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Introduction

A partition of n is a non-increasing sequence of positive integers, called
parts, whose sum is n. A partition of n is called a t-core of n if none of the hook
numbers is a multiple of t. If at(n) denotes the number of t-cores of n, then the
generating function for at(n) is [5]

∞∑

n=0

at(n)q
n =

(qt; qt)t∞
(q; q)∞

, (1)

where, here and throughout the sequel, for any complex number a and |q| < 1,

(a; q)∞ :=
∞∏

n=1

(1− qn).

The following exact formula for a5(n) in terms of the prime factorization of
n + 1 can be found in [5, Theorem 4]. This theorem follows from an identity
of Ramanujan recorded in his famous manuscript on the partition function and
tau-function now published with his lost notebook [6, p. 139].
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Theorem 1. Let n + 1 = 5cpa11 . . . pass q
b1
1 . . . qatt be the prime factorization

of n+ 1 into primes pi ≡ 1, 4 (mod 5), and qj ≡ 2, 3 (mod 5). Then

a5(n) = 5c
s∏

i=1

pai+1
i − 1

pi − 1

t∏

j=1

q
bj+1
j − 1

qj − 1
.

Many arithmetical identities and congruences easily follow from the above
theorem. For example, for any positive integer n and non-negative integer r, we
have

a5(5
αn− 1) = 5αa5(n− 1) ≡ 0 (mod 5α).

Similarly, for a prime p ≡ 2, 3 (mod 5) and any non-negative integers n and r,
we can easily deduce that

a5(p
α(pn+ 1)− 1) =

pα+1 + (−1)α
p+ 1

a5(pn) ≡ 0

(

mod
pα+1 + (−1)α

p+ 1

)

.

Next, let pk(n) denote the number of 2-color partitions of n where one of
the colors appears only in parts that are multiples of k. Then the generating
function for pk(n) is given by

∞∑

n=0

pk(n)q
n =

1

(q; q)∞(qk; qk)∞
.

Recently, the following result was proved by Baruah, Ahmed and Dastidar [1].

Theorem 2. If k ∈ {0, 1, 2, 3, 4, 5, 10, 15, 20}, then for any non-negative
integer n,

pk(25n+ ℓ) ≡ 0 (mod 5),

where k + ℓ = 24.

In this paper, we find some interesting congruences modulo 3 for 5-core
partitions and p5(n) by employing Ramanujan’s theta functions and their dis-
sections. Since our proofs mainly rely on various properties of Ramanujan’s

theta functions and dissections of certain q-products, we end this section by
defining a t-dissection and Ramanujan’s general theta function and some of its
special cases. If P (q) denotes a power series in q, then a t-dissection of P (q) is

given by

P (q) =
t−1∑

k=0

qkPk(q
t),

where Pk are power series in qt. In the remainder of this section, we introduce
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Ramanujan’s theta functions and some of their elementary properties, which
will be used in our subsequent sections. For |ab| < 1, Ramanujan’s general

theta-function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2.

In this notation, Jacobi’s famous triple product identity [3, p. 35, Entry 19]
takes the form

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2)

Three important special cases of f(a, b) are

ϕ(q) := f(q, q) =
(q2; q2)∞(−q; q2)∞
(q; q2)∞(−q2; q2)∞

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
, (3)

ψ(q) := f(q, q3) =
(q2; q2)∞
(q; q2)∞

(4)

and

f(−q) := f(−q,−q2) = (q; q)∞, (5)

where the product representations in (4) and (5) arise from (2) and the last
equality in (5) is Euler’s famous pentagonal number theorem. After Ramanujan,
we also define

χ(q) := (−q; q2)∞ =
(q2; q2)2∞

(q; q)∞(q4; q4)∞
(6)

and hence,

χ(−q) := (q; q2)∞ =
(q; q)∞
(q2; q2)∞

(7)

Furthermore, the q-product representations of ϕ(−q) and ψ(−q) can be written
in the forms

ϕ(−q) = (q; q)2∞
(q2; q2)∞

, ψ(−q) = (q; q)∞(q4; q4)∞
(q2; q2)∞

(8)
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Lemma 1. [4, Theorem 2.2] For any prime p ≥ 5,

(q; q)∞ =

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq 3k2+k
2 f

(

−q
3p2+(6k+1)p

2 ,−q
3p2−(6k+1)p

2

)

+ (−1)±p−1
6 q

p2−1
24 (qp

2
; qp

2
)∞, (9)

where

±p− 1

6
:=







p− 1

6
, if p ≡ 1 (mod 6);

−p− 1

6
, if p ≡ −1 (mod 6).

