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Introduction

A partition of n is a non-increasing sequence of positive integers, called
parts, whose sum is n. A partition of n is called a t-core of n if none of the hook
numbers is a multiple of ¢. If a;(n) denotes the number of ¢-cores of n, then the
generating function for a;(n) is [5]

- n (dhd)h
,;Oat(”)q O )

where, here and throughout the sequel, for any complex number a and |¢q| < 1,

[e.9]

(a§ Q)oo = H(l - qn)'

n=1

The following exact formula for as(n) in terms of the prime factorization of
n + 1 can be found in [5, Theorem 4]. This theorem follows from an identity
of Ramanujan recorded in his famous manuscript on the partition function and
tau-function now published with his lost notebook [6, p. 139].

http://siba-ese.unisalento.it/ (©) 2016 Universita del Salento



62 K. Das

Theorem 1. Let n+ 1 = 5pJ" .. .pf;Sqll’1 ...qt be the prime factorization
of n+ 1 into primes p; = 1,4 (mod 5), and ¢; = 2,3 (mod 5). Then

S a;i+1 1 t ql?jJrl -1

c p;
as(n) = 5° | ] ’

=1 i o a1

Many arithmetical identities and congruences easily follow from the above
theorem. For example, for any positive integer n and non-negative integer r, we
have

as(5%n — 1) = 5%s(n — 1) =0 (mod 5%).

Similarly, for a prime p = 2,3 (mod 5) and any non-negative integers n and r,
we can easily deduce that

pa+1 + (_1)a

a+1 _ 1\«
as(p*(pn+1) —1) = P +(1))

as(pn) =0 <m0d 4 P

Next, let pg(n) denote the number of 2-color partitions of n where one of
the colors appears only in parts that are multiples of k. Then the generating
function for px(n) is given by

> 1
> pe(n)g" =
n=0

(@5 Qoo (q%:¢F) o

Recently, the following result was proved by Baruah, Ahmed and Dastidar [1].
Theorem 2. If k € {0,1,2,3,4,5,10,15,20}, then for any non-negative
integer n,
pr(25n 4+ ¢) =0 (mod 5),

where k + ¢ = 24.

In this paper, we find some interesting congruences modulo 3 for 5-core
partitions and ps(n) by employing Ramanujan’s theta functions and their dis-
sections. Since our proofs mainly rely on various properties of Ramanujan’s

theta functions and dissections of certain g-products, we end this section by
defining a t-dissection and Ramanujan’s general theta function and some of its
special cases. If P(q) denotes a power series in ¢, then a t-dissection of P(q) is

given by
t—1
P(q) = ¢"P(d"),
k=0

where P, are power series in ¢*. In the remainder of this section, we introduce
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Ramanujan’s theta functions and some of their elementary properties, which
will be used in our subsequent sections. For |ab| < 1, Ramanujan’s general

theta-function f(a,b) is defined by

fla,b) == > annth/2pen=n/2

n=—oo

In this notation, Jacobi’s famous triple product identity [3, p. 35, Entry 19]
takes the form

f(a,b) = (—a;ab)so(—b; ab) oo (ab; ab) . (2)

Three important special cases of f(a,b) are

B (@)oo ()¢5
ela) = Fa,0) (0% (% 0%)oe  (:0)% (% ¢4 ®)
2. .2
v(a) = fla. ) = ) (1)
and
f(=q) == f(—4,—¢*) = (¢; @)oo> (5)

where the product representations in (4) and (5) arise from (2) and the last
equality in (5) is Euler’s famous pentagonal number theorem. After Ramanujan,
we also define

(2 _ (q2;q2)§o
M) = (00 )e0 = (45 D)oo (0% ¢*)oo (©)
and hence,
X(—4) = (:¢*)s0 = (égiglj; (7)

Furthermore, the g-product representations of ¢(—¢) and 1 (—gq) can be written
in the forms

(0%

. 4. 4
o) = = (¢ oo (475 4 )0 ®)

vima) = (4% 4%
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Lemma 1. [4, Theorem 2.2] For any prime p > 5,

p=1
2 , .
I{J:—17771
L
_ 2
+ ()5 T (@ ) (9)
where
—1
tp—1 pT, if p=1 (mod 6);
-\ —»-1
6 p6 , if p=-—1 (mod 6).
_ -1 1 1
purthermore, for 20 << O g C22L,
3k%2 + k 2_1
i (mod p)

Some congruences modulo 3 for 5-core partitions

We first introduce an important lemma which will be used later.

