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Abstract. Let W ⊂ P4 be a general quintic hypersurface. We prove that W contains no
smooth rational curve C ⊂ P4 with degree d ∈ {13, 14, 15}, h0(IC(1)) = 0 and h0(IC(2)) > 0.
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Introduction

For any positive integer d let Md be the set of all smooth and rational
curves C ⊂ P4 with deg(C) = d. Let Γd be the set of all non-degenerate C ∈Md

with h0(IC(2)) > 0. Clemens conjecture asks if for each d a general quintic
hypersurface W ⊂ P4 contains only finitely many elements of Md (a stronger
form asks the same also for singular rational curves of degree d > 5) ([1], [2],
[4], [12], [13], [14], [15], [19], [20], [24], [25]). For higher genera cases (and also
for more general Calabi-Yau 3-folds), see [16], [17].

All the quoted finiteness results work for very low d, say d ≤ 12. Here we add
a very strong condition (to be contained in an integral quadric hypersurface)
and prove the following result.

Theorem 1. If 13 ≤ d ≤ 15, then a general quintic hypersurface of P4

contains no element of Γd.

The proof requires a result on the splitting type of the normal bundle of
a smooth rational curve C ⊂ P4 ([3], [23]) and its use when C is contained in
quadric hypersurface.

iThis work is partially supported by MIUR and GNSAGA (INDAM)
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Concerning elements of C ∈ Md contained in a hyperplane we prove the
following result.

Proposition 1. Let C ∈ Md be a degenerate curve, say contained in a
hyperplane H, and let α be the the minimal degree of a surface of H containing
C. Assume that C is contained in a general quintic hypersurface. If 13 ≤ d ≤ 17,
then α ∈ {4, 5}. If d ≥ 18, then α = 5.

1 Preliminaries

Let W denote the set of all smooth quintic hypersurfaces W ⊂ P4 satisfying
the thesis of [4]. In particular each W ∈ W contains only finitely many smooth
rational curves D of degree ≤ 11 and all of them have as normal bundle ND,W

the direct sum of two line bundles of degree −1, i.e. hi(ND,W ) = 0, i = 0, 1.
For any scheme A ⊂ P4 let IA denote the ideal sheaf of A in P4.
Let X be any projective scheme, N ⊂ X an effective Cartier divisor and

Z ⊂ X any closed subscheme. The residual scheme ResN (Z) of Z with respect
to N is the closed subscheme of X with IZ,X : IN,X as its ideal sheaf. We always
have ResN (Z) ⊆ Z. If Z is zero-dimensional, we have deg(Z) = deg(Z ∩N) +
deg(ResN (Z)). For any line bundle L on X we have the exact sequence

0→ IResN (Z),X ⊗ L(−N)→ IZ,X ⊗ L → IZ∩N,N ⊗ L|N → 0 (1)

(the residual exact sequence of N in X).

Lemma 1. Take any C ∈ Γd, d ≥ 6, and any Q ∈ |IC(2)|. Let a1 ≥ a2 be
the splitting type of the normal sheaf NC,Q of C in Q. Then a1 ≤ 3d− 8.

Proof. Since C is a smooth curve and NC,Q is the dual of the conormal sheaf of
C in Q, NC,Q is a rank 2 vector bundle and hence by the classification of vector
bundles on P1 it has a splitting type. Let b1 ≥ b2 ≥ b3 be the splitting type of
the normal bundle NC,P4 of C in P4. We have b1 + b2 + b3 = 5d− 2. By [3, case
r = 1 of Lemma 4.3] we have b3 ≥ d + 3 and hence b1 ≤ 3d − 8. The injective
map NC,Q → NC,P4 gives a1 ≤ 3d− 8. QED

Remark 1. Obviously Γd 6= ∅ if and only if d ≥ 4. The aim of this remark
is to prove that dimΓd = 3d + 14 and to prove a more precise result for the
part associated to quadric hypersurfaces with a line as their singular locus. Let
Q ⊂ P4 be an integral quadric and let C ⊂ Q be a smooth and non-degenerate
rational curve of degree d. Let NC,Q be the normal sheaf of C in Q and NC,P4

the normal bundle of C in P4. Since C is a smooth curve and by its definition
NC,Q is the dual of the conormal sheaf of C in Q, NC,Q is locally free. Since C
is not contained in the singular locus of Q, NC,Q has rank 2. There is a natural
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map j : NC,Q → NC,P4 , which is injective outside the finite set C ∩ Sing(Q).
Hence j is injective. We have an exact sequence