Furthermore, for
−(p− 1)

2
≤ k ≤ (p− 1)

2
and k 6= (±p− 1)

6
,

3k2 + k

2
6≡ p2 − 1

24
(mod p).

Some congruences modulo 3 for 5-core partitions

We first introduce an important lemma which will be used later.

Lemma 2. We have

(q2; q2)2∞(q10; q10)2∞ ≡ q2(q6; q6)2∞(q30; q30)2∞+(q6; q6)4∞+2q4(q30; q30)4∞ (mod 3).
(10)

Proof. We note that [3, p. 258],

ϕ2(q)− ϕ2(q5) = 4qχ(q)f(−q5)f(−q20) (11)

and

5ϕ2(q5)− ϕ2(q) = 4χ(q)χ(−q5)ψ2(−q). (12)

Multiplying (11) and (12)

6ϕ2(q)ϕ2(q5)− ϕ4(q)− 5ϕ4(q5) = 16qχ2(q)χ(q5)f(−q5)f(−q20)ψ(−q). (13)

Employing (5), (6), (7) and (8) in the last equation, we obtain

6ϕ2(q)ϕ2(q5)− ϕ4(q)− 5ϕ4(q5) = 16q(q2; q2)2∞(q10; q10)2∞. (14)
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Taking congruences modulo 3, we obtain

q(q2; q2)2∞(q10; q10)2∞ ≡ −ϕ(q)ϕ(q3) + ϕ(q5)ϕ(q15) (mod 3). (15)

Recalling [3, p.49, Corollary (i)], we have

ϕ(q) = ϕ(q9) + 2qf(q3, q15) (16)

Replacing q by q5 in the above equation, we have,

ϕ(q5) = ϕ(q45) + 2q5f(q15, q75) (17)

Employing the above two equation in (15), we find that

q(q2; q2)2∞(q10; q10)2∞ ≡− ϕ(q3)ϕ(q9) + qϕ(q3)f(q3, q15) + ϕ(q15)ϕ(q45)

+ 2q5ϕ(q15)f(q15, q75) (mod 3). (18)

Note that

ϕ(q)f(q, q5) =
(q2; q2)7∞(q3; q3)∞(q12; q12)∞
(q; q)3∞(q4; q4)3∞(q6; q6)∞

(19)

Since, (q; q)3∞ ≡ (q3; q3)∞ , so (19) can be written as

ϕ(q)f(q, q5) ≡ (q2; q2)4∞ (mod 3). (20)

Employing (15) and (20) in (18), we obtain

q(q2; q2)2∞(q10; q10)2∞ ≡
q3(q6; q6)2∞(q30; q30)2∞ + q(q6; q6)4∞ + 2q5(q30; q30)4∞ (mod 3). (21)

From above congruence we can easily obtain (10). QED

Theorem 3. We have,

∞∑

n=0

a5(3n)q
n ≡ (q3; q3)∞(q5; q5)∞ (mod 3), (22)

∞∑

n=0

a5(3n+ 1)qn ≡ (q; q)∞(q15; q15)∞ (mod 3), (23)

and

∞∑

n=0

a5(3n+ 2)qn ≡ 2
∞∑

n=0

a5(n)q
n (mod 3). (24)
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Proof. Putting t = 5 in (3.7) and replacing q by q2, we have

∞∑

n=0

a5(n)q
2n =

(q10; q10)5∞
(q2; q2)∞

. (25)

Taking congruences modulo 3,

∞∑

n=0

a5(n)q
2n ≡ (q30; q30)∞(q2; q2)2∞(q10; q10)2∞

(q6; q6)∞
(mod 3). (26)

With the help of (10), (26) can be rewritten as

∞∑

n=0

a5(n)q
n ≡(q30; q30)∞

(q6; q6)∞
(q2(q6; q6)2∞(q30; q30)2∞ (27)

+ (q6; q6)4∞ + 2q4(q30; q30)4∞) (mod 3)

≡q2(q6; q6)∞(q30; q30)3∞ + (q6; q6)3∞(q30; q30)∞ (28)

+ 2q4
(q30; q30)5∞
q6; q6)∞

(mod 3)

≡q2(q6; q6)∞(q90; q90)∞ + (q18; q18)∞(q30; q30)∞ (29)

+ 2q4
∞∑

n=0

a5(n)q
6n (mod 3).

