
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 36 (2016) suppl. 1, 35–50. doi:10.1285/i15900932v36suppl1p35

On the relationships between the factors

of upper and lower central series in

groups and other algebraic structures

Leonid A. Kurdachenko
Department of Algebra, Dnepropetrovsk National University, Gagarin Prospect 70,
Dnepropetrovsk 10, Ukraine
lkurdachenko@i.ua

Igor Ya. Subbotin
Department of Mathematics, National University, 5245 Pacific Concourse Drive,
Los Angeles, CA 90045, USA
isubboti@nu.edu

Received: 21.04.2016; accepted: 05.05.2016.

Abstract. We discuss some new recent development of the well known classical R. Baer and
B. Neumann theorems. More precisely, we want to show the thematic which evolved from the
mentioned classical results describing the relations between the central factor-group and the
derived subgroup in an infinite group. We track these topics not only in groups, but also in
some other algebraic structures.

Keywords: Schur Theorem, Baer Theorem, Neumann Theorem, central factor-group,
derived subgroup, Leibniz algebras, Topological groups

MSC 2010 classification: 20F14, 20F19, 20E34, 20G15, 20F22, 17A32, 22A05

The concepts of the center, upper central series, and lower central series
are very important notions not only in group theory but also in some other
algebraic structures. If G is a group, then the central factor-group G/ζ(G) and
the derived subgroup [G, G] indicate how far the group G is from being abelian:
Thus if G/ζ(G) or [G, G] is trivial, then G is abelian. The question about
relations between these two groups arises naturally. The following classical result
on infinite groups is the first answer on this question.

Theorem BN. Let G be a group, C a subgroup of the center ζ(G) such that
G/C is finite. Then the derived subgroup [G, G] is finite.

In many papers, this theorem is called the Schur’s theorem. I. Schur was a
very famous algebraist; he proved many important and interesting results. But
he did not work in infinite groups and did not discover Theorem BN. We try
to trace the history of this result, the history of its occurrence, and in particular,
to find out how it has been attributed to I. Schur. Usually, the authors who call
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this result the Schur’s theorem makes a reference on the article [17] (we must
admit that we have done it also). However, we one cannot find Theorem BN
there. In this paper, I. Schur introduced a concept of the group, which now called
the Schur multiplicator or Schur multiplier (only for finite groups!), and
obtained some properties of this group. In the modern terminology, the Schur
multiplier M(G) of a group G is exactly the second cohomology group H2(G,
U(C)). Initially Theorem BN appears in the paper of B.H. Neumann [16].
But at the end of this paper B.H. Neumann recognized that he received a letter
from R. Baer, in which R. Baer mentioned that this result is a corollary of a
more general result, which has been proved in his paper [1]. In fact, Theorem 3
of this paper proved that if a normal subgroup H of a group G has finite index,
then the factor ([G, G] ∩H)/ [H, G] is also finite. Nevertheless, R. Baer placed
Theorem BN in its usual form and gives another proof of it in his paper [2].

In connection to Theorem BN the following natural question appears: Are
the order | G/ζG) |= t and the order of the derived subgroup [G, G] connected?
If it is happened, what kind of a function defines this relation? B.H. Neumann
posed this question in his paper [16]. He obtained the first bound for the order
of | [G, G] | making a reduction to the case of finite groups, and then using
some results of I. Schur. R. Baer in the paper [2] has obtained the bound for
the exponent of [G, G]. It looks like the following.

Theorem 1.1. Let G be a group.
If | G/ζ(G) |= t, then | [G, G] |≤ tm where m = t2 + 1.
If | G/ζ(G) |= t, then [G, G]m = 〈1〉 where m = t2.

The best yet bound has been obtained by J. Wiegold [22], [23].

Theorem 1.2. Let G be a group. Suppose that central factor-group G/ζ(G) is
finite and has order t.

(i) Then | [G, G] |≤ w(t) where w(t) = tm and m = 1/2 log2(t− 1).

(ii) If t = pn, where p is a prime, then [G, G] is a p-group of order at most
p1/2n(n−1).

(iii) For each prime p and each integer n > 1 there exists a p-group G with
| G/ζ(G) |= pn and [G, G] = p1/2n(n−1).

When | G/ζ(G) | has more than one prime divisor, one can do better, though
here the picture is less clear. For the proof of these results J. Wiegold also used
the results about Schur multiplier, but talking on Theorem BN he refers on
[16].

