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Abstract.

Let F be a saturated fusion system over a p-group S. In this paper, we investigate the
influence of the minimal subgroups in foc(F), the focal subgroup of F. Our main result is
that if for each cyclic subgroup P < foc(F) of order p (of order 2 and 4 if p = 2) and each
¢ € Homz(P, foc(F)), ¢ extends to an automorphism of S, then S is normal in F. We also
give several applications of this result.
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1 Introduction and statements of results

All groups considered in this paper are finite. Through out this paper, p is
always understood to be a fixed prime.

Let G be a group. Recall that minimal subgroups of G is are cyclic subgroups
of prime order. It is known that in some cases the way G acting by conjugaction
on its cyclic subgroups of order p (of order 2 and 4 if p = 2) has a strong
influence on the structure of G. For instance, N.Itd6 prove that if every cyclic
group of order p (of order 2 and 4 if p = 2) lies in the center of G, then G
is p-nilpotent. In fact, many results in this line can be proved by applied the
following well known theorem:

Theorem 1.1 ([4, Satz IV.5.12]). Let S be a p-group. Suppose that K is a
p/-group that acts trivially on every cyclic subgroup of S of order p (of order 2
and 4 if p = 2). Then K acts trivially on S.

A saturated fusion system over a p-group S is a category whose objects are
subgroups of S, and whose morphisms satisfy certain axioms mimicking the
action by conjugation of the elements of some group G with S as its Sylow p-
subgroup. The concept of saturated fusion system was introduced Puig in early
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1990s, who used the term “Frobenius categories”.

Inspired by theorem 1.1, we investigate the connections between the struc-
ture of a saturated fusion system JF and the way the morphisms in F acting
on cyclic groups of S of order p (of order 2 and 4 if p = 2). The main result of
this paper is the following (the notion foc(F) appear in the following theorem
denotes the focal subgroup of F, see [1, Part I, Defintion 7.1]).

Theorem A. Let F be a saturated fusion system over a p-group S. Assume
that for each cyclic subgroup P < foc(F) of order p (of order 2 and 4 if p = 2)
and each ¢ € Homz (P, foc(F)), ¢ extends to an automorphism of S. Then S is
normal in F.

In the following, we give several applications of theorem A.

Let S be a p-group. Following [8, Definition 5.1], S is called resistant if
for any saturate fusion system JF over S, S is normal in F. Burnside’s fusion
theorem (see [1, Theorem A.8]) states that if S is abelian, then for any finite
group G such that S € Syl,(G), S is normal in Fg(G), here Fg(G) denotes
the fusion category of G over S (see [1, Part I, Definition 1.1]). As the first
application of theorem A, we extends Burnside’s fusion theorem.

Theorem B. Let S be a p-group and let F be a saturated fusion system
over S. If every cyclic subgroup of foc(F) of order p (of order 2 and 4 if p = 2)
is normal in S, then S is normal in F. In particular, S is resistant if every cyclic
subgroup of S of order p (of order 2 and 4 if p = 2) is normal in S.

Remark 1.2. It has been proved in [7] that for almost all p-group S, every
cyclic subgroup of S of order p is in the center of S. Combining this fact with
theorem B, we know that almost all p-groups of odd order are resistant.

Let S be a Sylow p-subgroup of a group G and H be a subgroup of G con-
taining S. Let () be a subgroup of S. H is said to control fusion of @) in S if
for any g € G such that Q9 < S, there exists h € H such that h = cg for some
c € Cq(Q). H is said to controls fusion in S if H control fusion of each subgroup
of S in S. Let Fs(G) be the fusion category of G over S. It is clear that S is
normal in Fg(G) if and only if Ng(S) controls fusions in S. Hence the following
corollary is a consequence of theorem A by applying it to Fg(G).

Corollary 1.3. Let S be a Sylow p-subgroup of a p-constrained group G.
Assume that for each cyclic subgroup P of S NG’ of order p (of order 2 and 4
if p=2), Ng(S) controls fusion of P in S. Then Ng(S) controls fusion in S.
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Let S be a Sylow p-subgroup of a finite group G. It is well known that if S
controls fusion in S, then G is p-nilpotent, that is, G = S O,/ (G). It is natural
to ask if an analogue result holds when Ng(S) controls fusion in S, that is, can
we obtain that G = Ng(S5) O, (G) provided that Ng(S) controls fusion in S?
Unfortunately, this is not true in general (see example 1.5). In the following, we
show that when G is p-constrained (G is called p-constrained if O,(G/ Oy (G))
contains its centralizer in G/ Oy (G)), then Ng(S) controlling fusion in S does
imply that G = Ng(S) Oy (G).