Comparing the terms involving q6n, q6n+2 and q6n+4 respectively from both
sides of the above congruence, we can easily obtain (22)–(24). QED

Applying the mathematical induction in (24), we can easily obtain the fol-
lowing

Corollary 1. For any nonnegative integers k and n, we have

a5

(

3kn+ 3k − 1
)

≡ 2ka5(n) (mod 3).

Theorem 4. We have,

a5(15n+ 6) ≡ 0 (mod 3), (30)

a5(15n+ 12) ≡ 0 (mod 3), (31)

and

a5(15n+ 9) ≡ 2a5(3n+ 1) (mod 3). (32)
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Proof. From [3, p. 270, Entry 12(v)], we recall that

(q; q)∞ = (q25; q25)∞

(
A(q5)

B(q5)
− q − q2B(q5)

A(q5)

)

(33)

where

A(q) =
f(−q10,−q15)
f(−q5,−q20) and B(q) =

f(−q5,−q20)
f(−q10,−q15) .

Replacing q by q3 in (33) and then employing in (22), we obtain

∞∑

n=0

a5(3n)q
n ≡ (q5; q5)∞(q75; q75)∞

(
A(q15)

B(q15)
− q3 − q6B(q15)

A(q15)

)

(mod 3) (34)

Extracting the terms involving q5n+3 from both sides of the congruence, we
obtain,

∞∑

n=0

a5(3(5n+ 3))qn ≡ 2(q; q)∞(q15; q15)∞ (mod 3) (35)

Employing (23) in (35), we can easily obtain (32).
We have seen that in the right hand side of the congruence (34), there is no

terms involving q5n+2 and q5n+4 and hence we can easily obtain (30) and (31)
respectively. QED

Theorem 5. We have,

a5(15n+ 4) ≡ 2a5(3n) (mod 3), (36)

a5(15n+ 10) ≡ 0 (mod 3), (37)

and

a5(15n+ 13) ≡ 0 (mod 3). (38)

Proof. Employing (33) in (23), we obtain

∞∑

n=0

a5(3n+ 1)qn ≡ (q15; q15)∞(q25; q25)∞

(
A(q5)

B(q5)
− q − q2B(q5)

A(q5)

)

(mod 3)

(39)

Extracting the terms involving q5n+1 from both sides of the congruence, we
obtain,
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∞∑

n=0

a5(3(5n+ 1) + 1)qn ≡ 2(q3; q3)∞(q5; q5)∞ (mod 3) (40)

Employing (22) in (40), we can easily obtain (36).

It is clear that in the right hand side of the congruence (39), there is no
terms involving q5n+3 and q5n+4 and hence we can easily obtain (37) and (38)
. QED

Theorem 6. For any prime p ≥ 5 with

(−15
p

)

= −1 and for any non-

negative integers k and n,

a5

(

3 · p2kn+ p2k − 1
)

≡ a5(3n) (mod 3). (41)

Proof. With the help of (9), (22) can be rewritten as

∞∑

n=0

a5(3n)q
n ≡
[

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq3· 3k
2+k
2 f(−q3·

3p2+(6k+1)p
2 ,−q3·

3p2−(6k+1)p
2 )+

(−1)±p−1
6 q3·

p2−1
24 f(−q3p2)

]

×
[

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq5· 3k
2+k
2 f(−q5·

3p2+(6k+1)p
2 ,−q5·

3p2−(6k+1)p
2 )

+ (−1)±p−1
6 q5·

p2−1
24 f(−q5p2)

]

(mod 3). (42)

Now we consider the congruence

3 · (3k
2 + k)

2
+ 5 · (3m

2 +m)

2
≡ 8 · (p

2 − 1)

24
(mod p), (43)

where −(p − 1)/2 ≤ k, m ≤ (p − 1)/2, with

(−15
p

)

= −1. Since the above

congruence is equivalent to

(18k + 3)2 + 15 · (6m+ 1)2 ≡ 0 (mod p),
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and

(−15
p

)

= −1, there is only one solution k = m = ±p − 1/6 for (43).

