The influence of minimal subgroups on saturated fusion systems

Ning Su

Tsinghua University, Beijing, China nsu@math.tsinghua.edu.cn

Received: 21.04.2016; accepted: 05.05.2016.

Abstract.

Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. In this paper, we investigate the influence of the minimal subgroups in $\mathfrak{foc}(\mathcal{F})$, the focal subgroup of \mathcal{F} . Our main result is that if for each cyclic subgroup $P \leq \mathfrak{foc}(\mathcal{F})$ of order *p* (of order 2 and 4 if p = 2) and each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, \mathfrak{foc}(\mathcal{F})), \varphi$ extends to an automorphism of *S*, then *S* is normal in \mathcal{F} . We also give several applications of this result.

Keywords: saturated fusion system; focal subgroup; resistant group

MSC 2010 classification: 20D15

1 Introduction and statements of results

All groups considered in this paper are finite. Through out this paper, p is always understood to be a fixed prime.

Let G be a group. Recall that minimal subgroups of G is are cyclic subgroups of prime order. It is known that in some cases the way G acting by conjugaction on its cyclic subgroups of order p (of order 2 and 4 if p = 2) has a strong influence on the structure of G. For instance, N.Itô prove that if every cyclic group of order p (of order 2 and 4 if p = 2) lies in the center of G, then G is p-nilpotent. In fact, many results in this line can be proved by applied the following well known theorem:

Theorem 1.1 ([4, Satz IV.5.12]). Let S be a p-group. Suppose that K is a p'-group that acts trivially on every cyclic subgroup of S of order p (of order 2 and 4 if p = 2). Then K acts trivially on S.

A saturated fusion system over a p-group S is a category whose objects are subgroups of S, and whose morphisms satisfy certain axioms mimicking the action by conjugation of the elements of some group G with S as its Sylow psubgroup. The concept of saturated fusion system was introduced Puig in early

http://siba-ese.unisalento.it/ © 2016 Università del Salento

1990s, who used the term "Frobenius categories".

Inspired by theorem 1.1, we investigate the connections between the structure of a saturated fusion system \mathcal{F} and the way the morphisms in \mathcal{F} acting on cyclic groups of S of order p (of order 2 and 4 if p = 2). The main result of this paper is the following (the notion $\mathfrak{foc}(\mathcal{F})$ appear in the following theorem denotes the focal subgroup of \mathcal{F} , see [1, Part I, Definition 7.1]).

Theorem A. Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. Assume that for each cyclic subgroup $P \leq \mathfrak{foc}(\mathcal{F})$ of order *p* (of order 2 and 4 if p = 2) and each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, \mathfrak{foc}(\mathcal{F})), \varphi$ extends to an automorphism of *S*. Then *S* is normal in \mathcal{F} .

In the following, we give several applications of theorem A.

Let S be a p-group. Following [8, Definition 5.1], S is called *resistant* if for any saturate fusion system \mathcal{F} over S, S is normal in \mathcal{F} . Burnside's fusion theorem (see [1, Theorem A.8]) states that if S is abelian, then for any finite group G such that $S \in \text{Syl}_p(G)$, S is normal in $\mathcal{F}_S(G)$, here $\mathcal{F}_S(G)$ denotes the fusion category of G over S (see [1, Part I, Definition 1.1]). As the first application of theorem A, we extends Burnside's fusion theorem.

Theorem B. Let S be a p-group and let \mathcal{F} be a saturated fusion system over S. If every cyclic subgroup of $\mathfrak{foc}(\mathcal{F})$ of order p (of order 2 and 4 if p = 2) is normal in S, then S is normal in \mathcal{F} . In particular, S is resistant if every cyclic subgroup of S of order p (of order 2 and 4 if p = 2) is normal in S.

Remark 1.2. It has been proved in [7] that for almost all p-group S, every cyclic subgroup of S of order p is in the center of S. Combining this fact with theorem B, we know that almost all p-groups of odd order are resistant.

Let S be a Sylow p-subgroup of a group G and H be a subgroup of G containing S. Let Q be a subgroup of S. H is said to control fusion of Q in S if for any $g \in G$ such that $Q^g \leq S$, there exists $h \in H$ such that h = cg for some $c \in C_G(Q)$. H is said to controls fusion in S if H control fusion of each subgroup of S in S. Let $\mathcal{F}_S(G)$ be the fusion category of G over S. It is clear that S is normal in $\mathcal{F}_S(G)$ if and only if $N_G(S)$ controls fusions in S. Hence the following corollary is a consequence of theorem A by applying it to $\mathcal{F}_S(G)$.

