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Abstract. Let σ = {σi|i ∈ I} be some partition of the set of all primes P. A group G is
called σ-primary if G is a finite σi-group for some σi ∈ σ. We say that a finite group G is:
σ-soluble if every chief factor of G is σ-primary; σ-nilpotent if G is the direct product of some
σ-primary groups.

Being based on these concepts, we develop and unify some aspects of the theories of
soluble, nilpotent, supersoluble and quasinilpotent groups, the subgroup lattices theory, the
theories of generalized quasinormal and generalized subnormal subgroups.
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Introduction

Throughout this paper, G and G∗ always denote a finite group and an arbi-
trary group, respectively. The subgroups A and B of G∗ are called permutable
if AB = BA. In this case, we say also that A permutes with B. A complete
Sylow set of G contains exact one Sylow p-subgroup for every prime p dividing
the order of G.

One of the organizing ideas of the group theory is the idea to study groups
G depending on the presence in G of a subgroup system L having desired prop-
erties. Often, this approach is more effective if L forms a sublattice of the lattice
L(G) of all subgroups of G (that is, A∩B ∈ L and 〈A,B〉 ∈ L for all A,B ∈ L),
especially when some subgroups A,B ∈ L are permutable since in this case
〈A,B〉 = AB. In order to involve subgroups A ∈ L in inductive reasoning, it is
also helpful the condition of existence in G subgroup chains of the form

A = A0 ≤ A1 ≤ · · · ≤ At = G

with suitable embedding properties for Ai−1 into Ai. In particular, if here Ai−1

is normal in Ai for all i = 1, . . . , t, then A is called a subnormal subgroup of
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G. These circumstances make the general problems of finding sublattices of the
lattice L(G) and studying the conditions of permutability and (generalized)
subnormality for subgroups quite important and interesting.

Note that the first results in this line research have been obtained almost
simultaneously. Wieland proved [62] that the set Lsn(G) of all subnormal sub-
groups of G is a sublattice of L(G). Ore proved [48] that the lattice L(G) is
distributive if and only if G is cyclic, and he showed also, in the paper [49],
that if a subgroup H of G is quasinormal in G (that is, H permutes with all
subgroups of G), then H is subnormal in G. Hall proved [31] that G is soluble
if and only if it has a Sylow basis (that is, a complete Sylow set S of G such
that every two members of S are permutable).

These important results have been developed in a large number of publica-
tions. Here, we very briefly mention about some of them.

First of all, recall that the first of the two above-mentioned results of Ore
initiated the study of groups G with others constraints on L(G) and on some
sublattices of L(G). For instance, it was proved that a finite nilpotent group
has modular subgroup lattices if and only if every two of its subgroups are
permutable. The full description of finite groups with modular subgroup lattice
was obtained by Iwasawa [39] (see also Chapter 2 in [52]). Groups G with
modular, distributive and complemented lattice Lsn(G) were characterized by
Zappa [67], Zacher [65] and Curzio [17], respectively. An original generalization
of the lattice Lsn(G) was found by Kegel [19] (see Section 2 below).

Greatly strengthening the second of the above-mentioned results of Ore,
Kegel proved [18] that every S-permutable subgroup of G (that is, a subgroup
of G which permutes with all Sylow subgroups of G) is subnormal in G, and
that the set of all S-permutable subgroups of G forms a sublattice of L(G). It
was also proved (Doerk and Hawkes [21, I, 4.28]) that if S is a Sylow basis of a
soluble group G, then the set P(S) of all such subgroups of G which permute
with all members of S is a sublattice of L(G). Deskins proved [20] that if A is
an S-permutable subgroup of G, then A/AG is nilpotent. In the paper [36] (see
also Section 3 in [33, VI]), Huppert obtained characterizations of groups G in
which every complete Sylow set is a Sylow basis of G. In his other paper [35],
Huppert proved that if S is a basis of a soluble group G and every maximal
subgroup of every subgroup H ∈ S permutes with all others members of S, then
G is supersoluble. In the paper of Asaad and Heliel [5], the last result has been
extended to an arbitrary finite group G.

In this review, being based on some ideas in [54, 57, 59], we discuss an
arithmetic method for generalizations of all above-mentioned results as well as
many other known results, which depends only on the choice of the partition σ
of the set of all primes.
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1 Basic notation and concepts

In this section, we introduce the most important concepts and notation used
in this survey. We use P to denote the set of all primes, π ⊆ P and π′ = P \ π.
If n is an integer, the symbol π(n) denotes the set of all primes dividing n; as
usual, π(G) = π(|G|), the set of all primes dividing the order |G| of G.

ΠI-primary and Π-primary groups. In what follows, σ = {σi| i ∈ I ⊆
{0} ∪ N} is some partition of P, that is, P = ∪i∈Iσi and σi ∩ σj = ∅ for all
i 6= j; Π is always supposed to be a subset of the set σ and Π′ = σ \Π. We also
suppose that 0 ∈ I and 2 ∈ σ0.

In practice, we often deal with the following two special partitions of P:
σ = {{2}, {3}, . . .} and σ = {π, π′}.

Modifying the notation for σ(n) (n is an integer) in [57, 59], we put

σ(n) = {σi|σi ∩ π(n) 6= ∅};σ(G) = σ(|G|).

We say that: n is a Π-number if σ(n) ⊆ Π; G is a Π-group if |G| is a Π-number.

Let I be a class of finite σ0-groups which is closed under extensions, epimor-
phic images and subgroups and which also contains all soluble σ0-groups. We
will say that: (i) G∗ is ΠI-primary provided G∗ is either an I-group or a finite
σi-group for some σi ∈ Π, where i 6= 0; (ii) an integer n is Π-primary if n is a
σi-group for some σi ∈ Π.

In the future, we always omit the symbol I in all definitions and notations
in the case when I is the class of all finite σ0-groups. Thus we say that G is
Π-primary if G is a σi-group for some i ∈ I.

Note that in the case when σ = {{2}, {3}, . . .}, a Π-primary integer n is
simply a power of some prime; a Π-primary group G is simply a primary group,
that is, G is a group of prime power order.

σ-soluble and σ-nilpotent groups. We say that G is: (i) σ-soluble if every
chief factor of G is σ-primary; (ii) σ-nilpotent if G is the direct product of some
σ-primary groups.

It is clear that every σ-nilpotent group is also σ-soluble, and G is σ-soluble
if and only if it is σi-separable for all i ∈ I.

Example 1. G is soluble (respectively nilpotent) if and only if it is σ-soluble
(respectively σ-nilpotent), where σ = {{2}, {3}, . . .}.

Example 2. G is π-separable if and only if it is σ-soluble, where σ = {π, π′}.
Example 3. Let π = {p1, . . . , pt}. Then G is π-soluble if and only if it is

σ-soluble, where σ = {{p1}, . . . , {pt}, {p1, . . . , pt}′}.
Example 4. G is p-soluble (respectively p-decomposable) if and only if it

is σ-soluble (respectively σ-nilpotent), where σ = {{p}, {p}′}.
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We will use Sσ and Nσ to denote the classes of all σ-soluble groups and of
all σ-nilpotent groups, respectively.

