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Abstract.
Let F be a saturated fusion system over a p-group S. In this paper, we investigate the

influence of the minimal subgroups in foc(F), the focal subgroup of F . Our main result is
that if for each cyclic subgroup P ≤ foc(F) of order p (of order 2 and 4 if p = 2) and each
ϕ ∈ HomF (P, foc(F)), ϕ extends to an automorphism of S, then S is normal in F . We also
give several applications of this result.
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1 Introduction and statements of results

All groups considered in this paper are finite. Through out this paper, p is
always understood to be a fixed prime.

Let G be a group. Recall that minimal subgroups of G is are cyclic subgroups
of prime order. It is known that in some cases the way G acting by conjugaction
on its cyclic subgroups of order p (of order 2 and 4 if p = 2) has a strong
influence on the structure of G. For instance, N.Itô prove that if every cyclic
group of order p (of order 2 and 4 if p = 2) lies in the center of G, then G
is p-nilpotent. In fact, many results in this line can be proved by applied the
following well known theorem:

Theorem 1.1 ([4, Satz IV.5.12]). Let S be a p-group. Suppose that K is a
p′-group that acts trivially on every cyclic subgroup of S of order p (of order 2
and 4 if p = 2). Then K acts trivially on S.

A saturated fusion system over a p-group S is a category whose objects are
subgroups of S, and whose morphisms satisfy certain axioms mimicking the
action by conjugation of the elements of some group G with S as its Sylow p-
subgroup. The concept of saturated fusion system was introduced Puig in early
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1990s, who used the term “Frobenius categories”.

Inspired by theorem 1.1, we investigate the connections between the struc-
ture of a saturated fusion system F and the way the morphisms in F acting
on cyclic groups of S of order p (of order 2 and 4 if p = 2). The main result of
this paper is the following (the notion foc(F) appear in the following theorem
denotes the focal subgroup of F , see [1, Part I, Defintion 7.1]).

Theorem A. Let F be a saturated fusion system over a p-group S. Assume
that for each cyclic subgroup P ≤ foc(F) of order p (of order 2 and 4 if p = 2)
and each ϕ ∈ HomF (P, foc(F)), ϕ extends to an automorphism of S. Then S is
normal in F .

In the following, we give several applications of theorem A.

Let S be a p-group. Following [8, Definition 5.1], S is called resistant if
for any saturate fusion system F over S, S is normal in F . Burnside’s fusion
theorem (see [1, Theorem A.8]) states that if S is abelian, then for any finite
group G such that S ∈ Sylp(G), S is normal in FS(G), here FS(G) denotes
the fusion category of G over S (see [1, Part I, Definition 1.1]). As the first
application of theorem A, we extends Burnside’s fusion theorem.

Theorem B. Let S be a p-group and let F be a saturated fusion system
over S. If every cyclic subgroup of foc(F) of order p (of order 2 and 4 if p = 2)
is normal in S, then S is normal in F . In particular, S is resistant if every cyclic
subgroup of S of order p (of order 2 and 4 if p = 2) is normal in S.

Remark 1.2. It has been proved in [7] that for almost all p-group S, every
cyclic subgroup of S of order p is in the center of S. Combining this fact with
theorem B, we know that almost all p-groups of odd order are resistant.

Let S be a Sylow p-subgroup of a group G and H be a subgroup of G con-
taining S. Let Q be a subgroup of S. H is said to control fusion of Q in S if
for any g ∈ G such that Qg ≤ S, there exists h ∈ H such that h = cg for some
c ∈ CG(Q). H is said to controls fusion in S if H control fusion of each subgroup
of S in S. Let FS(G) be the fusion category of G over S. It is clear that S is
normal in FS(G) if and only if NG(S) controls fusions in S. Hence the following
corollary is a consequence of theorem A by applying it to FS(G).

