Congruences modulo 3 for two interesting partitions arising from two theta function identities

Kuwali Das
Department of Mathamatical Sciences, Bodoland University, Kokrajhar-783370, Assam, INDIA kwldas90@gmail.com

Received: 29.8.2016; accepted: 6.10.2016.

Abstract

We find several interesting congruences modulo 3 for 5 -core partitions and two color partitions.

Keywords: t-core partition, Theta function, Dissection, Congruence.
MSC 2000 classification: MSC 2000 classification: primary 11P83; secondary 05A17

Introduction

A partition of n is a non-increasing sequence of positive integers, called parts, whose sum is n. A partition of n is called a t-core of n if none of the hook numbers is a multiple of t. If $a_{t}(n)$ denotes the number of t-cores of n, then the generating function for $a_{t}(n)$ is [5]

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{t}(n) q^{n}=\frac{\left(q^{t} ; q^{t}\right)_{\infty}^{t}}{(q ; q)_{\infty}} \tag{1}
\end{equation*}
$$

where, here and throughout the sequel, for any complex number a and $|q|<1$,

$$
(a ; q)_{\infty}:=\prod_{n=1}^{\infty}\left(1-q^{n}\right) .
$$

The following exact formula for $a_{5}(n)$ in terms of the prime factorization of $n+1$ can be found in [5, Theorem 4]. This theorem follows from an identity of Ramanujan recorded in his famous manuscript on the partition function and tau-function now published with his lost notebook [6, p. 139].

[^0]Theorem 1. Let $n+1=5^{c} p_{1}^{a_{1}} \ldots p_{s}^{a_{s}} q_{1}^{b_{1}} \ldots q_{t}^{a_{t}}$ be the prime factorization of $n+1$ into primes $p_{i} \equiv 1,4(\bmod 5)$, and $q_{j} \equiv 2,3(\bmod 5)$. Then

$$
a_{5}(n)=5^{c} \prod_{i=1}^{s} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} \prod_{j=1}^{t} \frac{q_{j}^{b_{j}+1}-1}{q_{j}-1}
$$

Many arithmetical identities and congruences easily follow from the above theorem. For example, for any positive integer n and non-negative integer r, we have

$$
a_{5}\left(5^{\alpha} n-1\right)=5^{\alpha} a_{5}(n-1) \equiv 0\left(\bmod 5^{\alpha}\right)
$$

Similarly, for a prime $p \equiv 2,3(\bmod 5)$ and any non-negative integers n and r, we can easily deduce that

$$
a_{5}\left(p^{\alpha}(p n+1)-1\right)=\frac{p^{\alpha+1}+(-1)^{\alpha}}{p+1} a_{5}(p n) \equiv 0\left(\bmod \frac{p^{\alpha+1}+(-1)^{\alpha}}{p+1}\right)
$$

Next, let $p_{k}(n)$ denote the number of 2 -color partitions of n where one of the colors appears only in parts that are multiples of k. Then the generating function for $p_{k}(n)$ is given by

$$
\sum_{n=0}^{\infty} p_{k}(n) q^{n}=\frac{1}{(q ; q)_{\infty}\left(q^{k} ; q^{k}\right)_{\infty}}
$$

Recently, the following result was proved by Baruah, Ahmed and Dastidar [1].
Theorem 2. If $k \in\{0,1,2,3,4,5,10,15,20\}$, then for any non-negative integer n,

$$
p_{k}(25 n+\ell) \equiv 0(\bmod 5)
$$

where $k+\ell=24$.
In this paper, we find some interesting congruences modulo 3 for 5 -core partitions and $p_{5}(n)$ by employing Ramanujan's theta functions and their dissections. Since our proofs mainly rely on various properties of Ramanujan's theta functions and dissections of certain q-products, we end this section by defining a t-dissection and Ramanujan's general theta function and some of its special cases. If $P(q)$ denotes a power series in q, then a t-dissection of $P(q)$ is given by

$$
P(q)=\sum_{k=0}^{t-1} q^{k} P_{k}\left(q^{t}\right)
$$

where P_{k} are power series in q^{t}. In the remainder of this section, we introduce

Ramanujan's theta functions and some of their elementary properties, which will be used in our subsequent sections. For $|a b|<1$, Ramanujan's general theta-function $f(a, b)$ is defined by

$$
f(a, b):=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} .
$$

In this notation, Jacobi's famous triple product identity [3, p. 35, Entry 19] takes the form

$$
\begin{equation*}
f(a, b)=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty} . \tag{2}
\end{equation*}
$$