P.Hall was the first researcher who named Theorem BN the Schur’s theo-
rem. He did it �TO in his famous lectures on nilpotent groups [6], [8]. He gives
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this theorem with his own proof, and simply wrote the name I. Schur at this
result without making any reference. Thus the name Schur Theorem was in-
troduced by P. Hall. The reputation of P. Hall was very influential, so inheriting
its many algebraists start using the name Schur’s Theorem for Theorem
BN.

We recall some definitions.
The upper central series of a group G is the ascending central series

〈1〉 = ζ0(G) ≤ ζ(G) = ζ1(G) ≤ . . . ζα(G) ≤ ζα+1(G) ≤ . . . ζγ(G)

of characteristic subgroups such that ζα+1(G)/ζα(G) = ζ(G/ζα(G)) for all ordi-
nals α < γ, ζλ(G) = ∪β<α ζβ(G) for all limit ordinals λ < γ and ζ(G/ζγ(G)) =
〈1〉.

The last term ζγ(G) of the upper central series is called the upper hy-
percenter of G and will be denoted by ζ∞(G). An ordinal γ is called the
hypercentral length of G and will be denoted by zl(G). We note that J.C.
Lennox and J.E. Roseblade [14] used for zl(G) the term the upper central
height .

The lower central series of a group G is the descending series

G = γ1(G) ≥ γ2(G) ≥ . . . γα(G) ≥ γα+1(G) ≥ . . . γδ(G)

of characteristic subgroups defined by the rule G = γ1(G), γ2(G) = [G, G], and
recursively γα+1(G) = [γα(G), G] for all ordinals α, γλ(G) = ∩µ<λ γµ(G) for
the limit ordinals λ, and γδ(G) = [γδ(G), G]. The last term γδ(G) of this series
is called the lower hypocenter of G.

Initial relations between the upper and lower central series are well known:
If G = ζn(G) for some positive integer n, then γn+1(G) = 〈1〉, and conversely. It
is not true for infinite ordinals: An infinite dihedral 2-group D is a hypercentral
group of the hypercentral length ω + 1, but γ2(D) = γ3(G) is a non-trivial
infinite subgroup. On the other hand, by Magnus’s theorem, every non-abelian
free group has a lower central series of length and has a trivial center.

We can remark that if G is a hypercentral group with zl(G) = ω, then
γω+1(G) = 〈1〉. This result has been proved by D.M. Smirnov in his paper [18].

In this connection, the following natural question arises: What can we say
about the groups having a finite upper (respectively lower) central series which
terminates not necessary on G (respectively on 〈1〉)? In particular, what we can
say about a group G such that G/ζK(G) is finite.

Theorem B. Let G be a group. Suppose that there exists a positive integer k
such that ζk(G) has finite index. Then γk+1(G) is finite.

This theorem is called the Baer theorem. But the paradox is that R. Baer
did not give a direct proof of this result. In the aforementioned article [2], R. Baer
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notes that this result can be obtained from Zusatz zum Endlichkeitssatz of
this paper. Title “the Baer theorem” for the first time also occurred in P. Hall
lectures. P. Hall proves some generalization of Theorem BN, and as a corollary
of it, derived Theorem B. He again named this Corollary as R. Baer theorem
without any references.

We note that in this case, there also exists a function β1 such that | γk+1(G) |≤
β1(t, k) where t =| G/ζk(G) |.

This function is defined recursively:

β1(t, 1) =www(t),β1(t, 2) =www(www(t)) + twww(t), . . . ,

β1(t,k) =www(β1(t,k−1))+t·β1(t,k−1) where www(t) = tm and m =
1

2
log2(t+1).

The fact that γk+1(G) is finite, implies thatG includes the least normal subgroup
L such that G/L is nilpotent. It leads us to the concept of a nilpotent residual.
There will be appropriate to remind the concept of a residual in its most general
form.

Let G be a group, X be a class of groups, and
ResX (G) = {H | H is normal subgroup such that G/H ∈ X}.
Then the intersection GX of all normal subgroups from a family ResX (G)

is called the X -residual of a group G. If ResX (G) has the least element L,
then L = GX and G/GX ∈ X . But in general G/GX /∈ X .

If X = a is the class of all abelian groups, then a-residual Ga is exactly the
derived subgroup [G, G] of a group G. In particular, G/Ga ∈ a.

If X = N c is the class of all nilpotent groups having nilpotency class at
most c, then N c-residual GN c is exactly the subgroup γc+1(G). In particular,
G/GNc ∈N c.