Π-full groups. A set 1 ∈ H of subgroups of G is said to be a complete Hall
Π-set of G if every member 6= 1 of H is a Hall σi-subgroup of G for some σi ∈ Π
and H contains exact one Hall σi-subgroup of G for every σi ∈ Π ∩ σ(G).

We will say that G is: (i) Π-full if G possesses a complete Hall Π-set ; (ii) a
DΠ-group if G is Dσi-group for all σi ∈ σ; (iii) a Π-full group of Sylow type if
every subgroup of G is a Dσi-group for all σi ∈ Π.

Example 5. (i) In view of Theorem A in [54] (see Theorem 8 below), every
σ-soluble group is a Π-full group of Sylow type for each ∅ 6= Π ⊆ σ.

(ii) The group PSL(2, 11) and the Mathieu group M11 are σ-full groups of
Sylow type, where σ = {σi |i ∈ I} such that σ1 = {5, 11} and σi is a one-element
set for all i 6= 1; the Lyons group Ly is a σ-full groups of Sylow type, where
σ = {σi |i ∈ I} such that σ1 = {11, 67} and σi is a one-element set for all i 6= 1.

ΠI-subnormal subgroups. Generalizing the concept of σ-subnormality in
[57, 59] introduce the following

Definition 1. We say that a subgroup A of G∗ is ΠI-subnormal in G∗ if
there is a subgroup chain

A = A0 ≤ A1 ≤ · · · ≤ At = G∗

such that either Ai−1 is normal in Ai or Ai/(Ai−1)Ai is ΠI-primary for all
i = 1, . . . , t.

In this definition, as usual, (Ai−1)Ai denotes the core of Ai−1 in Ai.

Note that in the case when Π = σ = {{2}, {3}, . . .}, a subgroup A of G∗ is
Π-subnormal in G if and only if A is subnormal in G∗. A subgroup A of G is
F-subnormal in G in the sense of Kegel [19] if and only if it is σI-subnormal in
G, where σ = {P} and I = F.

Example 6. Let C29 oC7 be a non-abelian group of order 203 and P be a
simple F11(C29 o C7)-module which is faithful for C29 o C7. Let

G = (P o (C29 o C7))×A5,

where A5 is the alternating group of degree 5. Let σ = {σ0, σ1, σ2}, where
σ0 = {2, 3, 5}, σ1 = {7, 29} and σ2 = {2, 3, 5, 7, 29}′. Let I be the class of all
finite soluble σ0-groups, and let Π = {σ1, σ2}. Then a subgroup H of G of order
4 is σ-subnormal in G but it is neither Π-subnormal in G nor σI-subnormal in
G. The subgroup C7 is ΠI-subnormal in G but it is clearly not subnormal in G.

There are a number of motivations for introducing the concept of ΠI-subnor-
mality. First note that being based on this concept, it is possible to expand the
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class of sublattices of the lattice L(G) which was found by Kegel in [19] (see
Theorem 5 below). On the other hand, the need to introduce and explore such
subgroups arises in the theory of Π-permutable subgroups (see Section 6 below).
Finally, we demonstrate in this survey, that except of the results in [19], this
concept allows to generalize a lot of other known results.

2 ΠI-subnormal subgroups

General properties of ΠI-subnormal subgroups. Let F be a class of
finite groups. We use respectively (G∗)F and Oσi(G∗) to denote the intersection
of all normal subgroups N of G with G∗/N ∈ F and with the property that
G∗/N is a finite σi-group.

We say that G∗ is ΠI-perfect if G∗ = (G∗)I and Oσi(G∗) = G∗ for all σi ∈ Π
such that i 6= 0.

The results of this section collect the most important properties of ΠI-
subnormal subgroups.

Proposition 1. (Skiba [56]) Let A, K and N be subgroups of G∗. Suppose
that A is ΠI-subnormal in G∗ and N is normal in G∗.

(1) A ∩K is ΠI-subnormal in K.

(2) If K is a ΠI-subnormal subgroup of A, then K is ΠF-subnormal in G∗.

(3) If N ≤ K and K/N is ΠI-subnormal in G∗/N , then K is ΠI-subnormal
in G∗.

(4) AN/N is ΠI-subnormal in G∗/N .

(5) If K ≤ A and A is ΠI-primary, then K is Π-subnormal in G∗.

(6) If A is ΠI-perfect, then A is subnormal in G∗.

Recall that OΠ(G) denotes the subgroup of G generated by all its Π′-
subgroups [59]. A subgroup H of G is called [54, 59]: a Hall Π-subgroup of
G if |H| is a Π-number and |G : H| is a Π′-number; a σ-Hall subgroup of G if
H is a Hall Π-subgroup of G for some Π ⊆ σ.

Proposition 2. (Skiba [56]) Let Π1 ⊆ Π and A be a Π-subnormal subgroup
of G.

(1) If H 6= 1 is a Hall Π1-subgroup of G and A is not a Π′1-group, then
A ∩H 6= 1 is a Hall Π1-subgroup of A.

(2) If A is a Π1-Hall subgroup of G, then A is normal in G.

(3) If |G : A| is a Π1-number, then OΠ1(A) = OΠ1(G).

(4) If N is a Π1-subgroup of G, then N ≤ NG(OΠ1(A)).

(5) If |G : A| is a Π′-number, then A is subnormal in G.

We will say that G is σI-soluble if every chief factor of G is σF-primary.
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Proposition 3. (Skiba [56]) Let A be a ΠI-subnormal subgroup of G and
let F0 be the class of all σI-soluble Π-groups.

(1) Let R be the product of some minimal normal subgroups of G and R is not
ΠI-primary. Suppose also that either |G : A| is a Π′-number or G = AR, R is
non-abelian and all composition factors of R are isomorphic. Then R ≤ NG(A).

(2) If R is a minimal normal subgroup of G, then N ≤ NG(AF0).

(3) If a minimal normal subgroup R of G belongs to I, then R ≤ NG(AI).

Proposition 4. (Skiba [56]) Let A be a ΠI-subnormal subgroup of G. Sup-
pose that A is ΠF-primary. Then:

(1) If A ∈ I, then A ≤ Oσ0(G) ∩GI.

(2) If A is a σi-group, then A ≤ Oσi(G).

In this proposition GI denotes the I-radical of G, that is, the product of all
normal subgroups of G belonging I.

Characterizations of ΠI-subnormality. Note that various special cases
of Propositions 1–4 have already been used to solve many questions (see, for
example, [28, 56, 57, 59]. Let’s consider some other applications of these results.

We want start with the following characterization of ΠI-subnormality.

Theorem 1. (Skiba [56]) A subgroup H of G is ΠI-subnormal in G if and
only if H is ΠF-subnormal in 〈H,x〉 for all x ∈ G.

Theorem 1 gives the positive answer to Question 4.10 in [59]. From this
theorem we get the following well-known result.

Corollary 1. (Wielandt) A subgroup H of G is subnormal in G if and only
if H is subnormal in 〈H,x〉 for all x ∈ G.

