Congruences modulo 3 for two interesting partitions arising from two theta function identities

Kuwali Das

Department of Mathamatical Sciences, Bodoland University, Kokrajhar-783370, Assam, INDIA kwldas900gmail.com

Received: 29.8.2016; accepted: 6.10.2016.

Abstract. We find several interesting congruences modulo 3 for 5-core partitions and two color partitions.

Keywords: t-core partition, Theta function, Dissection, Congruence.

MSC 2000 classification: MSC 2000 classification: primary 11P83; secondary 05A17

Introduction

A partition of n is a non-increasing sequence of positive integers, called parts, whose sum is n. A partition of n is called a *t*-core of n if none of the hook numbers is a multiple of t. If $a_t(n)$ denotes the number of *t*-cores of n, then the generating function for $a_t(n)$ is [5]

$$\sum_{n=0}^{\infty} a_t(n) q^n = \frac{(q^t; q^t)_{\infty}^t}{(q; q)_{\infty}},$$
(1)

where, here and throughout the sequel, for any complex number a and |q| < 1,

$$(a;q)_{\infty} := \prod_{n=1}^{\infty} (1-q^n).$$

The following exact formula for $a_5(n)$ in terms of the prime factorization of n + 1 can be found in [5, Theorem 4]. This theorem follows from an identity of Ramanujan recorded in his famous manuscript on the partition function and tau-function now published with his lost notebook [6, p. 139].

http://siba-ese.unisalento.it/ © 2016 Università del Salento

Theorem 1. Let $n + 1 = 5^c p_1^{a_1} \dots p_s^{a_s} q_1^{b_1} \dots q_t^{a_t}$ be the prime factorization of n + 1 into primes $p_i \equiv 1, 4 \pmod{5}$, and $q_j \equiv 2, 3 \pmod{5}$. Then

$$a_5(n) = 5^c \prod_{i=1}^s \frac{p_i^{a_i+1} - 1}{p_i - 1} \prod_{j=1}^t \frac{q_j^{b_j+1} - 1}{q_j - 1}.$$

Many arithmetical identities and congruences easily follow from the above theorem. For example, for any positive integer n and non-negative integer r, we have

$$a_5(5^{\alpha}n-1) = 5^{\alpha}a_5(n-1) \equiv 0 \pmod{5^{\alpha}}.$$

Similarly, for a prime $p \equiv 2, 3 \pmod{5}$ and any non-negative integers n and r, we can easily deduce that

$$a_5(p^{\alpha}(pn+1)-1) = \frac{p^{\alpha+1} + (-1)^{\alpha}}{p+1} \ a_5(pn) \equiv 0 \ \left(\mod \frac{p^{\alpha+1} + (-1)^{\alpha}}{p+1} \right).$$

Next, let $p_k(n)$ denote the number of 2-color partitions of n where one of the colors appears only in parts that are multiples of k. Then the generating function for $p_k(n)$ is given by

$$\sum_{n=0}^{\infty} p_k(n)q^n = \frac{1}{(q;q)_{\infty}(q^k;q^k)_{\infty}}.$$

Recently, the following result was proved by Baruah, Ahmed and Dastidar [1].

Theorem 2. If $k \in \{0, 1, 2, 3, 4, 5, 10, 15, 20\}$, then for any non-negative integer n,

$$p_k(25n+\ell) \equiv 0 \pmod{5},$$

where $k + \ell = 24$.

In this paper, we find some interesting congruences modulo 3 for 5-core partitions and $p_5(n)$ by employing Ramanujan's theta functions and their dissections. Since our proofs mainly rely on various properties of Ramanujan's theta functions and dissections of certain q-products, we end this section by defining a t-dissection and Ramanujan's general theta function and some of its special cases. If P(q) denotes a power series in q, then a t-dissection of P(q) is given by

$$P(q) = \sum_{k=0}^{t-1} q^k P_k(q^t),$$

where P_k are power series in q^t . In the remainder of this section, we introduce

Ramanujan's theta functions and some of their elementary properties, which will be used in our subsequent sections. For |ab| < 1, Ramanujan's general theta-function f(a, b) is defined by

$$f(a,b) := \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}.$$

In this notation, Jacobi's famous triple product identity [3, p. 35, Entry 19] takes the form

$$f(a,b) = (-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty}.$$
(2)