0→ NC,Q
j→ NC,P4

u→ OC(2) (2)

with ∆ := coker(u) supported on the finite set Sing(Q)∩C. Set e := deg(∆). If
Sing(Q) is a point, o, then blowing up it we get that e = 1 if o ∈ C and e = 0
if o /∈ C. Since Q \ Sing(Q) is homogeneous, NC,Q is spanned. Since pa(C) = 0,
we get h1(NC,Q) = 0 and hence h0(NC,Q) = 3d + e. Hence the subset of all Γ
parametrizing curves contained either in smooth quadrics or in quadric cones
with 0-dimensional vertex has dimension 3d + 14. Let Γ′

d,e be the subset of all
non-degenerate C ∈ Md contained in some integral quadric hypersurface with
singular locus a line R with deg(R ∩ C) = e. Now assume that Q has the line
R as its singular locus. We consider only the part of the Hilbert scheme of Q
formed by curves C ′ with deg(R ∩ C ′) = e (it contains C by assumption). Let
a1 ≥ a2 be the splitting type of NC,Q. Since a1 ≤ 3d − 8 (Lemma 1), we have
a2 ≥ e+6. Hence h1(NC,Q(−Z)) = 0 and so dimH(Q,Z, d) = 3d+e−2e. Since
R has ∞e subschemes of degree e and P4 has ∞11 rank 3 quadrics, we get that
the part coming from quadrics with rank 3 has dimension ≤ 3d+ 11.

Lemma 2. Let Γd,2 be the set of all non-degenerate C ∈ Md, d > 12, with
h0(IC(2)) = 2 and contained in a smooth quintic hypersurface. Then dimΓd,2 ≤
d+ 25.

Proof. Fix C ∈ Γd,2 and let T ⊂ P4 be the intersection of two different elements
of |IC(2)|. Let S be the irreducible component of T containing C. Since C is
non-degenerate, we have deg(S) ≥ 3. Hence either deg(S) = 3 or S = T and T
is irreducible.

(a) Assume deg(S) = 3. Since S spans P4, it is a minimal degree surface,
i.e. either a cone over a rational normal curve of P3 or an embedding of the
Hirzebruch surface F1.

(a1) Assume that S is a cone with vertex o and let m : U → S be its
minimal desingularization. U is isomorphic to the Hirzebruch surface F3 and m
is induced by the complete linear system |OF3(h + 3f)|, where h is the section
of the ruling of F3 with negative self-intersection and f is a fiber of the ruling
of F3. We have f2 = 0, f · h = 1 and h2 = −3. Let C ′ be the strict transform of
C in U and take positive integers a, b with b ≥ 3a and C ′ ∈ |ah+ bf |. Since m is
induced by |h+3f |, we have b = d. Since ωF3

∼= OF3(−2h− 5f), the adjunction
formula gives ωC′ ∼= OC′((a−2)h+(d−5)f). Since C is smooth, we have C ′ ∼= C
and in particular pa(C

′) = 0. Hence −2 = (ah + df) · ((a − 2)h + (d − 5)f) =
(a− 2)(d− 3a) + a(d− 5). Hence a = 1. Since d ≥ 7, the curve C = f(C ′) has
a singular point at o, a contradiction.
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(a2) Assume S ∼= F1 and take integers a, b with b ≥ a > 0 and C ∈ |ah+
bf |, where h is the section of the ruling of F1 with negative intersection and f is
a ruling of F1. We have |OF1(1)| = |OF1(h+2f)| and ωF1

∼= OF1(−2h−3f) and
so ωC

∼= OC((a−2)h+(b−3)f). Hence d = a+b and −2 = (a−2)(b−a)+a(b−3).
Hence a = 1 and b = d − 1. Since d − 1 > 5, every quintic hypersurface W
containing C contains S. If W is smooth, then its Picard group is generated by
OW (1), by the Lefschetz theorem and so it contains only surfaces whose degree
is divisible by 5. Hence S *W , a contradiction.