Nevertheless, the following question is still open now.

Question 1. Suppose that a subgroup A of G is σ-subnormal in 〈A,Ax〉 for
all x ∈ G. Is it true then that A is σ-subnormal in G?

One of the key properties of σ-subnormal subgroups is the following (see
Proposition 2(1)): If A is σ-subnormal in G, then A ∩H is a Hall Π-subgroup
of A for every Hall Π-subgroup H of G.

Moreover, the following fact holds.

Proposition 5. [54] If G is σ-soluble, then a subgroup A of G is σ-subnormal
in G if and only if A∩H is a Hall σi-subgroup of A for every Hall σi-subgroup
H of G and every i ∈ I.

In view of these observations it seems natural the following question.

Question 2. Is it true that a subgroup A of the σ-full group G is σ-
subnormal in G if and only if A ∩ H is a Hall σi-subgroup of A for every
Hall σi-subgroup H of G and every σi ∈ σ(G)?

Note that in the case when σ = {{2}, {3}, . . .}, the answers to these Ques-
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tions 1 and 2 are positive (see Wielandt [63] or [21, A, 14.10] and [41], respec-
tively).

The lattice of the ΠI-subnormal subgroups. We use LΠI
(G) to denote

the set of all ΠI-subnormal subgroups of G.

One of the most known results in the theory of subnormal subgroups is the
following fact.

Theorem 2. (Wielandt) The set Lsn(G) is a sublattice of the lattice L(G)
of all subgroups of G.

An original generalization of the lattice Lsn(G) was found by Kegel [19]. Let
F be a class of finite groups and A = A0 ≤ A1 ≤ · · · ≤ At = G a subgroup
chain in G. Then A is called F-subnormal in G in the sense of Kegel [19] or
K-F-subnormal in G [13, 6.1.4] if either Ai−1 is normal in Ai or Ai/(Ai−1)Ai
belongs to F for all i = 1, . . . , t.

Kegel proved [19] the following fact.

Theorem 3. (Kegel [19]) If the class F is closed under extensions, epimor-
phic images and subgroups, then the set LFsn of all K-F-subnormal subgroups
of G is a sublattice of the lattice L(G).

For every set π of primes, we may choose the class F of all π-groups. In
this way we obtain infinitely many functors LFsn assigning to every group G
a sublattice of L(G) containing Lsn(G). In the future, this result has been
generalized on the basis of the formation theory methods (see Chapter 6 in
[13]).

On the base of Propositions 1–4, the following general fact is proved, which
gives an another idea to generalize the Wielandt result.

Theorem 4. (Skiba [56]) LΠI
(G) is a sublattice of the lattice L(G).

Note that in the case when σ = {{2}, {3}, . . .}, we get from this result
Theorem 2. Theorem 3 is a corollary of Theorem 4 in the case when σ = {P}
and F = I. One more special case of Theorem 4 was proved in [59] on the basis
of the formation theory.

Corollary 2. (Skiba [59]) The set of all σ-subnormal subgroups of G forms
a sublattice of the lattice of all subgroups of G.

Zappa [67] characterized conditions under which the lattice Lsn(G) is mod-
ular. With respect to the lattice LΠ(G) we have the following result.

Theorem 5. (Skiba [56]) The lattice LΠ(G) is modular if and only if the
following two conditions hold:

(i) If T ≤ S are Π-subnormal subgroups of G, where T is normal in S and
either S/T is Π-primary or |S/T | = p3 (p a prime), then L(S/T ) is modular.

(ii) 〈A,B〉Nσ ≤ A∩B for each A,B ∈ Lσ(G) such that A and B cover A∩B
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and A ∩B is not normal both in A and B.

Considering Theorem 5 in the two cases, when Π = ∅ and when Π = σ =
{{2}, {3}, . . .}, we get from this theorem the following

Corollary 3. (See Zappa [67] or Theorem 9.2.3 in [52]) The following state-
ments are equivalent.

(I) Lsn(G) is modular.

(ii) If T ≤ S are subnormal subgroups of G, where T is normal in S and
S/T is a p-group, p a prime, then L(S/T ) is modular.

(III) If T ≤ S are subnormal subgroups of G, where T is normal in S and
|S/T | = p3 (p a prime), then L(S/T ) is modular.

Question 3. Characterize groups G with modular lattice LΠI
(G).

3 σ-nilpotent and σ-quasinilpotent groups

General properties of σ-nilpotent groups. A chief factor H/K of G is
said to be σ-central (in G) if the semidirect product (H/K) o (G/CG(H/K))
is σ-primary, otherwise it is called σ-eccentric. The symbol Zσ(G) denotes the
σ-hypercentre of G, that is, the product of all normal subgroups N of G such
that every chief factor of G below N is σ-central.

It is well-known that the nilpotent groups can be characterized as the groups
in which each subgroup, or each Sylow subgroup, or each maximal subgroup
is subnormal. The following result demonstrates that there is a quite similar
relation between σ-nilpotency and σ-subnormality.

Proposition 6. [57] Any two of the following conditions are equivalent:

(i) G is σ-nilpotent.

(ii) Every chief factor of G is σ-central in G.

(iii) G has a complete Hall σ-set H such that every member of H is σ-
subnormal in G.

(iv) Every subgroup of G is σ-subnormal in G.

(v) Every maximal subgroup of G is σ-subnormal in G.

Corollary 4. The class Nσ is closed under taking products of normal sub-
groups, homomorphic images and subgroups. Moreover, if E is a normal sub-
group of G and E/Φ(G) ∩ E is σ-nilpotent, then E is σ-nilpotent.

σ-quasinilpotent groups. Recall G is said to be quasinilpotent if for every
its chief factor H/K and every x ∈ G, x induces an inner automorphism on
H/K [37, X, 13.2]. Note that since for every central chief factor H/K of G, an
element of G induces the trivial automorphism on H/K, G is quasinilpotent if
for every its eccentric chief factor H/K and for every x ∈ G, x induces an inner
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automorphism on H/K. This elementary observation allows us to consider the
following σ-analogue of quasinilpotency.

Definition 2. We say that G is σ-quasinilpotent (sf. with [30]) if for every
σ-eccentric chief factor H/K of G, every automorphism of H/K induced by an
element of G is inner.

Example 7. (i) G is quasinilpotent if and only if it is σ-quasinilpotent,
where σ = {{2}, {3}, . . .}.

(ii) Let G = (A5 oA5)× (A7 ×A11) and σ = {{2, 3, 5}, {2, 3, 5}′}. Then G is
σ-quasinilpotent but G is neither σ-nilpotent nor quasinilpotent.

We say that G is σ-semisimple if either G = 1 or G = A1 × · · · × At is the
direct product of non-abelian simple non-σ-primary groups A1, . . . , At.

Note that if σ = {{2, 3, 5}, {2, 3, 5}′} and G = A7 × A11, then G is σ-
semisimple and σ-perfect.

The following result shows that the σ-quasinilpotent groups have properties
similar to the properties of the quasinilpotent groups.

Theorem 6. [58] Given group G, the following are equivalent:

(i) G is σ-quasinilpotent.