Three important special cases of f(a, b) are

$$\varphi(q) := f(q,q) = \frac{(q^2;q^2)_{\infty}(-q;q^2)_{\infty}}{(q;q^2)_{\infty}(-q^2;q^2)_{\infty}} = \frac{(q^2;q^2)_{\infty}^5}{(q;q)_{\infty}^2(q^4;q^4)_{\infty}^2},$$
(3)

$$\psi(q) := f(q, q^3) = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}}$$
(4)

and

$$f(-q) := f(-q, -q^2) = (q; q)_{\infty},$$
(5)

where the product representations in (4) and (5) arise from (2) and the last equality in (5) is Euler's famous pentagonal number theorem. After Ramanujan, we also define

$$\chi(q) := (-q; q^2)_{\infty} = \frac{(q^2; q^2)_{\infty}^2}{(q; q)_{\infty} (q^4; q^4)_{\infty}}$$
(6)

and hence,

$$\chi(-q) := (q;q^2)_{\infty} = \frac{(q;q)_{\infty}}{(q^2;q^2)_{\infty}}$$
(7)

Furthermore, the q-product representations of $\varphi(-q)$ and $\psi(-q)$ can be written in the forms

$$\varphi(-q) = \frac{(q;q)_{\infty}^2}{(q^2;q^2)_{\infty}}, \quad \psi(-q) = \frac{(q;q)_{\infty}(q^4;q^4)_{\infty}}{(q^2;q^2)_{\infty}}$$
(8)

Lemma 1. [4, Theorem 2.2] For any prime $p \ge 5$,

$$(q;q)_{\infty} = \sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} (-1)^{k} q^{\frac{3k^{2}+k}{2}} f\left(-q^{\frac{3p^{2}+(6k+1)p}{2}}, -q^{\frac{3p^{2}-(6k+1)p}{2}}\right) + (-1)^{\frac{\pm p-1}{6}} q^{\frac{p^{2}-1}{24}} (q^{p^{2}}; q^{p^{2}})_{\infty}, \quad (9)$$

where

$$\frac{\pm p - 1}{6} := \begin{cases} \frac{p - 1}{6}, & \text{if } p \equiv 1 \pmod{6}; \\ \frac{-p - 1}{6}, & \text{if } p \equiv -1 \pmod{6}. \end{cases}$$

Furthermore, for $\frac{-(p - 1)}{2} \le k \le \frac{(p - 1)}{2}$ and $k \ne \frac{(\pm p - 1)}{6}, \\ \frac{3k^2 + k}{2} \ne \frac{p^2 - 1}{24} \pmod{p}. \end{cases}$

Some congruences modulo 3 for 5-core partitions

We first introduce an important lemma which will be used later.

Lemma 2. We have

$$(q^{2};q^{2})_{\infty}^{2}(q^{10};q^{10})_{\infty}^{2} \equiv q^{2}(q^{6};q^{6})_{\infty}^{2}(q^{30};q^{30})_{\infty}^{2} + (q^{6};q^{6})_{\infty}^{4} + 2q^{4}(q^{30};q^{30})_{\infty}^{4} \pmod{3}.$$
(10)

Proof. We note that [3, p. 258],

$$\varphi^2(q) - \varphi^2(q^5) = 4q\chi(q)f(-q^5)f(-q^{20}) \tag{11}$$

and

$$5\varphi^2(q^5) - \varphi^2(q) = 4\chi(q)\chi(-q^5)\psi^2(-q).$$
 (12)

Multiplying (11) and (12)

$$6\varphi^2(q)\varphi^2(q^5) - \varphi^4(q) - 5\varphi^4(q^5) = 16q\chi^2(q)\chi(q^5)f(-q^5)f(-q^{20})\psi(-q).$$
(13)

Employing (5), (6), (7) and (8) in the last equation, we obtain

$$6\varphi^2(q)\varphi^2(q^5) - \varphi^4(q) - 5\varphi^4(q^5) = 16q(q^2;q^2)^2_{\infty}(q^{10};q^{10})^2_{\infty}.$$
 (14)

Taking congruences modulo 3, we obtain

$$q(q^2; q^2)^2_{\infty}(q^{10}; q^{10})^2_{\infty} \equiv -\varphi(q)\varphi(q^3) + \varphi(q^5)\varphi(q^{15}) \pmod{3}.$$
 (15)

Recalling [3, p.49, Corollary (i)], we have

$$\varphi(q) = \varphi(q^9) + 2qf(q^3, q^{15})$$
 (16)

Replacing q by q^5 in the above equation, we have,

$$\varphi(q^5) = \varphi(q^{45}) + 2q^5 f(q^{15}, q^{75})$$
(17)

Employing the above two equation in (15), we find that

$$q(q^{2};q^{2})_{\infty}^{2}(q^{10};q^{10})_{\infty}^{2} \equiv -\varphi(q^{3})\varphi(q^{9}) + q\varphi(q^{3})f(q^{3},q^{15}) + \varphi(q^{15})\varphi(q^{45}) + 2q^{5}\varphi(q^{15})f(q^{15},q^{75}) \pmod{3}.$$
(18)