Corollary 1.3. Let S be a Sylow p-subgroup of a p-constrained group G.
Assume that for each cyclic subgroup P of S ∩G′ of order p (of order 2 and 4
if p = 2), NG(S) controls fusion of P in S. Then NG(S) controls fusion in S.
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Let S be a Sylow p-subgroup of a finite group G. It is well known that if S
controls fusion in S, then G is p-nilpotent, that is, G = SOp′(G). It is natural
to ask if an analogue result holds when NG(S) controls fusion in S, that is, can
we obtain that G = NG(S) Op′(G) provided that NG(S) controls fusion in S?
Unfortunately, this is not true in general (see example 1.5). In the following, we
show that when G is p-constrained (G is called p-constrained if Op(G/Op′(G))
contains its centralizer in G/Op′(G)), then NG(S) controlling fusion in S does
imply that G = NG(S) Op′(G).

Proposition 1.4. Let S be a Sylow p-subgroup of a finite group G. Then
G = NG(S) Op′(G) if and only if G is p-constrained and NG(S) controls fusion
in S.

Example 1.5. Let G = A5, the alternating group of degree 5, and let S be a
Sylow 5-group of G. Clearly NG(S) controls fusion in S since S is abelian. But
G 6= NG(S) Op′(G).

Combining corollary 1.3 with proposition 1.4, we have,

Corollary 1.6. Let S be a Sylow p-subgroup of a p-constrained finite group
G. Assume that for each cyclic subgroup P of S ∩G′ of order p (of order 2 and
4 if p = 2), NG(S) controls fusion of P in S. Then G = NG(S) Op′(G).

Combining theorem B with proposition 1.4, we have,

Corollary 1.7. Let S be a Sylow p-subgroup of a p-constrained finite group
G. If every cyclic subgroup of S ∩ G′ of order p (of order 2 and 4 if p = 2) is
normal in S, then G = NG(S) Op′(G).

Let S be a Sylow p-subgroup of a finite group G. Clearly G = NG(S) Op′(G)
if and only if G is p-solvable with p-length at most 1. Recall that a Hamiltonian
group is one all of whose subgroups are normal. Hence the following result is a
direct consequence of corollary 1.7

Corollary 1.8 ([3, Corollary 1]). If G is p-solvable and a Sylow p-subgroup
of G is Hamiltonian, then the p-length of G is at most 1.

Let F be a saturated fusion system over a p-group S. Recall that F is
nilpotent if F = FS(S), that is, all morphisms of F are induced by conjugations
in S. As an application of theorem A, we prove that F is nilpotent if for each
cyclic subgroup P ≤ foc(F) of order p or 4, and each ϕ ∈ HomF (P, foc(F)), ϕ
is induced by conjugation in S.

Theorem C. Let F be a saturated fusion system over a p-group S. Then
F is nilpotent if and only if for each cyclic subgroup P of foc(F) of order p (of
order 2 and 4 if p = 2) and each ϕ ∈ HomF (P, foc(F)), there is ϕ̄ ∈ Inn(S) such
that ϕ̄|P = ϕ.
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Suppose that S is a Sylow p-subgroup of a group G. It is clear that G is a
p-nilpotent group if and only if FS(G) is a nilpotent fusion system. Hence by
applying theorem C to FS(G), we have

Corollary 1.9 ([5, Main Theorem]). Let S be a Sylow p-subgroup of a finite
group G. Then G is p-nilpotent if and only if for each cyclic subgroup P of S
of order p (of order 2 and 4 if p = 2), S controls fusion of P in S.

Let S be a Sylow p-subgroup of a finite group G. Adolfo and Guo proved
that if all cyclic subgroups of S ∩ G′ of order p (of order 2 and 4 if p = 2)
are in the center of NG(S), then G is p-nilpotent ([2, Theorem 1]). As another
consequence of theorem C, we extend this result from finite groups to saturated
fusion systems.

Corollary 1.10. Let F be a saturated fusion system over a p-group S.
Assume that AutF (S) acts trivially on P for each cyclic subgroup P of foc(F)
of order p (of order 2 and 4 if p = 2). Then F is nilpotent.