Proposition 1.4. Let S be a Sylow p-subgroup of a finite group G. Then
G = Ng(S) Oy (GQ) if and only if G is p-constrained and Ng(.S) controls fusion
in S.

Example 1.5. Let G = As, the alternating group of degree 5, and let S be a
Sylow 5-group of G. Clearly Ng(S) controls fusion in S since S is abelian. But
G # Ng(5) Oy (G).

Combining corollary 1.3 with proposition 1.4, we have,

Corollary 1.6. Let S be a Sylow p-subgroup of a p-constrained finite group
G. Assume that for each cyclic subgroup P of SN G’ of order p (of order 2 and
4 if p=2), Ng(S) controls fusion of P in S. Then G = Ng(S) Oy (G).

Combining theorem B with proposition 1.4, we have,

Corollary 1.7. Let S be a Sylow p-subgroup of a p-constrained finite group
G. If every cyclic subgroup of S N G’ of order p (of order 2 and 4 if p = 2) is
normal in S, then G = Ng(S5) Oy (G).

Let S be a Sylow p-subgroup of a finite group G. Clearly G = Ng(S) Oy (G)
if and only if G is p-solvable with p-length at most 1. Recall that a Hamiltonian
group is one all of whose subgroups are normal. Hence the following result is a
direct consequence of corollary 1.7

Corollary 1.8 ([3, Corollary 1]). If G is p-solvable and a Sylow p-subgroup
of G is Hamiltonian, then the p-length of GG is at most 1.

Let F be a saturated fusion system over a p-group S. Recall that F is
nilpotent if F = Fg(.S), that is, all morphisms of F are induced by conjugations
in S. As an application of theorem A, we prove that F is nilpotent if for each
cyclic subgroup P < foc(F) of order p or 4, and each ¢ € Homz(P,foc(F)), ¢
is induced by conjugation in S.

Theorem C. Let F be a saturated fusion system over a p-group S. Then
F is nilpotent if and only if for each cyclic subgroup P of foc(F) of order p (of
order 2 and 4 if p = 2) and each ¢ € Hom g (P, foc(F)), there is ¢ € Inn(S) such
that ‘15|P = .
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Suppose that S is a Sylow p-subgroup of a group G. It is clear that G is a
p-nilpotent group if and only if Fg(G) is a nilpotent fusion system. Hence by
applying theorem C to Fg(G), we have

Corollary 1.9 ([5, Main Theorem]). Let S be a Sylow p-subgroup of a finite
group G. Then G is p-nilpotent if and only if for each cyclic subgroup P of S
of order p (of order 2 and 4 if p = 2), S controls fusion of P in S.

Let S be a Sylow p-subgroup of a finite group G. Adolfo and Guo proved
that if all cyclic subgroups of S N G’ of order p (of order 2 and 4 if p = 2)
are in the center of Ng(S), then G is p-nilpotent ([2, Theorem 1]). As another
consequence of theorem C, we extend this result from finite groups to saturated
fusion systems.

Corollary 1.10. Let F be a saturated fusion system over a p-group S.
Assume that Autz(S) acts trivially on P for each cyclic subgroup P of foc(F)
of order p (of order 2 and 4 if p = 2). Then F is nilpotent.

Proof. Let P < foc(F) be a cyclic group of order p (of order 2 or 4 if p = 2) and
¢ € Hom(P,S). Since Inn(S) < Autz(S) and Autz(S) acts trivially on P, we
have Cg(P) = S. It follows that ¢ extends to ¢ € Autz(S) and ¢ = ¢|p =1d |p.
Hence F is nilpotent by theorem C. QED

We will introduce some basic definitions and preliminary results in the sec-
ond section. The main results of this paper will be proved in the third section.

2 Preliminaries

In this section, we collect some basic concepts and preliminary results that
will be needed later.

Definition 2.1. Let F be a fusion system over a p-group S.

e Two subgroups P, @ < S are F-conjugate if they are isomorphic as objects
of the category F. Let P7 denote the set of all subgroups of S which are
F-conjugate to P.

e A subgroup P < S is fully automized in F if Auts(P) € Syl,(Autz(P)).

e A subgroup P < S is fully receptive in F if it has the following property: for
each @ < S and each ¢ € Isor(Q, P), if we set

N, = {9 € Ns(Q)lpocgo 9071 € Autg(P)},

then there is ¢ € Homz (N, S) such that ¢|Q = ¢ (here ¢4 denotes the the
automorphism of @) induced by ¢ through conjugation).
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e A subgroup P < S is fully centralized in F if |Cg(P)| > Cs(Q) for all
Qe P’.