Corollary 1.3. Let S be a Sylow p-subgroup of a p-constrained group G. Assume that for each cyclic subgroup P of $S \cap G'$ of order p (of order 2 and 4 if p = 2), $N_G(S)$ controls fusion of P in S. Then $N_G(S)$ controls fusion in S. Let S be a Sylow p-subgroup of a finite group G. It is well known that if S controls fusion in S, then G is p-nilpotent, that is, $G = S O_{p'}(G)$. It is natural to ask if an analogue result holds when $N_G(S)$ controls fusion in S, that is, can we obtain that $G = N_G(S) O_{p'}(G)$ provided that $N_G(S)$ controls fusion in S? Unfortunately, this is not true in general (see example 1.5). In the following, we show that when G is p-constrained (G is called p-constrained if $O_p(G/O_{p'}(G))$ contains its centralizer in $G/O_{p'}(G)$), then $N_G(S)$ controlling fusion in S does imply that $G = N_G(S) O_{p'}(G)$.

Proposition 1.4. Let S be a Sylow p-subgroup of a finite group G. Then $G = N_G(S) O_{p'}(G)$ if and only if G is p-constrained and $N_G(S)$ controls fusion in S.

Example 1.5. Let $G = A_5$, the alternating group of degree 5, and let S be a Sylow 5-group of G. Clearly $N_G(S)$ controls fusion in S since S is abelian. But $G \neq N_G(S) \operatorname{O}_{p'}(G)$.

Combining corollary 1.3 with proposition 1.4, we have,

Corollary 1.6. Let S be a Sylow p-subgroup of a p-constrained finite group G. Assume that for each cyclic subgroup P of $S \cap G'$ of order p (of order 2 and 4 if p = 2), $N_G(S)$ controls fusion of P in S. Then $G = N_G(S) O_{p'}(G)$.

Combining theorem B with proposition 1.4, we have,

Corollary 1.7. Let S be a Sylow p-subgroup of a p-constrained finite group G. If every cyclic subgroup of $S \cap G'$ of order p (of order 2 and 4 if p = 2) is normal in S, then $G = N_G(S) O_{p'}(G)$.

Let S be a Sylow p-subgroup of a finite group G. Clearly $G = N_G(S) O_{p'}(G)$ if and only if G is p-solvable with p-length at most 1. Recall that a Hamiltonian group is one all of whose subgroups are normal. Hence the following result is a direct consequence of corollary 1.7

Corollary 1.8 ([3, Corollary 1]). If G is p-solvable and a Sylow p-subgroup of G is Hamiltonian, then the p-length of G is at most 1.

Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. Recall that \mathcal{F} is nilpotent if $\mathcal{F} = \mathcal{F}_S(S)$, that is, all morphisms of \mathcal{F} are induced by conjugations in *S*. As an application of theorem A, we prove that \mathcal{F} is nilpotent if for each cyclic subgroup $P \leq \mathfrak{foc}(\mathcal{F})$ of order *p* or 4, and each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, \mathfrak{foc}(\mathcal{F})), \varphi$ is induced by conjugation in *S*.

Theorem C. Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. Then \mathcal{F} is nilpotent if and only if for each cyclic subgroup *P* of $\mathfrak{foc}(\mathcal{F})$ of order *p* (of order 2 and 4 if p = 2) and each $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, \mathfrak{foc}(\mathcal{F}))$, there is $\bar{\varphi} \in \operatorname{Inn}(S)$ such that $\bar{\varphi}|_{P} = \varphi$.

Suppose that S is a Sylow p-subgroup of a group G. It is clear that G is a p-nilpotent group if and only if $\mathcal{F}_S(G)$ is a nilpotent fusion system. Hence by applying theorem C to $\mathcal{F}_S(G)$, we have

Corollary 1.9 ([5, Main Theorem]). Let S be a Sylow p-subgroup of a finite group G. Then G is p-nilpotent if and only if for each cyclic subgroup P of S of order p (of order 2 and 4 if p = 2), S controls fusion of P in S.

