Non-existence of smooth rational curves of degree d = 13, 14, 15 contained in a general quintic hypersurface of \mathbb{P}^4 and in some quadric hypersurface

Edoardo Ballicoⁱ

Department of Mathematics, University of Trento ballico@science.unitn.it

Received: 28.8.2016; accepted: 17.10.2016.

Abstract. Let $W \subset \mathbb{P}^4$ be a general quintic hypersurface. We prove that W contains no smooth rational curve $C \subset \mathbb{P}^4$ with degree $d \in \{13, 14, 15\}, h^0(\mathcal{I}_C(1)) = 0$ and $h^0(\mathcal{I}_C(2)) > 0$.

Keywords: General quintic 3-fold, rational curve, Clemens' conjecture

MSC 2000 classification: primary 14J32, secondary 14M10, 14H50

Introduction

For any positive integer d let M_d be the set of all smooth and rational curves $C \subset \mathbb{P}^4$ with $\deg(C) = d$. Let Γ_d be the set of all non-degenerate $C \in M_d$ with $h^0(\mathcal{I}_C(2)) > 0$. Clemens conjecture asks if for each d a general quintic hypersurface $W \subset \mathbb{P}^4$ contains only finitely many elements of M_d (a stronger form asks the same also for singular rational curves of degree d > 5) ([1], [2], [4], [12], [13], [14], [15], [19], [20], [24], [25]). For higher genera cases (and also for more general Calabi-Yau 3-folds), see [16], [17].

All the quoted finiteness results work for very low d, say $d \leq 12$. Here we add a very strong condition (to be contained in an integral quadric hypersurface) and prove the following result.

Theorem 1. If $13 \leq d \leq 15$, then a general quintic hypersurface of \mathbb{P}^4 contains no element of Γ_d .

The proof requires a result on the splitting type of the normal bundle of a smooth rational curve $C \subset \mathbb{P}^4$ ([3], [23]) and its use when C is contained in quadric hypersurface.

ⁱThis work is partially supported by MIUR and GNSAGA (INDAM) http://siba-ese.unisalento.it/ © 2016 Università del Salento

Concerning elements of $C \in M_d$ contained in a hyperplane we prove the following result.

Proposition 1. Let $C \in M_d$ be a degenerate curve, say contained in a hyperplane H, and let α be the the minimal degree of a surface of H containing C. Assume that C is contained in a general quintic hypersurface. If $13 \leq d \leq 17$, then $\alpha \in \{4, 5\}$. If $d \geq 18$, then $\alpha = 5$.

1 Preliminaries

Let \mathcal{W} denote the set of all smooth quintic hypersurfaces $W \subset \mathbb{P}^4$ satisfying the thesis of [4]. In particular each $W \in \mathcal{W}$ contains only finitely many smooth rational curves D of degree ≤ 11 and all of them have as normal bundle $N_{D,W}$ the direct sum of two line bundles of degree -1, i.e. $h^i(N_{D,W}) = 0$, i = 0, 1.

For any scheme $A \subset \mathbb{P}^4$ let \mathcal{I}_A denote the ideal sheaf of A in \mathbb{P}^4 .

Let X be any projective scheme, $N \subset X$ an effective Cartier divisor and $Z \subset X$ any closed subscheme. The residual scheme $\operatorname{Res}_N(Z)$ of Z with respect to N is the closed subscheme of X with $\mathcal{I}_{Z,X} : \mathcal{I}_{N,X}$ as its ideal sheaf. We always have $\operatorname{Res}_N(Z) \subseteq Z$. If Z is zero-dimensional, we have $\deg(Z) = \deg(Z \cap N) + \deg(\operatorname{Res}_N(Z))$. For any line bundle \mathcal{L} on X we have the exact sequence

$$0 \to \mathcal{I}_{\operatorname{Res}_N(Z),X} \otimes \mathcal{L}(-N) \to \mathcal{I}_{Z,X} \otimes \mathcal{L} \to \mathcal{I}_{Z \cap N,N} \otimes \mathcal{L}_{|N} \to 0$$
(1)

(the residual exact sequence of N in X).

Lemma 1. Take any $C \in \Gamma_d$, $d \ge 6$, and any $Q \in |\mathcal{I}_C(2)|$. Let $a_1 \ge a_2$ be the splitting type of the normal sheaf $N_{C,Q}$ of C in Q. Then $a_1 \le 3d - 8$.

Proof. Since C is a smooth curve and $N_{C,Q}$ is the dual of the conormal sheaf of C in Q, $N_{C,Q}$ is a rank 2 vector bundle and hence by the classification of vector bundles on \mathbb{P}^1 it has a splitting type. Let $b_1 \geq b_2 \geq b_3$ be the splitting type of the normal bundle N_{C,\mathbb{P}^4} of C in \mathbb{P}^4 . We have $b_1 + b_2 + b_3 = 5d - 2$. By [3, case r = 1 of Lemma 4.3] we have $b_3 \geq d + 3$ and hence $b_1 \leq 3d - 8$. QED