That is, there are no other k and m such that 3
(3k2 + k)

2
+ 5 · (3m

2 +m)

2
and

8 · (p
2 − 1)

24
are in the same residue class modulo p. Therefore, equating the

terms involving qpn+8· p2−1
24 from both sides of (42), we deduce that

∞∑

n=0

a5

(

3

(

pn+ 8 · p
2 − 1

24

))

qn =
∞∑

n=0

a5
(
3pn+ p2 − 1

)
qn

≡ (q3p; q3p)∞(q5p; q5p)∞ (mod 3).

Thus,
∞∑

n=0

a5
(
3p2n+ p2 − 1

)
qn ≡ (q3; q3)∞(q5; q5)∞ (mod 3). (44)

From (44) and (22), we arrive at

a5
(
3p2n+ p2 − 1

)
≡ a5(3n) (mod 3).

Now (41) can be established easily by mathematical induction. QED

Corollary 2. For any prime p ≥ 5 with

(−15
p

)

= −1 and for any non-

negative integers k and n,

a5

(

3 · p2k+2n+ (3i+ p)p2k+1 − 1
)

≡ 0 (mod 3),

where i = 1, 2, . . . , p− 1.

Proof. As in the proof of the previous theorem, it can also be shown that

∞∑

n=0

a5

(

3 · p2k(pn+ 8
p2 − 1

24
) + p2k − 1

)

qn ≡ (q3p; q3p)∞(q5p; q5p)∞ (mod 3),

that is,

∞∑

n=0

a5

(

3 · p2k+1n+ p2k+2 − 1
)

qn ≡ (q3p; q3p)∞(q5p; q5p)∞ (mod 3).

Since there are no terms on the right side of the above congruence in which
the powers of q are congruent to 1, 2, . . . , p − 1 modulo p, it follows, for
i = 1, 2, . . . , p− 1, that

a5

(

3 · p2k+1(pn+ i) + p2k+2 − 1
)

≡ 0 (mod 3),

which is clearly equivalent to the proffered congruence. QED
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Corollary 3. For any prime p ≥ 5 with

(−15
p

)

= −1 and for any non-

negative integers k and n,

a5

(

15 · p2kn+ (3r + 1)p2k − 1
)

≡ 0 (mod 3),

where r = 2, 4.

Proof. It can also be shown that

∞∑

n=0

a5

(

3 · p2kn+ p2k − 1
)

qn ≡ (q3; q3)∞(q5; q5)∞ (mod 3).

In (33), replacing q by q3, we can see that (q3; q3)∞(q5; q5)∞ has no terms q5n+r

where r = 2, 4, it follows that

a5

(

3 · p2k(5n+ r) + p2k − 1
)

≡ 0 (mod 3),

which is clearly equivalent to the proffered congruence. QED

Theorem 7. For any prime p ≥ 5 with

(−15
p

)

= −1 and for any non-

negative integers k and n,

a5

(

3 · p2kn+ 2 · p2k − 1
)

≡ a5(3n+ 1) (mod 3). (45)

Proof. With the help of (9), (23) can be rewritten as

∞∑

n=0

a5(3n+ 1)qn ≡
[

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq 3k2+k
2 f(−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2 )+

(−1)±p−1
6 q

p2−1
24 f(−qp2)

]

×
[

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq15· 3k
2+k
2 f(−q15·

3p2+(6k+1)p
2 ,−q15·

3p2−(6k+1)p
2 )

+ (−1)±p−1
6 q15·

p2−1
24 f(−q15p2)

]

(mod 3). (46)

Consider the congruence

·(3k
2 + k)

2
+ 15 · (3m

2 +m)

2
≡ 16 · (p

2 − 1)

24
(mod p), (47)
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where −(p − 1)/2 ≤ k, m ≤ (p − 1)/2, with

(−15
p

)

= −1. Since the above

congruence is equivalent to

(6k + 1)2 + 15 · (6m+ 1)2 ≡ 0 (mod p),

and

(−15
p

)

= −1, there is only one solution k = m = ±p − 1/6 for (47).

That is, there are no other k and m such that
(3k2 + k)

2
+ 15 · (3m

2 +m)

2
and

16 · (p
2 − 1)

24
are in the same residue class modulo p. Therefore, equating the

terms involving qpn+16· p2−1
24 from both sides of (46), we deduce that

∞∑

n=0

a5

(

3

(

pn+ 16 · p
2 − 1

24

)

+ 1

)

qn =
∞∑

n=0

a5
(
3pn+ 2p2 − 1

)
qn

≡ (qp; qp)∞(q15p; q15p)∞ (mod 3).