Let S be a Sylow p-subgroup of a finite group G. Adolfo and Guo proved that if all cyclic subgroups of $S \cap G'$ of order p (of order 2 and 4 if p = 2) are in the center of $N_G(S)$, then G is p-nilpotent ([2, Theorem 1]). As another consequence of theorem C, we extend this result from finite groups to saturated fusion systems.

Corollary 1.10. Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. Assume that $\operatorname{Aut}_{\mathcal{F}}(S)$ acts trivially on *P* for each cyclic subgroup *P* of $\mathfrak{foc}(\mathcal{F})$ of order *p* (of order 2 and 4 if p = 2). Then \mathcal{F} is nilpotent.

Proof. Let $P \leq \mathfrak{foc}(\mathcal{F})$ be a cyclic group of order p (of order 2 or 4 if p = 2) and $\varphi \in \mathrm{Hom}(P,S)$. Since $\mathrm{Inn}(S) \leq \mathrm{Aut}_{\mathcal{F}}(S)$ and $\mathrm{Aut}_{\mathcal{F}}(S)$ acts trivially on P, we have $C_S(P) = S$. It follows that φ extends to $\bar{\varphi} \in \mathrm{Aut}_{\mathcal{F}}(S)$ and $\varphi = \bar{\varphi}|_P = \mathrm{Id}|_P$. Hence \mathcal{F} is nilpotent by theorem C.

We will introduce some basic definitions and preliminary results in the second section. The main results of this paper will be proved in the third section.

2 Preliminaries

In this section, we collect some basic concepts and preliminary results that will be needed later.

Definition 2.1. Let \mathcal{F} be a fusion system over a *p*-group *S*.

- Two subgroups $P, Q \leq S$ are \mathcal{F} -conjugate if they are isomorphic as objects of the category \mathcal{F} . Let $P^{\mathcal{F}}$ denote the set of all subgroups of S which are \mathcal{F} -conjugate to P.
- A subgroup $P \leq S$ is fully automized in \mathcal{F} if $\operatorname{Aut}_{S}(P) \in \operatorname{Syl}_{p}(\operatorname{Aut}_{\mathcal{F}}(P))$.
- A subgroup $P \leq S$ is fully receptive in \mathcal{F} if it has the following property: for each $Q \leq S$ and each $\varphi \in \operatorname{Iso}_{\mathcal{F}}(Q, P)$, if we set

$$N_{\varphi} = \{g \in N_S(Q) | \varphi \circ c_g \circ \varphi^{-1} \in \operatorname{Aut}_S(P) \},\$$

then there is $\bar{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(N_{\varphi}, S)$ such that $\bar{\varphi}|Q = \varphi$ (here c_g denotes the the automorphism of Q induced by g through conjugation).

The influence of minimal subgroups on saturated fusion systems

- A subgroup $P \leq S$ is fully centralized in \mathcal{F} if $|C_S(P)| \geq C_S(Q)$ for all $Q \in P^{\mathcal{F}}$.
- A subgroup $P \leq S$ is fully normalized in \mathcal{F} if $|N_S(P)| \geq |N_S(Q)|$ for all $Q \in P^{\mathcal{F}}$.
- A subgroup $P \leq S$ is \mathcal{F} -centric if P is fully centralized in \mathcal{F} and $C_S(P) = Z(P)$.
- A subgroup P ≤ S is *F*-radical if Out_{*F*}(P) = Aut_{*F*}(P)/Inn(P) is p-reduced, ie, if O_p(Out_{*F*}(P)) = 1. We say P is *F*-centric-radical if it is *F*-centric and *F*-radical.
- A subgroup $P \leq S$ is normal in \mathcal{F} (denoted $P \leq \mathcal{F}$) if $P \leq S$, and for all $Q, R \leq S$ and all $\varphi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$, φ extends to a morphism $\overline{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(PQ, PR)$ such that $\overline{\varphi}(P) = P$.

Lemma 2.2 ([1, Part I, Proposition 2.5]). Let \mathcal{F} be a fusion system over a *p*-group *S*. Then \mathcal{F} is saturated if and only if the following two conditions hold.