Lemma 2. We have

(0*0°)2(0"% 4" % = ¢* (% 4°)2% (6% ¢*) 2 +(d°; 4°) s +24" (¢°% ¢™°) %, (mod 3).

(10)
Proof. We note that [3, p. 258],
¢ () = ¢*(d°) = 4ax(0) f (=) f(—*°) (11)
and
50%(0°) = ©*(a) = (@)X (=" )¥*(—q)- (12)

Multiplying (11) and (12)
62° ()% (@) — ¢*(9) = 591 (¢°) = 16ax*(@)x (@) f (") f (=) (=q). (13)
Employing (5), (6), (7) and (8) in the last equation, we obtain

60%(q)0*(¢°) — ¥*(q) — 50 (¢°) = 164(¢* ¢*) 2 (¢"; ¢"0) 2. (14)
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Taking congruences modulo 3, we obtain

4(6%6%)5 (4" 4")2% = —0(0)p(¢®) +¢(a")p(q"®) (mod 3).  (15)
Recalling [3, p.49, Corollary (i)], we have
() = o(a”) +2af(¢*,4") (16)
Replacing ¢ by ¢° in the above equation, we have,
0(@”) = (a") +2¢°f(¢"°,¢") (17)

Employing the above two equation in (15), we find that

0(0*:0*)2.(0"5 4')2 = — o(®)e(d”) + ae(@®) (@, ) + o(a")e(q™)
+2¢°0(¢") f(¢"°,¢") (mod 3). (18)
Note that
2. 2\7 3. .3 2. ,12
o) (g, ) = L)oo T5 000 %5 ) (19)

(03 0% (a* 0)3. (4% ¢°) oo
Since, (¢;9)2, = (¢%;¢%)o , 50 (19) can be written as
¢(@)f(2,4°) = (6% ¢%)5 (mod 3). (20)
Employing (15) and (20) in (18), we obtain

a(a* )% (0" 4'%)% =
(0% "% (@™ )% + a(¢%: ¢°)5 + 2¢°(¢™5 ¢™)5 (mod 3). (21)
From above congruence we can easily obtain (10). QED

Theorem 3. We have,

Z% (3n)4" = (4% 6%)o0 (4% 4%)0 (mod 3), (22)
n=0
> as(3n 4+ 1)g" = (4 0)oo (075 4" oo (mod 3), (23)
n=0

and

D as(3n+2)g" =2 as(n)q" (mod 3). (24)
n=0 n=0
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Proof. Putting t = 5 in (3.7) and replacing ¢ by ¢?, we have

- n_ (6545
Za5(n)q2 T 22y (25)
= (4% ¢*)
Taking congruences modulo 3,
0 30. 30 2. .2\2 (,10. ,10\2
Za5(n)q2n = (q 34 )oo(q 54 )oo(q 54 )oo (Il’lOd 3) (26)

6. 46
= (4% ¢°%)oc
With the help of (10), (26) can be rewritten as

= (q30.q30)oo 2/ 6. 6\2 /.30. 3012
D as(n)g" === (07 (6% 075 (6% 47)% (27)
(¢5;¢°)
TL:O b) [e o]
+ (6% 6% + 24 (¢ ¢*°)%) (mod 3)
=¢*(4% ¢ oo (% ¢™)3, + (% ¢°) 2. (6% ) o (28)
(6
+2¢* =" (mod 3
7% ¢%) oo ( )
=0*(¢% ¢%) 00 (€”%; 4”00 + ("% ¢"*) 00 (¢*°; ¢**) o (29)

+ 2¢* Z as(n)q®" (mod 3).
n=0

6n-+2 6n-+4

Comparing the terms involving ¢5", ¢ and q respectively from both

sides of the above congruence, we can easily obtain (22)—(24). QED

Applying the mathematical induction in (24), we can easily obtain the fol-
lowing

Corollary 1. For any nonnegative integers k and n, we have
as (3kn + 3% — 1) = 2%a5(n) (mod 3).
Theorem 4. We have,

as(15n + 6) = 0 (mod 3), (30)
as(15n + 12) = 0 (mod 3), (31)

and

as(15n +9) = 2a5(3n 4+ 1) (mod 3). (32)
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Proof. From [3, p. 270, Entry 12(v)], we recall that

: _ (25,25 A(¢°) o 2 B(q°)
(400 = (077547 ) o0 <B(q5) q—q A(q5)> (33)
where
(4", —¢") un (=4, —¢*)
Al = f(=¢°, —¢*) 4 Blg) = fF(=q'% —¢")’

Replacing ¢ by ¢® in (33) and then employing in (22), we obtain

fe’e) A 15 B 15
7;)@5(371)(1” = (¢°;4") 0 (¢ 4™ o <Bizl5; ¢ - QSAESL”;) (mod 3) (34)

Extracting the terms involving ¢°"*3 from both sides of the congruence, we
obtain,

> a5(3(5n 4 3))¢" = 2(¢;0)oo (%5 ¢")oo (mod 3) (35)
n=0

Employing (23) in (35), we can easily obtain (32).