e A subgroup P < § is fully normalized in F if [Ng(P)| > |Ng(Q)| for all
Q <€ P,

e A subgroup P < S is F-centric if P is fully centralized in F and Cg(P) =
Z(P).

e A subgroup P < S is F-radical if Outz(P) = Autz(P)/Inn(P) is p-reduced,
ie, if Op(Outx(P)) = 1. We say P is F-centric-radical if it is F-centric and
F-radical.

e A subgroup P < S is normal in F (denoted P<F) if P<S, and for all Q, R <
S and all ¢ € Homg(Q, R), ¢ extends to a morphism ¢ € Homz(PQ, PR)
such that ¢(P) = P.

Lemma 2.2 ([1, Part I, Proposition 2.5]). Let F be a fusion system over a
p-group S. Then F is saturated if and only if the following two conditions hold.

(I) (Sylow aziom) Each subgroup P < S which is fully normalized in F is also
fully centralized and fully automized in F.

(IT) (Extension axiom) Each subgroup P < S which is fully centralized in F is
also receptive in F.

Lemma 2.3 ([1, Part I, Lemma 2.6]). Let F be a fusion system over a
p-group S. Assume P < S is fully automized and receptive. Then for each
Q € P7 | there is a morphism ¢ € Homz(Ng(Q), Ns(P)) such that ¢(Q) = P.

Let F be a saturated fusion system over a p-group S. Recall that F is
constrained if there is a normal subgroup ) < F which is F-centric. If F is
constrained, a model for F is a finite group G such that S € Syl,,(G), Fs(G) = F
and Cg(0,(GQ)) < O,(G).

Lemma 2.4 ([1, Part II, Lemma 4.4]). Suppose that F is constrained sat-
urated fusion system over a p-group S. If G1 and G2 are models for F, then
there exists an isomorphism ¢: G; — G2 which is the identity on S.

Theorem 2.5 (Alperin’s Fusion Theorem). Let F be a saturated fusion
system over a p-group S. Then F = (Autz(R) : R € F/¢), where F/™ is the
set of fully normalized radical centric subgroups of F.

Recall that a group G is p-closed if a Sylow p-subgroup of G is normal in G.
The following lemma follows from theorem 2.5

Lemma 2.6. Let F be a saturated fusion system over a p-group S. Assume
that Autz(P) is p-closed for each P € F/¢. Then S < F.
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Proof. By theorem 2.5, it suffice to prove that the only subgroup of S contained
in F/7¢ is § itself. Assume that P < S and P € F/7. Then Ng(P)/Cs(P) =
Autg(P) € Syl,(Autz(P)) by lemma 2.2, and Inn(P) = P/Z(P) = PCs(P)/Cs(P) =
P/Cs(P) since P is F-centric. It follows that Autg(P) > Inn(P) and thus p di-
vides the order of Outz(P). Since Aut z(P) is p-closed, Outz(P) is also p-closed.
Hence O,(Outz(P)) > 1, which contradicts that P is F-radical. QED

The following lemma is a refinement of theorem 1.1

Lemma 2.7. A p-group P possesses a characteristic subgroup D of expo-
nent p when p is odd, and of exponent at most 4 when p = 2, such that every
nontrivial p’-automorphism of P induces a nontrivial automorphism of D.

Proof. When p is odd, it follows from [6, Chapter 5, Theorem 3.13] that P
possesses a characteristic subgroup D of exponent p such that every nontrivial
p/-automorphism of P induces a nontrivial automorphism of D. Assume that
p = 2. By [6, Chapter 5, Theorem 3.11], P possess a characteristic subgroup C
such that the nilpotent class of D is at most 2, C/Z(C) is elementary abelian,
and every nontrivial p’-automorphism of P induces a nontrivial automorphism
of C. Let D = (x € C : * = 1). Then D char C char P, and hence D is
a characteristic subgroup of P. Since every nontrivial p’-automorphism of P
induces a nontrivial automorphism of C', and every nontrivial p’-automorphism
of C induces a nontrivial automorphism of D by theorem 1.1, we have that every
nontrivial p’-automorphism of P induces a nontrivial automorphism of D.

We now show that the exponent of D is at most 4. Let x, y be two elements
of D of order at most 4. Clear the nilpotent class of D is at most 2 since the
nilpotent class of C is at most 2. It follows that (xy)* = xtyi[y,z]® = [v5, ).
Since D/(DNZ(C)) = DZ(C)/Z(C) < C/Z(C) is an elementary abelian group,
®(D) < (DNZ(C)) < Z(D). Hence y% < ®(D) < Z(D) and (zy)* = [y°, 7] = 1.
Therefore the order of xy is at most 4. Since D is generated by all elements of
C of order at most 4, the exponent of D is at most 4. O

3 Proof of main results

Proof of theorem A. Suppose that Q € F/™. By lemma 2.6, we need to prove
that Autz(Q) is p-closed.