- (I) (Sylow axiom) Each subgroup $P \leq S$ which is fully normalized in \mathcal{F} is also fully centralized and fully automized in \mathcal{F} .
- (II) (Extension axiom) Each subgroup $P \leq S$ which is fully centralized in \mathcal{F} is also receptive in \mathcal{F} .

Lemma 2.3 ([1, Part I, Lemma 2.6]). Let \mathcal{F} be a fusion system over a p-group S. Assume $P \leq S$ is fully automized and receptive. Then for each $Q \in P^{\mathcal{F}}$, there is a morphism $\varphi \in \operatorname{Hom}_{\mathcal{F}}(N_S(Q), N_S(P))$ such that $\varphi(Q) = P$.

Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. Recall that \mathcal{F} is constrained if there is a normal subgroup $Q \leq \mathcal{F}$ which is \mathcal{F} -centric. If \mathcal{F} is constrained, a model for \mathcal{F} is a finite group *G* such that $S \in \operatorname{Syl}_p(G), \mathcal{F}_S(G) = \mathcal{F}$ and $C_G(\mathcal{O}_p(G)) \leq \mathcal{O}_p(G)$.

Lemma 2.4 ([1, Part II, Lemma 4.4]). Suppose that \mathcal{F} is constrained saturated fusion system over a *p*-group *S*. If G_1 and G_2 are models for \mathcal{F} , then there exists an isomorphism $\varphi: G_1 \to G_2$ which is the identity on *S*.

Theorem 2.5 (Alperin's Fusion Theorem). Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. Then $\mathcal{F} = \langle \operatorname{Aut}_{\mathcal{F}}(R) : R \in \mathcal{F}^{frc} \rangle$, where \mathcal{F}^{frc} is the set of fully normalized radical centric subgroups of \mathcal{F} .

Recall that a group G is p-closed if a Sylow p-subgroup of G is normal in G. The following lemma follows from theorem 2.5

Lemma 2.6. Let \mathcal{F} be a saturated fusion system over a *p*-group *S*. Assume that $\operatorname{Aut}_{\mathcal{F}}(P)$ is *p*-closed for each $P \in \mathcal{F}^{frc}$. Then $S \leq \mathcal{F}$.

Proof. By theorem 2.5, it suffice to prove that the only subgroup of S contained in \mathcal{F}^{frc} is S itself. Assume that P < S and $P \in \mathcal{F}^{frc}$. Then $N_S(P)/C_S(P) \cong$ $\operatorname{Aut}_S(P) \in \operatorname{Syl}_p(\operatorname{Aut}_{\mathcal{F}}(P))$ by lemma 2.2, and $\operatorname{Inn}(P) \cong P/Z(P) \cong PC_S(P)/C_S(P) =$ $P/C_S(P)$ since P is \mathcal{F} -centric. It follows that $\operatorname{Aut}_S(P) > \operatorname{Inn}(P)$ and thus p divides the order of $\operatorname{Out}_{\mathcal{F}}(P)$. Since $\operatorname{Aut}_{\mathcal{F}}(P)$ is p-closed, $\operatorname{Out}_{\mathcal{F}}(P)$ is also p-closed. Hence $\operatorname{O}_p(\operatorname{Out}_{\mathcal{F}}(P)) > 1$, which contradicts that P is \mathcal{F} -radical. QED

The following lemma is a refinement of theorem 1.1

Lemma 2.7. A *p*-group *P* possesses a characteristic subgroup *D* of exponent *p* when *p* is odd, and of exponent at most 4 when p = 2, such that every nontrivial *p'*-automorphism of *P* induces a nontrivial automorphism of *D*.

Proof. When p is odd, it follows from [6, Chapter 5, Theorem 3.13] that P possesses a characteristic subgroup D of exponent p such that every nontrivial p'-automorphism of P induces a nontrivial automorphism of D. Assume that p = 2. By [6, Chapter 5, Theorem 3.11], P possess a characteristic subgroup C such that the nilpotent class of D is at most 2, C/Z(C) is elementary abelian, and every nontrivial p'-automorphism of P induces a nontrivial automorphism of C. Let $D = \langle x \in C : x^4 = 1 \rangle$. Then D char C char P, and hence D is a characteristic subgroup of P. Since every nontrivial p'-automorphism of P induces a nontrivial automorphism of C induces a nontrivial automorphism of D by theorem 1.1, we have that every nontrivial p'-automorphism of P induces a nontrivial automorphism of D.