Remark 1. Obviously $\Gamma_d \neq \emptyset$ if and only if $d \geq 4$. The aim of this remark is to prove that dim $\Gamma_d = 3d + 14$ and to prove a more precise result for the part associated to quadric hypersurfaces with a line as their singular locus. Let $Q \subset \mathbb{P}^4$ be an integral quadric and let $C \subset Q$ be a smooth and non-degenerate rational curve of degree d. Let $N_{C,Q}$ be the normal sheaf of C in Q and N_{C,\mathbb{P}^4} the normal bundle of C in \mathbb{P}^4 . Since C is a smooth curve and by its definition $N_{C,Q}$ is the dual of the conormal sheaf of C in Q, $N_{C,Q}$ is locally free. Since Cis not contained in the singular locus of Q, $N_{C,Q}$ has rank 2. There is a natural

map $j : N_{C,Q} \to N_{C,\mathbb{P}^4}$, which is injective outside the finite set $C \cap \operatorname{Sing}(Q)$. Hence j is injective. We have an exact sequence

$$0 \to N_{C,Q} \xrightarrow{j} N_{C,\mathbb{P}^4} \xrightarrow{u} \mathcal{O}_C(2) \tag{2}$$

with $\Delta := \operatorname{coker}(u)$ supported on the finite set $\operatorname{Sing}(Q) \cap C$. Set $e := \operatorname{deg}(\Delta)$. If Sing(Q) is a point, o, then blowing up it we get that e = 1 if $o \in C$ and e = 0if $o \notin C$. Since $Q \setminus \operatorname{Sing}(Q)$ is homogeneous, $N_{C,Q}$ is spanned. Since $p_a(C) = 0$, we get $h^1(N_{C,Q}) = 0$ and hence $h^0(N_{C,Q}) = 3d + e$. Hence the subset of all Γ parametrizing curves contained either in smooth quadrics or in quadric cones with 0-dimensional vertex has dimension 3d + 14. Let $\Gamma'_{d,e}$ be the subset of all non-degenerate $C \in M_d$ contained in some integral quadric hypersurface with singular locus a line R with $\operatorname{deg}(R \cap C) = e$. Now assume that Q has the line R as its singular locus. We consider only the part of the Hilbert scheme of Qformed by curves C' with $\operatorname{deg}(R \cap C') = e$ (it contains C by assumption). Let $a_1 \geq a_2$ be the splitting type of $N_{C,Q}$. Since $a_1 \leq 3d - 8$ (Lemma 1), we have $a_2 \geq e + 6$. Hence $h^1(N_{C,Q}(-Z)) = 0$ and so $\dim H(Q, Z, d) = 3d + e - 2e$. Since R has ∞^e subschemes of degree e and \mathbb{P}^4 has ∞^{11} rank 3 quadrics, we get that the part coming from quadrics with rank 3 has dimension $\leq 3d + 11$.

Lemma 2. Let $\Gamma_{d,2}$ be the set of all non-degenerate $C \in M_d$, d > 12, with $h^0(\mathcal{I}_C(2)) = 2$ and contained in a smooth quintic hypersurface. Then dim $\Gamma_{d,2} \leq d+25$.

Proof. Fix $C \in \Gamma_{d,2}$ and let $T \subset \mathbb{P}^4$ be the intersection of two different elements of $|\mathcal{I}_C(2)|$. Let S be the irreducible component of T containing C. Since C is non-degenerate, we have $\deg(S) \geq 3$. Hence either $\deg(S) = 3$ or S = T and T is irreducible.

(a) Assume $\deg(S) = 3$. Since S spans \mathbb{P}^4 , it is a minimal degree surface, i.e. either a cone over a rational normal curve of \mathbb{P}^3 or an embedding of the Hirzebruch surface F_1 .

(a1) Assume that S is a cone with vertex o and let $m : U \to S$ be its minimal desingularization. U is isomorphic to the Hirzebruch surface F_3 and m is induced by the complete linear system $|\mathcal{O}_{F_3}(h+3f)|$, where h is the section of the ruling of F_3 with negative self-intersection and f is a fiber of the ruling of F_3 . We have $f^2 = 0$, $f \cdot h = 1$ and $h^2 = -3$. Let C' be the strict transform of C in U and take positive integers a, b with $b \geq 3a$ and $C' \in |ah+bf|$. Since m is induced by |h+3f|, we have b = d. Since $\omega_{F_3} \cong \mathcal{O}_{F_3}(-2h-5f)$, the adjunction formula gives $\omega_{C'} \cong \mathcal{O}_{C'}((a-2)h+(d-5)f)$. Since C is smooth, we have $C' \cong C$ and in particular $p_a(C') = 0$. Hence $-2 = (ah + df) \cdot ((a-2)h + (d-5)f) =$ (a-2)(d-3a) + a(d-5). Hence a = 1. Since $d \geq 7$, the curve C = f(C') has a singular point at o, a contradiction. (a2) Assume $S \cong F_1$ and take integers a, b with $b \ge a > 0$ and $C \in |ah + bf|$, where h is the section of the ruling of F_1 with negative intersection and f is a ruling of F_1 . We have $|\mathcal{O}_{F_1}(1)| = |\mathcal{O}_{F_1}(h+2f)|$ and $\omega_{F_1} \cong \mathcal{O}_{F_1}(-2h-3f)$ and so $\omega_C \cong \mathcal{O}_C((a-2)h+(b-3)f)$. Hence d = a+b and -2 = (a-2)(b-a)+a(b-3). Hence a = 1 and b = d - 1. Since d - 1 > 5, every quintic hypersurface W containing C contains S. If W is smooth, then its Picard group is generated by $\mathcal{O}_W(1)$, by the Lefschetz theorem and so it contains only surfaces whose degree is divisible by 5. Hence $S \not\subseteq W$, a contradiction.

(b) Assume S = T, i.e. assume that T is irreducible. For a general hyperplane $H \subset \mathbb{P}^4$, $T \cap H$ is an integral curve with $p_a(T \cap H) = 1$ and hence it has at most one singular point. Hence the one-dimensional part of $\operatorname{Sing}(T)$ is either empty or a line.