(ii) G/Zσ(G) is σ-semisimple.

(iii) G/Fσ(G) is σ-semisimple and G = Fσ(G)CG(Fσ(G)).

From Proposition 6 and Theorem 6 we get

Corollary 5. Let G be σ-quasinilpotent.

(i) If G is σ-perfect, then Zσ(G) = Z(G).

(ii) If H is a normal σ-soluble subgroup of G, then H ≤ Zσ(G).

Corollary 6. If a σ-quasinilpotent group G 6= 1 is σ-soluble, then G =
Oσi1 (G)× · · · ×Oσit (G), where {σi1 , . . . , σit} = σ(G).

Corollary 7. Let π = ∪σi∈Πσi. If a σ-quasinilpotent group G 6= 1 is π-
separable, then G = Oπ(G)×Oπ′(G).

Corollary 8. If a quasinilpotent group G is π-separable, then G = Oπ(G)×
Oπ′(G).

The σ-Fitting subgroup and the generalized σ-Fitting subgroup.
Recall that if 1 ∈ F is a class of finite groups, then the symbols GF and GF

denote the intersection of all normal subgroups N of G with G/N ∈ F and the
product of all normal F-subgroups of G, respectively. The subgroup GF is called
the F-residual of G; GF is called the F-radical of G.

The product of all normal respectively σ-soluble, σ-nilpotent, σ-quasinilpotent
subgroups of G is said to be respectively the σ-radical, the σ-Fitting subgroup,
the generalized σ-Fitting subgroup of G and we denote it respectively by Rσ(G),
Fσ(G), F ∗σ (G).
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We use Eσ(G) to denote the σ-nilpotent residual of F ∗σ (G), and we say that
Eσ(G) is the σ-layer of G.

The following result collect the basic properties of the subgroups Fσ(G) and
F ∗σ (G) and describes the main relations between them.

Theorem 7. (Skiba [55]) Let G be a σ-full group. Let Fσ = Fσ(G), F ∗σ =
F ∗σ (G) and Eσ = Eσ(G).

(i) F ∗σ is σ-quasinilpotent and Fσ = Zσ(F ∗σ ). Hence F ∗σ/Fσ is σ-semisimple
and F ∗σ/Fσ is the product of all minimal normal subgroups of G/Fσ contained in
FσCG(Fσ)/Fσ. Also, Fσ/Zσ(G) = Fσ(G/Zσ(G)) and F ∗σ/Zσ(G) = F ∗σ (G/Zσ(G)).

(ii) F ∗σ = EσFσ = CF ∗σ (F )Fσ and Fσ = CF ∗σ (Eσ). Also, Eσ is a σ-perfect
characteristic subgroup of F ∗σ and Eσ/Z(Eσ) is σ-semisimple. Hence Eσ(G) =
Eσ(Eσ(G)).

(iii) A σ-subnormal subgroup H of G is contained in F ∗ (respectively in Fσ)
if and only if it is σ-quasinilpotent (respectively σ-nilpotent). Moreover, if H is
a σ-quasinilpotent σ-perfect σ-subnormal subgroup of G, then H ≤ Eσ.

(iv) CG(F ∗σ ) ≤ Z(F ∗σ ).

(v) Fσ(G/Φ(G)) = Fσ/Φ(G) and F ∗σ (G/Φ∗(G)) = F ∗σ/Φ
∗(G).

Corollary 9. For every σ-subnormal subgroup V of G we have Fσ(G)∩V =
Fσ(V ) and F ∗σ (G) ∩ V = F ∗σ (V ).

It is clear that if R ≤ E ≤ G, where R is a non-abelian minimal normal
subgroup of G and E is normal in G, then R is the product of some minimal
normal subgroups of E [21, A, 4.13]. Hence we get from Theorem 7(ii) the
following

Corollary 10. (See [37, X, 13.13]) If G is σ-full, then F ∗σ (G)/Fσ(G) is the
group generated by all minimal normal subgroups of CG(Fσ(G))Fσ(G)/Fσ(G).

From Theorem 7(v) we get

Corollary 11. (Skiba [57]) If G is σ-soluble, then CG(Fσ(G)) ≤ Fσ(G).

Corollary 12. If G is π-separable, then

CG(Oπ(G)×Oπ′(G)) ≤ Oπ(G)×Oπ′(G).

Some other applications of Theorem 7. Theorem 7 not only covers a
large number of known results, but it also allows to establish a link between
some of these results. Note, for example, that the following known results are
special cases of Corollary 10.

Corollary 13. (See [22, Ch. 6, 1.3]) If G is soluble, then CG(F (G)) ≤
F (G).
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Corollary 14. (See [22, Ch. 6, 3.2]) If G is π-separable, then the following
inclusion holds:

CG/Oπ′ (G)(Oπ(G/Oπ′(G)) ≤ Oπ(G/Oπ′(G).

Corollary 15. (Monakhov and Shpyrko [47]) Let G be a π-soluble group.

(1) CG(Oπ(G)×Oπ′(G)) ≤ F (Oπ(G))×Oπ′(G).

(2) If Oπ′(G) = 1, then CG(F (G)) ≤ F (G).

In the case, when σ = {{2}, {3}, . . .}, we get from Theorem 7 and its Corol-
laries 9 and 10 the following known results.

Corollary 16. (See [37, X, 13.13]) F ∗(G)/F (G) is the group generated by
all minimal normal subgroups of CG(F (G))F (G)/F (G).

Corollary 17. (See [37, X, 13.10]) F ∗(G) is quasinilpotent and every sub-
normal quasinilpotent subgroup of G is contained in F ∗(G).

Corollary 18. (See [21, A, 8.8]) F (G) is generated by all subnormal nilpo-
tent subgroups of G.

Corollary 19. (See [37, X, 13.15]) F (G) = CF ∗(G)(E(G)).

4 σ-soluble groups

We say that the integers n and m are σ-coprime if σ(n) ∩ σ(m) = ∅. If A,
B and R are subgroups of G and for some x ∈ R we have ABx = BxA, then
A is said to R-permute with B [24]. If every two members of a complete Hall
σ-set H = {1, H1, . . . ,Ht} of G are permutable, then we say that {H1, . . . ,Ht}
is a σ-basis of G.

By the classical Hall theorem, G is soluble if and only if it has a Sylow basis.
The direct analogue of this result for σ-soluble groups is not true in general.
Indeed, let σ = {{2, 3}, {2, 3}′}. Then the alternating group A5 of degree 5 has
a σ-basis and it is not σ-soluble. Nevertheless, the following generalizations of
the Hall result are true.

Theorem 8. [54] Let R = Rσ(G) be the σ-radical of G. Then any two of
the following conditions are equivalent:

(i) G is σ-soluble.

(ii) For any Π, G has a Hall Π-subgroup and every σ-Hall subgroup of G
R-permutes with every Sylow subgroup of G.

(iii) G has a σ-basis {H1, . . . ,Ht} such that for each i 6= j every Sylow
subgroup of Hi R-permutes with every Sylow subgroup of Hj.