We have seen that in the right hand side of the congruence (34), there is no
terms involving ¢°"™2 and ¢°*** and hence we can easily obtain (30) and (31)
respectively.

Theorem 5. We have,

as(15n + 4) = 2a5(3n) (mod 3), (36)
as(15n 4+ 10) = 0 (mod 3), (37)

and
as(15n 4+ 13) = 0 (mod 3). (38)

Proof. Employing (33) in (23), we obtain

00 Ald® Bl(g®
;as(?m +1)¢" = (0"4")o0 (471 4% )ox (BE?P; —a- qlé%) (mod 3)

(39)

Extracting the terms involving ¢°**! from both sides of the congruence, we
obtain,



68 K. Das

> as(3(5n + 1) + 1)¢" = 2(¢°: ¢*)o0 (0% ¢°)oo (mod 3) (40)

n=0

Employing (22) in (40), we can easily obtain (36).
It is clear that in the right hand side of the congruence (39), there is no
543 and ¢°"** and hence we can easily obtain (37) and (38)

terms involving ¢

—15
Theorem 6. For any prime p > 5 with (> = —1 and for any non-
p

negative integers k and n,
as (3 -p*n 4 p? — 1) = a5(3n) (mod 3). (41)

Proof. With the help of (9), (22) can be rewritten as

p—1

ia5(3n)q" E[ Z (_qug.wijf(_qg.w,_qg,wpr
k+# ip6—1
()T ()]
p—1
X |: 22: ( 1)kq5-3k2T+k ( q5,3P2+(gk+1)P, 5_3p27(gk+1)p)
k=—251
22
_ 2
+ (_1) :tpﬁ 1q5.p241 f(—q5p2) (InOd 3) (42)
Now we consider the congruence
(B +8) o G em) o =)

-1
where —(p —1)/2 < k, m < (p—1)/2, with <5> = —1. Since the above
p

congruence is equivalent to

(18%k 4 3)? +15- (6m + 1)*> = 0 (mod p),
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—1
and <5> = —1, there is only one solution & = m = £p — 1/6 for (43).

p
2
That is, there are no other & and m such that 3M

(r* — 1)
24 )

—1
terms involving ¢”"*®*2 from both sides of (42), we deduce that

ia 3 n+8-p27_1 "—ia (3n+ 2—1)”
5 D o q = 5 \9p p q

n=0 n=0

= (¢"";¢")(4""; ¢°") oo (mod 3).

(3m? + m)
2

are in the same residue class modulo p. Therefore, equating the

+5- and

8 -

Thus,

Y a5 (3°n+p* = 1) ¢" = (6% 6%)oo(d’; ¢°)oo (mod 3). (44)

n=0

From (44) and (22), we arrive at
as (3p°n +p* — 1) = as(3n) (mod 3).

Now (41) can be established easily by mathematical induction. QED

-1
Corollary 2. For any prime p > 5 with <> = —1 and for any non-
p

negative integers k and n,
as (3 p?R 20 (30 + p)pPhtt — 1) =0 (mod 3),
wheret =1, 2, ..., p—1.

Proof. As in the proof of the previous theorem, it can also be shown that

> 2

-1
> as (3 % (pn + 81’7) o 1) " = (675 ") oo (4 7)o (mod 3),
n=0

that is,

oo
pILE (3 P 4 p? 1) 0" = (41 6") o0 (5 ¢ oo (mod 3).

n=0
Since there are no terms on the right side of the above congruence in which
the powers of ¢ are congruent to 1, 2, ..., p — 1 modulo p, it follows, for
i=1, 2, ..., p—1, that

as (3 PR (pn + i) + p?kt2 _ 1) =0 (mod 3),

which is clearly equivalent to the proffered congruence. QED
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—15
Corollary 3. For any prime p > 5 with <> = —1 and for any non-
p
negative integers k and n,
as (15 -p?Fn + (3r 4+ 1)p* — 1) =0 (mod 3),

where r = 2, 4.
Proof. 1t can also be shown that

oo

S a5 (3970 +p* = 1) 6" = (6% ¢*)oel6% 6%)oo (mod 3).