Three important special cases of $f(a, b)$ are

$$
\begin{align*}
\varphi(q) & :=f(q, q)=\frac{\left(q^{2} ; q^{2}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{5}}{(q ; q)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}^{2}}, \tag{3}\\
\psi(q) & :=f\left(q, q^{3}\right)=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
f(-q):=f\left(-q,-q^{2}\right)=(q ; q)_{\infty}, \tag{5}
\end{equation*}
$$

where the product representations in (4) and (5) arise from (2) and the last equality in (5) is Euler's famous pentagonal number theorem. After Ramanujan, we also define

$$
\begin{equation*}
\chi(q):=\left(-q ; q^{2}\right)_{\infty}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty}} \tag{6}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\chi(-q):=\left(q ; q^{2}\right)_{\infty}=\frac{(q ; q)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \tag{7}
\end{equation*}
$$

Furthermore, the q-product representations of $\varphi(-q)$ and $\psi(-q)$ can be written in the forms

$$
\begin{equation*}
\varphi(-q)=\frac{(q ; q)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}}, \quad \psi(-q)=\frac{(q ; q)_{\infty}\left(q^{4} ; q^{4}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \tag{8}
\end{equation*}
$$

Lemma 1. [4, Theorem 2.2] For any prime $p \geq 5$,

$$
\left.\begin{array}{rl}
(q ; q)_{\infty}= & \sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}}\right.
\end{array},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right) ~\left\{\begin{array}{l}
\\ \tag{9}
\end{array}\right.
$$

where

$$
\frac{ \pm p-1}{6}:= \begin{cases}\frac{p-1}{6}, & \text { if } p \equiv 1(\bmod 6) \\ \frac{-p-1}{6}, & \text { if } p \equiv-1(\bmod 6)\end{cases}
$$

Furthermore, for $\frac{-(p-1)}{2} \leq k \leq \frac{(p-1)}{2}$ and $k \neq \frac{(\pm p-1)}{6}$,

$$
\frac{3 k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{24}(\bmod p)
$$

Some congruences modulo 3 for 5-core partitions

We first introduce an important lemma which will be used later.
Lemma 2. We have
$\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2} \equiv q^{2}\left(q^{6} ; q^{6}\right)_{\infty}^{2}\left(q^{30} ; q^{30}\right)_{\infty}^{2}+\left(q^{6} ; q^{6}\right)_{\infty}^{4}+2 q^{4}\left(q^{30} ; q^{30}\right)_{\infty}^{4}(\bmod 3)$.

Proof. We note that [3, p. 258],

$$
\begin{equation*}
\varphi^{2}(q)-\varphi^{2}\left(q^{5}\right)=4 q \chi(q) f\left(-q^{5}\right) f\left(-q^{20}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
5 \varphi^{2}\left(q^{5}\right)-\varphi^{2}(q)=4 \chi(q) \chi\left(-q^{5}\right) \psi^{2}(-q) \tag{12}
\end{equation*}
$$

Multiplying (11) and (12)

$$
\begin{equation*}
6 \varphi^{2}(q) \varphi^{2}\left(q^{5}\right)-\varphi^{4}(q)-5 \varphi^{4}\left(q^{5}\right)=16 q \chi^{2}(q) \chi\left(q^{5}\right) f\left(-q^{5}\right) f\left(-q^{20}\right) \psi(-q) \tag{13}
\end{equation*}
$$

Employing (5), (6), (7) and (8) in the last equation, we obtain

$$
\begin{equation*}
6 \varphi^{2}(q) \varphi^{2}\left(q^{5}\right)-\varphi^{4}(q)-5 \varphi^{4}\left(q^{5}\right)=16 q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2} \tag{14}
\end{equation*}
$$

Taking congruences modulo 3 , we obtain

$$
\begin{equation*}
q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2} \equiv-\varphi(q) \varphi\left(q^{3}\right)+\varphi\left(q^{5}\right) \varphi\left(q^{15}\right)(\bmod 3) \tag{15}
\end{equation*}
$$

Recalling [3, p.49, Corollary (i)], we have

$$
\begin{equation*}
\varphi(q)=\varphi\left(q^{9}\right)+2 q f\left(q^{3}, q^{15}\right) \tag{16}
\end{equation*}
$$

Replacing q by q^{5} in the above equation, we have,

$$
\begin{equation*}
\varphi\left(q^{5}\right)=\varphi\left(q^{45}\right)+2 q^{5} f\left(q^{15}, q^{75}\right) \tag{17}
\end{equation*}
$$

Employing the above two equation in (15), we find that

$$
\begin{align*}
q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2} \equiv & -\varphi\left(q^{3}\right) \varphi\left(q^{9}\right)+q \varphi\left(q^{3}\right) f\left(q^{3}, q^{15}\right)+\varphi\left(q^{15}\right) \varphi\left(q^{45}\right) \\
& +2 q^{5} \varphi\left(q^{15}\right) f\left(q^{15}, q^{75}\right)(\bmod 3) \tag{18}
\end{align*}
$$

Note that

$$
\begin{equation*}
\varphi(q) f\left(q, q^{5}\right)=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{7}\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{12} ; q^{12}\right)_{\infty}}{(q ; q)_{\infty}^{3}\left(q^{4} ; q^{4}\right)_{\infty}^{3}\left(q^{6} ; q^{6}\right)_{\infty}} \tag{19}
\end{equation*}
$$