We now show that the exponent of D is at most 4. Let x, y be two elements of D of order at most 4. Clear the nilpotent class of D is at most 2 since the nilpotent class of C is at most 2. It follows that $(xy)^4 = x^4y^4[y,x]^6 = [y^6,x]$. Since $D/(D \cap Z(C)) \cong DZ(C)/Z(C) \le C/Z(C)$ is an elementary abelian group, $\Phi(D) \le (D \cap Z(C)) \le Z(D)$. Hence $y^6 \le \Phi(D) \le Z(D)$ and $(xy)^4 = [y^6,x] = 1$. Therefore the order of xy is at most 4. Since D is generated by all elements of C of order at most 4, the exponent of D is at most 4.

3 Proof of main results

Proof of theorem A. Suppose that $Q \in \mathcal{F}^{frc}$. By lemma 2.6, we need to prove that $\operatorname{Aut}_{\mathcal{F}}(Q)$ is *p*-closed.

First we introduce some notations. Assume that $\phi \in \text{Hom}(P,Q)$ for some $P, Q \leq S$ and $z \in P$, we use the notion z^{ϕ} to denote $\phi(z)$. Denote $A = \text{Aut}_{\mathcal{F}}(Q)$, R = [Q, A]. By lemma 2.7, R possesses a characteristic subgroup D of exponent p when p is odd, and of exponent at most 4 when p = 2, such that every nontrivial p'-automorphism of R induces a nontrivial automorphism of D. Let

 $1 = Z_0(S) \leq Z_1(S) \leq \cdots \leq Z_n(S) = S$ be the upper central series of S and put $Z_i(D) = D \cap Z_i(S), 0 \leq i \leq n$. Denote $C_i(A) = \{\alpha \in A | [Z_i(D), \alpha] \leq Z_{i-1}(D)\}, 1 \leq i \leq n$. We will prove that A is p-closed through the following steps:

Step 1. $Z_i(D)$ is an A-invariant subgroup of $Q, 0 \le i \le n$.

Assume that $Z_i(D)$ is not an A-invariant subgroup for some *i*. Then there exits $x \in Z_i(D)$ and $\varphi \in A$ such that $x^{\varphi} \notin Z_i(D) = D \cap Z_i(S)$. Since *R* is an A-invariant subgroup of *Q* and *D* is a characteristic subgroup of *R*, *D* is an A-invariant subgroup and hence $x^{\varphi} \in D$. It follows that $x \notin Z_i(S)$. Since $D \leq R \leq \mathfrak{foc}(\mathcal{F})$ and *D* is of exponent *p* when *p* is odd, of exponent at most 4 when p = 2, we have $x^{\varphi}, x \in \mathfrak{foc}(\mathcal{F})$ and the order of *x* is *p* or 4. It then follows from hypotheses that there exists $\overline{\varphi} \in \operatorname{Aut}_{\mathcal{F}}(S)$ such that $x^{\varphi} = x^{\overline{\varphi}}$. But $Z_i(S)$ is a characteristic subgroup of *S* and thus $x^{\varphi} = x^{\overline{\varphi}} \in Z_i(S)$, a contradiction.

Step 2. $C_i(A)$ is a normal subgroup of $A, 1 \leq i \leq n$.

Let $x \in Z_i(D)$, $\alpha, \beta \in C_i(A)$. First we need to show that $C_i(A)$ is a subgroup of A, that is, to show that $[x, \alpha^{-1}] \in Z_{i-1}(D)$ and $[x, \alpha\beta] \in Z_{i-1}(D)$. From definition, we have $[x, \alpha] \in Z_{i-1}(D)$ and $[x, \beta] \in Z_{i-1}(D)$. Since $Z_{i-1}(D)$ is an A-invariant subgroup of Q by step 1, we have $[x, \alpha^{-1}] = ([x, \alpha]^{-1})^{\alpha^{-1}} \in (Z_{i-1}(D))^{\alpha^{-1}} = Z_{i-1}(D)$ and $[x, \alpha\beta] = [x, \beta][x, \alpha]^{\alpha} \in Z_{i-1}(D)$, as desired.