(b1) Assume that $\operatorname{Sing}(T)$ contains a line L. A general hyperplane section of T is an irreducible and singular curve with arithmetic genus 1. Hence if T is a cone with vertex o, then T is the image of a minimal degree cone T' of \mathbb{P}^5 by a birational, but not isomorphic linear projection. If T is not a cone, then it is the image of a minimal degree smooth surface F of \mathbb{P}^5 by a birational, but not isomorphic linear projection ([8, Theorem 19.5]).

(b1.1) Assume that T is the image of a minimal degree non-degenerate cone $T' \subset \mathbb{P}^5$ and let $u: U \to T'$ be its minimal desingularization. We have $U \cong F_4$ and u is induced by the complete linear system $|\mathcal{O}_{F_4}(h+4f)|$. Let $D \subset U$ be the strict transform of the curve, whose image in \mathbb{P}^4 is C. Write $D \in |ah + bf|$ with $b \ge 4a > 0$. As in step (a1) we first get b = d and then a = 1. We get that u(D) is singular and hence C is singular, a contradiction.

(b1.2) Assume that T is the image of a minimal degree smooth surface F of \mathbb{P}^5 and let $D \subset F$ be the curve with image C. Since C is smooth, D is smooth. There is $e \in \{0, 2\}$ such that $F \cong F_e$ embedded by the complete linear system |h + (e + 1)f|. Take positive integers a, b such that $D \in |\mathcal{O}_{F_e}(ah + bf)|$ and $b \ge ea$. As in step (a) we first get a = 1 and then b = d - 1. If e = 0 we get that every quintic hypersurface containing D contains F and hence every quintic hypersurface containing C contains T, contradicting the Lefschetz theorem as in step (a2). Now assume e = 2. F_2 has no smooth plane conic and its lines are either the elements of |f| or h. Since $h \cdot (h + (d - 1)f) = d - 3$, we have $\deg(L \cap C) = d - 3$. Since 3 is a prime integer, the linear projection $\ell_L : \mathbb{P}^4 \setminus L \to \mathbb{P}^2$ maps C birationally onto an integral plane cubic. Hence C is contained in the intersection of T with a cubic hypersurface, contradicting the assumption d > 12 by Bezout.

(b2) Assume that $\operatorname{Sing}(T)$ is finite. Since T is a complete intersection, it is a locally complete intersection. Hence T is a normal Del Pezzo surface of degree 4. Let $u: V \to T$ be a minimal desingularization and D the strict

transform of C in V. Since D is smooth and rational, the adjunction formula gives $-2 = \omega_V \cdot D + D^2$. V is rational and it is classified ([6]). Since V is a weak del Pezzo, u is induced by the complete linear system $|\omega_V^{\vee}|$. Hence $d = \mathcal{O}_T(C) \cdot \mathcal{O}_T(1) = u^*(C) \cdot \omega_C^{\vee}$. Write $u^*(C) = D + \sum c_i D_i$ with $c_i \geq 0$ and D_i contracted by u. Since ω_V^{\vee} is spanned ([6, IV, §3, Théorème 1]), we get $\omega_V^{\vee} \cdot D_i = 0$. Hence $\omega_V \cdot D = -d$. Hence $D^2 = d - 2$. Hence $h^0(\mathcal{O}_D(D)) = d - 1$. Thus the set of all $C \subset T$ depends on d-1 parameters. Since the Grassmannian G(2, 15) of all lines of $|\mathcal{O}_{\mathbb{P}^4}(2)|$ has dimension 26, this part of $\Gamma_{d,2}$ has dimension at most d + 25.

Lemma 3. There is no non-degenerate $C \in M_d$, d > 12, with $h^0(\mathcal{I}_C(2)) \ge 3$ and contained in a smooth quintic hypersurface.

Proof. Take a non-degenerate $C \in M_d$, d > 12, with $h^0(\mathcal{I}_C(2)) \geq 3$. Let T be the intersection of two general elements of $|\mathcal{I}_C(2)|$ and let S be the irreducible component of T containing C. Since C is non-degenerate, we have $\deg(S) \geq 3$. Hence either $\deg(S) = 3$ or S = T and T is irreducible. We exclude the case S = T, because d > 8 and $h^0(\mathcal{I}_T(2)) = 2$. We exclude the case $\deg(S) = 3$ as in step (a) of the proof of Lemma 2.

Lemma 4. Let $\Delta(d)$ be the set of all $C \in \Gamma_d$ for which there exists a line $L \subset \mathbb{P}^4$ with $\deg(L \cap C) \geq 5$. Then $\dim \Delta(d) \leq 12 + 3d$.

Proof. We take $C \in \Gamma_d$ and a line $L \subset \mathbb{P}^4$ such that $\deg(L \cap C) \geq 5$. Take $Q \in |\mathcal{I}_C(2)|$. Bezout implies $L \subset Q$. If Q has a line as its singular locus, then we use Remark 1. Hence we may assume that either Q is smooth or it is a cone with vertex a single point, o. We write e = 1 if Q is singular and $o \in C$ and e = 0 otherwise. Take $Z \subseteq C \cap L$ with $\deg(Z) = 5$. Let $a_1 \geq a_2$ be the splitting type of $N_{C,Q}$. Since $a_1 \leq 3d - 8$ (Lemma 1), we have $a_2 \geq 4$. Hence $h^1(N_{C,Q}(-Z)) = 0$. Use that L has ∞^5 subschemes of degree 5 and that Q has ∞^3 lines. QED

2 Proof of Theorem 1

Fix any non-degenerate $C \in M_d$ and let $H \subset \mathbb{P}^4$ be any hyperplane. We often use the exact sequence

$$0 \to \mathcal{I}_C(t-1) \to \mathcal{I}_C(t) \to \mathcal{I}_{C \cap H,H}(t) \to 0 \tag{3}$$

Lemma 5. Let $Z \subset \mathbb{P}^3$ be a degree d curvilinear scheme spanning \mathbb{P}^3 . Assume $d \leq 15$ and $h^1(\mathbb{P}^3, \mathcal{I}_Z(5)) > 0$. Then either there is a line $L \subset \mathbb{P}^3$ with $\deg(L \cap Z) \geq 7$ or there is a conic D with $\deg(D \cap C) \geq 12$.