Since, $(q ; q)_{\infty}^{3} \equiv\left(q^{3} ; q^{3}\right)_{\infty}$, so (19) can be written as

$$
\begin{equation*}
\varphi(q) f\left(q, q^{5}\right) \equiv\left(q^{2} ; q^{2}\right)_{\infty}^{4}(\bmod 3) \tag{20}
\end{equation*}
$$

Employing (15) and (20) in (18), we obtain

$$
\begin{align*}
& q\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2} \equiv \\
& \quad q^{3}\left(q^{6} ; q^{6}\right)_{\infty}^{2}\left(q^{30} ; q^{30}\right)_{\infty}^{2}+q\left(q^{6} ; q^{6}\right)_{\infty}^{4}+2 q^{5}\left(q^{30} ; q^{30}\right)_{\infty}^{4}(\bmod 3) \tag{21}
\end{align*}
$$

From above congruence we can easily obtain (10).
Theorem 3. We have,

$$
\begin{align*}
\sum_{n=0}^{\infty} a_{5}(3 n) q^{n} & \equiv\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3) \tag{22}\\
\sum_{n=0}^{\infty} a_{5}(3 n+1) q^{n} & \equiv(q ; q)_{\infty}\left(q^{15} ; q^{15}\right)_{\infty}(\bmod 3), \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}(3 n+2) q^{n} \equiv 2 \sum_{n=0}^{\infty} a_{5}(n) q^{n}(\bmod 3) \tag{24}
\end{equation*}
$$

Proof. Putting $t=5$ in (3.7) and replacing q by q^{2}, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}(n) q^{2 n}=\frac{\left(q^{10} ; q^{10}\right)_{\infty}^{5}}{\left(q^{2} ; q^{2}\right)_{\infty}} \tag{25}
\end{equation*}
$$

Taking congruences modulo 3 ,

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}(n) q^{2 n} \equiv \frac{\left(q^{30} ; q^{30}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{\left(q^{6} ; q^{6}\right)_{\infty}}(\bmod 3) \tag{26}
\end{equation*}
$$

With the help of (10), (26) can be rewritten as

$$
\begin{align*}
\sum_{n=0}^{\infty} a_{5}(n) q^{n} \equiv & \frac{\left(q^{30} ; q^{30}\right)_{\infty}}{\left(q^{6} ; q^{6}\right)_{\infty}}\left(q^{2}\left(q^{6} ; q^{6}\right)_{\infty}^{2}\left(q^{30} ; q^{30}\right)_{\infty}^{2}\right. \tag{27}\\
& \left.+\left(q^{6} ; q^{6}\right)_{\infty}^{4}+2 q^{4}\left(q^{30} ; q^{30}\right)_{\infty}^{4}\right)(\bmod 3) \\
\equiv & q^{2}\left(q^{6} ; q^{6}\right)_{\infty}\left(q^{30} ; q^{30}\right)_{\infty}^{3}+\left(q^{6} ; q^{6}\right)_{\infty}^{3}\left(q^{30} ; q^{30}\right)_{\infty} \tag{28}\\
& +2 q^{4} \frac{\left(q^{30} ; q^{30}\right)_{\infty}^{5}}{\left.q^{6} ; q^{6}\right)_{\infty}}(\bmod 3) \\
\equiv & q^{2}\left(q^{6} ; q^{6}\right)_{\infty}\left(q^{90} ; q^{90}\right)_{\infty}+\left(q^{18} ; q^{18}\right)_{\infty}\left(q^{30} ; q^{30}\right)_{\infty} \tag{29}\\
& +2 q^{4} \sum_{n=0}^{\infty} a_{5}(n) q^{6 n}(\bmod 3)
\end{align*}
$$

Comparing the terms involving $q^{6 n}, q^{6 n+2}$ and $q^{6 n+4}$ respectively from both sides of the above congruence, we can easily obtain (22)-(24).

Applying the mathematical induction in (24), we can easily obtain the following

Corollary 1. For any nonnegative integers k and n, we have

$$
a_{5}\left(3^{k} n+3^{k}-1\right) \equiv 2^{k} a_{5}(n)(\bmod 3)
$$

Theorem 4. We have,

$$
\begin{align*}
a_{5}(15 n+6) & \equiv 0(\bmod 3), \tag{30}\\
a_{5}(15 n+12) & \equiv 0(\bmod 3), \tag{31}
\end{align*}
$$

and

$$
\begin{equation*}
a_{5}(15 n+9) \equiv 2 a_{5}(3 n+1)(\bmod 3) \tag{32}
\end{equation*}
$$