Proof. Let P ≤ foc(F) be a cyclic group of order p (of order 2 or 4 if p = 2) and
ϕ ∈ Hom(P, S). Since Inn(S) ≤ AutF (S) and AutF (S) acts trivially on P , we
have CS(P ) = S. It follows that ϕ extends to ϕ̄ ∈ AutF (S) and ϕ = ϕ̄|P = Id |P .
Hence F is nilpotent by theorem C. QED

We will introduce some basic definitions and preliminary results in the sec-
ond section. The main results of this paper will be proved in the third section.

2 Preliminaries

In this section, we collect some basic concepts and preliminary results that
will be needed later.

Definition 2.1. Let F be a fusion system over a p-group S.

• Two subgroups P,Q ≤ S are F-conjugate if they are isomorphic as objects
of the category F . Let PF denote the set of all subgroups of S which are
F-conjugate to P .

• A subgroup P ≤ S is fully automized in F if AutS(P ) ∈ Sylp(AutF (P )).

• A subgroup P ≤ S is fully receptive in F if it has the following property: for
each Q ≤ S and each ϕ ∈ IsoF (Q,P ), if we set

Nϕ = {g ∈ NS(Q)|ϕ ◦ cg ◦ ϕ−1 ∈ AutS(P )},

then there is ϕ̄ ∈ HomF (Nϕ, S) such that ϕ̄|Q = ϕ (here cg denotes the the
automorphism of Q induced by g through conjugation).
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• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ CS(Q) for all
Q ∈ PF .

• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(Q)| for all
Q ∈ PF .

• A subgroup P ≤ S is F-centric if P is fully centralized in F and CS(P ) =
Z(P ).

• A subgroup P ≤ S is F-radical if OutF (P ) = AutF (P )/ Inn(P ) is p-reduced,
ie, if Op(OutF (P )) = 1. We say P is F-centric-radical if it is F-centric and
F-radical.

• A subgroup P ≤ S is normal in F (denoted PEF) if PES, and for all Q,R ≤
S and all ϕ ∈ HomF (Q,R), ϕ extends to a morphism ϕ̄ ∈ HomF (PQ,PR)
such that ϕ̄(P ) = P .

Lemma 2.2 ([1, Part I, Proposition 2.5]). Let F be a fusion system over a
p-group S. Then F is saturated if and only if the following two conditions hold.

(I) (Sylow axiom) Each subgroup P ≤ S which is fully normalized in F is also
fully centralized and fully automized in F .

(II) (Extension axiom) Each subgroup P ≤ S which is fully centralized in F is
also receptive in F .

Lemma 2.3 ([1, Part I, Lemma 2.6]). Let F be a fusion system over a
p-group S. Assume P ≤ S is fully automized and receptive. Then for each
Q ∈ PF , there is a morphism ϕ ∈ HomF (NS(Q), NS(P )) such that ϕ(Q) = P .

Let F be a saturated fusion system over a p-group S. Recall that F is
constrained if there is a normal subgroup Q E F which is F-centric. If F is
constrained, a model for F is a finite group G such that S ∈ Sylp(G), FS(G) = F
and CG(Op(G)) ≤ Op(G).

Lemma 2.4 ([1, Part II, Lemma 4.4]). Suppose that F is constrained sat-
urated fusion system over a p-group S. If G1 and G2 are models for F , then
there exists an isomorphism ϕ: G1 → G2 which is the identity on S.

Theorem 2.5 (Alperin’s Fusion Theorem). Let F be a saturated fusion
system over a p-group S. Then F = 〈AutF (R) : R ∈ Ffrc〉, where Ffrc is the
set of fully normalized radical centric subgroups of F .

Recall that a group G is p-closed if a Sylow p-subgroup of G is normal in G.
The following lemma follows from theorem 2.5

Lemma 2.6. Let F be a saturated fusion system over a p-group S. Assume
that AutF (P ) is p-closed for each P ∈ Ffrc. Then S E F .
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Proof. By theorem 2.5, it suffice to prove that the only subgroup of S contained
in Ffrc is S itself. Assume that P < S and P ∈ Ffrc. Then NS(P )/CS(P ) ∼=
AutS(P ) ∈ Sylp(AutF (P )) by lemma 2.2, and Inn(P ) ∼= P/Z(P ) ∼= PCS(P )/CS(P ) =
P/CS(P ) since P is F-centric. It follows that AutS(P ) > Inn(P ) and thus p di-
vides the order of OutF (P ). Since AutF (P ) is p-closed, OutF (P ) is also p-closed.
Hence Op(OutF (P )) > 1, which contradicts that P is F-radical. QED

The following lemma is a refinement of theorem 1.1

Lemma 2.7. A p-group P possesses a characteristic subgroup D of expo-
nent p when p is odd, and of exponent at most 4 when p = 2, such that every
nontrivial p′-automorphism of P induces a nontrivial automorphism of D.