Now we show that $C_i(A)$ is normal in A. Suppose $\gamma \in A$ and let $z = [x^{\gamma}, \alpha] = (x^{\gamma})^{-1}x^{\gamma\alpha}$. Then $x^{\gamma\alpha} = x^{\gamma}z$. Since $Z_i(D)$ is A-invariant, we have $z \in Z_{i-1}(D)$ by definition. It follows that $x^{(\gamma\alpha\gamma^{-1})} = (x^{\gamma}z)^{\gamma^{-1}} = xz^{\gamma^{-1}}$ and $[x, \gamma\alpha\gamma^{-1}] = x^{-1}x^{(\gamma\alpha\gamma^{-1})} = z^{\gamma^{-1}} \in Z_{i-1}(D)$. Hence $\gamma\alpha\gamma^{-1} \in C_i(A)$ and $C_i(A)$ is normal in A.

Step 3. A is p-closed.

Let $C = \bigcap_{i=1}^{n} C_i(A)$. We first prove that C is a normal p-subgroup of A. From step 2, we know that C is a normal subgroup of A. Assume that α is a p'-element of C. From the definition of C, it is clear that α stabilizes the normal series $1 = Z_0(D) \leq Z_1(D) \leq \cdots \leq Z_n(D) = D$. Hence α acts trivially on D. It then follows from the choice of D that α acts trivially on R. Therefore α stabilizes the normal series $1 \leq R \leq Q$ and thus $\alpha = 1$. Hence C is a normal p-subgroup of A.

Now we show that C is a Sylow p-subgroup of A. It is clear from definition that $\operatorname{Aut}_S(Q) \leq C_i(A)$ for all $1 \leq i \leq n$ and thus $\operatorname{Aut}_S(Q) \leq C$. Since Q is fully normalized in \mathcal{F} , $\operatorname{Aut}_S(Q)$ is a Sylow p-subgroup of A by lemma 2.2. Therefore $C = \operatorname{Aut}_S(Q)$ is a normal Sylow p-subgroup of A.

Proof of theorem B. Let P, Q be two cyclic subgroups of $\mathfrak{foc}(\mathcal{F})$ of order p (of order 2 or 4 if p = 2). Then $P, Q \leq S$ by hypotheses. Let $\varphi \in \operatorname{Iso}_{\mathcal{F}}(P, Q)$. By

theorem A, it suffice to show that φ extends to $\overline{\varphi} \in \operatorname{Aut}_{\mathcal{F}}(S)$.

First assume that P, Q are of order p. Then $P, Q \leq S$ implies that $P, Q \leq Z(S)$. It then follows that $C_S(P) = C_S(Q) = S$ and Q is fully centralized. Therefore by lemma 2.2 we have that φ extends to $\bar{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(PC_S(P), S) = \operatorname{Aut}_{\mathcal{F}}(S)$.

Now assume that P, Q are of order 4. Since Q is fully normalized, by lemma 2.3 there is a morphism $\phi \in \operatorname{Hom}_{\mathcal{F}}(N_S(P), N_S(Q)) = \operatorname{Aut}_{\mathcal{F}}(S)$ such that $\phi(P) = Q$. Let $\chi = (\phi|_Q)^{-1}\varphi$. Then $\chi \in \operatorname{Aut}_{\mathcal{F}}(P)$. If $\chi = 1$, then $\varphi = \phi|_Q$ and we are done. Assume that $\chi \neq 1$. Then $\operatorname{Aut}_{\mathcal{F}}(P)$ is a non-trivial subgroup of $\operatorname{Aut}(P)$. Since $\operatorname{Aut}(P)$ is a group of order 2. We have that $\operatorname{Aut}_{\mathcal{F}}(P) = \operatorname{Aut}(P)$ is a group of order 2. Note that P is fully normalized in \mathcal{F} , $\operatorname{Aut}_S(P)$ is a Sylow subgroup of $\operatorname{Aut}_{\mathcal{F}}(P)$. It follows that $\chi \in \operatorname{Aut}_{\mathcal{F}}(P) = \operatorname{Aut}_S(P)$ and thus there exists $\bar{\chi} \in \operatorname{Inn}(S)$ such that $\chi = \bar{\chi}|_P$. Let $\bar{\varphi} = \phi \bar{\chi}$. Then $\bar{\varphi} \in \operatorname{Aut}_{\mathcal{F}}(S)$ and $\bar{\varphi}|_P = \varphi$, as desired.