Theorem 9. [54] Let R = Rσ(G) be the σ-radical of G. Then G is σ-soluble
if and only if for any Π the following hold: G has a Hall Π-subgroup E, every
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Π-subgroup of G is contained in some conjugate of E and E R-permutes with
every Sylow subgroup of G.

As a first step in the proof of Theorem 8, the following useful fact was proved
in [54].

Proposition 7. [54] Suppose that G = A1A2 = A2A3 = A1A3, where A1,
A2 and A3 are σ-soluble subgroups of G. If the three indices |G : NG(AN

1 )|,
|G : NG(AN

2 )|, |G : NG(AN
3 )| are pairwise σ-coprime, then G is σ-soluble.

Corollary 20. Suppose that G = A1A2 = A2A3 = A1A3, where A1, A2 and
A3 are soluble subgroups of G. If the three indices |G : NG(A1)|, |G : NG(A2)|,
|G : NG(A3)| are pairwise coprime, then G is soluble.

Corollary 21. (Wielandt) If G has three soluble subgroups A1, A2 and A3

whose indices |G : A1|, |G : A2|, |G : A3| are pairwise coprime, then G is itself
soluble.

From Theorem 8 we get the following characterizations of π-separable groups.

Corollary 22. Let R be the product of all normal π-separable subgroups of
G. Then G is π-separable if and only if G = AB, where A and B are a Hall
π-subgroup and a Hall π′-subgroup of G, respectively, and every Sylow subgroup
of A R-permutes with every Sylow subgroup of B.

Corollary 23. Let R be the product of all normal π-separable subgroups of
G. Then G is π-separable if and only if G = AB, where A and B are a Hall
π-subgroup and a Hall π′-subgroup of G, respectively, and every Sylow subgroup
of G R-permutes with A and with B.

We say that G is σ-biprimary if |σ(G)| = 2.

Theorem 10. [54] Let G be σ-full and H = {1, H1, . . . ,Ht} a complete Hall
σ-set of G. Then any two of the following conditions are equivalent:

(i) G is σ-soluble.

(ii) Every σ-biprimary subgroup of G is σ-soluble and for every chief factor
H/K of G and every A ∈ H the number |G : NG((A ∩H)K)| is σ-primary.

(iii) Every σ-biprimary subgroup of G is σ-soluble and for any k ∈ {1, . . . , t}
there is a normal series 1 = G0 ≤ G1 ≤ · · · ≤ Gn = G of G such that the number
|G : NG((Hk ∩Gi)Gi−1)| is σ-primary for all i = 1, . . . , n.

In view of the Kegel-Wielandt theorem on solubility of products of nilpotent
groups we get from Theorem 10 the following facts.

Corollary 24. Suppose that G has a complete Hall σ-set H = {1, H1, . . . ,Ht}
whose members are nilpotent. Then any two of the following conditions are equiv-
alent:

(i) G is soluble.
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(ii) For every chief factor H/K of G and every A ∈ H the number |G :
NG((A ∩H)K)| is σ-primary.

(iii) For any k ∈ {1, . . . , t} there is a normal series 1 = G0 ≤ G1 ≤ · · · ≤
Gn = G of G such that the number |G : NG((Hk ∩ Gi)Gi−1)| is σ-primary for
all i = 1, . . . , n.

From Corollary 24 we get the following known result.

Corollary 25. (See Zhang [68] or Guo [23]) If for every Sylow subgroup P
of G the number |G : NG(P )| is a prime power, then G is soluble.

5 σ-supersoluble groups

Analysis of some problems leads to the need for finding σ-analogues of su-
persoluble groups.

Definition 3. We say that G is σ-supersoluble if every σ-eccentric chief
factor of G is cyclic.

We will use U and Uσ to denote the classes of all supersoluble and all σ-
supersoluble groups, respectively.

It is clear that every σ-supersoluble group is σ-soluble and every σ-nilpotent
group is σ-supersoluble. Moreover, G is supersoluble iff G is σ-supersoluble,
where σ = {{2}, {3}, . . .}.

Example 8. Let G = A5×B, where A5 is the alternating group of degree 5
and B = C29oC7 a non-abelian group of order 203. Let σ = {{7}, {29}, {2, 3, 5},
{2, 3, 5, 7, 29}′}. ThenGNσ = C29, soG is a σ-supersoluble group but it is neither
soluble nor σ-nilpotent.

A class 1 ∈ F of groups is called: a formation if for every group G, every
homomorphic image of G/GF belongs to F; a Fitting class if for every group G,
every normal subgroup of GF belongs to F. A formation F is said to be: saturated
if G ∈ F whenever G/Φ(G) ∈ F; hereditary if H ∈ F whenever H ≤ G ∈ F.

We say that G is strongly σ-supersoluble if every chief factor of G below
GNσ is cyclic.

The classes Sσ and Nσ are hereditary saturated Fitting formations [57].
With respect to the class Uσ we have

Theorem 11. (Guo, Skiba [25]) (i) The class of all (strongly) σ-supersoluble
groups is a hereditary formation.

(ii) The formation Uσ is saturated if and only if π(p− 1) ⊆ σi for all p ∈ σi
such that |σi| > 1.

(iii) The formation Uσ is a Fitting class if and only if |σi| > 1 for each
σi ∈ σ such that σi 6= {2} and π(p−1) ⊆ σi for all p ∈ σi. Hence Uσ is a Fitting
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class if and only if Uσ = Nσ.

The applications of σ-supersoluble groups are based on Theorem 11 and on
the following properties of σ-supersoluble and strongly σ-supersoluble groups.

Theorem 12. (Guo, Skiba [25]) G is σ-supersoluble if and only if the fol-
lowing assertions hold:

(1) GNσ is nilpotent.

(2) G′ is σ-nilpotent.

(3) GU ∩GNσ ≤ Φ(G) ∩ ZUσ(G).

Theorem 13. (Guo, Skiba [25]) G is strongly σ-supersoluble if and only if
[GU, GNσ ] = 1 and GU ∩GNσ ≤ Φ(G) ∩ ZU(G).

Applications of σ-supersoluble groups in the theory generalized
CLT -groups. Recall that G is called a CLT -group iff it satisfies the following
converse to Lagrange’s theorem: for every divisor d of |G|, G has a subgroup
of order d. The CLT -group and some interesting subclasses of the class of all
CLT -groups have been studied by many authors (see, for example, Chapters 1,
3, 4 and 5 in [61] and the recent papers [7, 42, 43, 44, 45]).

Definition 4. (i) We say that G is a CLTσ-group if G has a complete Hall
σ-set {1, H1, . . . ,Ht} such that for all subgroups Ai ≤ Hi, G has a subgroup of
order |A1| · · · |At|.

(ii) We say that G is a generalized CLTσ-group if for all pi ∈ σi ∈ σ(G),
G has a subgroup of order pn1

1 · · · p
nt
t for each (n1, . . . , nt) such that pn1

1 · · · p
nt
t

divides |G|.
Remark 1. (i) G is a CLTσ-group if and only if G has a complete Hall

σ-set {1, H1, . . . ,Ht} such that for every i and for every subgroup Ai of Hi, G
has a subgroup Ei of order |Ai||G|σ′i . Indeed, the intersection E = E1 ∩ · · · ∩Et
has order |E| = |A1| . . . |At| since (|G : Ei|, |G : Ej |) = 1 for all i 6= j.

