-12 \geq 7$. We get $h^{0}\left(\mathcal{I}_{C}(3)\right)>5$. We repeat the proof of step (a1) with a loss of 1 ; for instance, if $\operatorname{deg}(T)=4$ (resp. $\operatorname{deg}(T)=5)$ we get $h^{1}\left(\mathcal{I}_{C}(2)\right) \geq d+3$ and $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 17-d\left(\right.$ resp. $h^{1}\left(\mathcal{I}_{C}(2)\right) \geq 2 d-12$ and hence $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 2$), a contradiction.
(a3) Assume the existence of a conic D with $\operatorname{deg}(D \cap C) \geq 12$, but that there is no line $L \subset \mathbb{P}^{4}$ with $\operatorname{deg}(L \cap C) \geq 7$. By Lemma 6 we may assume that D is smooth.
(a3.1) Assume for moment $h^{1}\left(\mathcal{I}_{C}(5)\right) \geq 2 d-12$. Lemma 7 gives $h^{1}\left(\mathcal{I}_{C}(4)\right) \geq$ $2 d-11$. The case $t=4$ of (3) and [10, Lemma 3.9] give $h^{1}\left(\mathcal{I}_{C}(3)\right) \geq 2 d-13$. Hence $h^{0}\left(\mathcal{I}_{C}(3)\right) \geq 35-14-d>5$. As in step (a1) we first get $h^{1}\left(\mathcal{I}_{C}(3)\right) \geq$ $h^{1}\left(\mathcal{I}_{C}(4)\right)$ and then $h^{1}\left(\mathcal{I}_{C}(2)\right) \geq h^{1}\left(\mathcal{I}_{C}(3)\right)-1$. Thus $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 2$, contradicting our assumption.
(a3.2) Now we justify the assumption made in step (a3.1). If Q is a quadric with vertex a line, then we may assume $h^{1}\left(\mathcal{I}_{C}(5)\right) \geq 2 d-10$ by Remark 1 . If Q is a quadric cone with vertex a point o and $o \notin C$, then we may assume $h^{1}\left(\mathcal{I}_{C}(3)\right) \geq 2 d-12$ by Remark 1 . Now assume that C is a contained in a quadric cone Q with vertex a point $o \in C$. It is sufficient to prove that for each irreducible component Δ of the set of all non-degenerate $Y \in M_{d}$ with $Y \subset Q$ and $o \in Y$ a general $Y \in \Delta$ has no conic D with $\operatorname{deg}(D \cap Y) \geq 12$ or that if $C \in \Delta$, then it may be deformed to $Y \in \Delta$ with no offending conic. Bezout gives $D \subset Q$. We need to distinguish the case $o \in D$ and $o \notin D$. First assume $o \in D$. Fix $Z \subseteq D \cap C$ with $\operatorname{deg}(Z)=12$ and $o \in Z_{\text {red }}$. Since D has ∞^{12} zero-dimensional schemes with degree 12 and Q has ∞^{5} conics through o, it is sufficient to prove that $h^{0}\left(N_{C, Q}(-Z)\right)<3 d+1-5-12$. We have $h^{0}\left(N_{C, Q}(-Z)\right) \leq 3 d+1-12-7$ by Lemma 1. If $o \notin D$ we use the same proof, just using that Q has ∞^{6} conics.

The case of a smooth Q is similar.
(b) Now assume $h^{0}\left(\mathcal{I}_{C}(2)\right) \geq 2$. By Lemmas 2 and $3 C$ is contained in an integral complete intersection of 2 quadrics and we may assume that
$h^{1}\left(\mathcal{I}_{C}(5)\right) \geq 4 d-24$. Hence as in step $($ a $)$ we get $h^{1}\left(\mathcal{I}_{C}(3)\right) \geq 4 d-24, h^{1}\left(\mathcal{I}_{C}(2)\right) \geq$ $3 d-13$ and hence $h^{0}\left(\mathcal{I}_{C}(2)\right)>2$, contradicting Lemma 3 . QED

3 Proof of Proposition 1

Remark 2. Fix an integer $d \geq 13$ and $C \in M_{d}$ contained in a hyperplane $H \subset \mathbb{P}^{4}$. Since $h^{0}\left(H, \mathcal{I}_{C}(5)\right)=56$, we have $h^{1}\left(\mathcal{I}_{C}(5)\right) \geq 5(d-11)>0$.