Note that

$$\varphi(q)f(q,q^5) = \frac{(q^2;q^2)_{\infty}^7(q^3;q^3)_{\infty}(q^{12};q^{12})_{\infty}}{(q;q)_{\infty}^3(q^4;q^4)_{\infty}^3(q^6;q^6)_{\infty}}$$
(19)

Since, $(q;q)^3_\infty \equiv (q^3;q^3)_\infty$, so (19) can be written as

$$\varphi(q)f(q,q^5) \equiv (q^2;q^2)_{\infty}^4 \pmod{3}.$$
 (20)

Employing (15) and (20) in (18), we obtain

$$\begin{aligned} q(q^2;q^2)^2_{\infty}(q^{10};q^{10})^2_{\infty} &\equiv \\ q^3(q^6;q^6)^2_{\infty}(q^{30};q^{30})^2_{\infty} + q(q^6;q^6)^4_{\infty} + 2q^5(q^{30};q^{30})^4_{\infty} \pmod{3}. \end{aligned} \tag{21}$$

From above congruence we can easily obtain (10).

Theorem 3. We have,

$$\sum_{n=0}^{\infty} a_5(3n)q^n \equiv (q^3; q^3)_{\infty}(q^5; q^5)_{\infty} \pmod{3},$$
(22)

$$\sum_{n=0}^{\infty} a_5(3n+1)q^n \equiv (q;q)_{\infty}(q^{15};q^{15})_{\infty} \pmod{3},$$
(23)

and

$$\sum_{n=0}^{\infty} a_5(3n+2)q^n \equiv 2\sum_{n=0}^{\infty} a_5(n)q^n \pmod{3}.$$
 (24)

QED

Proof. Putting t = 5 in (3.7) and replacing q by q^2 , we have

$$\sum_{n=0}^{\infty} a_5(n) q^{2n} = \frac{(q^{10}; q^{10})_{\infty}^5}{(q^2; q^2)_{\infty}}.$$
(25)

Taking congruences modulo 3,

$$\sum_{n=0}^{\infty} a_5(n) q^{2n} \equiv \frac{(q^{30}; q^{30})_{\infty} (q^2; q^2)_{\infty}^2 (q^{10}; q^{10})_{\infty}^2}{(q^6; q^6)_{\infty}} \pmod{3}.$$
 (26)

With the help of (10), (26) can be rewritten as

$$\sum_{n=0}^{\infty} a_5(n) q^n \equiv \frac{(q^{30}; q^{30})_{\infty}}{(q^6; q^6)_{\infty}} (q^2 (q^6; q^6)_{\infty}^2 (q^{30}; q^{30})_{\infty}^2$$
(27)

$$+ (q^{6}; q^{6})_{\infty}^{4} + 2q^{4}(q^{30}; q^{30})_{\infty}^{4}) \pmod{3}$$

$$\equiv q^{2}(q^{6}; q^{6})_{\infty}(q^{30}; q^{30})_{\infty}^{3} + (q^{6}; q^{6})_{\infty}^{3}(q^{30}; q^{30})_{\infty}$$

$$(28)$$

$$+ 2q^{4} \frac{(q^{6}; q^{6})_{\infty}}{q^{6}; q^{6})_{\infty}} \pmod{3}$$

$$\equiv q^{2}(q^{6}; q^{6})_{\infty}(q^{90}; q^{90})_{\infty} + (q^{18}; q^{18})_{\infty}(q^{30}; q^{30})_{\infty} \qquad (29)$$

$$+ 2q^{4} \sum_{n=0}^{\infty} a_{5}(n)q^{6n} \pmod{3}.$$

Comparing the terms involving q^{6n} , q^{6n+2} and q^{6n+4} respectively from both sides of the above congruence, we can easily obtain (22)–(24).

Applying the mathematical induction in (24), we can easily obtain the following

Corollary 1. For any nonnegative integers k and n, we have

$$a_5\left(3^k n + 3^k - 1\right) \equiv 2^k a_5(n) \pmod{3}.$$

Theorem 4. We have,

$$a_5(15n+6) \equiv 0 \pmod{3},$$
(30)

$$a_5(15n+12) \equiv 0 \pmod{3},\tag{31}$$

and

$$a_5(15n+9) \equiv 2a_5(3n+1) \pmod{3}.$$
(32)

Proof. From [3, p. 270, Entry 12(v)], we recall that

$$(q;q)_{\infty} = (q^{25};q^{25})_{\infty} \left(\frac{A(q^5)}{B(q^5)} - q - q^2 \frac{B(q^5)}{A(q^5)}\right)$$
(33)

where

$$A(q) = \frac{f(-q^{10}, -q^{15})}{f(-q^5, -q^{20})} \text{ and } B(q) = \frac{f(-q^5, -q^{20})}{f(-q^{10}, -q^{15})}$$