Proof. When p is odd, it follows from [6, Chapter 5, Theorem 3.13] that P
possesses a characteristic subgroup D of exponent p such that every nontrivial
p′-automorphism of P induces a nontrivial automorphism of D. Assume that
p = 2. By [6, Chapter 5, Theorem 3.11], P possess a characteristic subgroup C
such that the nilpotent class of D is at most 2, C/Z(C) is elementary abelian,
and every nontrivial p′-automorphism of P induces a nontrivial automorphism
of C. Let D = 〈x ∈ C : x4 = 1〉. Then D char C char P , and hence D is
a characteristic subgroup of P . Since every nontrivial p′-automorphism of P
induces a nontrivial automorphism of C, and every nontrivial p′-automorphism
of C induces a nontrivial automorphism of D by theorem 1.1, we have that every
nontrivial p′-automorphism of P induces a nontrivial automorphism of D.

We now show that the exponent of D is at most 4. Let x, y be two elements
of D of order at most 4. Clear the nilpotent class of D is at most 2 since the
nilpotent class of C is at most 2. It follows that (xy)4 = x4y4[y, x]6 = [y6, x].
Since D/(D∩Z(C)) ∼= DZ(C)/Z(C) ≤ C/Z(C) is an elementary abelian group,
Φ(D) ≤ (D∩Z(C)) ≤ Z(D). Hence y6 ≤ Φ(D) ≤ Z(D) and (xy)4 = [y6, x] = 1.
Therefore the order of xy is at most 4. Since D is generated by all elements of
C of order at most 4, the exponent of D is at most 4. �

3 Proof of main results

Proof of theorem A. Suppose that Q ∈ Ffrc. By lemma 2.6, we need to prove
that AutF (Q) is p-closed.

First we introduce some notations. Assume that φ ∈ Hom(P,Q) for some
P,Q ≤ S and z ∈ P , we use the notion zφ to denote φ(z). Denote A = AutF (Q),
R = [Q,A]. By lemma 2.7, R possesses a characteristic subgroup D of expo-
nent p when p is odd, and of exponent at most 4 when p = 2, such that every
nontrivial p′-automorphism of R induces a nontrivial automorphism of D. Let
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1 = Z0(S) ≤ Z1(S) ≤ · · · ≤ Zn(S) = S be the upper central series of S and put
Zi(D) = D ∩ Zi(S), 0 ≤ i ≤ n. Denote Ci(A) = {α ∈ A|[Zi(D), α] ≤ Zi−1(D)},
1 ≤ i ≤ n. We will prove that A is p-closed through the following steps:

Step 1. Zi(D) is an A-invariant subgroup of Q, 0 ≤ i ≤ n.
Assume that Zi(D) is not an A-invariant subgroup for some i. Then there

exits x ∈ Zi(D) and ϕ ∈ A such that xϕ /∈ Zi(D) = D ∩ Zi(S). Since R is
an A-invariant subgroup of Q and D is a characteristic subgroup of R, D is
an A-invariant subgroup and hence xϕ ∈ D. It follows that x /∈ Zi(S). Since
D ≤ R ≤ foc(F) and D is of exponent p when p is odd, of exponent at most 4
when p = 2, we have xϕ, x ∈ foc(F) and the order of x is p or 4. It then follows
from hypotheses that there exists ϕ̄ ∈ AutF (S) such that xϕ = xϕ̄. But Zi(S)
is a characteristic subgroup of S and thus xϕ = xϕ̄ ∈ Zi(S), a contradiction.