First we introduce some notations. Assume that ¢ € Hom(P, Q) for some
P,Q < S and z € P, we use the notion 2% to denote ¢(z). Denote A = Autz(Q),
R = [Q, A]. By lemma 2.7, R possesses a characteristic subgroup D of expo-
nent p when p is odd, and of exponent at most 4 when p = 2, such that every
nontrivial p’-automorphism of R induces a nontrivial automorphism of D. Let
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1=20(5) < Z1(S) <--- < Z,(S) = S be the upper central series of S and put
Z;(D)=DnNZi(S), 0 <i<n.Denote C;(A) ={a € A|[Z;(D),a] < Z;_1(D)},
1 <4 < n. We will prove that A is p-closed through the following steps:

Step 1. Z;(D) is an A-invariant subgroup of @, 0 < i < n.

Assume that Z;(D) is not an A-invariant subgroup for some i. Then there
exits z € Z;(D) and ¢ € A such that z¥ ¢ Z;(D) = D N Z;(S). Since R is
an A-invariant subgroup of @ and D is a characteristic subgroup of R, D is
an A-invariant subgroup and hence z¥ € D. It follows that = ¢ Z;(S). Since
D < R < foc(F) and D is of exponent p when p is odd, of exponent at most 4
when p = 2, we have ¥,z € foc(F) and the order of x is p or 4. It then follows
from hypotheses that there exists ¢ € Autz(S) such that z¥ = x%. But Z;(S)
is a characteristic subgroup of S and thus z¥ = z¥ € Z;(S), a contradiction.

Step 2. C;(A) is a normal subgroup of 4, 1 <i <n.

Let x € Z;(D), a, 5 € C;(A). First we need to show that C;(A) is a subgroup
of A, that is, to show that [v,a™!] € Z;_1(D) and [x,a8] € Z;_1(D). From
definition, we have [z,a] € Z;_1(D) and [z,5] € Z;_1(D). Since Z;_1(D) is
an A-invariant subgroup of Q by step 1, we have [z, = ([z,a]™)*
(Z;—1(D))*" = Z;_1(D) and [z, af] = [z, B[z, a]* € Z;_1(D), as desired.

Now we show that Cj;(A) is normal in A. Suppose v € A and let z =
[z7,a] = (27)7127*. Then 2% = 272. Since Z;(D) is A-invariant, we have
2 € Zi_1(D) by definition. It follows that z0®™ ) = (272)7"" = 227" and
[z, 7oy ] = 27120 ™) = 277" € Z,_1(D). Hence yay ! € Ci(A) and C;(A)
is normal in A.

m

Step 3. A is p-closed.

Let C = (i, Ci(A). We first prove that C' is a normal p-subgroup of A.
From step 2, we know that C' is a normal subgroup of A. Assume that « is a
p/-element of C. From the definition of C, it is clear that « stabilizes the normal
series 1 = Zy(D) < Z1(D) < --- < Z,(D) = D. Hence «a acts trivially on D.
It then follows from the choice of D that « acts trivially on R. Therefore
stabilizes the normal series 1 < R < @ and thus @ = 1. Hence C' is a normal
p-subgroup of A.

Now we show that C is a Sylow p-subgroup of A. It is clear from definition
that Auts(Q) < C;(A) for all 1 < ¢ < n and thus Autg(Q) < C. Since Q is fully
normalized in F, Autg(Q) is a Sylow p-subgroup of A by lemma 2.2. Therefore
C = Autg(Q) is a normal Sylow p-subgroup of A. QED

Proof of theorem B. Let P,Q be two cyclic subgroups of foc(F) of order p (of
order 2 or 4 if p = 2). Then P,@Q < S by hypotheses. Let ¢ € Isor(P,Q). By



98 N. Su

theorem A, it suffice to show that ¢ extends to @ € Autz(.5).

First assume that P, @ are of order p. Then P,Q < .S implies that P, Q <
Z(S). It then follows that Cs(P) = Cg(Q) = S and @ is fully centralized.
Therefore by lemma 2.2 we have that ¢ extends to ¢ € Homz(PCg(P),S) =
Autz(S).