But if X =N is the class of all nilpotent groups, then, in general, G/GN /∈
N . Moreover, this factor-group can be non locally nilpotent. For example, if G
is a free group, then by Magnus theorem γω(G) = 〈1〉. It follows that GN = 〈1〉,
so that G/GN is a free group.

Therefore the following question appears: For what group G the factor-group
G/GN is locally nilpotent?

The finiteness of γk+1(G) implies that the nilpotent residual of G is finite.
After Theorem B we show some bound for order of γk+1(G), and hence for
the nilpotent residual. This bound was significantly improved in the paper [13].

Theorem 1.3. Let G be a group, Z be the upper hypercenter of G and L a
nilpotent residual of G. Suppose that zl(G) is finite and G/Z has finite order t.
Then the following assertions hold:

(i) L is finite and there exists a function β2 such that | L |≤ β2(t);
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(ii) G/L is nilpotent and there exists a function β3 such that ncl(G/L) ≤
β3(t).

It is interesting to observe that the order of the nilpotent residual depends
only of the order of the factor-group by the upper hypercenter, but not depends
of zl(G).

M. de Falco, F. de Giovanni, C. Musella and Ya. P. Sysak [7] have obtained
a generalization of Theorem B in the following form.

Theorem 1.4. Let G be a group, Z be the upper hypercenter of G. If G/Z is
finite, then G includes a finite normal subgroup L such that G/L is hypercentral.

Theorem 1.4 generates the following natural question: Are there orders of
G/Z and L connected in some way? In particular, is the order of L bounded?

L.A. Kurdachenko, J. Otal and I.Ya. Subbotin answered on this question in
the paper [10].

Theorem 1.5. Let G be a group and Z be the upper hypercenter of G. Suppose
that G/Z is finite, G/Z = t. Then G includes a finite normal subgroup L such
that G/L is hypercentral and | L |≤ td where d = 1

2(log2t+ 1).
The technique used in the last paper enables us to obtain a stronger result.
Let G be a group and L a locally nilpotent subgroup of G. We say that

L is locally hypercentrally embedded in G if for every finitely generated
subgroup F of G the intersection F ∩ L lies in the upper hypercenter of F .

Theorem 1.6. Let G be a group and L be a locally nilpotent normal subgroup
of G. Suppose that G/L is finite, | G/L |= t. If L is locally hypercentrally
embedded in G, then G includes a finite normal subgroup K such that G/K is
locally nilpotent. Moreover, | K |≤ td where d = 1

2(log2t+ 1). In particular, the
locally nilpotent residual R of G is finite and G/R is locally nilpotent.

Consider now some analogs of the above concepts and results in some other
algebraic structures. Naturally we can not consider all the algebraic structures
in which some analogs of the above group-theoretic results are considered. Our
choice is essentially determined by our needs and tastes. One of the first analogs
of Theorem BN was proved in topological groups. The case of topological
groups has its own specific nature. The compactness is a natural analog of
finiteness here. But the situation with the terms of upper and lower central
series is more complicated. The terms of the upper central series having finite
numbers are closed subgroups, but the rest in general not. The terms of the
lower central series, in general, are not closed. An analog of Theorem BN has
been obtained by V.I. Ushakov in the paper [21] and looks as the following.

Theorem 2.1. Let G be a locally compact groups. If the factor-group G/ζ(G)
is compact, then the closure of [G, G] is also compact.
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Using this theorem and the fact that the centralizers of any sets of a topo-
logical group are closed by adapting one of the proofs of Theorem B, it is
possible to prove the following result

Theorem 2.2. Let G be a locally compact groups. Suppose that there exists a
positive integer k such that G/ζk(G) is compact. Then the closure of γk+1(G)
is also compact.

Another major algebraic structure where the concept of the upper and lower
central series emerged and have become familiar for a long time are Lie algebras.
??????? ????????, ??? there is a certain analogy between groups and Lie algebras:
In Lie algebras it is possible to obtain analogs of many group theoretical results,
and vice versa. Moreover, in some cases, in Lie algebras some group theoretical
results can get a deeper promotion (of course, in the case, when one considers
a Lie algebra over a field). More details on it one can find in a survey article of
I.N. Stewart [19]. So, it is natural to look for analogs of the discussed results in
the Lie algebras.