Step 2. Ci(A) is a normal subgroup of A, 1 ≤ i ≤ n.
Let x ∈ Zi(D), α, β ∈ Ci(A). First we need to show that Ci(A) is a subgroup

of A, that is, to show that [x, α−1] ∈ Zi−1(D) and [x, αβ] ∈ Zi−1(D). From
definition, we have [x, α] ∈ Zi−1(D) and [x, β] ∈ Zi−1(D). Since Zi−1(D) is
an A-invariant subgroup of Q by step 1, we have [x, α−1] = ([x, α]−1)α

−1 ∈
(Zi−1(D))α

−1
= Zi−1(D) and [x, αβ] = [x, β][x, α]α ∈ Zi−1(D), as desired.

Now we show that Ci(A) is normal in A. Suppose γ ∈ A and let z =
[xγ , α] = (xγ)−1xγα. Then xγα = xγz. Since Zi(D) is A-invariant, we have
z ∈ Zi−1(D) by definition. It follows that x(γαγ−1) = (xγz)γ

−1
= xzγ

−1
and

[x, γαγ−1] = x−1x(γαγ−1) = zγ
−1 ∈ Zi−1(D). Hence γαγ−1 ∈ Ci(A) and Ci(A)

is normal in A.

Step 3. A is p-closed.
Let C =

⋂n
i=1Ci(A). We first prove that C is a normal p-subgroup of A.

From step 2, we know that C is a normal subgroup of A. Assume that α is a
p′-element of C. From the definition of C, it is clear that α stabilizes the normal
series 1 = Z0(D) ≤ Z1(D) ≤ · · · ≤ Zn(D) = D. Hence α acts trivially on D.
It then follows from the choice of D that α acts trivially on R. Therefore α
stabilizes the normal series 1 ≤ R ≤ Q and thus α = 1. Hence C is a normal
p-subgroup of A.

Now we show that C is a Sylow p-subgroup of A. It is clear from definition
that AutS(Q) ≤ Ci(A) for all 1 ≤ i ≤ n and thus AutS(Q) ≤ C. Since Q is fully
normalized in F , AutS(Q) is a Sylow p-subgroup of A by lemma 2.2. Therefore
C = AutS(Q) is a normal Sylow p-subgroup of A. QED

Proof of theorem B. Let P,Q be two cyclic subgroups of foc(F) of order p (of
order 2 or 4 if p = 2). Then P,Q E S by hypotheses. Let ϕ ∈ IsoF (P,Q). By
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theorem A, it suffice to show that ϕ extends to ϕ̄ ∈ AutF (S).

First assume that P,Q are of order p. Then P,Q E S implies that P,Q ≤
Z(S). It then follows that CS(P ) = CS(Q) = S and Q is fully centralized.
Therefore by lemma 2.2 we have that ϕ extends to ϕ̄ ∈ HomF (PCS(P ), S) =
AutF (S).

Now assume that P,Q are of order 4. SinceQ is fully normalized, by lemma 2.3
there is a morphism φ ∈ HomF (NS(P ), NS(Q)) = AutF (S) such that φ(P ) = Q.
Let χ = (φ|Q)−1ϕ. Then χ ∈ AutF (P ). If χ = 1, then ϕ = φ|Q and we are done.
Assume that χ 6= 1. Then AutF (P ) is a non-trivial subgroup of Aut(P ). Since
Aut(P ) is a group of order 2. We have that AutF (P ) = Aut(P ) is a group of
order 2. Note that P is fully normalized in F , AutS(P ) is a Sylow subgroup
of AutF (P ). It follows that χ ∈ AutF (P ) = AutS(P ) and thus there exists
χ̄ ∈ Inn(S) such that χ = χ̄|P . Let ϕ̄ = φχ̄. Then ϕ̄ ∈ AutF (S) and ϕ̄|P = ϕ,
as desired. QED

Proof of proposition 1.4. We first prove the necessity. Assume thatG = NG(S) Op′(G).
Clearly G is p-constrained. Let P be a subgroup of S and g be an element of
G such that P g ≤ S. Since G = NG(S) Op′(G) = Op′(G)NG(S), g = x1x2 for
some x1 ∈ Op′(G) and x2 ∈ NG(S). Then x2 = x−1