Replacing q by q^3 in (33) and then employing in (22), we obtain

$$\sum_{n=0}^{\infty} a_5(3n)q^n \equiv (q^5; q^5)_{\infty}(q^{75}; q^{75})_{\infty} \left(\frac{A(q^{15})}{B(q^{15})} - q^3 - q^6 \frac{B(q^{15})}{A(q^{15})}\right) \pmod{3}$$
(34)

Extracting the terms involving q^{5n+3} from both sides of the congruence, we obtain,

$$\sum_{n=0}^{\infty} a_5(3(5n+3))q^n \equiv 2(q;q)_{\infty}(q^{15};q^{15})_{\infty} \pmod{3}$$
(35)

Employing (23) in (35), we can easily obtain (32).

We have seen that in the right hand side of the congruence (34), there is no terms involving q^{5n+2} and q^{5n+4} and hence we can easily obtain (30) and (31) respectively.

Theorem 5. We have,

$$a_5(15n+4) \equiv 2a_5(3n) \pmod{3},\tag{36}$$

$$a_5(15n+10) \equiv 0 \pmod{3},\tag{37}$$

and

$$a_5(15n+13) \equiv 0 \pmod{3}.$$
 (38)

Proof. Employing (33) in (23), we obtain

$$\sum_{n=0}^{\infty} a_5(3n+1)q^n \equiv (q^{15};q^{15})_{\infty}(q^{25};q^{25})_{\infty} \left(\frac{A(q^5)}{B(q^5)} - q - q^2\frac{B(q^5)}{A(q^5)}\right) \pmod{3}$$
(39)

Extracting the terms involving q^{5n+1} from both sides of the congruence, we obtain,

$$\sum_{n=0}^{\infty} a_5(3(5n+1)+1)q^n \equiv 2(q^3;q^3)_{\infty}(q^5;q^5)_{\infty} \pmod{3}$$
(40)

Employing (22) in (40), we can easily obtain (36).

It is clear that in the right hand side of the congruence (39), there is no terms involving q^{5n+3} and q^{5n+4} and hence we can easily obtain (37) and (38). QED

Theorem 6. For any prime $p \ge 5$ with $\left(\frac{-15}{p}\right) = -1$ and for any nonnegative integers k and n,

$$a_5\left(3 \cdot p^{2k}n + p^{2k} - 1\right) \equiv a_5(3n) \pmod{3}.$$
(41)

Proof. With the help of (9), (22) can be rewritten as

$$\sum_{n=0}^{\infty} a_{5}(3n)q^{n} \equiv \left[\sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} (-1)^{k}q^{3\cdot\frac{3k^{2}+k}{2}}f(-q^{3\cdot\frac{3p^{2}+(6k+1)p}{2}},-q^{3\cdot\frac{3p^{2}-(6k+1)p}{2}}) + \left(-1\right)^{\frac{\pm p-1}{6}}q^{3\cdot\frac{p^{2}-1}{24}}f(-q^{3p^{2}})\right] \\ \times \left[\sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} (-1)^{k}q^{5\cdot\frac{3k^{2}+k}{2}}f(-q^{5\cdot\frac{3p^{2}+(6k+1)p}{2}},-q^{5\cdot\frac{3p^{2}-(6k+1)p}{2}}) + (-1)^{\frac{\pm p-1}{6}}q^{5\cdot\frac{p^{2}-1}{24}}f(-q^{5p^{2}})\right] (\text{mod } 3).$$
(42)

Now we consider the congruence

$$3 \cdot \frac{(3k^2 + k)}{2} + 5 \cdot \frac{(3m^2 + m)}{2} \equiv 8 \cdot \frac{(p^2 - 1)}{24} \pmod{p}, \tag{43}$$

where $-(p-1)/2 \le k$, $m \le (p-1)/2$, with $\left(\frac{-15}{p}\right) = -1$. Since the above congruence is equivalent to

$$(18k+3)^2 + 15 \cdot (6m+1)^2 \equiv 0 \pmod{p},$$

and $\left(\frac{-15}{p}\right) = -1$, there is only one solution $k = m = \pm p - 1/6$ for (43). That is, there are no other k and m such that $3\frac{(3k^2+k)}{2} + 5 \cdot \frac{(3m^2+m)}{2}$ and $8 \cdot \frac{(p^2-1)}{24}$ are in the same residue class modulo p. Therefore, equating the terms involving $q^{pn+8 \cdot \frac{p^2-1}{24}}$ from both sides of (42), we deduce that

$$\sum_{n=0}^{\infty} a_5 \left(3 \left(pn + 8 \cdot \frac{p^2 - 1}{24} \right) \right) q^n = \sum_{n=0}^{\infty} a_5 \left(3pn + p^2 - 1 \right) q^n$$
$$\equiv (q^{3p}; q^{3p})_{\infty} (q^{5p}; q^{5p})_{\infty} \pmod{3}.$$