(b) Assume S = T , i.e. assume that T is irreducible. For a general hyper-
plane H ⊂ P4, T ∩H is an integral curve with pa(T ∩H) = 1 and hence it has
at most one singular point. Hence the one-dimensional part of Sing(T ) is either
empty or a line.

(b1) Assume that Sing(T ) contains a line L. A general hyperplane section
of T is an irreducible and singular curve with arithmetic genus 1. Hence if T is
a cone with vertex o, then T is the image of a minimal degree cone T ′ of P5 by
a birational, but not isomorphic linear projection. If T is not a cone, then it is
the image of a minimal degree smooth surface F of P5 by a birational, but not
isomorphic linear projection ([8, Theorem 19.5]).

(b1.1) Assume that T is the image of a minimal degree non-degenerate
cone T ′ ⊂ P5 and let u : U → T ′ be its minimal desingularization. We have
U ∼= F4 and u is induced by the complete linear system |OF4(h + 4f)|. Let
D ⊂ U be the strict transform of the curve, whose image in P4 is C. Write
D ∈ |ah + bf | with b ≥ 4a > 0. As in step (a1) we first get b = d and then
a = 1. We get that u(D) is singular and hence C is singular, a contradiction.

(b1.2) Assume that T is the image of a minimal degree smooth surface
F of P5 and let D ⊂ F be the curve with image C. Since C is smooth, D is
smooth. There is e ∈ {0, 2} such that F ∼= Fe embedded by the complete linear
system |h+ (e+ 1)f |. Take positive integers a, b such that D ∈ |OFe(ah+ bf)|
and b ≥ ea. As in step (a) we first get a = 1 and then b = d − 1. If e =
0 we get that every quintic hypersurface containing D contains F and hence
every quintic hypersurface containing C contains T , contradicting the Lefschetz
theorem as in step (a2). Now assume e = 2. F2 has no smooth plane conic and
its lines are either the elements of |f | or h. Since h · (h + (d − 1)f) = d − 3,
we have deg(L ∩ C) = d − 3. Since 3 is a prime integer, the linear projection
ℓL : P4 \ L → P2 maps C birationally onto an integral plane cubic. Hence C is
contained in the intersection of T with a cubic hypersurface, contradicting the
assumption d > 12 by Bezout.

(b2) Assume that Sing(T ) is finite. Since T is a complete intersection,
it is a locally complete intersection. Hence T is a normal Del Pezzo surface
of degree 4. Let u : V → T be a minimal desingularization and D the strict
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transform of C in V . Since D is smooth and rational, the adjunction formula
gives −2 = ωV · D + D2. V is rational and it is classified ([6]). Since V is a
weak del Pezzo, u is induced by the complete linear system |ω∨

V |. Hence d =
OT (C) · OT (1) = u∗(C) · ω∨

C . Write u∗(C) = D +
∑
ciDi with ci ≥ 0 and

Di contracted by u. Since ω∨
V is spanned ([6, IV, §3, Théorème 1]), we get

ω∨
V ·Di = 0. Hence ωV ·D = −d. Hence D2 = d− 2. Hence h0(OD(D)) = d− 1.

Thus the set of all C ⊂ T depends on d−1 parameters. Since the Grassmannian
G(2, 15) of all lines of |OP4(2)| has dimension 26, this part of Γd,2 has dimension
at most d+ 25. QED

Lemma 3. There is no non-degenerate C ∈Md, d > 12, with h0(IC(2)) ≥ 3
and contained in a smooth quintic hypersurface.

Proof. Take a non-degenerate C ∈ Md, d > 12, with h0(IC(2)) ≥ 3. Let T be
the intersection of two general elements of |IC(2)| and let S be the irreducible
component of T containing C. Since C is non-degenerate, we have deg(S) ≥ 3.
Hence either deg(S) = 3 or S = T and T is irreducible. We exclude the case
S = T , because d > 8 and h0(IT (2)) = 2. We exclude the case deg(S) = 3 as in
step (a) of the proof of Lemma 2. QED

Lemma 4. Let ∆(d) be the set of all C ∈ Γd for which there exists a line
L ⊂ P4 with deg(L ∩ C) ≥ 5. Then dim∆(d) ≤ 12 + 3d.