Proof. Since Z spans \mathbb{P}^3 , we have $\deg(Z \cap N) \leq 14$ for every plane N. Assume for the moment the existence of a plane $N \subset \mathbb{P}^3$ such that $h^1(N, \mathcal{I}_{Z \cap N,N}(5)) > 0$, then N contains either a line $L \subset \mathbb{P}^3$ with $\deg(L \cap Z) \geq 7$ or a conic D with $\deg(D \cap C) \geq 12$ ([7, Corollaire 2]). Now assume $h^1(N, \mathcal{I}_{Z \cap C,N}(t)) = 0$ for all planes $N \subset \mathbb{P}^3$. We may assume $h^1(\mathcal{I}_{Z'}(5)) = 0$ for all $Z' \subsetneq Z$ (taking if necessary a smaller non-degenerate Z), because $h^1(N, \mathcal{I}_{Z \cap C,N}(t)) = 0$ for all planes N. Set $Z_0 := Z$. Let $N_1 \subset \mathbb{P}^3$ be a plane such that $e_1 := \deg(Z_0 \cap N_1)$ is maximal. Set $Z_1 := \operatorname{Res}_{N_1}(Z_0)$. Define recursively for each integer $i \geq 2$ the plane $N_i \subset \mathbb{P}^3$, the integer e_i and the scheme Z_i in the following way. Let N_i be any plane such that $e_i := \deg(Z_{i-1} \cap N_i)$ is maximal. Set $Z_i := \operatorname{Res}_{N_i}(Z_{i-1})$. We have $e_i \leq e_{i-1}$ for all $i \geq 2$. For each $i \geq 1$ we have the exact sequence

$$0 \to \mathcal{I}_{Z_i}(5-i) \to \mathcal{I}_{Z_{i-1}}(6-i) \to \mathcal{I}_{Z_{i-1}\cap N_i,N_i}(6-i) \to 0$$

$$\tag{4}$$

If $e_i \leq 2$, then $Z_{i-1} \subset N_i$ and hence $Z_i = \emptyset$. Since $\deg(Z) \leq 15$, we get $\deg(Z_6) \leq 0$, i.e. $Z_6 = \emptyset$. Since $h^1(N_6, \mathcal{O}_{N_6}) = 0$, there is an integer *i* such that $1 \leq i \leq 5$ and $h^1(\mathcal{I}_{Z_{i-1}\cap N_i,N_i}(6-i)) > 0$. We call *f* such a minimal integer. Since $h^1(N, \mathcal{I}_{Z\cap C,N}(5)) = 0$ for all planes *N*, we have $f \geq 2$. Hence $f \in \{2, 3, 4, 5\}$. We have $e_f \geq 8 - f$. Since the sequence $\{e_i\}$ is non-increasing, we get $f(8-f) \leq 15$. Since $f \geq 2$, we get that $f \in \{2, 3, 5\}$.

(a) Assume f = 3. Since $e_1 \ge e_2 \ge e_3 \ge 5$, we get $e_1 = e_2 = e_3 = 5$. Since $e_3 \le 7$ and $h^1(N_3, \mathcal{I}_{Z_2 \cap N_3, N_3}(3)) > 0$, there is a line $R \subset N_3$ with $\deg(R \cap Z_2) \ge 5$. Taking a plane F containing R and with maximal $\deg(M \cap Z_1)$ we get $e_2 \ge 6$, a contradiction.

(b) Assume f = 2. We have $e_2 \ge 6$. Since $e_1 \ge e_2$ and $e_1 + e_2 \le 15$, we have $e_2 \le 7$. Hence there is a line $R \subset N_2$ such that $\deg(R \cap Z_1) \ge 6$. Assuming that L does not exists, then $\deg(R \cap Z) = 6$. Let $M_1 \subset \mathbb{P}^3$ be a plane containing R and with maximal $g_1 := \deg(M_1 \cap Z)$ among the planes containing R. Since Z spans \mathbb{P}^3 , we have $g_1 \ge 7$. Set $W_1 := \operatorname{Res}_{M_1}(Z)$. By assumption $h^1(M_1, \mathcal{I}_{Z \cap M_1, M_1}(5)) = 0$. Hence the residual sequence of $M_1 \subset$ \mathbb{P}^3 gives $h^1(\mathbb{P}^3, \mathcal{I}_{W_1}(4)) > 0$. Let $M_2 \subset \mathbb{P}^3$ be a plane with maximal $g_2 :=$ $\deg(W_1 \cap M_2)$. Set $W_2 := \operatorname{Res}_{M_2}(W_1)$. Let $M_3 \subset \mathbb{P}^3$ be a plane with maximal $g_3 := \deg(W_2 \cap M_3)$. Set $W_3 := \operatorname{Res}_{M_3}(W_2)$. In this way we get a non-decreasing sequence $\{g_i\}_{i\geq 2}$ with $\sum_{i\geq 2} g_i = d - g_1 \le 8$. We get an integer $h \in \{2,3\}$ with $h^1(M_h, \mathcal{I}_{M_h \cap W_{h-1}, M_h}(6 - h)) > 0$ and $g_h \ge 8 - h$. As in step (a) we exclude the case h = 3. Hence h = 2. As in the first part of step (b) we get a line $D \subset \mathbb{P}^3$ such that $\deg(D \cap W_1) = 6$.