Thus,

$$\sum_{n=0}^{\infty} a_5 \left(3p^2 n + p^2 - 1 \right) q^n \equiv (q^3; q^3)_{\infty} (q^5; q^5)_{\infty} \pmod{3}.$$
(44)

From (44) and (22), we arrive at

$$a_5 (3p^2n + p^2 - 1) \equiv a_5(3n) \pmod{3}$$

Now (41) can be established easily by mathematical induction. QED

Corollary 2. For any prime $p \ge 5$ with $\left(\frac{-15}{p}\right) = -1$ and for any non-negative integers k and n,

$$a_5\left(3 \cdot p^{2k+2}n + (3i+p)p^{2k+1} - 1\right) \equiv 0 \pmod{3},$$

where $i = 1, 2, \ldots, p - 1$.

Proof. As in the proof of the previous theorem, it can also be shown that

$$\sum_{n=0}^{\infty} a_5 \left(3 \cdot p^{2k} (pn+8\frac{p^2-1}{24}) + p^{2k} - 1 \right) q^n \equiv (q^{3p};q^{3p})_{\infty} (q^{5p};q^{5p})_{\infty} \pmod{3},$$

that is,

$$\sum_{n=0}^{\infty} a_5 \left(3 \cdot p^{2k+1} n + p^{2k+2} - 1 \right) q^n \equiv (q^{3p}; q^{3p})_{\infty} (q^{5p}; q^{5p})_{\infty} \pmod{3}.$$

Since there are no terms on the right side of the above congruence in which the powers of q are congruent to 1, 2, ..., p-1 modulo p, it follows, for $i = 1, 2, \ldots, p-1$, that

$$a_5\left(3 \cdot p^{2k+1}(pn+i) + p^{2k+2} - 1\right) \equiv 0 \pmod{3},$$

which is clearly equivalent to the proffered congruence.

QED

QED

Corollary 3. For any prime $p \ge 5$ with $\left(\frac{-15}{p}\right) = -1$ and for any non-negative integers k and n,

$$a_5\left(15 \cdot p^{2k}n + (3r+1)p^{2k} - 1\right) \equiv 0 \pmod{3},$$

where r = 2, 4.

Proof. It can also be shown that

$$\sum_{n=0}^{\infty} a_5 \left(3 \cdot p^{2k} n + p^{2k} - 1 \right) q^n \equiv (q^3; q^3)_{\infty} (q^5; q^5)_{\infty} \pmod{3}.$$

In (33), replacing q by q^3 , we can see that $(q^3; q^3)_{\infty}(q^5; q^5)_{\infty}$ has no terms q^{5n+r} where r = 2, 4, it follows that

$$a_5\left(3 \cdot p^{2k}(5n+r) + p^{2k} - 1\right) \equiv 0 \pmod{3},$$

which is clearly equivalent to the proffered congruence.

Theorem 7. For any prime $p \ge 5$ with $\left(\frac{-15}{p}\right) = -1$ and for any non-negative integers k and n,

$$a_5\left(3 \cdot p^{2k}n + 2 \cdot p^{2k} - 1\right) \equiv a_5(3n+1) \pmod{3}.$$
 (45)

Proof. With the help of (9), (23) can be rewritten as

$$\sum_{n=0}^{\infty} a_{5}(3n+1)q^{n} \equiv \Big[\sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} (-1)^{k} q^{\frac{3k^{2}+k}{2}} f(-q^{\frac{3p^{2}+(6k+1)p}{2}}, -q^{\frac{3p^{2}-(6k+1)p}{2}}) + (-1)^{\frac{\pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f(-q^{p^{2}})\Big] \\ \times \Big[\sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{24}} (-1)^{k} q^{15 \cdot \frac{3k^{2}+k}{2}} f(-q^{15 \cdot \frac{3p^{2}+(6k+1)p}{2}}, -q^{15 \cdot \frac{3p^{2}-(6k+1)p}{2}}) + (-1)^{\frac{\pm p-1}{6}} q^{15 \cdot \frac{p^{2}-1}{24}} f(-q^{15p^{2}})\Big] \pmod{3}.$$
(46)

Consider the congruence

$$\frac{(3k^2+k)}{2} + 15 \cdot \frac{(3m^2+m)}{2} \equiv 16 \cdot \frac{(p^2-1)}{24} \pmod{p}, \tag{47}$$