Proof. We take C ∈ Γd and a line L ⊂ P4 such that deg(L ∩ C) ≥ 5. Take
Q ∈ |IC(2)|. Bezout implies L ⊂ Q. If Q has a line as its singular locus, then we
use Remark 1. Hence we may assume that either Q is smooth or it is a cone with
vertex a single point, o. We write e = 1 if Q is singular and o ∈ C and e = 0
otherwise. Take Z ⊆ C∩L with deg(Z) = 5. Let a1 ≥ a2 be the splitting type of
NC,Q. Since a1 ≤ 3d− 8 (Lemma 1), we have a2 ≥ 4. Hence h1(NC,Q(−Z)) = 0.
Use that L has ∞5 subschemes of degree 5 and that Q has ∞3 lines. QED

2 Proof of Theorem 1

Fix any non-degenerate C ∈ Md and let H ⊂ P4 be any hyperplane. We
often use the exact sequence

0→ IC(t− 1)→ IC(t)→ IC∩H,H(t)→ 0 (3)

Lemma 5. Let Z ⊂ P3 be a degree d curvilinear scheme spanning P3. As-
sume d ≤ 15 and h1(P3, IZ(5)) > 0. Then either there is a line L ⊂ P3 with
deg(L ∩ Z) ≥ 7 or there is a conic D with deg(D ∩ C) ≥ 12.
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Proof. Since Z spans P3, we have deg(Z ∩N) ≤ 14 for every plane N . Assume
for the moment the existence of a planeN ⊂ P3 such that h1(N, IZ∩N,N (5)) > 0,
then N contains either a line L ⊂ P3 with deg(L ∩ Z) ≥ 7 or a conic D with
deg(D ∩ C) ≥ 12 ([7, Corollaire 2]). Now assume h1(N, IZ∩C,N (t)) = 0 for
all planes N ⊂ P3. We may assume h1(IZ′(5)) = 0 for all Z ′ ( Z (taking if
necessary a smaller non-degenerate Z), because h1(N, IZ∩C,N (t)) = 0 for all
planes N . Set Z0 := Z. Let N1 ⊂ P3 be a plane such that e1 := deg(Z0 ∩ N1)
is maximal. Set Z1 := ResN1(Z0). Define recursively for each integer i ≥ 2 the
plane Ni ⊂ P3, the integer ei and the scheme Zi in the following way. Let Ni

be any plane such that ei := deg(Zi−1 ∩Ni) is maximal. Set Zi := ResNi(Zi−1).
We have ei ≤ ei−1 for all i ≥ 2. For each i ≥ 1 we have the exact sequence

0→ IZi(5− i)→ IZi−1(6− i)→ IZi−1∩Ni,Ni(6− i)→ 0 (4)

If ei ≤ 2, then Zi−1 ⊂ Ni and hence Zi = ∅. Since deg(Z) ≤ 15, we get
deg(Z6) ≤ 0, i.e. Z6 = ∅. Since h1(N6,ON6) = 0, there is an integer i such that
1 ≤ i ≤ 5 and h1(IZi−1∩Ni,Ni(6−i)) > 0. We call f such a minimal integer. Since
h1(N, IZ∩C,N (5)) = 0 for all planes N , we have f ≥ 2. Hence f ∈ {2, 3, 4, 5}. We
have ef ≥ 8−f . Since the sequence {ei} is non-increasing, we get f(8−f) ≤ 15.
Since f ≥ 2, we get that f ∈ {2, 3, 5}.

(a) Assume f = 3. Since e1 ≥ e2 ≥ e3 ≥ 5, we get e1 = e2 = e3 = 5. Since
e3 ≤ 7 and h1(N3, IZ2∩N3,N3(3)) > 0, there is a line R ⊂ N3 with deg(R∩Z2) ≥
5. Taking a plane F containing R and with maximal deg(M ∩Z1) we get e2 ≥ 6,
a contradiction.