(b1) Assume $D \cap R = \emptyset$. Let $T \subset \mathbb{P}^3$ be a general quadric surface containing $D \cup R$. Since $\mathcal{I}_{D \cup R}(2)$ is spanned and Z is curvilinear, T is smooth and $T \cap Z = (D \cup R) \cap Z$ (as schemes). Hence $h^1(T, \mathcal{I}_{Z \cap T,T}(5)) = 0$. Since deg(Res_T(Z)) = $d - 12 \leq 3$, we have $h^1(\mathcal{I}_{\text{Res}_T(Z)}(3)) = 0$. The residual sequence of T gives a

contradiction.

(b2) Assume $D \cap R \neq \emptyset$ and $D \neq R$. Let N be the plane spanned by $D \cup R$. Since deg(Res_N(Z)) $\leq d - 11$, we have $h^1(N, \mathcal{I}_{\text{Res}_N(Z),N}(4)) = 0$. The residual sequence of N gives $h^1(N, \mathcal{I}_{Z \cap N,N}(5)) > 0$, contradicting one of our assumptions.

(b3) Assume D = R. Let $H, M \subset \mathbb{P}^3$ be general planes containing R. Since $\operatorname{Res}_{H\cup M}(Z) = \operatorname{Res}_H(\operatorname{Res}_M(Z))$, we have $\operatorname{deg}(\operatorname{Res}_{H\cup R}(Z)) \leq d - 12 \leq 3$. Hence $h^1(\mathcal{I}_{\operatorname{Res}_{H\cup M}(Z)}(3)) = 0$. The residual sequence of $H \cup M$ gives $h^1(H \cup M, \mathcal{I}_{Z\cap (H\cup M), H\cup M}(5)) > 0$. The minimality condition of Z gives $Z \cap (H \cup R) = Z$. Hence d = 12. For any $q \in Z_{\operatorname{red}}$ let Z_q be the connected component of Z containing q. Since $\operatorname{Res}_H(Z)$ has degree 6 and it is supported by D, we have $2 \operatorname{deg}(\operatorname{Res}_H(Z_q)) = \operatorname{deg}(Z_q)$ for all q. In particular we may take q with $Z_q \notin R$. Since Z is curvilinear, we may find a plane $N \supset R$ with $\operatorname{deg}(N \cap Z_q) > \operatorname{deg}(R \cap Z_q)$. Since $\operatorname{deg}(\operatorname{Res}_N(Z)) \leq 12 - 7$, we have $h^1(N, \mathcal{I}_{\operatorname{Res}_N(Z),N}(4)) = 0$. The residual sequence of N gives $h^1(N, \mathcal{I}_{Z\cap N,N}(5)) > 0$, contradicting one of our assumptions.

(c) Assume f = 5. Since $\deg(Z_{t-1}) \leq 4$, we get the existence of a line $R \subset N_5$ such that $\deg(R \cap Z_4) \geq 3$. Since $\deg(R \cap Z_3) \geq 3$, the maximality property of N_4 implies $e_4 \geq 4$. Hence $15 \geq 4 \cdot 4 + 3$, a contradiction. QED

Lemma 6. Fix a non-degenerate $C \in M_d$ contained in some $W \in W$ and assume the existence of a conic $D \subset \mathbb{P}^4$ with $\deg(D \cap C) \geq 12$ and that $\deg(L \cap C) \leq 6$ for each line $L \subseteq D_{red}$. Then D is smooth.

Proof. Take $W \in \mathcal{W}$ containing C. Let N be the plane spanned by D. First assume that $D \subset N$ is a double line. Set $L := D_{\text{red}}$. Since $\deg(L \cap C) \leq 6$ by assumption, we have $\deg(L \cap C) = 6$. Bezout implies $L \subset W$. Since $W \in \mathcal{W}$, we have $N_{L,W} \cong \mathcal{O}_L(-1) \oplus \mathcal{O}_L(-1)$. Bezout implies that $D \subseteq W \cap N$. Fix a general hyperplane $H \supset N$. Since W is smooth $W \cap H$ has isolated singularities. We have an injective map $N_{L,H\cap W} \to N_{L,W}$, contradicting the inclusion $D \subset H \cap W$. Now assume that $D = R \cup L$ with R, L lines and $R \neq L$. Since $\deg(L \cap C) \leq 6$ and $\deg(R \cap C) \leq 6$ by assumption, we have $\deg(L \cap C) = \deg(R \cap C) \leq 6$. Hence $L \cup R \subset W$, contradicting the fact that any two lines of W are disjoint. QED

Lemma 7. Take a non-degenerate $C \in M_d$ contained in some $W \in \mathcal{W}$. Assume $h^1(\mathcal{I}_C(5)) > 0$ and that there is either a line L with $\deg(L \cap C) \geq 7$ or a conic D with $\deg(D \cap C) \geq 12$. Then $h^1(\mathcal{I}_C(4)) > h^1(\mathcal{I}_C(5))$.

Proof. Let S_1 be the set of all lines L with $\deg(L \cap C) \geq 7$ and let S_2 be the set of all conics D such that $\deg(D \cap C) \geq 10$. Assume for the moment that the sets S_1 and S_2 are finite. Let $N \subset \mathbb{P}^4$ be a general plane and let $M \subset \mathbb{P}^4$ be any hyperplane containing N. Set $V := H^0(\mathcal{I}_N(1))$. We have $\dim(V) = 2$. Since S_1

is finite and N is general, then $N \cap L = \emptyset$ for all $L \in S_1$ and hence $L \not\subseteq M$ for all $L \in S_2$. Since S_2 is finite, then N contains a unique point of the plane spanned by any $D \in S_2$ and hence $D \not\subseteq M$. Lemma 5 gives $h^1(M, \mathcal{I}_{C \cap M, M}(5))) = 0$. Hence the bilinear map $H^0(\mathcal{I}_C(5))^{\vee} \times V \to H^0(\mathcal{I}_C(4))^{\vee}$ is non-degenerate in the second variable. By the bilinear lemma we have $h^1(\mathcal{I}_C(4)) \ge h^1(\mathcal{I}_C(5)) - 1 + \dim V$.