Proof. From [3, p. 270, Entry 12(v)], we recall that

$$
\begin{equation*}
(q ; q)_{\infty}=\left(q^{25} ; q^{25}\right)_{\infty}\left(\frac{A\left(q^{5}\right)}{B\left(q^{5}\right)}-q-q^{2} \frac{B\left(q^{5}\right)}{A\left(q^{5}\right)}\right) \tag{33}
\end{equation*}
$$

where

$$
A(q)=\frac{f\left(-q^{10},-q^{15}\right)}{f\left(-q^{5},-q^{20}\right)} \text { and } B(q)=\frac{f\left(-q^{5},-q^{20}\right)}{f\left(-q^{10},-q^{15}\right)}
$$

Replacing q by q^{3} in (33) and then employing in (22), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}(3 n) q^{n} \equiv\left(q^{5} ; q^{5}\right)_{\infty}\left(q^{75} ; q^{75}\right)_{\infty}\left(\frac{A\left(q^{15}\right)}{B\left(q^{15}\right)}-q^{3}-q^{6} \frac{B\left(q^{15}\right)}{A\left(q^{15}\right)}\right)(\bmod 3) \tag{34}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+3}$ from both sides of the congruence, we obtain,

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}(3(5 n+3)) q^{n} \equiv 2(q ; q)_{\infty}\left(q^{15} ; q^{15}\right)_{\infty}(\bmod 3) \tag{35}
\end{equation*}
$$

Employing (23) in (35), we can easily obtain (32).
We have seen that in the right hand side of the congruence (34), there is no terms involving $q^{5 n+2}$ and $q^{5 n+4}$ and hence we can easily obtain (30) and (31) respectively.

Theorem 5. We have,

$$
\begin{array}{r}
a_{5}(15 n+4) \equiv 2 a_{5}(3 n)(\bmod 3) \\
a_{5}(15 n+10) \equiv 0(\bmod 3) \tag{37}
\end{array}
$$

and

$$
\begin{equation*}
a_{5}(15 n+13) \equiv 0(\bmod 3) . \tag{38}
\end{equation*}
$$

Proof. Employing (33) in (23), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}(3 n+1) q^{n} \equiv\left(q^{15} ; q^{15}\right)_{\infty}\left(q^{25} ; q^{25}\right)_{\infty}\left(\frac{A\left(q^{5}\right)}{B\left(q^{5}\right)}-q-q^{2} \frac{B\left(q^{5}\right)}{A\left(q^{5}\right)}\right)(\bmod 3) \tag{39}
\end{equation*}
$$

Extracting the terms involving $q^{5 n+1}$ from both sides of the congruence, we obtain,

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}(3(5 n+1)+1) q^{n} \equiv 2\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3) \tag{40}
\end{equation*}
$$

Employing (22) in (40), we can easily obtain (36).
It is clear that in the right hand side of the congruence (39), there is no terms involving $q^{5 n+3}$ and $q^{5 n+4}$ and hence we can easily obtain (37) and (38) QED

Theorem 6. For any prime $p \geq 5$ with $\left(\frac{-15}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
\begin{equation*}
a_{5}\left(3 \cdot p^{2 k} n+p^{2 k}-1\right) \equiv a_{5}(3 n)(\bmod 3) \tag{41}
\end{equation*}
$$

Proof. With the help of (9), (22) can be rewritten as

$$
\begin{align*}
& \sum_{n=0}^{\infty} a_{5}(3 n) q^{n} \equiv\left[\sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{3 \cdot \frac{3 k^{2}+k}{2}} f\left(-q^{3 \cdot \frac{3 p^{2}+(6 k+1) p}{2}},-q^{3 \cdot \frac{3 p^{2}-(6 k+1) p}{2}}\right)+\right. \\
&\left.(-1)^{\frac{ \pm p-1}{6}} q^{3 \cdot \frac{p^{2}-1}{24}} f\left(-q^{3 p^{2}}\right)\right] \\
& \times\left[\sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{5 \cdot \frac{3 k^{2}+k}{2}} f\left(-q^{5 \cdot \frac{3 p^{2}+(6 k+1) p}{2}},-q^{5 \cdot \frac{3 p^{2}-(6 k+1) p}{2}}\right)\right. \\
&\left.+(-1)^{\frac{ \pm p-1}{6}} q^{5 \cdot \frac{p^{2}-1}{24}} f\left(-q^{5 p^{2}}\right)\right](\bmod 3) \tag{42}
\end{align*}
$$