(b) Assume f = 2. We have e2 ≥ 6. Since e1 ≥ e2 and e1 + e2 ≤ 15,
we have e2 ≤ 7. Hence there is a line R ⊂ N2 such that deg(R ∩ Z1) ≥ 6.
Assuming that L does not exists, then deg(R ∩ Z) = 6. Let M1 ⊂ P3 be a
plane containing R and with maximal g1 := deg(M1 ∩ Z) among the planes
containing R. Since Z spans P3, we have g1 ≥ 7. Set W1 := ResM1(Z). By
assumption h1(M1, IZ∩M1,M1(5)) = 0. Hence the residual sequence of M1 ⊂
P3 gives h1(P3, IW1(4)) > 0. Let M2 ⊂ P3 be a plane with maximal g2 :=
deg(W1 ∩M2). Set W2 := ResM2(W1). Let M3 ⊂ P3 be a plane with maximal
g3 := deg(W2∩M3). SetW3 := ResM3(W2). In this way we get a non-decreasing
sequence {gi}i≥2 with

∑

i≥2 gi = d− g1 ≤ 8. We get an integer h ∈ {2, 3} with
h1(Mh, IMh∩Wh−1,Mh

(6− h)) > 0 and gh ≥ 8− h. As in step (a) we exclude the
case h = 3. Hence h = 2. As in the first part of step (b) we get a line D ⊂ P3

such that deg(D ∩W1) = 6.
(b1) AssumeD∩R = ∅. Let T ⊂ P3 be a general quadric surface containing

D∪R. Since ID∪R(2) is spanned and Z is curvilinear, T is smooth and T ∩Z =
(D ∪ R) ∩ Z (as schemes). Hence h1(T, IZ∩T,T (5)) = 0. Since deg(ResT (Z)) =
d − 12 ≤ 3, we have h1(IResT (Z)(3)) = 0. The residual sequence of T gives a
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contradiction.
(b2) Assume D ∩ R 6= ∅ and D 6= R. Let N be the plane spanned by

D ∪ R. Since deg(ResN (Z)) ≤ d − 11, we have h1(N, IResN (Z),N (4)) = 0. The
residual sequence of N gives h1(N, IZ∩N,N (5)) > 0, contradicting one of our
assumptions.

(b3) Assume D = R. Let H,M ⊂ P3 be general planes containing R.
Since ResH∪M (Z) = ResH(ResM (Z)), we have deg(ResH∪R(Z)) ≤ d − 12 ≤ 3.
Hence h1(IResH∪M (Z)(3)) = 0. The residual sequence of H ∪M gives h1(H ∪
M, IZ∩(H∪M),H∪M (5)) > 0. The minimality condition of Z gives Z ∩ (H ∪R) =
Z. Hence d = 12. For any q ∈ Zred let Zq be the connected component of
Z containing q. Since ResH(Z) has degree 6 and it is supported by D, we
have 2 deg(ResH(Zq)) = deg(Zq) for all q. In particular we may take q with
Zq * R. Since Z is curvilinear, we may find a plane N ⊃ R with deg(N ∩Zq) >
deg(R ∩ Zq). Since deg(ResN (Z)) ≤ 12 − 7, we have h1(N, IResN (Z),N (4)) = 0.
The residual sequence of N gives h1(N, IZ∩N,N (5)) > 0, contradicting one of
our assumptions.

(c) Assume f = 5. Since deg(Zt−1) ≤ 4, we get the existence of a line
R ⊂ N5 such that deg(R ∩ Z4) ≥ 3. Since deg(R ∩ Z3) ≥ 3, the maximality
property of N4 implies e4 ≥ 4. Hence 15 ≥ 4 · 4 + 3, a contradiction. QED

Lemma 6. Fix a non-degenerate C ∈ Md contained in some W ∈ W and
assume the existence of a conic D ⊂ P4 with deg(D∩C) ≥ 12 and that deg(L∩
C) ≤ 6 for each line L ⊆ Dred. Then D is smooth.