(ii) G is a generalized CLTσ-group if and only if for all p ∈ σi ∈ σ(G), G
has a subgroup of order pn|G|σ′i for each n such that pn divides |G| (see (i)).

Note thatG is a CLT -group iffG is a CLTσ-group, where σ = {{2}, {3}, . . .}.
The group G in Example 8 is a CLTσ-group but it is not a CLT -group.

Example 9. (i) In view of Proposition 6, G 6= 1 is σ-nilpotent if and only
if G = H1 × · · · ×Ht, where H = {1, H1, . . . ,Ht} is a complete Hall σ-set of G.
Therefore every σ-nilpotent group is a CLTσ-group, and the σ-nilpotent groups
can be characterized as the groups having a complete Hall σ-set {1, H1, . . . ,Ht}
such that G has a normal subgroup of order |A1| · · · |At| for each set {A1, . . . , At}
such that Ai is a normal subgroup of Hi.

(ii) Now let G be a σ-soluble group and A a cyclic group of order |G|. We
shaw that B = G × A is a generalized CLTσ-group. Let p ∈ σi ∈ σ(B) and pn
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divides |B| = |G|2. Let P be a Sylow p-subgroup of G and |P | = pm. Since G
is a σ-soluble, it has a σi-complement E such that EP = PE by Theorem 8.
Let E1 be the σi-complement of A. First assume that n ≤ m, and let P1 be the
subgroup of A of order pn. Then E ×E1P1 is a subgroup of G of order pn|G|σ′i .
Finally, if n > m and P2 is the subgroup of A of order pn−m, then PE × E1P2

is a subgroup of G of order pn|G|σ′i . Therefore B is a generalized CLTσ-group
by Remark 1.

Theorem 14. (Guo, Skiba [25]) Every CLTσ-group is σ-soluble.

Note that the group G = A4×P , where A4 is the alternating group of degree
4 and P a group of order 5, is soluble but it is not a generalized CLTσ-group,
where σ = {{3, 5}, {3, 5}′}.

The symmetric group S4 of degree 4 is not supersoluble but it clearly is a
CLT -group. Nevertheless, if G is of odd order and every homomorphic image of
G is a CLT -group, then G is supersoluble (Humphreys [32]). On the other hand,
the Ore-Zappa theorem states (see [48, 66] or Theorem 4.1 in [61, Ch. 1]) that
G is supersoluble also in the case when every subgroup of G is a CLT -group.
With respect to CLTσ-groups we get the following fact.

Theorem 15. (Guo, Skiba [25]) Let D = GNσ . Suppose that G has a com-
plete Hall σ-set {1, H1, . . . ,Ht} such that Hi is supersoluble whenever Hi∩D 6=
1. Then G is σ-supersoluble if and only if every section of G is a CLTσ-group.

Now we consider one special class of strongly σ-supersoluble CLTσ-groups.

We will say that a subgroup A of G is Hσ-subnormally embedded (re-
spectively Hσ-normally embedded) in G if A is a σ-Hall subgroup of some
σ-subnormal (respectively normal) subgroup of G.

In the special case, when σ = {{2}, {3}, . . .}, the definition of Hσ-normally
embedded subgroups is equivalent to the concept of Hall normally embedded
subgroups in [44] and the definition of Hσ-subnormally embedded subgroups is
equivalent to the concept of Hall subnormally embedded subgroups in [45].

Example 9(i) is one of the motivations for the following our observation.

Theorem 16. (Guo, Skiba [25]) Let H = {1, H1, . . . ,Ht} be a complete
Hall σ-set of G, D = GNσ and π = π(D). Any two of the following conditions
are equivalent:

(i) For all p, q ∈ σi ∈ σ(G), where p ∈ π, and for every natural number n
such that qn divides |G|, G has an Hσ-subnormally embedded subgroup of order
qn|G|σ′i.

(ii) For each set {A1, . . . , At}, where Ai is a subgroup (respectively a nor-
mal subgroup) of Hi for all i = 1, . . . , t, G has an Hσ-subnormally embedded
(respectively Hσ-normally embedded) subgroup of order |A1| · · · |At|.

(iii) D is cyclic of square-free order and |σi ∩π(G)| = 1 for each σi ∈ σ(D).
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In the case when σ = {{2}, {3}, . . .}, Theorem 16 covers Theorem 11 in [44],
Theorem 2.7 in [45] and Theorems 3.1 and 3.2 in [42].

6 L-permutable subgroups

Π-permutable subgroups. Let L be a non-empty set of subgroups of G
and E a subgroup of G. Then a subgroup A of G is called L-permutable if
AH = HA for all H ∈ L; LE-permutable if AHx = HxA for all H ∈ L and all
x ∈ E.

Note that in the case when L is the set of all Sylow subgroups of G, LG-
permutable subgroups are also called S-quasinormal or S-permutable in G. If L
is the set of all Sylow p-subgroups of G for all p ∈ π, LG-permutable subgroups
are also called π-quasinormal or π-permutable in G [18].

Here we discuss the following generalization of π-permutability.

Definition 5. We say that a subgroup A of G is Π-permutable or Π-
quasinormal in G if G possesses a complete Hall Π-set H such that A is HG-
permutable.

Example 10. (i) In view of Proposition 6, every subgroup of a σ-nilpotent
group is Π-permutable in G for each ∅ 6= Π ⊆ σ.

(ii) Let G and σ be as in Example 6, and let Π = {σ0, σ2}. Then G is not
σ-nilpotent but its subgroup C7A5 is Π-permutable in G. This subgroup is not
Π1-permutable in G, where Π1 = {σ0, σ1}.

Theorem 17. (Guo, Skiba [29]) Let H be a Π-subgroup of G and D = GNσ

the σ-nilpotent residual of G.
(i) If G is Π-full and possesses a complete Hall Π-set H such that H is

HD-permutable, then H is σ-subnormal in G and the normal closure HG of H
in G is a Π-group.

(ii) If H is Π-permutable in G and, in the case when Π 6= σ(G), G possesses a
complete Hall Π′-set K such that H is K-permutable, then HG/HG is σ-nilpotent
and the normalizer NG(H) of H is also Π-permutable. Moreover, NG(H) is HG-
permutable for each complete Hall Π-set H of G such that H is HG-permutable.

(iii) If G is a Π′-full group of Sylow type and H is Π′-permutable in G, then
HG possesses a σ-nilpotent Hall Π′-subgroup.

Consider some corollaries of Theorem 17.
Theorem 17(i) immediately implies

Corollary 26. (Kegel [19]) If H a π-subgroup H of G is π-permutable in
G, then H is subnormal in G.

Now, consider some special cases of Theorem 17(ii). First note that in the
case when σ = {{2}, {3}, . . .} we get from Theorem 17(ii) the following results.
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Corollary 27. Let H be a π-subgroup of G. If H is π-permutable in G and,
also, H permutes with some Sylow p-subgroup of G for each prime p ∈ π′, then
the normalizer NG(H) of H is π-permutable in G.