Now we consider the congruence

$$
\begin{equation*}
3 \cdot \frac{\left(3 k^{2}+k\right)}{2}+5 \cdot \frac{\left(3 m^{2}+m\right)}{2} \equiv 8 \cdot \frac{\left(p^{2}-1\right)}{24}(\bmod p) \tag{43}
\end{equation*}
$$

where $-(p-1) / 2 \leq k, m \leq(p-1) / 2$, with $\left(\frac{-15}{p}\right)=-1$. Since the above congruence is equivalent to

$$
(18 k+3)^{2}+15 \cdot(6 m+1)^{2} \equiv 0(\bmod p)
$$

and $\left(\frac{-15}{p}\right)=-1$, there is only one solution $k=m= \pm p-1 / 6$ for (43). That is, there are no other k and m such that $3 \frac{\left(3 k^{2}+k\right)}{2}+5 \cdot \frac{\left(3 m^{2}+m\right)}{2}$ and $8 \cdot \frac{\left(p^{2}-1\right)}{24}$ are in the same residue class modulo p. Therefore, equating the terms involving $q^{p n+8 \cdot \frac{p^{2}-1}{24}}$ from both sides of (42), we deduce that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{5}\left(3\left(p n+8 \cdot \frac{p^{2}-1}{24}\right)\right) q^{n} & =\sum_{n=0}^{\infty} a_{5}\left(3 p n+p^{2}-1\right) q^{n} \\
& \equiv\left(q^{3 p} ; q^{3 p}\right)_{\infty}\left(q^{5 p} ; q^{5 p}\right)_{\infty}(\bmod 3) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}\left(3 p^{2} n+p^{2}-1\right) q^{n} \equiv\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3) \tag{44}
\end{equation*}
$$

From (44) and (22), we arrive at

$$
a_{5}\left(3 p^{2} n+p^{2}-1\right) \equiv a_{5}(3 n)(\bmod 3)
$$

Now (41) can be established easily by mathematical induction.
Corollary 2. For any prime $p \geq 5$ with $\left(\frac{-15}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
a_{5}\left(3 \cdot p^{2 k+2} n+(3 i+p) p^{2 k+1}-1\right) \equiv 0(\bmod 3),
$$

where $i=1,2, \ldots, p-1$.
Proof. As in the proof of the previous theorem, it can also be shown that

$$
\sum_{n=0}^{\infty} a_{5}\left(3 \cdot p^{2 k}\left(p n+8 \frac{p^{2}-1}{24}\right)+p^{2 k}-1\right) q^{n} \equiv\left(q^{3 p} ; q^{3 p}\right)_{\infty}\left(q^{5 p} ; q^{5 p}\right)_{\infty}(\bmod 3),
$$

that is,

$$
\sum_{n=0}^{\infty} a_{5}\left(3 \cdot p^{2 k+1} n+p^{2 k+2}-1\right) q^{n} \equiv\left(q^{3 p} ; q^{3 p}\right)_{\infty}\left(q^{5 p} ; q^{5 p}\right)_{\infty}(\bmod 3)
$$

Since there are no terms on the right side of the above congruence in which the powers of q are congruent to $1,2, \ldots, p-1$ modulo p, it follows, for $i=1,2, \ldots, p-1$, that

$$
a_{5}\left(3 \cdot p^{2 k+1}(p n+i)+p^{2 k+2}-1\right) \equiv 0(\bmod 3),
$$

which is clearly equivalent to the proffered congruence.

Corollary 3. For any prime $p \geq 5$ with $\left(\frac{-15}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
a_{5}\left(15 \cdot p^{2 k} n+(3 r+1) p^{2 k}-1\right) \equiv 0(\bmod 3)
$$

where $r=2,4$.
Proof. It can also be shown that

$$
\sum_{n=0}^{\infty} a_{5}\left(3 \cdot p^{2 k} n+p^{2 k}-1\right) q^{n} \equiv\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3)
$$

In (33), replacing q by q^{3}, we can see that $\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}$ has no terms $q^{5 n+r}$ where $r=2,4$, it follows that

$$
a_{5}\left(3 \cdot p^{2 k}(5 n+r)+p^{2 k}-1\right) \equiv 0(\bmod 3)
$$

which is clearly equivalent to the proffered congruence.
$Q E D$
Theorem 7. For any prime $p \geq 5$ with $\left(\frac{-15}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
\begin{equation*}
a_{5}\left(3 \cdot p^{2 k} n+2 \cdot p^{2 k}-1\right) \equiv a_{5}(3 n+1)(\bmod 3) \tag{45}
\end{equation*}
$$

Proof. With the help of (9), (23) can be rewritten as

$$
\begin{align*}
\sum_{n=0}^{\infty} a_{5}(3 n+1) q^{n} \equiv & {\left[\sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right)+\right.} \\
& \left.(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f\left(-q^{p^{2}}\right)\right] \\
& \times\left[\sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{15 \cdot \frac{3 k^{2}+k}{2}} f\left(-q^{15 \cdot \frac{3 p^{2}+(6 k+1) p}{2}},-q^{15 \cdot \frac{3 p^{2}-(6 k+1) p}{2}}\right)\right. \\
& \left.+(-1)^{\frac{ \pm p-1}{6}} q^{15 \cdot \frac{p^{2}-1}{24}} f\left(-q^{15 p^{2}}\right)\right](\bmod 3) \tag{46}
\end{align*}
$$