Proof. Take W ∈ W containing C. Let N be the plane spanned by D. First
assume that D ⊂ N is a double line. Set L := Dred. Since deg(L ∩ C) ≤ 6 by
assumption, we have deg(L∩C) = 6. Bezout implies L ⊂W . Since W ∈ W, we
have NL,W

∼= OL(−1)⊕OL(−1). Bezout implies that D ⊆W ∩N . Fix a general
hyperplaneH ⊃ N . SinceW is smoothW∩H has isolated singularities. We have
an injective map NL,H∩W → NL,W , contradicting the inclusion D ⊂ H ∩W .
Now assume that D = R ∪ L with R,L lines and R 6= L. Since deg(L ∩ C) ≤ 6
and deg(R∩C) ≤ 6 by assumption, we have deg(L∩C) = deg(R∩C) ≤ 6. Hence
L∪R ⊂W , contradicting the fact that any two lines of W are disjoint. QED

Lemma 7. Take a non-degenerate C ∈ Md contained in some W ∈ W.
Assume h1(IC(5)) > 0 and that there is either a line L with deg(L ∩C) ≥ 7 or
a conic D with deg(D ∩ C) ≥ 12. Then h1(IC(4)) > h1(IC(5)).

Proof. Let S1 be the set of all lines L with deg(L ∩ C) ≥ 7 and let S2 be the
set of all conics D such that deg(D∩C) ≥ 10. Assume for the moment that the
sets S1 and S2 are finite. Let N ⊂ P4 be a general plane and let M ⊂ P4 be any
hyperplane containing N . Set V := H0(IN (1)). We have dim(V ) = 2. Since S1
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is finite and N is general, then N ∩L = ∅ for all L ∈ S1 and hence L *M for all
L ∈ S2. Since S2 is finite, thenN contains a unique point of the plane spanned by
any D ∈ S2 and hence D * M . Lemma 5 gives h1(M, IC∩M,M (5))) = 0. Hence
the bilinear mapH0(IC(5))∨×V → H0(IC(4))∨ is non-degenerate in the second
variable. By the bilinear lemma we have h1(IC(4)) ≥ h1(IC(5))− 1 + dimV .

Now assume that S1 is infinite and call ∆ an irreducible positive dimensional
family of its elements. Take a general (R,L) ∈ ∆. We have L ∩ R = ∅, unless
either there is o ∈ P4 with o ∈ J for all J ∈ ∆ or there is a plane N with
J ⊂ N for all J ∈ ∆. The second case is not possible, because C * N . The
first case is excluded, because the linear projection from o would map C onto a
non-degenerate curve of P3 with degree ≤ (d− 1)/6 < 3.

Now assume that S2 is infinite. Let S′
2 be the set of all D ∈ S2 with D a

smooth conic. As in the proof just given we find that the set of all lines R with
deg(R ∩ C) = 6 and supporting a component of some D ∈ S2 is finite. Hence
it is sufficient to prove that S′

2 is finite. For each D ∈ S′
2 let 〈D〉 be the plane

spanned by D. If D1 6= D2, no hyperplane contains D1∪D2 by Bezout and hence
〈D1〉 ∩ 〈D2〉 = ∅. Since any two planes of P4 meet, we have ♯(S′

2) ≤ 1. QED

Proof of Theorem 1: Fix C ∈Md, d ≤ 15.
By Remark 1 we may assume h1(IC(5)) ≥ 2d− 13.
(a) Assume h0(IC(2)) = 1, say {Q} = |IC(2)|. Fix a general hyperplane

H ⊂ P4.
(a1) Assume that there is no line L ⊂ P4 with deg(L ∩ C) ≥ 7 and no

conic D with deg(D ∩ C) ≥ 12. Lemma 5 gives h1(H, IC∩H,H(5)) = 0 for every
hyperplaneH ⊂ P4. Hence the bilinear lemma gives h1(IC(4)) ≥ h1(IC(5))+4 ≥
2d−9. Since C∩H is in uniform position, we have h1(H, IC∩H,H(4)) ≤ d−13 ≤ 2
([10, Lemma 3.9]). By (3) we have h1(IC(3)) ≥ 2d − 11. Hence h0(IC(3)) ≥
35 − 3d − 1 + 2d − 11 ≥ 8. Since h0(IC(2)) = 1, the general M ∈ |IC(3)| has
not Q as a component. Set F := Q ∩M . First assume that F is irreducible.
The curve D := F ∩ H is a complete intersection curve with degree 6 and
arithmetic genus 4. In particular h1(H, IC,H(3)) = 0. Thus h1(H, IC∩H,H(3)) =
h1(D, IC∩H,D(3)). We have h1(D, IC∩H,D(3)) ≤ 1, because deg(IC∩H,D(3)) =
18 − d ≥ 3. Hence h1(H, IC∩H,H(3)) ≤ 1. Since h1(IC(2)) ≥ 2d − 12, we have
h0(IC(2)) = 15− 2d− 1 + h1(IC(2)) ≥ 2, contradicting the assumption of step
(a).