In particular, in the case when π = P, we have

Corollary 28. (Schmid [51]) If a subgroup H of G is S-permutable in G,
then the normalizer NG(H) of H is also S-permutable.

Corollary 29. Let H be a π-subgroup of G. If H is π-permutable in G and,
also, H permutes with some Sylow p-subgroup of G for each prime p ∈ π′, then
H/HG is nilpotent.

Corollary 30. (Deskins [20]) If a subgroup H of G is S-permutable in G,
then H/HG is nilpotent.

Recall that G is said to be a π-decomposable if G = Oπ(G) × Oπ′(G), that
is, G is the direct product of its Hall π-subgroup and Hall π′-subgroup.

In the case when σ = {π, π′} we get from Theorem 17(ii) the following

Corollary 31. Suppose that G is π-separable. If a subgroup H of G per-
mutes with all Hall π-subgroups of G and with Hall π′-subgroups of G, then
HG/HG is π-decomposable.

In particular, we have

Corollary 32. Suppose that G is p-soluble. If a subgroup H of G permutes
with all Sylow p-subgroups of G and with all p-complements of G, then HG/HG

is p-decomposable.

Finally, in the case when Π = σ, we get from Theorem 17(ii) the following

Corollary 33. (Skiba [59]) Suppose that G is a σ-full group and let H be
a subgroup of G. If H is σ-permutable in G, then HG/HG is σ-nilpotent.

From Theorem 17(iii) we get

Corollary 34. Let H be a π-subgroup of G. If H permutes with every Sylow
p-subgroup of G for p ∈ π′, then HG possesses a nilpotent π-complement.

A subgroup H of G is called an S-semipermutable in G if H permutes with
all Sylow subgroups P of G such that (|H|, |P |) = 1. If H is S-semipermutable
in G and π = π(H), then H is π′-permutable in G. Hence from Corollary 34 we
get the following known result.

Corollary 35. (Isaacs [38]) If a π-subgroup H of G is S-semipermutable
in G, then HG possesses a nilpotent π-complement.

Note that in the group G = C7 o Aut(C7) a subgroup of order 3 is π′-
permutable in G, where π = {2, 3}, but it is not S-semipermutable.

Groups in which Π-permutability is a transitive relation. A group
G is called a PST -group if S-permutability is a transitive relation on G, that is,
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every S-permutable subgroup of a S-permutable subgroup of G is S-permutable
in G. In view of the Kegel Corollary 26, the class of all PST -groups coincides
with the class of all groups, in which every subnormal subgroup is S-permutable.
The description of PST -group was first obtained by Agrawal [1], for the soluble
case, and by Robinson in [50], for the general case. In the further publications,
authors (see, for example, the recent papers [3, 4, 6, 8, 9, 10, 14, 15, 16, 64]
and Chapter 2 in [12]) have found out and described many other interesting
characterizations of soluble PST -groups.

The results in [1, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 50, 64] are the motivations
for the following question.

Question 4. Let G be Π-full. What is the structure of G provided that
every Π-subnormal subgroup of G is Π-permutable in G?

We do not know the answer to this question in the case of an arbitrary Π-full
group G. Nevertheless, the answer to this question in the case when Π = σ and
G is σ-soluble is known.

Theorem 18. (Skiba [59]) Let G be σ-soluble. Then every σ-subnormal
subgroup of G is σ-permutable in G if and only if G = DoM , where D = GNσ

is an abelian σ-Hall subgroup of odd order of G such that every element of M
induces a power automorphism of D.

Corollary 36. (Agrawal [1]) Let G be a soluble group. Then every σ-subnormal
subgroup of G is σ-permutable in G if and only if G = DoM , where D = GNσ

is an abelian σ-Hall subgroup of odd order of G such that every element of M
induces a power automorphism of D.

Two characterizations of σ-permutability. Now we give two charac-
terizations of the σ-permutable subgroups. The first of them uses the idea of
description of the quasinormal subgroups which dates back to Theorem 5.1.1 in
the book of Schmidt [52].

Theorem 19. (Skiba [58]) Let G be a σ-full group of Sylow type. Then a
subgroup A of G is σ-permutable in G if and only if A is σ-subnormal in G and,
for each i ∈ I, the equality

E ∩ 〈A,H〉 = 〈A,E ∩H〉

holds for every Hall σi-subgroup H of G and every subgroup E of G containing
A.

Theorem 19 remains to be new also in the case when σ = {{2}, {3}, . . .}.
Corollary 37. A subgroup A of G is S-permutable in G if and only if A is

subnormal in G and the equality

E ∩ 〈A,P 〉 = 〈A,E ∩ P 〉
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holds for every Sylow subgroup P of G and every subgroup E of G containing
A.

Theorem 1 is a motivation for the following

Question 5. LetG be a Π-full group of Sylow type. Suppose that a subgroup
A of G is Π-permutable in 〈A, x〉 for all x ∈ G. Is it true then that A is Π-
subnormal in G?

Partially, the answer to this question is obtained in [59].

Theorem 20. (Skiba [59]) Let G be a σ-full group of Sylow type. Then a
subgroup A of G is σ-permutable in G if and only if A is σ-subnormal in G and
A is σ-permutable in 〈A, x〉 for all x ∈ G.

Corollary 38. (See Ballester-Bolinches and Esteban-Romero [11] or The-
orem 1.2.13 in [12]) A subgroup A of G is S-permutable in G if and only if A
is S-permutable in 〈A, x〉 for all x ∈ G.

The lattice of the Π-permutable subgroups. We will use LΠper(G) to
denote the set of all Π-subnormal Π-permutable subgroups of G.

Kegel proved [18] that the set of all S-permutable subgroup of G forms a
sublattice of the lattice L(G) of all subgroups of G. This result was generalized
in the paper [59], where it was proved that the set Lσper(G) of all σ-permutable
subgroups of a σ-full group G is also a sublattice of the lattice L(G). But in
fact, the method of the proof of the last result allows us to prove the following
general fact.

Theorem 21. Suppose that G is a Π-full group of Sylow type. Then the set
LΠper(G) forms a sublattice of the lattice L(G).

It is not difficult to show that the lattice LΠper(G), in general, is not modular.

Question 6. Characterize groups G with modular lattice LΠper(G).

Question 7. Characterize groups G with distributive lattice LΠper(G).

Groups in which every n-maximal subgroup is σ-permutable. If
Mn < Mn−1 < . . . < M1 < M0 = G, where Mi is a maximal subgroup of Mi−1,
i = 1, 2, . . . , n, then Mn is said to be an n-maximal subgroup of G. Recall also
that the rank r(G) of a soluble group G is the maximal integer k such that G
has a chief factor of order pk for some prime p (see [33, p. 685]).

Our next observation is the following fact.

Theorem 22. (Guo, Skiba [28]) Suppose that G is soluble and each n-
maximal subgroup of G is σ-permutable in G. Suppose that G has a complete
Hall σ-set H such that for every member H of H we have r(H) ≤ n− 1. Then
r(G) ≤ n− 1.