Proof of Proposition 1: Take $C \in M_{d}$ contained in a hyperplane $H \subset \mathbb{P}^{4}$ and contained in some $W \in \mathcal{W}$. Let $S \subset H$ be a degree α hypersurface. Since α is the minimal degree of a surface of H containing C and C is irreducible, S is irreducible. Since $C \subset W \cap H$, we have $\alpha \leq 5$.
(a) Assume $\alpha=2$. If S is smooth, then up to a change of the ruling of S we may assume $C \in\left|\mathcal{O}_{S}(1, d-1)\right|$. Since $d-1>5, W \supset S$, contradicting the Lefschetz theorem which implies that all surfaces contained in W have degree divisible by 5 . If S is a cone, then any smooth curve on it is projectively normal ([11, Ex. V.2.9]), contradicting Remark 2.
(b) Assume $\alpha=3$. Bezout implies $h^{0}\left(H, \mathcal{I}_{C}(3)\right)=1$. By the Lefschetz theorem we have $S \nsubseteq W$. Since $C \subseteq S \cap W$, we get $d \leq 15$. The case $d=15$ is excluded, because the $\omega_{S \cap W} \cong \mathcal{O}_{S \cap W}(4)$ and so $S \cap W \neq C$. The case $d=14$ is excluded, because it would give that the complete intersection $S \cap W$ would link C to a line and hence it is arithmetically normal ([18], [21], [22]), contradicting Remark 2. Now assume $d=13$. In this case $S \cap W$ links C to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically Cohen-Macaulay, contradicting Remark 2. If D is a disjoint union of 2 lines, then $p_{a}(D)=-1$, contradicting [21, Proposition 3.1]. Now assume that D is a double structure on a line L, but it is not a conic, i.e. that D is not a conic. Since $S \cap W$ links $C \cup L$ to $L, C \cup L$, we have $p_{a}(C \cup L)-p_{a}(L)=2(11-1)([21$, Proposition 3.1]), i.e. $p_{a}(C \cup L)=20$, and hence $\operatorname{deg}(C \cap L)=21$, contradicting the inequality $d<21$.
(c) Assume $\alpha=4$. Since $C \subseteq W \cap S$, we have $d \leq 20$. We exclude the cases $d=20$ and $d=19$ as in step (b). Now assume $d=18 . S \cap W$ links C to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically Cohen-Macaulay, contradicting Remark 2. Now assume that D is a double structure on a line L, but it is not a conic, i.e. that D is not a conic. Since $S \cap W$ links $C \cup L$ to $L, C \cup L$, we have $p_{a}(C \cup L)-p_{a}(L)=(17-1) 5 / 2$ ([21, Proposition 3.1]) and hence $\operatorname{deg}(C \cap L)>40$, a contradiction. QED

References

[1] E. Ballico: Curves contained in a smooth hyperplane section of a very general quintic 3-fold, Bull. Acad. Sinica (New Series), 11 (2016), n. 2, pp. 393-399.
[2] E. Ballico, C. Fontanari: Finiteness of rational curves of degree 12 on a general quintic threefold, arXiv: 1607:07994v2.
[3] A. Bernardi: Normal bundle of rational curves and Waring decomposition, J. Algebra, 400 (2014), 123-141.
[4] E. Cotterill: Rational curves of degree 11 on a general quintic 3-fold, Quart. J. Math., 63 (2012), 539-568.
[5] D'Almeida: Courbes rationnelles de degré 11 sur une hypersurface quintique générale de \mathbb{P}^{4}, Bull. Sci. Math., 136 (2012), 899-903.
[6] M. Demazure: Surfaces de Del Pezzo, I, II, III, IV, V, Séminaire sur les Singularités des Surfaces, Palaiseau, France 1976-1977, Lect. Notes in Mathematics 777, Springer, Berlin, 1980.
[7] Ph. Ellia, Ch. Peskine: Groupes de points de \mathbf{P}^{2} : caractère et position uniforme, in: Algebraic geometry (L’Aquila, 1988), 111-116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
[8] T. Fujita: Classification Theories of Polarized Varieties, Cambridge University Press, Cambridge, 1990.
[9] L. Gruson, R. Lazarsfeld , Ch. Peskine: On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math., 72 (1983), 491-506.
[10] J. Harris, with the collaboration of D. Eisenbud: Curves in Projective Space, Les Presses de l'Université de Montréal, Montréal, 1982.
[11] R. Hartshorne Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[12] T. Johnsen, S. Kleiman: Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra, 24 (1996), 2721-2753.
[13] T. Johnsen, S. Kleiman: Toward Clemens' Conjecture in Degrees between 10 and 24, Serdica Math. J., 23 (1997), 131-142.
[14] T. Johnsen, A. L. Knutsen: Rational curves in Calabi-Yau threefolds, Special issue in honor of Steven L. Kleiman. Comm. Algebra, 31 (2003), n. 8, 3917-3953.
[15] S. Katz: On the finiteness of rational curves on quintic threefolds, Compositio Math., 60 (1986), n. 2, 151-162.
[16] A. L. Knutsen: On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds, Trans. Amer. Math. Soc., 384 (2012), n. 10, 5243-5284.
[17] A. L. Knutsen: Smooth, isolated curves in families of Calabi-Yau threefolds in homogeneous spaces, J. Korean Math. Soc., 50 (2013), n. 5, 1033-1050.
[18] J. Migliore: Introduction to liaison theory and deficiency modules, Progress in Math. 165, Birkhäuser, Boston, 1998.
[19] P. G. J. Nissse: Clemens' conjecture for octic and nonic curves, Indag. Math., 6 (1995), 213-221.
[20] K. Oguiso: Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math., 452 (1994), 153-161.
[21] C. Peskine, L. Szpiro: Liaison des variétés algébriques. I, Invent. Math., 26 (1974), 271-302.
[22] P. RaO: Liaison among curves in \mathbb{P}^{3}, Invent. Math., 50 (1979), 205-217.
[23] G. Sacchiero: Normal bundle of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 26 (1981), 33-40.
[24] C. Voisin: On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geometry, 44 (1996), n. 1, 200-213.
[25] C. Voisin: On some problems of Kobayashi and Lang, in Current developments in Mathematics, 2003, pp. 53-125, Int. Press, Somerville, MA, 2003.

[^0]: ${ }^{\mathrm{i}}$ This work is partially supported by MIUR and GNSAGA (INDAM)
 http://siba-ese.unisalento.it/ © 2016 Università del Salento