Now assume that F is not irreducible. Call T the irreducible component of
F containing C. T is a non-degenerate surface and hence deg(T ) ≥ 3. Since
h0(IC(2)) = 1, we have h0(IT (2)) = 1 and hence neither deg(T ) = 3 nor T is
the complete intersection of two quadrics.

Assume deg(T ) = 4. Since T is not a complete intersection, a general hyper-
plane section of T is a smooth rational curve of degree 4. Since h1(H, IC∩H,H(t)) =
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0 for all t ≥ 2 and h0(OC∩H(t)) = 4t + 1, t = 3, 4, we get h1(H, IC∩H,H(3)) ≤
d− 13 and h1(IC∩H,H(4)) = 0. We get h1(IC(3)) ≥ h1(IC(4)) and h1(IC(2)) ≥
h1(IC(3)) + 13− d ≥ d+ 4. Hence h0(IC(2)) ≥ 18− d, a contradiction.

Now assume deg(T ) = 5. In this case T is linked to a plane by the complete
intersection T and hence T ∩H is linked to a line by a complete intersection of a
quadric and a cubic. Hence T ∩H is arithmetically Cohen-Macaulay with degree
5 and arithmetic genus 2 ([18, Theorem 1.1 (a)], [22], [21, Proposition 3.1]). Thus
h1(H, IC∩H,H(4)) = h1(T ∩H, IC∩H,H(4)) = 0 and h1(H, IC∩H,H(3)) ≤ 2. We
get h1(IC(2)) ≤ 2d− 11 and hence h0(IC(2)) ≥ 3, a contradiction.

(a2) Now assume that there is a line L ⊂ P4 with deg(L ∩ C) ≥ 7. By
Lemma 4 we may assume h1(IC(5)) ≥ 2d − 11. Lemma 7 gives h1(IC(4)) ≥
2d−10 and hence h1(IC(3)) ≥ 2d−12 ≥ 7. We get h0(IC(3)) > 5. We repeat the
proof of step (a1) with a loss of 1; for instance, if deg(T ) = 4 (resp. deg(T ) = 5)
we get h1(IC(2)) ≥ d + 3 and h0(IC(2)) ≥ 17 − d (resp. h1(IC(2)) ≥ 2d − 12
and hence h0(IC(2)) ≥ 2), a contradiction.

(a3) Assume the existence of a conic D with deg(D ∩ C) ≥ 12, but that
there is no line L ⊂ P4 with deg(L∩C) ≥ 7. By Lemma 6 we may assume that
D is smooth.

(a3.1) Assume for moment h1(IC(5)) ≥ 2d−12. Lemma 7 gives h1(IC(4)) ≥
2d − 11. The case t = 4 of (3) and [10, Lemma 3.9] give h1(IC(3)) ≥ 2d − 13.
Hence h0(IC(3)) ≥ 35 − 14 − d > 5. As in step (a1) we first get h1(IC(3)) ≥
h1(IC(4)) and then h1(IC(2)) ≥ h1(IC(3))−1. Thus h0(IC(2)) ≥ 2, contradict-
ing our assumption.

(a3.2) Now we justify the assumption made in step (a3.1). If Q is a quadric
with vertex a line, then we may assume h1(IC(5)) ≥ 2d − 10 by Remark 1. If
Q is a quadric cone with vertex a point o and o /∈ C, then we may assume
h1(IC(3)) ≥ 2d − 12 by Remark 1. Now assume that C is a contained in a
quadric cone Q with vertex a point o ∈ C. It is sufficient to prove that for
each irreducible component ∆ of the set of all non-degenerate Y ∈ Md with
Y ⊂ Q and o ∈ Y a general Y ∈ ∆ has no conic D with deg(D ∩ Y ) ≥ 12
or that if C ∈ ∆, then it may be deformed to Y ∈ ∆ with no offending conic.
Bezout gives D ⊂ Q. We need to distinguish the case o ∈ D and o /∈ D. First
assume o ∈ D. Fix Z ⊆ D ∩ C with deg(Z) = 12 and o ∈ Zred. Since D has
∞12 zero-dimensional schemes with degree 12 and Q has ∞5 conics through
o, it is sufficient to prove that h0(NC,Q(−Z)) < 3d + 1 − 5 − 12. We have
h0(NC,Q(−Z)) ≤ 3d+ 1− 12− 7 by Lemma 1. If o /∈ D we use the same proof,
just using that Q has ∞6 conics.