Corollary 39. Suppose that G is soluble and each n-maximal subgroup of
G is S-permutable in G. Then r(G) ≤ n− 1.
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Corollary 40. (Mann [46]) Suppose that G is soluble and each n-maximal
subgroup of G is quasinormal. Then r(G) ≤ n− 1.

It is not difficult to show that if G is not σ-nilpotent and each 3-maximal or
each 2-maximal subgroup of G is σ-subnormal in G, then G is soluble. Hence
we get also from Theorem 22 the following facts.

Corollary 41. Suppose that each 3-maximal subgroup of G is σ-permutable
in G. If G has a complete Hall σ-set H such that for every member H of H we
have r(H) ≤ 2, then G is soluble and r(G) ≤ 2.

Corollary 42. (Agrawal [2]) If every 2-maximal subgroup of G is S-permutable
in G, then G is supersoluble.

Corollary 43. (Huppert [34]) If every 3-maximal subgroup of G is normal
in G, then G is soluble of rank r(G) at most two.

H-permutable subgroups. We say that a subgroupA ofG isH-permutable
if G possesses a complete Hall σ-set H such that A is H-permutable.

Before continuing, we need to modify the concepts of complete Hall Π-sets
and Π-full groups.

Definition 6. Let H be a complete Hall Π-set of G and let F be a class of
groups. Then we say that H is a complete Hall ΠF-set of G if every member of
H belongs to F.

Recall that in the case when Π = σ and F = N is the class of all nilpotent
groups, a complete Hall ΠF-set of G is called a Wielandt σ-set [27] of G; if Π = σ
and F = U is the class of all supersoluble groups, then a complete Hall ΠF-set
of G is called a generalized Wielandt σ-set of G.

In view of the Blessenohl-Slepova Theorem [53, IV, 16.2], the class of all
σ-soluble groups having a complete Hall ΠF-set is a saturated formation for
any Π ⊆ σ and for any saturated formation F. On the other hand, in view of
the Vorob’ev-Zagurski Theorem [60], the class of all soluble groups having a
complete Hall ΠF-set is a local Fitting class, for any local Fitting class F and
any Π ⊆ σ.

The mentioned in Introduction results in [5, 35, 36] and many other related
results make natural to ask:

(I) Suppose that G has a complete Hall σF-set H of such that every maximal
subgroup of any subgroup in H permutes with all other members of H. What
we can say then about the structure of G? In particular, is it true then that G
is supersoluble in the case when F = U is the class of all supersoluble groups?

(II) Suppose that G has a complete Hall σ-set. What we can say then about
the structure of G provided every complete Hall σ-set of G forms a σ-basis in
G?

Note that in the paper [5], on the base of the classification of all simple
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non-abelian groups, it was proved that if G has a complete Sylow set S such
that if every maximal subgroup of any subgroup in S permutes with all other
members of S, then G is supersoluble.

In the paper [26], not using such classification, the authors proved the fol-
lowing two results concerning Question (I).

Theorem 23. (Guo, Skiba [26]) Suppose that G has a generalized Wielandt
σ-set H such that every maximal subgroup of any non-cyclic subgroup in H
permutes with all other members of H. Then G is supersoluble.

On the base of Theorem 23, it is proved also the following

Theorem 24. (Guo, Skiba [26]) Suppose that G has a complete Hall σ-
set H such that every group in H is a soluble PST -group and every maximal
subgroup of any subgroup in H permutes with all other members of H. Then
G = D oM is a supersoluble group, where the σ-nilpotent residual D = GNσ

of G is a nilpotent Hall subgroup of G whose maximal subgroups are normal in
G and there are no primes p such that p divides |D| and (p − 1, |G|) = 1. In
particular, |D| is odd.

Recall that G is a soluble PST -group if and only if G = DoM is supersol-
uble, where D = GN is an abelian Hall subgroup of G of odd order and every
subgroup of D is normal in G [12, 2.1.2 and 2.1.8]. Since every nilpotent group
is a PST -group, we get from Theorem 24 the following result.

Corollary 44. G has a complete Hall σ-set H such that every group in H
is nilpotent and every maximal subgroup of any subgroup in H permutes with all
other members of H if and only if G = D oM is a supersoluble group, where
the nilpotent residual D = GN of G is a nilpotent Hall subgroup of G whose
maximal subgroups are normal in G, and there are no primes p such that p
divides |D| and (p− 1, |G|) = 1. In particular, |D| is odd.

In the paper [27], the following special case of Theorem 23 was proved.

Corollary 45. (Guo and Skiba [27]) If G has a complete Wielandt σ-set
H such that every subgroup in H permutes with all maximal subgroups of any
member of H, then G is supersoluble.

The following result was obtained by Asaad and Heliel in [5] by applying the
classification of all non-abelian simple groups. The proof of Theorem 24 only
requires the classification of simple groups with abelian Sylow 2-subgroups.

Corollary 46. (Asaad and Heliel [5]) If G has a complete set of Sylow
subgroups S such that every Sylow subgroup in S permutes with all maximal
subgroups of any member of S, then G is supersoluble.

Now let p > q > r be primes such that qr divides p − 1. Let P be a group
of order p and QR ≤ Aut(P ), where Q and R are groups with order q and r,
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respectively. Let G = P o (QR). Then, in view of the above-mentioned Huppert
result in [35], G is not the group such that every complete set of Sylow subgroups
forms a Sylow basis of G. But it is easy to see that every complete Hall set of
type σ, where σ = {7}∪{3, 2}∪(P\{2, 3, 7}), is a σ-basis of G. This elementary
example is a motivation for the next result, which gives the answer to Question
(II) in the universe of all soluble groups.

Theorem 25. (Guo, Skiba [26]) The class Hσ is a hereditary formation
and it is saturated if and only if |σ| ≤ 2. Moreover, G ∈ Hσ if and only if G is
soluble and the automorphism group induced by G on every its chief factor of
order divisible by p is either a πi-group, where p 6∈ πi ∈ σ, or a πi ∪ πj-group,
where πi, πj ∈ σ and p ∈ πi.

In this theorem Hσ denotes the class of all soluble groups G such that every
complete Hall σ-set of G forms a σ-basis of G.

The lattice of the H-permutable subgroups. We use P(H) to denote
the set of all H-permutable subgroups of G.

Theorem 26. (Skiba [56]) If H is a σ-basis of G, then P(H) is a sublattice
of L(G).

Corollary 47. (Doerk, Hawkes [21, I, 4.28]) If Σ is a Hall system of a
soluble group G, then P(Σ) is a sublattice of L(G).

In general, the lattice P(Σ), where Σ is a Hall system of a soluble group G,
is not modular. Nevertheless, the following fact is true.

Theorem 27. (Kimber [40]) Let Σ be a Hall system of a soluble group G.
Then P(Σ) is modular if and only if every two subgroups of P(Σ) are permutable.

Question 8. Let H be a σ-basis of G. Characterize groups G with modular
lattice P(H).
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