Proof of proposition 1.4. We first prove the necessity. Assume that $G = N_G(S) O_{p'}(G)$. Clearly G is p-constrained. Let P be a subgroup of S and g be an element of G such that $P^g \leq S$. Since $G = N_G(S) O_{p'}(G) = O_{p'}(G) N_G(S)$, $g = x_1 x_2$ for some $x_1 \in O_{p'}(G)$ and $x_2 \in N_G(S)$. Then $x_2 = x_1^{-1}g$. To show that $N_G(S)$ controls fusion in S, it suffice to show that $x_1^{-1} \in C_G(P)$. Since $P^{x_1x_2} \leq S$ and $x_2 \in N_G(S)$, $P^{x_1} = (P^{x_1x_2})^{x_2^{-1}} \leq S$. Let z be an element of of P. Since $z \in S$ and $z^{x_1} = x_1^{-1}(zx_1z^{-1})z \in S$, $x_1^{-1}(zx_1z^{-1}) = z^{x_1}z^{-1} \in S$. On the other hand, since $x_1 \in O_{p'}(G)$, $x_1^{-1}(zx_1z^{-1}) \in O_{p'}(G)$. It follows that $x_1^{-1}(zx_1z^{-1}) = 1$ and $z^{x_1} = z$. Therefore $x_1 \in C_G(P)$ and thus $x_1^{-1} \in C_G(P)$, as desired.

Conversely, assume that G is p-constrained and $N_G(S)$ controls fusion in S. Let $\overline{G} = G/\mathcal{O}_{p'}(G)$, $\overline{S} = S\mathcal{O}_{p'}(G)/\mathcal{O}_{p'}(G)$ and $\overline{H} = N_{\overline{G}}(\overline{S})$. We first prove that $N_{\overline{G}}(\overline{S})$ controls fusion in \overline{S} . By theorem 2.5, it suffice to show that for any subgroup \overline{P} of \overline{S} and any element \overline{x} of $N_{\overline{G}}(\overline{P})$, there exists $\overline{y} \in N_{\overline{G}}(\overline{S})$ such that $\overline{y} = \overline{xc}$ for some $\overline{c} \in C_{\overline{G}}(\overline{P})$. Clearly there exists some $P \leq S$ and some $x \in N_G(P\mathcal{O}_{p'}(G))$ such that $\overline{P} = P\mathcal{O}_{p'}(G)/\mathcal{O}_{p'}(G)$ and $\overline{x} = x\mathcal{O}_{p'}(G)$. Note that $N_G(P\mathcal{O}_{p'}(G)) = N_G(P)\mathcal{O}_{p'}(G)$, x = zl for some $z \in N_G(P)$ and $l \in \mathcal{O}_{p'}(G)$. Hence $\overline{x} = \overline{z}$. Now since $z \in N_G(P)$ and $N_G(S)$ controls fusion in S, there exists $y \in N_G(S)$ such that y = zc for some $c \in C_G(P)$. Set $\overline{y} = y\mathcal{O}_{p'}(G)$. Then $\overline{y} \in N_{\overline{G}}(\overline{S})$ and $\overline{y} = \overline{zc} = \overline{xc}$, where $\overline{c} = c\mathcal{O}_{p'}(G) \in C_{\overline{G}}(\overline{P})$, as desired.

Since G is p-constrained, by [6, Chapter 8, Theorem 1.1] we have $C_{\overline{G}}(\mathcal{O}_p(\overline{G})) \leq O_p(\overline{G})$ and thus \overline{G} is a model for $\mathcal{F}_{\overline{S}}(\overline{G})$. Since $\overline{S} \leq N_{\overline{G}}(\overline{S})$, we have $C_{N_{\overline{G}}(\overline{S})}(O_p(N_{\overline{G}}(\overline{S})) = C_{N_{\overline{G}}(\overline{S})}(\overline{S}) \leq C_{\overline{G}}(\overline{S}) \leq C_{\overline{G}}(O_p(\overline{G})) \leq O_p(\overline{G}) \leq \overline{S} = O_p(N_{\overline{G}}(\overline{S}))$ and thus $N_{\overline{G}}(\overline{S})$ is a model for $\mathcal{F}_{\overline{S}}(N_{\overline{G}}(\overline{S}))$. On the other hand, Since $N_{\overline{G}}(\overline{S})$ controls p-fusion of \overline{G} , $\mathcal{F}_{\overline{S}}(\overline{G}) = \mathcal{F}_{\overline{S}}(N_{\overline{G}}(\overline{S}))$. Clearly $\mathcal{F}_{\overline{S}}(N_{\overline{G}}(\overline{S}))$ is a constrained since $\overline{S} \leq \mathcal{F}_{\overline{S}}(N_{\overline{G}}(\overline{S}))$. It then follows from lemma 2.4 that $\overline{G} \cong N_{\overline{G}}(\overline{S})$ and thus