The case of a smooth Q is similar.

(b) Now assume h0(IC(2)) ≥ 2. By Lemmas 2 and 3 C is contained
in an integral complete intersection of 2 quadrics and we may assume that
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h1(IC(5)) ≥ 4d−24. Hence as in step (a) we get h1(IC(3)) ≥ 4d−24, h1(IC(2)) ≥
3d− 13 and hence h0(IC(2)) > 2, contradicting Lemma 3. QED

3 Proof of Proposition 1

Remark 2. Fix an integer d ≥ 13 and C ∈ Md contained in a hyperplane
H ⊂ P4. Since h0(H, IC(5)) = 56, we have h1(IC(5)) ≥ 5(d− 11) > 0.

Proof of Proposition 1: Take C ∈ Md contained in a hyperplane H ⊂ P4 and
contained in some W ∈ W. Let S ⊂ H be a degree α hypersurface. Since α is
the minimal degree of a surface of H containing C and C is irreducible, S is
irreducible. Since C ⊂W ∩H, we have α ≤ 5.

(a) Assume α = 2. If S is smooth, then up to a change of the ruling of S
we may assume C ∈ |OS(1, d − 1)|. Since d − 1 > 5, W ⊃ S, contradicting the
Lefschetz theorem which implies that all surfaces contained in W have degree
divisible by 5. If S is a cone, then any smooth curve on it is projectively normal
([11, Ex. V.2.9]), contradicting Remark 2.

(b) Assume α = 3. Bezout implies h0(H, IC(3)) = 1. By the Lefschetz
theorem we have S * W . Since C ⊆ S ∩W , we get d ≤ 15. The case d = 15 is
excluded, because the ωS∩W ∼= OS∩W (4) and so S ∩W 6= C. The case d = 14 is
excluded, because it would give that the complete intersection S∩W would link
C to a line and hence it is arithmetically normal ([18], [21], [22]), contradicting
Remark 2. Now assume d = 13. In this case S ∩ W links C to a degree 2
locally Cohen-Macaulay curve D. If D is a plane curve, then C is arithmetically
Cohen-Macaulay, contradicting Remark 2. If D is a disjoint union of 2 lines,
then pa(D) = −1, contradicting [21, Proposition 3.1]. Now assume that D is a
double structure on a line L, but it is not a conic, i.e. that D is not a conic.
Since S∩W links C∪L to L, C∪L, we have pa(C∪L)−pa(L) = 2(11−1) ([21,
Proposition 3.1]), i.e. pa(C ∪L) = 20, and hence deg(C ∩L) = 21, contradicting
the inequality d < 21.

(c) Assume α = 4. Since C ⊆ W ∩ S, we have d ≤ 20. We exclude the
cases d = 20 and d = 19 as in step (b). Now assume d = 18. S ∩W links C
to a degree 2 locally Cohen-Macaulay curve D. If D is a plane curve, then C is
arithmetically Cohen-Macaulay, contradicting Remark 2. Now assume that D
is a double structure on a line L, but it is not a conic, i.e. that D is not a conic.
Since S ∩W links C ∪L to L, C ∪L, we have pa(C ∪L)− pa(L) = (17− 1)5/2
([21, Proposition 3.1]) and hence deg(C ∩ L) > 40, a contradiction. QED
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165, Birkhäuser, Boston, 1998.

[19] P. G. J. Nijsse: Clemens’ conjecture for octic and nonic curves, Indag. Math., 6 (1995),
213–221.

[20] K. Oguiso: Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math., 452 (1994),
153–161.



88 E. Ballico

[21] C. Peskine, L. Szpiro: Liaison des variétés algébriques. I, Invent. Math., 26 (1974),
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