Thus,
∞∑

n=0

a5
(
3p2n+ 2p2 − 1

)
qn ≡ (q; q)∞(q15; q15)∞ (mod 3). (48)

From (48) and (23), we arrive at

a5
(
3p2n+ 2p2 − 1

)
≡ a5(3n+ 1) (mod 3).

Now (45) can be established easily by mathematical induction. QED

The following results follow in a similar fashion. So we omit the proof.

Corollary 4. For any prime p ≥ 5 with

(−15
p

)

= −1 and for any non-

negative integers k and n,

a5

(

3 · p2k+2 + (3i+ 2p)p2k+1 − 1
)

≡ 0 (mod 3),

where i = 1, 2, . . . , p− 1.

Corollary 5. For any prime p ≥ 5 with

(−15
p

)

= −1 and for any non-

negative integers k and n,

a5

(

15 · p2k + (3r + 2)p2k − 1
)

≡ 0 (mod 3),

where r = 3, 4.
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Some congruences modulo 3 for two color partitions
p5(n)

Theorem 8. We have,

∞∑

n=0

p5(3n)q
n ≡ (q3; q3)∞

(q5; q5)∞
(mod 3), (49)

∞∑

n=0

p5(3n+ 1)qn ≡ (q; q)∞(q5; q5)∞ (mod 3), (50)

and

∞∑

n=0

p5(3n+ 2)qn ≡ 2
(q15; q15)∞
(q; q)∞

(mod 3). (51)

where ∞∑

n=0

p5(n)q
n :=

1

(q; q)∞(q5; q5)∞
.

Proof. We have

∞∑

n=0

p5(n)q
n =

1

(q; q)∞(q5; q5)∞
=

(q5; q5)5∞
(q; q)∞(q5; q5)6∞

.

Taking congruences modulo 3 in the above equation, we obtain,

∞∑

n=0

p5(n)q
n ≡ (q5; q5)5∞

(q15; q15)2∞(q; q)∞
(mod 3)

≡ 1

(q15; q15)2∞

∞∑

n=0

a5(n)q
n (52)

Comparing the terms involving q3n, q3n+1 and q3n+2 respectively from the both
sides of the above congruence, we have

∞∑

n=0

p5(3n)q
n ≡ 1

(q5; q5)2∞

∞∑

n=0

a5(3n)q
n (mod 3), (53)

∞∑

n=0

p5(3n+ 1)qn ≡ 1

(q5; q5)2∞

∞∑

n=0

a5(3n+ 1)qn (mod 3), (54)
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and

∞∑

n=0

p5(3n+ 2)qn ≡ 2
1

(q5; q5)2∞

∞∑

n=0

a5(3n+ 2)qn (mod 3). (55)

Employing (3) in the above congruences, we can easily obtain the (8). QED

Theorem 9. We have,

p5(15n+ 9) ≡ p5(3n+ 2) (mod 3), (56)

p5(15n+ 6) ≡ 0 (mod 3), (57)

and

p5(15n+ 12)qn ≡ 0 (mod 3). (58)

Proof. Replacing q by q3 in(33) and then employing in(49), we obtain

∞∑

n=0

p5(3n)q
n ≡ (q75; q75)∞

(q5; q5)∞

(
A(q15)

B(q15)
− q3 − q6B(q15)

A(q15)

)

(mod 3) (59)

Comparing the terms involving q5n+3from both sides of the above congruence
we can easily arrive at (56). There is no terms involving q5n+2, q5n+4 in the right
hand side of the congruence (59). So, we can easily obtain (57) and (58). QED

Theorem 10. For any k ≥ 1, we have
∞∑

n=0

p5

(

32k−1n+
32k−1 + 1

4

)

qn ≡ 2k+1(q; q)∞(q5; q5)∞ (mod 3). (60)

Proof. We prove the result by mathematical induction. For k = 1, we obtain
∞∑

n=0

p5(3n+ 1)qn ≡ (q; q)∞(q5; q5)∞ (mod 3), (61)

which is the (50).
Let (60) be true for some positive integer k. Therefore we can write (60) as

∞∑

n=0

p5

(

32k−1n+
32k−1 + 1

4

)

qn (62)

≡ 2k+1(q3; q3)∞(q15; q15)∞ ×
1

(q; q)2∞(q5; q5)2∞
(mod 3) (63)