Consider the congruence

$$
\begin{equation*}
\cdot \frac{\left(3 k^{2}+k\right)}{2}+15 \cdot \frac{\left(3 m^{2}+m\right)}{2} \equiv 16 \cdot \frac{\left(p^{2}-1\right)}{24}(\bmod p) \tag{47}
\end{equation*}
$$

where $-(p-1) / 2 \leq k, m \leq(p-1) / 2$, with $\left(\frac{-15}{p}\right)=-1$. Since the above congruence is equivalent to

$$
(6 k+1)^{2}+15 \cdot(6 m+1)^{2} \equiv 0(\bmod p),
$$

and $\left(\frac{-15}{p}\right)=-1$, there is only one solution $k=m= \pm p-1 / 6$ for (47). That is, there are no other k and m such that $\frac{\left(3 k^{2}+k\right)}{2}+15 \cdot \frac{\left(3 m^{2}+m\right)}{2}$ and $16 \cdot \frac{\left(p^{2}-1\right)}{24}$ are in the same residue class modulo p. Therefore, equating the terms involving $q^{p n+16 \cdot \frac{p^{2}-1}{24}}$ from both sides of (46), we deduce that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{5}\left(3\left(p n+16 \cdot \frac{p^{2}-1}{24}\right)+1\right) q^{n} & =\sum_{n=0}^{\infty} a_{5}\left(3 p n+2 p^{2}-1\right) q^{n} \\
& \equiv\left(q^{p} ; q^{p}\right)_{\infty}\left(q^{15 p} ; q^{15 p}\right)_{\infty}(\bmod 3) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{5}\left(3 p^{2} n+2 p^{2}-1\right) q^{n} \equiv(q ; q)_{\infty}\left(q^{15} ; q^{15}\right)_{\infty}(\bmod 3) \tag{48}
\end{equation*}
$$

From (48) and (23), we arrive at

$$
a_{5}\left(3 p^{2} n+2 p^{2}-1\right) \equiv a_{5}(3 n+1)(\bmod 3)
$$

Now (45) can be established easily by mathematical induction.
The following results follow in a similar fashion. So we omit the proof.
Corollary 4. For any prime $p \geq 5$ with $\left(\frac{-15}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
a_{5}\left(3 \cdot p^{2 k+2}+(3 i+2 p) p^{2 k+1}-1\right) \equiv 0(\bmod 3),
$$

where $i=1,2, \ldots, p-1$.
Corollary 5. For any prime $p \geq 5$ with $\left(\frac{-15}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
a_{5}\left(15 \cdot p^{2 k}+(3 r+2) p^{2 k}-1\right) \equiv 0(\bmod 3),
$$

where $r=3,4$.

Some congruences modulo 3 for two color partitions $p_{5}(n)$

Theorem 8. We have,

$$
\begin{array}{r}
\sum_{n=0}^{\infty} p_{5}(3 n) q^{n} \equiv \frac{\left(q^{3} ; q^{3}\right)_{\infty}}{\left(q^{5} ; q^{5}\right)_{\infty}}(\bmod 3), \\
\sum_{n=0}^{\infty} p_{5}(3 n+1) q^{n} \equiv(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3), \tag{50}
\end{array}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{5}(3 n+2) q^{n} \equiv 2 \frac{\left(q^{15} ; q^{15}\right)_{\infty}}{(q ; q)_{\infty}}(\bmod 3) . \tag{51}
\end{equation*}
$$

where

$$
\sum_{n=0}^{\infty} p_{5}(n) q^{n}:=\frac{1}{(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}}
$$

Proof. We have

$$
\sum_{n=0}^{\infty} p_{5}(n) q^{n}=\frac{1}{(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}}=\frac{\left(q^{5} ; q^{5}\right)_{\infty}^{5}}{(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}^{6}}
$$

Taking congruences modulo 3 in the above equation, we obtain,

$$
\begin{align*}
\sum_{n=0}^{\infty} p_{5}(n) q^{n} & \equiv \frac{\left(q^{5} ; q^{5}\right)_{\infty}^{5}}{\left(q^{15} ; q^{15}\right)_{\infty}^{2}(q ; q)_{\infty}}(\bmod 3) \\
& \equiv \frac{1}{\left(q^{15} ; q^{15}\right)_{\infty}^{2}} \sum_{n=0}^{\infty} a_{5}(n) q^{n} \tag{52}
\end{align*}
$$