1 g. To show that NG(S)
controls fusion in S, it suffice to show that x−1

1 ∈ CG(P ). Since P x1x2 ≤ S and

x2 ∈ NG(S), P x1 = (P x1x2)x
−1
2 ≤ S. Let z be an element of of P . Since z ∈ S

and zx1 = x−1
1 (zx1z

−1)z ∈ S, x−1
1 (zx1z

−1) = zx1z−1 ∈ S. On the other hand,
since x1 ∈ Op′(G), x−1

1 (zx1z
−1) ∈ Op′(G). It follows that x−1

1 (zx1z
−1) = 1 and

zx1 = z. Therefore x1 ∈ CG(P ) and thus x−1
1 ∈ CG(P ), as desired.

Conversely, assume that G is p-constrained and NG(S) controls fusion in S.
Let G = G/Op′(G), S = SOp′(G)/Op′(G) and H = NG(S). We first prove
that NG(S) controls fusion in S. By theorem 2.5, it suffice to show that for
any subgroup P of S and any element x of NG(P ), there exists y ∈ NG(S)
such that y = xc for some c ∈ CG(P ). Clearly there exists some P ≤ S and
some x ∈ NG(P Op′(G)) such that P = P Op′(G)/Op′(G) and x = xOp′(G).
Note that NG(P Op′(G)) = NG(P ) Op′(G), x = zl for some z ∈ NG(P ) and
l ∈ Op′(G). Hence x = z. Now since z ∈ NG(P ) and NG(S) controls fusion in S,
there exists y ∈ NG(S) such that y = zc for some c ∈ CG(P ). Set y = yOp′(G).
Then y ∈ NG(S) and y = zc = xc, where c = cOp′(G) ∈ CG(P ), as desired.

SinceG is p-constrained, by [6, Chapter 8, Theorem 1.1] we have CG(Op(G)) ≤
Op(G) and thusG is a model for FS(G). Since SENG(S), we have CNG(S)(Op(NG(S)) =

CNG(S)(S) ≤ CG(S) ≤ CG(Op(G)) ≤ Op(G) ≤ S = Op(NG(S)) and thus

NG(S) is a model for FS(NG(S)). On the other hand, Since NG(S) controls
p-fusion of G, FS(G) = FS(NG(S)). Clearly FS(NG(S)) is a constrained since
S E FS(NG(S)). It then follows from lemma 2.4 that G ∼= NG(S) and thus
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G/Op′(G) = G = NG(S) = NG(SOp′(G))/Op′(G). ThereforeG = NG(SOp′(G)) =
NG(S) Op′(G). QED

Proof of theorem C. The necessity is obviously. We need only to prove the suf-
ficiency. By theorem A, S is normal in F . Hence to prove that F = FS(S), it
suffice to show that AutF (S) = Inn(S), that is, to show that AutF (S) is a p-
group. Let ϕ be a p′-element of AutF (S) and let 〈x〉 ≤ foc(F) be a cyclic group of
order p or 4. Clearly xϕ ≤ foc(F) since now foc(F) = [S,AutF (S)] is AutF (S)-
invariant. From hypotheses, there exists ϕ̄ ∈ Inn(S) such that xϕ̄ = xϕ. Hence
[x, ϕ] = [x, ϕ̄] ∈ [〈x〉, S]. Suppose that the nilpotent class of S is n and repeat
the above procedure for n times,

[x, ϕ, . . . , ϕ︸ ︷︷ ︸
n

] ∈ [〈x〉, S, . . . , S︸ ︷︷ ︸
n

] = 1.

It then follows from [6, Chapter 5, Theorem 3.6] that [x, ϕ] = 1, and we have
proved that ϕ acts trivially on any cyclic subgroup of foc(F) of order p or 4.
Hence ϕ acts trivially on foc(F) by theorem 1.1 and therefore stabilizes a normal
series 1 ≤ foc(F) ≤ S. It then follows from that ϕ = 1 and thus AutF (S) is a
p-group, as desired. QED
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