70

where $-(p-1)/2 \le k$, $m \le (p-1)/2$, with $\left(\frac{-15}{p}\right) = -1$. Since the above congruence is equivalent to

$$(6k+1)^2 + 15 \cdot (6m+1)^2 \equiv 0 \pmod{p},$$

and $\left(\frac{-15}{p}\right) = -1$, there is only one solution $k = m = \pm p - 1/6$ for (47). That is, there are no other k and m such that $\frac{(3k^2 + k)}{2} + 15 \cdot \frac{(3m^2 + m)}{2}$ and $16 \cdot \frac{(p^2 - 1)}{24}$ are in the same residue class modulo p. Therefore, equating the terms involving $q^{pn+16 \cdot \frac{p^2-1}{24}}$ from both sides of (46), we deduce that

$$\sum_{n=0}^{\infty} a_5 \left(3 \left(pn + 16 \cdot \frac{p^2 - 1}{24} \right) + 1 \right) q^n = \sum_{n=0}^{\infty} a_5 \left(3pn + 2p^2 - 1 \right) q^n$$
$$\equiv (q^p; q^p)_{\infty} (q^{15p}; q^{15p})_{\infty} \pmod{3}$$

Thus,

$$\sum_{n=0}^{\infty} a_5 \left(3p^2 n + 2p^2 - 1 \right) q^n \equiv (q;q)_{\infty} (q^{15};q^{15})_{\infty} \pmod{3}.$$
(48)

From (48) and (23), we arrive at

$$a_5(3p^2n + 2p^2 - 1) \equiv a_5(3n + 1) \pmod{3}.$$

Now (45) can be established easily by mathematical induction. QED

The following results follow in a similar fashion. So we omit the proof.

Corollary 4. For any prime $p \ge 5$ with $\left(\frac{-15}{p}\right) = -1$ and for any non-negative integers k and n,

$$a_5\left(3 \cdot p^{2k+2} + (3i+2p)p^{2k+1} - 1\right) \equiv 0 \pmod{3},$$

where $i = 1, 2, \ldots, p - 1$.

Corollary 5. For any prime $p \ge 5$ with $\left(\frac{-15}{p}\right) = -1$ and for any non-negative integers k and n,

$$a_5\left(15 \cdot p^{2k} + (3r+2)p^{2k} - 1\right) \equiv 0 \pmod{3},$$

where r = 3, 4.

Some congruences modulo 3 for two color partitions $p_5(n)$

Theorem 8. We have,

$$\sum_{n=0}^{\infty} p_5(3n)q^n \equiv \frac{(q^3; q^3)_{\infty}}{(q^5; q^5)_{\infty}} \pmod{3},\tag{49}$$

$$\sum_{n=0}^{\infty} p_5(3n+1)q^n \equiv (q;q)_{\infty}(q^5;q^5)_{\infty} \pmod{3},$$
(50)

and

$$\sum_{n=0}^{\infty} p_5(3n+2)q^n \equiv 2\frac{(q^{15};q^{15})_{\infty}}{(q;q)_{\infty}} \pmod{3}.$$
(51)

where

$$\sum_{n=0}^{\infty} p_5(n)q^n := \frac{1}{(q;q)_{\infty}(q^5;q^5)_{\infty}}.$$

Proof. We have

$$\sum_{n=0}^{\infty} p_5(n)q^n = \frac{1}{(q;q)_{\infty}(q^5;q^5)_{\infty}} = \frac{(q^5;q^5)_{\infty}^5}{(q;q)_{\infty}(q^5;q^5)_{\infty}^6}.$$

Taking congruences modulo 3 in the above equation, we obtain,

$$\sum_{n=0}^{\infty} p_5(n)q^n \equiv \frac{(q^5; q^5)_{\infty}^5}{(q^{15}; q^{15})_{\infty}^2 (q; q)_{\infty}} \pmod{3}$$
$$\equiv \frac{1}{(q^{15}; q^{15})_{\infty}^2} \sum_{n=0}^{\infty} a_5(n)q^n \tag{52}$$

Comparing the terms involving q^{3n} , q^{3n+1} and q^{3n+2} respectively from the both sides of the above congruence, we have

$$\sum_{n=0}^{\infty} p_5(3n)q^n \equiv \frac{1}{(q^5; q^5)_{\infty}^2} \sum_{n=0}^{\infty} a_5(3n)q^n \pmod{3}, \tag{53}$$

$$\sum_{n=0}^{\infty} p_5(3n+1)q^n \equiv \frac{1}{(q^5;q^5)_{\infty}^2} \sum_{n=0}^{\infty} a_5(3n+1)q^n \pmod{3},\tag{54}$$

and

$$\sum_{n=0}^{\infty} p_5(3n+2)q^n \equiv 2\frac{1}{(q^5;q^5)_{\infty}^2} \sum_{n=0}^{\infty} a_5(3n+2)q^n \pmod{3}.$$
 (55)