98

$$G/\mathcal{O}_{p'}(G) = \overline{G} = N_{\overline{G}}(\overline{S}) = N_G(S\mathcal{O}_{p'}(G))/\mathcal{O}_{p'}(G). \text{ Therefore } G = N_G(S\mathcal{O}_{p'}(G)) = N_G(S\mathcal{O}_{p'}(G)).$$

$$QED$$

Proof of theorem C. The necessity is obviously. We need only to prove the sufficiency. By theorem A, S is normal in \mathcal{F} . Hence to prove that $\mathcal{F} = \mathcal{F}_S(S)$, it suffice to show that $\operatorname{Aut}_{\mathcal{F}}(S) = \operatorname{Inn}(S)$, that is, to show that $\operatorname{Aut}_{\mathcal{F}}(S)$ is a p-group. Let φ be a p'-element of $\operatorname{Aut}_{\mathcal{F}}(S)$ and let $\langle x \rangle \leq \mathfrak{foc}(\mathcal{F})$ be a cyclic group of order p or 4. Clearly $x^{\varphi} \leq \mathfrak{foc}(\mathcal{F})$ since now $\mathfrak{foc}(\mathcal{F}) = [S, \operatorname{Aut}_{\mathcal{F}}(S)]$ is $\operatorname{Aut}_{\mathcal{F}}(S)$ -invariant. From hypotheses, there exists $\bar{\varphi} \in \operatorname{Inn}(S)$ such that $x^{\bar{\varphi}} = x^{\varphi}$. Hence $[x, \varphi] = [x, \bar{\varphi}] \in [\langle x \rangle, S]$. Suppose that the nilpotent class of S is n and repeat the above procedure for n times,

$$[x, \underbrace{\varphi, \dots, \varphi}_{n}] \in [\langle x \rangle, \underbrace{S, \dots, S}_{n}] = 1$$

It then follows from [6, Chapter 5, Theorem 3.6] that $[x, \varphi] = 1$, and we have proved that φ acts trivially on any cyclic subgroup of $\mathfrak{foc}(\mathcal{F})$ of order p or 4. Hence φ acts trivially on $\mathfrak{foc}(\mathcal{F})$ by theorem 1.1 and therefore stabilizes a normal series $1 \leq \mathfrak{foc}(\mathcal{F}) \leq S$. It then follows from that $\varphi = 1$ and thus $\operatorname{Aut}_{\mathcal{F}}(S)$ is a p-group, as desired.

References

- Michael Aschbacher, Radha Kessar, and Bob Oliver. Fusion systems in algebra and topology, volume 391 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2011.
- [2] A. Ballester-Bolinches and Xiuyun Guo. Some results on p-nilpotence and solubility of finite groups. J. Algebra, 228(2):491–496, 2000.
- [3] Steven Bauman. p-normality and p-length of a finite group. Math. Z., 87:345–347, 1965.
- [4] B.Huppert. Endliche Gruppen, I. Berlin-Heidelberg-New York: Springer, 1967.
- [5] Jon González-Sánchez. A p-nilpotency criterion. Arch. Math. (Basel), 94(3):201-205, 2010.
- [6] D. Gorenstein. Finite groups. Chelsea Pub. Co.(New York), 1980.
- [7] Hans-Werner Henn and Stewart Priddy. p-nilpotence, classifying space indecomposability, and other properties of almost all finite groups. Comment. Math. Helv., 69(3):335–350, 1994.
- [8] Radu Stancu. Control of fusion in fusion systems. J. Algebra Appl., 5(6):817–837, 2006.