Comparing the terms involving $q^{3 n}, q^{3 n+1}$ and $q^{3 n+2}$ respectively from the both sides of the above congruence, we have

$$
\begin{array}{r}
\sum_{n=0}^{\infty} p_{5}(3 n) q^{n} \equiv \frac{1}{\left(q^{5} ; q^{5}\right)_{\infty}^{2}} \sum_{n=0}^{\infty} a_{5}(3 n) q^{n}(\bmod 3), \\
\sum_{n=0}^{\infty} p_{5}(3 n+1) q^{n} \equiv \frac{1}{\left(q^{5} ; q^{5}\right)_{\infty}^{2}} \sum_{n=0}^{\infty} a_{5}(3 n+1) q^{n}(\bmod 3) \tag{54}
\end{array}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{5}(3 n+2) q^{n} \equiv 2 \frac{1}{\left(q^{5} ; q^{5}\right)_{\infty}^{2}} \sum_{n=0}^{\infty} a_{5}(3 n+2) q^{n} \quad(\bmod 3) . \tag{55}
\end{equation*}
$$

Employing (3) in the above congruences, we can easily obtain the (8).
Theorem 9. We have,

$$
\begin{array}{r}
p_{5}(15 n+9) \equiv p_{5}(3 n+2)(\bmod 3), \\
p_{5}(15 n+6) \equiv 0(\bmod 3), \tag{57}
\end{array}
$$

and

$$
\begin{equation*}
p_{5}(15 n+12) q^{n} \equiv 0(\bmod 3) . \tag{58}
\end{equation*}
$$

Proof. Replacing q by q^{3} in(33) and then employing in(49), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{5}(3 n) q^{n} \equiv \frac{\left(q^{75} ; q^{75}\right)_{\infty}}{\left(q^{5} ; q^{5}\right)_{\infty}}\left(\frac{A\left(q^{15}\right)}{B\left(q^{15}\right)}-q^{3}-q^{6} \frac{B\left(q^{15}\right)}{A\left(q^{15}\right)}\right)(\bmod 3) \tag{59}
\end{equation*}
$$

Comparing the terms involving $q^{5 n+3}$ from both sides of the above congruence we can easily arrive at (56). There is no terms involving $q^{5 n+2}, q^{5 n+4}$ in the right hand side of the congruence (59). So, we can easily obtain (57) and (58).

Theorem 10. For any $k \geq 1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{5}\left(3^{2 k-1} n+\frac{3^{2 k-1}+1}{4}\right) q^{n} \equiv 2^{k+1}(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3) \tag{60}
\end{equation*}
$$

Proof. We prove the result by mathematical induction. For $k=1$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{5}(3 n+1) q^{n} \equiv(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3), \tag{61}
\end{equation*}
$$

which is the (50).
Let (60) be true for some positive integer k. Therefore we can write (60) as

$$
\begin{align*}
& \sum_{n=0}^{\infty} p_{5}\left(3^{2 k-1} n+\frac{3^{2 k-1}+1}{4}\right) q^{n} \tag{62}\\
& \quad \equiv 2^{k+1}\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{15} ; q^{15}\right)_{\infty} \times \frac{1}{(q ; q)_{\infty}^{2}\left(q^{5} ; q^{5}\right)_{\infty}^{2}}(\bmod 3) \tag{63}\\
& \quad \equiv 2^{k+1}\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{15} ; q^{15}\right)_{\infty} \times\left(\sum_{n=0}^{\infty} p_{5}(n) q^{n}\right)^{2}(\bmod 3) .
\end{align*}
$$

Extracting the terms involving $q^{3 n+2}$ from both sides of the above congruence, we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty} p_{5}\left(3^{2 k-1}(3 n+2)+\frac{3^{2 k-1}+1}{4}\right) q^{n} \equiv \\
& \quad\left[\left(\sum_{n=0}^{\infty} p_{5}(3 n+1) q^{n}\right)^{2}+2 \sum_{n=0}^{\infty} p_{5}(3 n) q^{n} \sum_{n=0}^{\infty} p_{5}(3 n+2) q^{n}\right](\bmod 3) .
\end{align*}
$$

Employing (49), (50) and (51) in (64),

$$
\begin{align*}
& \sum_{n=0}^{\infty} p_{5}\left(3^{2 k-1}(3 n+2)+\frac{3^{2 k-1}+1}{4}\right) q^{n} \tag{65}\\
& \quad \equiv 2^{k+1}(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}\left[(q ; q)_{\infty}^{2}\left(q^{5} ; q^{5}\right)_{\infty}^{2}+4 \frac{\left(q^{3} ; q^{3}\right)_{\infty}\left(q^{15} ; q^{15}\right)_{\infty}}{\left(q^{5} ; q^{5}\right)_{\infty}(q ; q)_{\infty}}\right](\bmod 3) \\
& \quad \equiv 2^{k+2}(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3) .
\end{align*}
$$

Hence the result is true for all $k \geq 1$.