Now assume that S_1 is infinite and call Δ an irreducible positive dimensional family of its elements. Take a general $(R, L) \in \Delta$. We have $L \cap R = \emptyset$, unless either there is $o \in \mathbb{P}^4$ with $o \in J$ for all $J \in \Delta$ or there is a plane N with $J \subset N$ for all $J \in \Delta$. The second case is not possible, because $C \nsubseteq N$. The first case is excluded, because the linear projection from o would map C onto a non-degenerate curve of \mathbb{P}^3 with degree $\leq (d-1)/6 < 3$.

Now assume that S_2 is infinite. Let S'_2 be the set of all $D \in S_2$ with D a smooth conic. As in the proof just given we find that the set of all lines R with $\deg(R \cap C) = 6$ and supporting a component of some $D \in S_2$ is finite. Hence it is sufficient to prove that S'_2 is finite. For each $D \in S'_2$ let $\langle D \rangle$ be the plane spanned by D. If $D_1 \neq D_2$, no hyperplane contains $D_1 \cup D_2$ by Bezout and hence $\langle D_1 \rangle \cap \langle D_2 \rangle = \emptyset$. Since any two planes of \mathbb{P}^4 meet, we have $\sharp(S'_2) \leq 1$.

Proof of Theorem 1: Fix $C \in M_d$, $d \leq 15$.

By Remark 1 we may assume $h^1(\mathcal{I}_C(5)) \geq 2d - 13$.

(a) Assume $h^0(\mathcal{I}_C(2)) = 1$, say $\{Q\} = |\mathcal{I}_C(2)|$. Fix a general hyperplane $H \subset \mathbb{P}^4$.

(a1) Assume that there is no line $L \subset \mathbb{P}^4$ with $\deg(L \cap C) \geq 7$ and no conic D with $\deg(D \cap C) \geq 12$. Lemma 5 gives $h^1(H, \mathcal{I}_{C \cap H, H}(5)) = 0$ for every hyperplane $H \subset \mathbb{P}^4$. Hence the bilinear lemma gives $h^1(\mathcal{I}_C(4)) \geq h^1(\mathcal{I}_C(5)) + 4 \geq 2d-9$. Since $C \cap H$ is in uniform position, we have $h^1(H, \mathcal{I}_{C \cap H, H}(4)) \leq d-13 \leq 2$ ([10, Lemma 3.9]). By (3) we have $h^1(\mathcal{I}_C(3)) \geq 2d-11$. Hence $h^0(\mathcal{I}_C(3)) \geq 35 - 3d - 1 + 2d - 11 \geq 8$. Since $h^0(\mathcal{I}_C(2)) = 1$, the general $M \in |\mathcal{I}_C(3)|$ has not Q as a component. Set $F := Q \cap M$. First assume that F is irreducible. The curve $D := F \cap H$ is a complete intersection curve with degree 6 and arithmetic genus 4. In particular $h^1(H, \mathcal{I}_{C,H}(3)) = 0$. Thus $h^1(H, \mathcal{I}_{C \cap H,H}(3)) = h^1(D, \mathcal{I}_{C \cap H,D}(3))$. We have $h^1(D, \mathcal{I}_{C \cap H,D}(3)) \leq 1$, because $\deg(\mathcal{I}_{C \cap H,D}(3)) = 18 - d \geq 3$. Hence $h^1(H, \mathcal{I}_{C \cap H,H}(3)) \leq 1$. Since $h^1(\mathcal{I}_C(2)) \geq 2d - 12$, we have $h^0(\mathcal{I}_C(2)) = 15 - 2d - 1 + h^1(\mathcal{I}_C(2)) \geq 2$, contradicting the assumption of step (a).

Now assume that F is not irreducible. Call T the irreducible component of F containing C. T is a non-degenerate surface and hence $\deg(T) \geq 3$. Since $h^0(\mathcal{I}_C(2)) = 1$, we have $h^0(\mathcal{I}_T(2)) = 1$ and hence neither $\deg(T) = 3$ nor T is the complete intersection of two quadrics.

Assume deg(T) = 4. Since T is not a complete intersection, a general hyperplane section of T is a smooth rational curve of degree 4. Since $h^1(H, \mathcal{I}_{C \cap H, H}(t)) =$

0 for all $t \ge 2$ and $h^0(\mathcal{O}_{C\cap H}(t)) = 4t + 1$, t = 3, 4, we get $h^1(H, \mathcal{I}_{C\cap H, H}(3)) \le d - 13$ and $h^1(\mathcal{I}_{C\cap H, H}(4)) = 0$. We get $h^1(\mathcal{I}_C(3)) \ge h^1(\mathcal{I}_C(4))$ and $h^1(\mathcal{I}_C(2)) \ge h^1(\mathcal{I}_C(3)) + 13 - d \ge d + 4$. Hence $h^0(\mathcal{I}_C(2)) \ge 18 - d$, a contradiction.