n=0

In (33), replacing g by ¢3, we can see that (¢%; ¢®)o0(¢%; ¢°)oo has no terms ¢>*+"

where r = 2, 4, it follows that

as (3 p?*(Bn +r) +p?F — 1) =0 (mod 3),

which is clearly equivalent to the proffered congruence. QED
. , —15
Theorem 7. For any prime p > 5 with | — | = —1 and for any non-
p

negative integers k and n,
as (3 p*n 4 2. p* — 1) =a5(3n+ 1) (mod 3). (45)

Proof. With the help of (9), (23) can be rewritten as

n=0 k:_PTfl
k7£ip671
+p—1 p271 2
(~1) " f(—”)]
p—1
2 3k24+k 3p2+(6k+1)p 3p2 —(6k+1)p
X[ (DT (=g g )
k=—21
ket
+p— 2_
+ (=) ¢ (=) (mod 3). (46)
Consider the congruence
3k% +k 3m? 2 —
NGl )+15-(m +m)5 16'(p >(modp), (47)

2 2 24
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-1
where —(p —1)/2 < k, m < (p —1)/2, with <5> = —1. Since the above
p

congruence is equivalent to
(6k +1)? +15- (6m + 1)2 = 0 (mod p),

-1
and <5> = —1, there is only one solution k = m = £p — 1/6 for (47).

p
(3k2 + k) (3m2 + m)
2 2

are in the same residue class modulo p. Therefore, equating the

That is, there are no other £ and m such that
(»* - 1)

+15- and
16 -

2_
terms involving q10"+16'pzi41 from both sides of (46), we deduce that

oo 2 oo
Zas) <3<pn+16-p24 1> +1> Q"ZZa5(3pn+2p2—1)qn

n=0 n=0
= (¢";¢")0(0"; 4" ) (mod 3).
Thus,
> as (30" +2p" = 1) ¢" = (4;0)o (4" 4")o (mod 3). (48)
n=0

From (48) and (23), we arrive at
as (3p°n + 2p* — 1) = a5(3n + 1) (mod 3).
Now (45) can be established easily by mathematical induction. QED
The following results follow in a similar fashion. So we omit the proof.

—15
Corollary 4. For any prime p > 5 with () = —1 and for any non-
p

negative integers k and n,
as (3 p?R2 (30 4+ 2p)pPhtt — 1) =0 (mod 3),
wheret =1, 2, ..., p—1.

—15
Corollary 5. For any prime p > 5 with () = —1 and for any non-
p

negative integers k and n,
as (15 % 4 (3 + 2)pP — 1) =0 (mod 3),

where r =3, 4.
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Some congruences modulo 3 for two color partitions
ps(n)

Theorem 8. We have,

Z (3 ICT R d3 49
p5(3n)q —(,q)m(mo )s (49)
Zps) (37 +1)¢" = (45 9)oo (4”5 ¢°) oo (mod 3), (50)
and
15. 15
Zp5 (3n+2)¢" = W (mod 3). (51)
where
1
Zp5 T (4065 )oo
Proof. We have
_ 1 o (@59)%
Zp5 (:0)(@* )0 (€:0)0(a® %)%

Taking congruences modulo 3 in the above equation, we obtain,

_ (@)%
Zp5 = gm0
1 o0
— n
= (415. 415)2 Z as(n)q (52)
(¢"°:4V)% =
Comparing the terms involving ¢*", ¢*"*! and ¢"*2 respectively from the both

sides of the above congruence, we have

> BB = (o Do as(Bn” (mod 3. (53)
— ! X n=0

Zp5(3n + )" = ((]515)2 Z as(3n + 1)¢" (mod 3), (54)
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and

1 o n
Zpg) Bn+2)¢" =2 @ 5)goZa5(3n—|—2)q (mod 3). (55)

Employing (3) in the above congruences, we can easily obtain the (8). QED

Theorem 9. We have,

p5(15n +9) = p5(3n + 2) (mod 3), (56)
p5(15mn 4+ 6) = 0 (mod 3), (57)

and
p5(15m + 12)¢" = 0 (mod 3). (58)

Proof. Replacing ¢ by ¢* in(33) and then employing in(49), we obtain

S n_ (6747) (Alg") B(q")
S mion = s = (G~ - gy ) (moa®) 69

Comparing the terms involving ¢ *3from both sides of the above congruence
we can easily arrive at (56). There is no terms involving ¢°**2, ¢°**4 in the right
hand side of the congruence (59). So, we can easily obtain (57) and (58).