Employing (3) in the above congruences, we can easily obtain the (8). QED

Theorem 9. We have,

$$p_5(15n+9) \equiv p_5(3n+2) \pmod{3},\tag{56}$$

$$p_5(15n+6) \equiv 0 \pmod{3},\tag{57}$$

and

$$p_5(15n+12)q^n \equiv 0 \pmod{3}.$$
 (58)

Proof. Replacing q by q^3 in(33) and then employing in(49), we obtain

$$\sum_{n=0}^{\infty} p_5(3n)q^n \equiv \frac{(q^{75}; q^{75})_{\infty}}{(q^5; q^5)_{\infty}} \left(\frac{A(q^{15})}{B(q^{15})} - q^3 - q^6 \frac{B(q^{15})}{A(q^{15})}\right) \pmod{3} \tag{59}$$

Comparing the terms involving q^{5n+3} from both sides of the above congruence we can easily arrive at (56). There is no terms involving q^{5n+2} , q^{5n+4} in the right hand side of the congruence (59). So, we can easily obtain (57) and (58). QED

Theorem 10. For any $k \ge 1$, we have

$$\sum_{n=0}^{\infty} p_5\left(3^{2k-1}n + \frac{3^{2k-1}+1}{4}\right) q^n \equiv 2^{k+1}(q;q)_{\infty}(q^5;q^5)_{\infty} \pmod{3}.$$
(60)

Proof. We prove the result by mathematical induction. For k = 1, we obtain

$$\sum_{n=0}^{\infty} p_5(3n+1)q^n \equiv (q;q)_{\infty}(q^5;q^5)_{\infty} \pmod{3},$$
(61)

which is the (50).

Let (60) be true for some positive integer k. Therefore we can write (60) as

$$\sum_{n=0}^{\infty} p_5 \left(3^{2k-1} n + \frac{3^{2k-1} + 1}{4} \right) q^n \tag{62}$$

$$\equiv 2^{k+1}(q^3;q^3)_{\infty}(q^{15};q^{15})_{\infty} \times \frac{1}{(q;q)^2_{\infty}(q^5;q^5)^2_{\infty}} \pmod{3} \tag{63}$$

$$\equiv 2^{k+1}(q^3;q^3)_{\infty}(q^{15};q^{15})_{\infty} \times \left(\sum_{n=0}^{\infty} p_5(n)q^n\right)^2 \pmod{3}.$$

Extracting the terms involving q^{3n+2} from both sides of the above congruence, we obtain

$$\sum_{n=0}^{\infty} p_5 \left(3^{2k-1} (3n+2) + \frac{3^{2k-1}+1}{4} \right) q^n \equiv 2^{k+1} (q;q)_{\infty} (q^5;q^5)_{\infty} \times \left[\left(\sum_{n=0}^{\infty} p_5 (3n+1)q^n \right)^2 + 2 \sum_{n=0}^{\infty} p_5 (3n)q^n \sum_{n=0}^{\infty} p_5 (3n+2)q^n \right] \pmod{3}.$$
(64)

Employing (49), (50) and (51) in (64),

$$\sum_{n=0}^{\infty} p_5 \left(3^{2k-1} (3n+2) + \frac{3^{2k-1}+1}{4} \right) q^n$$

$$\equiv 2^{k+1} (q;q)_{\infty} (q^5;q^5)_{\infty} \left[(q;q)_{\infty}^2 (q^5;q^5)_{\infty}^2 + 4 \frac{(q^3;q^3)_{\infty} (q^{15};q^{15})_{\infty}}{(q^5;q^5)_{\infty} (q;q)_{\infty}} \right] \pmod{3}$$

$$\equiv 2^{k+2} (q;q)_{\infty} (q^5;q^5)_{\infty} \pmod{3}.$$
(65)

Hence the result is true for all $k \ge 1$.

Applying (33) we can see easily that $(q;q)_{\infty}(q^5;q^5)_{\infty}$ has no terms containing q^{5n+r} for r=3, 4. From the last result we can conclude the following

Theorem 11. For any $k \ge 1$, we have

$$\sum_{n=0}^{\infty} p_5\left(3^{2k-1}n + \frac{(4r+1)3^{2k-1}+1}{4}\right)q^n \equiv 0 \pmod{3},\tag{66}$$

where, r = 3, 4.