Now assume deg(T) = 5. In this case T is linked to a plane by the complete intersection T and hence $T \cap H$ is linked to a line by a complete intersection of a quadric and a cubic. Hence $T \cap H$ is arithmetically Cohen-Macaulay with degree 5 and arithmetic genus 2 ([18, Theorem 1.1 (a)], [22], [21, Proposition 3.1]). Thus $h^1(H, \mathcal{I}_{C \cap H,H}(4)) = h^1(T \cap H, \mathcal{I}_{C \cap H,H}(4)) = 0$ and $h^1(H, \mathcal{I}_{C \cap H,H}(3)) \leq 2$. We get $h^1(\mathcal{I}_C(2)) \leq 2d - 11$ and hence $h^0(\mathcal{I}_C(2)) \geq 3$, a contradiction.

(a2) Now assume that there is a line $L \subset \mathbb{P}^4$ with $\deg(L \cap C) \geq 7$. By Lemma 4 we may assume $h^1(\mathcal{I}_C(5)) \geq 2d - 11$. Lemma 7 gives $h^1(\mathcal{I}_C(4)) \geq 2d - 10$ and hence $h^1(\mathcal{I}_C(3)) \geq 2d - 12 \geq 7$. We get $h^0(\mathcal{I}_C(3)) > 5$. We repeat the proof of step (a1) with a loss of 1; for instance, if $\deg(T) = 4$ (resp. $\deg(T) = 5$) we get $h^1(\mathcal{I}_C(2)) \geq d + 3$ and $h^0(\mathcal{I}_C(2)) \geq 17 - d$ (resp. $h^1(\mathcal{I}_C(2)) \geq 2d - 12$ and hence $h^0(\mathcal{I}_C(2)) \geq 2$), a contradiction.

(a3) Assume the existence of a conic D with $\deg(D \cap C) \ge 12$, but that there is no line $L \subset \mathbb{P}^4$ with $\deg(L \cap C) \ge 7$. By Lemma 6 we may assume that D is smooth.

(a3.1) Assume for moment $h^1(\mathcal{I}_C(5)) \geq 2d-12$. Lemma 7 gives $h^1(\mathcal{I}_C(4)) \geq 2d-11$. The case t = 4 of (3) and [10, Lemma 3.9] give $h^1(\mathcal{I}_C(3)) \geq 2d-13$. Hence $h^0(\mathcal{I}_C(3)) \geq 35 - 14 - d > 5$. As in step (a1) we first get $h^1(\mathcal{I}_C(3)) \geq h^1(\mathcal{I}_C(3)) \geq h^1(\mathcal{I}_C(4))$ and then $h^1(\mathcal{I}_C(2)) \geq h^1(\mathcal{I}_C(3)) - 1$. Thus $h^0(\mathcal{I}_C(2)) \geq 2$, contradicting our assumption.

(a3.2) Now we justify the assumption made in step (a3.1). If Q is a quadric with vertex a line, then we may assume $h^1(\mathcal{I}_C(5)) \geq 2d - 10$ by Remark 1. If Q is a quadric cone with vertex a point o and $o \notin C$, then we may assume $h^1(\mathcal{I}_C(3)) \geq 2d - 12$ by Remark 1. Now assume that C is a contained in a quadric cone Q with vertex a point $o \in C$. It is sufficient to prove that for each irreducible component Δ of the set of all non-degenerate $Y \in M_d$ with $Y \subset Q$ and $o \in Y$ a general $Y \in \Delta$ has no conic D with $\deg(D \cap Y) \geq 12$ or that if $C \in \Delta$, then it may be deformed to $Y \in \Delta$ with no offending conic. Bezout gives $D \subset Q$. We need to distinguish the case $o \in D$ and $o \notin D$. First assume $o \in D$. Fix $Z \subseteq D \cap C$ with $\deg(Z) = 12$ and $o \in Z_{red}$. Since D has ∞^{12} zero-dimensional schemes with degree 12 and Q has ∞^5 conics through o, it is sufficient to prove that $h^0(N_{C,Q}(-Z)) < 3d + 1 - 5 - 12$. We have $h^0(N_{C,Q}(-Z)) \leq 3d + 1 - 12 - 7$ by Lemma 1. If $o \notin D$ we use the same proof, just using that Q has ∞^6 conics.

The case of a smooth Q is similar.

(b) Now assume $h^0(\mathcal{I}_C(2)) \geq 2$. By Lemmas 2 and 3 C is contained in an integral complete intersection of 2 quadrics and we may assume that $h^1(\mathcal{I}_C(5)) \ge 4d-24$. Hence as in step (a) we get $h^1(\mathcal{I}_C(3)) \ge 4d-24$, $h^1(\mathcal{I}_C(2)) \ge 3d-13$ and hence $h^0(\mathcal{I}_C(2)) > 2$, contradicting Lemma 3.

3 **Proof of Proposition 1**

Remark 2. Fix an integer $d \ge 13$ and $C \in M_d$ contained in a hyperplane $H \subset \mathbb{P}^4$. Since $h^0(H, \mathcal{I}_C(5)) = 56$, we have $h^1(\mathcal{I}_C(5)) \ge 5(d-11) > 0$.

Proof of Proposition 1: Take $C \in M_d$ contained in a hyperplane $H \subset \mathbb{P}^4$ and contained in some $W \in \mathcal{W}$. Let $S \subset H$ be a degree α hypersurface. Since α is the minimal degree of a surface of H containing C and C is irreducible, S is irreducible. Since $C \subset W \cap H$, we have $\alpha \leq 5$.

(a) Assume $\alpha = 2$. If S is smooth, then up to a change of the ruling of S we may assume $C \in |\mathcal{O}_S(1, d-1)|$. Since d-1 > 5, $W \supset S$, contradicting the Lefschetz theorem which implies that all surfaces contained in W have degree divisible by 5. If S is a cone, then any smooth curve on it is projectively normal ([11, Ex. V.2.9]), contradicting Remark 2.