≡ 2k+1(q3; q3)∞(q15; q15)∞ ×
( ∞∑

n=0

p5(n)q
n

)2

(mod 3).
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Extracting the terms involving q3n+2 from both sides of the above congruence,
we obtain

∞∑

n=0

p5

(

32k−1(3n+ 2) +
32k−1 + 1

4

)

qn ≡

2k+1(q; q)∞(q5; q5)∞×
[( ∞∑

n=0

p5(3n+ 1)qn
)2

+ 2
∞∑

n=0

p5(3n)q
n

∞∑

n=0

p5(3n+ 2)qn
]

(mod 3). (64)

Employing (49), (50) and (51) in (64),

∞∑

n=0

p5

(

32k−1(3n+ 2) +
32k−1 + 1

4

)

qn (65)

≡ 2k+1(q; q)∞(q5; q5)∞
[

(q; q)2∞(q5; q5)2∞ + 4
(q3; q3)∞(q15; q15)∞
(q5; q5)∞(q; q)∞

]

(mod 3)

≡ 2k+2(q; q)∞(q5; q5)∞ (mod 3).

Hence the result is true for all k ≥ 1. QED

Applying (33) we can see easily that (q; q)∞(q5; q5)∞ has no terms containing
q5n+r for r = 3, 4. From the last result we can conclude the following

Theorem 11. For any k ≥ 1, we have

∞∑

n=0

p5

(

32k−1n+
(4r + 1)32k−1 + 1

4

)

qn ≡ 0 (mod 3), (66)

where, r = 3, 4.

Theorem 12. For any prime p ≥ 5 with

(−5
p

)

= −1 and for any non-

negative integers k and n,

p5

(

3 · p2kn+
3p2k + 1

4

)

≡ p5(3n+ 1) (mod 3). (67)
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Proof. With the help of (9), (50) can be rewritten as

∞∑

n=0

p5(3n+ 1)qn ≡
[

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq 3k2+k
2 f(−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2 )+

(−1)±p−1
6 q

p2−1
24 f(−qp2)

]

×
[

p−1
2∑

k=− p−1
2

k 6=±p−1
6

(−1)kq5· 3k
2+k
2 f(−q5·

3p2+(6k+1)p
2 ,−q5·

3p2−(6k+1)p
2 )

+ (−1)±p−1
6 q5·

p2−1
24 f(−q5p2)

]

(mod 3). (68)

Consider the following congruence

(3k2 + k)

2
+ 5 · (3m

2 +m)

2
≡ 6 · (p

2 − 1)

24
(mod p), (69)

where −(p − 1)/2 ≤ k, m ≤ (p − 1)/2, with

(−5
p

)

= −1. Since the above

congruence is equivalent to

(6k + 1)2 + 5 · (6m+ 1)2 ≡ 0 (mod p),

and

(−5
p

)

= −1, there is only one solution k = m = ±p−1/6 for (47). That is,

there are no other k and m such that
(3k2 + k)

2
+5 · (3m

2 +m)

2
and 6 · (p

2 − 1)

24
are in the same residue class modulo p. Therefore, equating the terms involving

qpn+· p2−1
4 from both sides of (68), we deduce that

∞∑

n=0

p5

(

3

(

pn+ ·p
2 − 1

4

)

+ 1

)

qn =
∞∑

n=0

p5

(

3pn+
3p2 + 1

4

)

qn

≡ (qp; qp)∞(q5p; q5p)∞ (mod 3).

Thus,
∞∑

n=0

p5

(

3p2n+
3p2 + 1

4

)

qn ≡ (q; q)∞(q5; q5)∞ (mod 3). (70)

From (70) and (50), we arrive at

p5

(

3p2n+
3p2 + 1

4

)

≡ p5(3n+ 1) (mod 3).
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Now (67) can be established easily by mathematical induction. QED

The following results follow in a similar fashion. So we omit the proof.

Corollary 6. For any prime p ≥ 5 with

(−5
p

)

= −1 and for any non-

negative integers k and n,

p5

(

3 · p2k+2 +
(12i+ 3p)p2k+1 + 1

4

)

≡ 0 (mod 3),

where i = 1, 2, . . . , p− 1.

Corollary 7. For any prime p ≥ 5 with

(−5
p

)

= −1 and for any non-

negative integers k and n,

p5

(

15 · p2k + (12r + 3)p2k + 1

4

)

≡ 0 (mod 3),

where r = 3, 4.
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