Theorem 12. For any prime $p \ge 5$ with $\left(\frac{-5}{p}\right) = -1$ and for any non-negative integers k and n,

$$p_5\left(3 \cdot p^{2k}n + \frac{3p^{2k} + 1}{4}\right) \equiv p_5(3n+1) \pmod{3}.$$
 (67)

Proof. With the help of (9), (50) can be rewritten as

$$\sum_{n=0}^{\infty} p_{5}(3n+1)q^{n} \equiv \left[\sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} (-1)^{k} q^{\frac{3k^{2}+k}{2}} f(-q^{\frac{3p^{2}+(6k+1)p}{2}}, -q^{\frac{3p^{2}-(6k+1)p}{2}}) + (-1)^{\frac{\pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f(-q^{p^{2}})\right] \\ \times \left[\sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{24}} (-1)^{k} q^{5 \cdot \frac{3k^{2}+k}{2}} f(-q^{5 \cdot \frac{3p^{2}+(6k+1)p}{2}}, -q^{5 \cdot \frac{3p^{2}-(6k+1)p}{2}}) + (-1)^{\frac{\pm p-1}{6}} q^{5 \cdot \frac{p^{2}-1}{24}} f(-q^{5p^{2}})\right] (\text{mod } 3).$$
(68)

Consider the following congruence

$$\frac{(3k^2+k)}{2} + 5 \cdot \frac{(3m^2+m)}{2} \equiv 6 \cdot \frac{(p^2-1)}{24} \pmod{p},\tag{69}$$

where $-(p-1)/2 \le k$, $m \le (p-1)/2$, with $\left(\frac{-5}{p}\right) = -1$. Since the above congruence is equivalent to

$$(6k+1)^2 + 5 \cdot (6m+1)^2 \equiv 0 \pmod{p},$$

and $\left(\frac{-5}{p}\right) = -1$, there is only one solution $k = m = \pm p - 1/6$ for (47). That is, there are no other k and m such that $\frac{(3k^2 + k)}{2} + 5 \cdot \frac{(3m^2 + m)}{2}$ and $6 \cdot \frac{(p^2 - 1)}{24}$ are in the same residue class modulo p. Therefore, equating the terms involving $q^{pn+\frac{p^2-1}{4}}$ from both sides of (68), we deduce that

$$\sum_{n=0}^{\infty} p_5 \left(3 \left(pn + \frac{p^2 - 1}{4} \right) + 1 \right) q^n = \sum_{n=0}^{\infty} p_5 \left(3pn + \frac{3p^2 + 1}{4} \right) q^n$$
$$\equiv (q^p; q^p)_{\infty} (q^{5p}; q^{5p})_{\infty} \pmod{3}.$$

Thus,

$$\sum_{n=0}^{\infty} p_5\left(3p^2n + \frac{3p^2 + 1}{4}\right)q^n \equiv (q;q)_{\infty}(q^5;q^5)_{\infty} \pmod{3}.$$
 (70)

From (70) and (50), we arrive at

$$p_5\left(3p^2n + \frac{3p^2+1}{4}\right) \equiv p_5(3n+1) \pmod{3}.$$

Now (67) can be established easily by mathematical induction.

The following results follow in a similar fashion. So we omit the proof.

Corollary 6. For any prime $p \ge 5$ with $\left(\frac{-5}{p}\right) = -1$ and for any non-negative integers k and n,

$$p_5\left(3 \cdot p^{2k+2} + \frac{(12i+3p)p^{2k+1}+1}{4}\right) \equiv 0 \pmod{3},$$

where $i = 1, 2, \ldots, p - 1$.

Corollary 7. For any prime $p \ge 5$ with $\left(\frac{-5}{p}\right) = -1$ and for any non-negative integers k and n,

$$p_5\left(15 \cdot p^{2k} + \frac{(12r+3)p^{2k}+1}{4}\right) \equiv 0 \pmod{3},$$

where r = 3, 4.

References

- Z. AHMED, N. D. BARUAH AND M. G. DASTIDAR: New congruences modulo 5 for the number of 2-color partitions, J. Number Theory, 157 (2015), 184–198.
- [2] N. D. BARUAH, J. BORA AND K. K. OJAH: Ramanujan's modular equations of degree 5, Proc. Indian Acad. Sci. (Math. Sci.), 122 (2012), 485–506.
- [3] B. C. BERNDT: Ramanujan's Notebooks, Part III, Springer-verleg, New York, 1991.
- [4] S. P. CUI AND N. S. S. GU: Arithmetic properties of *l*-regular partitions, Adv. Appl. Math., 51 (2013),507–523
- [5] F. GARVAN, D. KIM AND D. STANTON: Cranks and t-cores, Invent. Math., 101(1990), 1–17.
- [6] S. RAMANUJAN: The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

QED