(b) Assume $\alpha = 3$. Bezout implies $h^0(H, \mathcal{I}_C(3)) = 1$. By the Lefschetz theorem we have $S \notin W$. Since $C \subseteq S \cap W$, we get $d \leq 15$. The case d = 15 is excluded, because the $\omega_{S \cap W} \cong \mathcal{O}_{S \cap W}(4)$ and so $S \cap W \neq C$. The case d = 14 is excluded, because it would give that the complete intersection $S \cap W$ would link C to a line and hence it is arithmetically normal ([18], [21], [22]), contradicting Remark 2. Now assume d = 13. In this case $S \cap W$ links C to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically Cohen-Macaulay, contradicting Remark 2. If D is a disjoint union of 2 lines, then $p_a(D) = -1$, contradicting [21, Proposition 3.1]. Now assume that D is a double structure on a line L, but it is not a conic, i.e. that D is not a conic. Since $S \cap W$ links $C \cup L$ to $L, C \cup L$, we have $p_a(C \cup L) - p_a(L) = 2(11-1)$ ([21, Proposition 3.1]), i.e. $p_a(C \cup L) = 20$, and hence $\deg(C \cap L) = 21$, contradicting the inequality d < 21.

(c) Assume $\alpha = 4$. Since $C \subseteq W \cap S$, we have $d \leq 20$. We exclude the cases d = 20 and d = 19 as in step (b). Now assume d = 18. $S \cap W$ links C to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically Cohen-Macaulay, contradicting Remark 2. Now assume that D is a double structure on a line L, but it is not a conic, i.e. that D is not a conic. Since $S \cap W$ links $C \cup L$ to L, $C \cup L$, we have $p_a(C \cup L) - p_a(L) = (17 - 1)5/2$ ([21, Proposition 3.1]) and hence $\deg(C \cap L) > 40$, a contradiction. QED

References

- E. BALLICO: Curves contained in a smooth hyperplane section of a very general quintic 3-fold, Bull. Acad. Sinica (New Series), 11 (2016), n. 2, pp. 393–399.
- [2] E. BALLICO, C. FONTANARI: Finiteness of rational curves of degree 12 on a general quintic threefold, arXiv: 1607:07994v2.
- [3] A. BERNARDI: Normal bundle of rational curves and Waring decomposition, J. Algebra, 400 (2014), 123–141.
- [4] E. COTTERILL: Rational curves of degree 11 on a general quintic 3-fold, Quart. J. Math., 63 (2012), 539–568.
- [5] D'ALMEIDA: Courbes rationnelles de degré 11 sur une hypersurface quintique générale de P⁴, Bull. Sci. Math., **136** (2012), 899–903.
- [6] M. DEMAZURE: Surfaces de Del Pezzo, I, II, III, IV, V, Séminaire sur les Singularités des Surfaces, Palaiseau, France 1976–1977, Lect. Notes in Mathematics 777, Springer, Berlin, 1980.
- [7] PH. ELLIA, CH. PESKINE: Groupes de points de P²: caractère et position uniforme, in: Algebraic geometry (L'Aquila, 1988), 111–116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
- [8] T. FUJITA: Classification Theories of Polarized Varieties, Cambridge University Press, Cambridge, 1990.
- [9] L. GRUSON, R. LAZARSFELD, CH. PESKINE: On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math., **72** (1983), 491–506.
- [10] J. HARRIS, WITH THE COLLABORATION OF D. EISENBUD: Curves in Projective Space, Les Presses de l'Université de Montréal, Montréal, 1982.
- [11] R. HARTSHORNE Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [12] T. JOHNSEN, S. KLEIMAN: Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra, 24 (1996), 2721–2753.
- [13] T. JOHNSEN, S. KLEIMAN: Toward Clemens' Conjecture in Degrees between 10 and 24, Serdica Math. J., 23 (1997), 131–142.
- [14] T. JOHNSEN, A. L. KNUTSEN: Rational curves in Calabi-Yau threefolds, Special issue in honor of Steven L. Kleiman. Comm. Algebra, 31 (2003), n. 8, 3917–3953.
- [15] S. KATZ: On the finiteness of rational curves on quintic threefolds, Compositio Math., 60 (1986), n. 2, 151–162.
- [16] A. L. KNUTSEN: On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds, Trans. Amer. Math. Soc., 384 (2012), n. 10, 5243–5284.
- [17] A. L. KNUTSEN: Smooth, isolated curves in families of Calabi-Yau threefolds in homogeneous spaces, J. Korean Math. Soc., 50 (2013), n. 5, 1033–1050.
- [18] J. MIGLIORE: Introduction to liaison theory and deficiency modules, Progress in Math. 165, Birkhäuser, Boston, 1998.
- [19] P. G. J. NIJSSE: Clemens' conjecture for octic and nonic curves, Indag. Math., 6 (1995), 213–221.
- [20] K. OGUISO: Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math., 452 (1994), 153–161.

- [21] C. PESKINE, L. SZPIRO: Liaison des variétés algébriques. I, Invent. Math., 26 (1974), 271–302.
- [22] P. RAO: Liaison among curves in \mathbb{P}^3 , Invent. Math., 50 (1979), 205–217.
- [23] G. SACCHIERO: Normal bundle of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 26 (1981), 33–40.
- [24] C. VOISIN: On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geometry, 44 (1996), n. 1, 200–213.
- [25] C. VOISIN: On some problems of Kobayashi and Lang, in Current developments in Mathematics, 2003, pp. 53–125, Int. Press, Somerville, MA, 2003.