Now assume that P, @) are of order 4. Since @ is fully normalized, by lemma 2.3
there is a morphism ¢ € Homz(Ng(P), Ns(Q)) = Autx(S) such that ¢(P) = Q.
Let x = (¢|g)"t¢. Then x € Autz(P). If xy = 1, then ¢ = ¢|¢ and we are done.
Assume that x # 1. Then Autz(P) is a non-trivial subgroup of Aut(P). Since
Aut(P) is a group of order 2. We have that Autz(P) = Aut(P) is a group of
order 2. Note that P is fully normalized in F, Autg(P) is a Sylow subgroup
of Autz(P). It follows that x € Autz(P) = Autg(P) and thus there exists
X € Inn(S) such that x = x|p. Let ¢ = ¢x. Then ¢ € Autz(S) and @|p = ¢,
as desired.

Proof of proposition 1.4. We first prove the necessity. Assume that G = Ng(S) Op (G).
Clearly G is p-constrained. Let P be a subgroup of S and g be an element of

G such that P9 < S. Since G = Ng(S) Oy (G) = Oy (G)Ng(S), g = z129 for

some 1 € O,(G) and x2 € Ng(S). Then zo = z;'g. To show that Ng(S)
controls fusion in S, it suffice to show that xfl € Cg(P). Since P*1*2 < S and

x2 € Ng(5), P" = (]33“”32)”32_1 < S. Let z be an element of of P. Since z € S

and 2% = x7 (21272 € S, 27 (2x127Y) = 2®1271 € S. On the other hand,

since 21 € 0,(G), 27 (z21271) € O, (G). Tt follows that 27 ' (zx1271) = 1 and

2%t = z. Therefore 71 € Cg(P) and thus ;' € Cg(P), as desired.

Conversely, assume that G is p-constrained and Ng(S) controls fusion in S.
Let G = G/O0y(G), S = SOy (G)/Op(G) and H = Ng(S). We first prove
that Ng(S) controls fusion in S. By theorem 2.5, it suffice to show that for
any subgroup P of S and any element T of Ng(P), there exists §y € Ng(5)
such that 7 = ¢ for some ¢ € Cg(P). Clearly there exists some P < S and
some z € Ng(P O, (G)) such that P = POy(G)/ Op(G) and T = 20y (G).
Note that Ng(P Oy (G)) = Ng(P)Oy(G), = zl for some z € Ng(P) and
I € Oy (G). Hence T = Z. Now since z € Ng(P) and Ng(S) controls fusion in S,
there exists y € Ng(S) such that y = zc for some ¢ € Cg(P). Set § = y O (G).
Then § € Ng(S) and § = z¢ = T¢, where ¢ = cOy (G) € Cx(P), as desired.

Since G is p-constrained, by [6, Chapter 8, Theorem 1.1] we have C=(0,(G)) <
O,(G) and thus G is a model for Fg(G). Since SIN#(S), we have C No(S) (Op(N&(S)) =
Cy5(5) < Cal8) € Ca(0,(@) < 0,(@) < § = 0,(Ng(5)) and thus

N#(S) is a model for Fg(Ng(S)). On the other hand, Since Ng(S) controls
p-fusion of G, Fg(G) = Fg(Ng(S)). Clearly Fg(Ng(S)) is a constrained since
S < Fg(Ng(S)). It then follows from lemma 2.4 that G = Ng(S) and thus
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G/ Oy (G) =G = Ng(5) = Na(S Oy (G))/ Oy (G). Therefore G = Na (S Oy (G)) =
Na(S) Oy (G).

Proof of theorem C. The necessity is obviously. We need only to prove the suf-
ficiency. By theorem A, S is normal in F. Hence to prove that F = Fg(5), it
suffice to show that Autz(S) = Inn(S), that is, to show that Autz(S) is a p-
group. Let ¢ be a p’-element of Autz(S) and let (z) < foc(F) be a cyclic group of
order p or 4. Clearly z¥ < foc(F) since now foc(F) = [S, Aut £(5)] is Aut£(S5)-
invariant. From hypotheses, there exists ¢ € Inn(S) such that z¥ = z¥. Hence
[z, 0] = [x,¢] € [(x),S]. Suppose that the nilpotent class of S is n and repeat
the above procedure for n times,

[z,p,...,¢] € [(x),5,...,5] =1.

n n

It then follows from [6, Chapter 5, Theorem 3.6] that [z, ¢] = 1, and we have
proved that ¢ acts trivially on any cyclic subgroup of foc(F) of order p or 4.
Hence ¢ acts trivially on foc(F) by theorem 1.1 and therefore stabilizes a normal
series 1 < foc(F) < S. It then follows from that ¢ = 1 and thus Autz(S) is a
p-group, as desired. QED
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