Applying (33) we can see easily that $(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}$ has no terms containing $q^{5 n+r}$ for $r=3,4$. From the last result we can conclude the following

Theorem 11. For any $k \geq 1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{5}\left(3^{2 k-1} n+\frac{(4 r+1) 3^{2 k-1}+1}{4}\right) q^{n} \equiv 0(\bmod 3) \tag{66}
\end{equation*}
$$

where, $r=3,4$.
Theorem 12. For any prime $p \geq 5$ with $\left(\frac{-5}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
\begin{equation*}
p_{5}\left(3 \cdot p^{2 k} n+\frac{3 p^{2 k}+1}{4}\right) \equiv p_{5}(3 n+1)(\bmod 3) . \tag{67}
\end{equation*}
$$

Proof. With the help of (9), (50) can be rewritten as

$$
\begin{align*}
& \sum_{n=0}^{\infty} p_{5}(3 n+1) q^{n} \equiv\left[\sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right)+\right. \\
& \left.(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f\left(-q^{p^{2}}\right)\right] \\
& \times\left[\sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \pm p-1}}^{\frac{p-1}{2}}(-1)^{k} q^{5 \cdot \frac{3 k^{2}+k}{2}} f\left(-q^{5 \cdot \frac{3 p^{2}+(6 k+1) p}{2}},-q^{5 \cdot \frac{3 p^{2}-(6 k+1) p}{2}}\right)\right. \\
& \left.+(-1)^{\frac{ \pm p-1}{6}} q^{5 \cdot \frac{p^{2}-1}{24}} f\left(-q^{5 p^{2}}\right)\right](\bmod 3) . \tag{68}
\end{align*}
$$

Consider the following congruence

$$
\begin{equation*}
\frac{\left(3 k^{2}+k\right)}{2}+5 \cdot \frac{\left(3 m^{2}+m\right)}{2} \equiv 6 \cdot \frac{\left(p^{2}-1\right)}{24}(\bmod p) \tag{69}
\end{equation*}
$$

where $-(p-1) / 2 \leq k, m \leq(p-1) / 2$, with $\left(\frac{-5}{p}\right)=-1$. Since the above congruence is equivalent to

$$
(6 k+1)^{2}+5 \cdot(6 m+1)^{2} \equiv 0(\bmod p)
$$

and $\left(\frac{-5}{p}\right)=-1$, there is only one solution $k=m= \pm p-1 / 6$ for (47). That is, there are no other k and m such that $\frac{\left(3 k^{2}+k\right)}{2}+5 \cdot \frac{\left(3 m^{2}+m\right)}{2}$ and $6 \cdot \frac{\left(p^{2}-1\right)}{24}$ are in the same residue class modulo p. Therefore, equating the terms involving $q^{p n+\frac{p^{2}-1}{4}}$ from both sides of (68), we deduce that

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{5}\left(3\left(p n+\cdot \frac{p^{2}-1}{4}\right)+1\right) q^{n} & =\sum_{n=0}^{\infty} p_{5}\left(3 p n+\frac{3 p^{2}+1}{4}\right) q^{n} \\
& \equiv\left(q^{p} ; q^{p}\right)_{\infty}\left(q^{5 p} ; q^{5 p}\right)_{\infty}(\bmod 3)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{5}\left(3 p^{2} n+\frac{3 p^{2}+1}{4}\right) q^{n} \equiv(q ; q)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 3) \tag{70}
\end{equation*}
$$

From (70) and (50), we arrive at

$$
p_{5}\left(3 p^{2} n+\frac{3 p^{2}+1}{4}\right) \equiv p_{5}(3 n+1)(\bmod 3)
$$

Now (67) can be established easily by mathematical induction.

The following results follow in a similar fashion. So we omit the proof.
Corollary 6. For any prime $p \geq 5$ with $\left(\frac{-5}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
p_{5}\left(3 \cdot p^{2 k+2}+\frac{(12 i+3 p) p^{2 k+1}+1}{4}\right) \equiv 0(\bmod 3)
$$

where $i=1,2, \ldots, p-1$.
Corollary 7. For any prime $p \geq 5$ with $\left(\frac{-5}{p}\right)=-1$ and for any nonnegative integers k and n,

$$
p_{5}\left(15 \cdot p^{2 k}+\frac{(12 r+3) p^{2 k}+1}{4}\right) \equiv 0(\bmod 3)
$$

where $r=3,4$.

References

[1] Z. Ahmed, N. D. Baruah and M. G. Dastidar:New congruences modulo 5 for the number of 2-color partitions, J. Number Theory, 157 (2015), 184-198.
[2] N. D. Baruah, J. Bora and K. K. Ojah: Ramanujan's modular equations of degree 5, Proc. Indian Acad. Sci. (Math. Sci.), 122 (2012), 485-506.
[3] B. C. Berndt: Ramanujan's Notebooks, Part III, Springer-verleg, New York, 1991.
[4] S. P. Cui and N. S. S. Gu: Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math., 51 (2013),507-523
[5] F. Garvan, D. Kim and D. Stanton: Cranks and t-cores, Invent. Math., 101(1990), 1-17.
[6] S. Ramanujan: The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

[^0]: http://siba-ese.unisalento.it/ © 2016 Università del Salento