Theorem 10. For any k > 1, we have

2k—1,, 3%14‘1 n _ ok+l 5. 5
Zps) 3 ) " =2 (6 0)oo(a%0")oe (mod 3). (60)

Proof. We prove the result by mathematical induction. For &k = 1, we obtain

Zp53n+1 " = (¢59)00(¢%5 4°)oo (mod 3), (61)

which is the (50).
Let (60) be true for some positive integer k. Therefore we can write (60) as

32k,’ 1+1 "
Zp <32’“ ! 1 )q (62)

1
= 251 (B ) (0% 1) o mod 3 63
(@500 ) (4 9%(¢% %)% ( ) (63)

00 2
=210 )0 (475 4" oo X (Zm(n)Q") (mod 3).
n=0
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Extracting the terms involving ¢®"*2 from both sides of the above congruence,
we obtain

oo
32k—1 1
> s <32k—1(3n +2)+ 4+> q"
n=0

2" (g; )0 (%3 ¢°) o X

[( S ps(3n+ 1)q”>2 +23 psBr)" S ps(3n + 2)q"} (mod 3). (64)
n=0 n=0 n=0

Employing (49), (50) and (51) in (64),

o0
32]671 1
>_ps (32’“—1(371 +2) + 4+> ¢" (65)
n=0
3.3 15. 15
= ok+1(y: 5. 45 [ )2 5;52+4(QaQ)oo(q 4 )oo:| mod 3
(4 9)00(0”5 4 )o0 | (4 0)50 (0734750 ()o@ O ( )
= 2"2(¢;0)o (¢°; ¢°) o (mod 3).
Hence the result is true for all k£ > 1. QED

Applying (33) we can see easily that (¢; ¢)oo(¢°; ¢°)so has no terms containing
¢®"t" for r = 3, 4. From the last result we can conclude the following

Theorem 11. For any k > 1, we have

o0 4 1 2k—1 1
Zp5 <32k—1n + (4r + )i + > q¢" =0 (mod 3), (66)
n=0

where, 1 =3, 4.

-5
Theorem 12. For any prime p > 5 with <> = —1 and for any non-
p

negative integers k and n,

3p2k +1

Ps (3 p*kn + 1 > =p5(3n+1) (mod 3). (67)
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Proof. With the help of (9), (50) can be rewritten as

00 % k 362 +k 3p2+(6k+1)p 3p2— (6k+1)p
> ps(3n + 1)g" E[ S (1)t g e
n=0 k:—%
k;ﬁip(;l
(*l)ipo 1qp241f(fqp2)]
p=1
-5
o
_ 2
+(-1)7% 1q5'p241f(—q57”2)} (mod 3). (68)
Consider the following congruence
3k +k 3m2+m -1
( 2 5! 2 b= oY )(modp), (69)

-5
where —(p —1)/2 < k, m < (p —1)/2, with () = —1. Since the above
p

congruence is equivalent to

(6k+1)245- (6m+ 1) =0 (mod p),

and <_5> = —1, there is only one solution k = m = +£p—1/6 for (47). That is,

p
2 2
GE+E) o andG.(P241)

are in the same residue class modulo p. Therefore, equating the terms involving
21
¢ "7 from both sides of (68), we deduce that

oo 2 0 2

~1 3p? +1
§0p5<3(pn+-p4 )+1>q”=§ops<3pn+ p4 >q”
n= n=

= (¢";0") oo (¢°7; ¢°F) o (mod 3).

2
there are no other k£ and m such that M

Thus,

oo 2
> ps <3p2n 2P 4+ 1) 7" = (4 9)o0(¢” ¢°) o (mod 3). (70)

n=0

From (70) and (50), we arrive at

3p*+1
D5 <3p2n + p4> =p5(3n+1) (mod 3).
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Now (67) can be established easily by mathematical induction. QED

The following results follow in a similar fashion. So we omit the proof.

-5
Corollary 6. For any prime p > 5 with <> = —1 and for any non-
p

negative integers k and n,

12i 3 2k+1 1
p5 (3'p2]€+2+( l—’_ p)p + )EO(mOd 3),

4
wheret =1, 2, ..., p—1.
-5
Corollary 7. For any prime p > 5 with <> = —1 and for any non-
p
negative integers k and n,
12r + 3)p?* + 1
D5 (15.p2k+ (12r + 4)p + ) =0 (mod 3),
where r = 3, 4.
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