Let L be a Lie algebra over a field F and

ζ(L) = {x ∈ L | [x, y] = 0 for each element y ∈ L}

be the center of L. Clearly ζ(L) is a subalgebra, moreover, ζ(L) is an ideal of
L. As for groups we define here the upper central series

〈0〉 = ζ0(L) ≤ ζ1(L) ≤ ζ2(L) ≤ . . . ≤ ζα(L) ≤ ζα+1(L) ≤ . . . ζγ(L) = ζ∞(L)

of an Lie algebra L by the following rule ζ1(L) = ζ(L) is the center of L,
and recursively ζα+1(L)/ζα(L) = ζ(L/ζα(L)) for all ordinals α and ζγ(L) =
∪µ<λ ζµ(L) for the limit ordinals λ. The last term ζ∞(L) of this series is called
the upper hypercenter of L.

If L = ζ∞(L), then L is said to be hypercentral Lie algebra.
Define the lower central series of L by the following rule: L1 = γ1(L) = L,

γ2(L) = [L, L] and recursively γα+1(L) = [γα(L), L] for all ordinals α and
γλ(L) = ∩µ<λ γµ(L) for the limit ordinals λ.

For Lie algebras the following analog of Theorem BN is well-known.

Theorem 3.1. Let L be a Lie algebra over a field F . If the factor-algebra
L/ζ(G) has finite dimension d, then the derived ideal [L, L] also has finite
dimension. Moreover, dimF ([L,L]) ≤ 1

2d(d + 1).
Some extensions of this result have been obtained by I.N. Stewart in the

paper [20]. In particular, the results of this paper implies the following analog
of Theorem B.

Theorem 3.2. Let L be a Lie algebra over a field F . Suppose that there exists
a positive integer k such that ζk(L) has finite codimension. Then γk+1(G) has
finite dimension.
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As for groups, for Lie algebras one can define the concept of the residual.
More concretely, let L be a Lie algebra and X be a class of Lie algebras, then
put

ResX (L) = {H | H is an ideal of L such that L/H ∈ X}.

Then the intersection LX of all ideal from the family ResX (G) is called the
X -residual of algebra L. Thus, a natural question regarding an analog of The-
orem 1.3 arises. Such analog was obtained by L.A. Kurdachenko, A.A. Pypka
and I.Ya. Subbotin in the paper [12].

Theorem 3.3. Let L be a Lie algebra over a field F and R be a nilpotent
residual of L. Suppose that there exists a positive integer k such that ζk(L) has
finite codimension d. Then L/R is nilpotent and R has finite dimension at most
1
2d(d + 3).

This result is an intermediate step toward the following analog of Theorems
1.4, 1.5, which was also obtained in [12].

Theorem 3.4. Let L be a Lie algebra over a field F . Suppose that the upper
hypercenter of L has finite codimension d. Then L includes an ideal R such that
L/R is hypercentral and R has finite dimension at most 1

2d(d + 3).

Leibniz algebras are interesting generalizations of Lie algebras. The concept
of Leibniz algebra was introduced by J.L. Loday [15]. Since then it became very
popular mainly because of its applications in physics.

Let L be an algebra over a field F , then L is called a Leibniz algebra (more
precisely a left Leibniz algebra), if its multiplication satisfies the Leibniz
identity

[[a, b], c] = [a, [b, c]]− [b, [a, c]] for all a, b, c ∈ A.

If L is a Leibniz algebra such that [a, a] = 0 for every element a ∈ L, then it is not
hard to check that L is a Lie algebra. In other words we can consider Leibniz
algebras as a non-asymmetrical analogy of Lie algebras. For some important
results of the theory of Lie algebras there are analogs in Leibniz algebras. Very
often these analogs are direct, but certain analogs have some specificity.

Let L be a Leibniz algebra over a field F . If A, B are subspaces of L, then
[A, B] will denote a subspace, generated by all elements [a, b] where a ∈ A,
b ∈ B.

As usual, a subspace A of L is called a subalgebra of L, if [x, y] ∈ H for
every x, y ∈ H. It follows that [A, A] ≤ A.

A subalgebra A is called a left (respectively right) ideal of L, if [y, x] ∈ A
(respectively [x, y] ∈ A) for every x ∈ A, y ∈ L. In other words, if A is a left
(respectively right) ideal, then [L, A] ≤ A (respectively [A, L] ≤ A).
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A subalgebra A of L is called an ideal of L (more precisely, a two-sided
ideal) if it is both a left ideal and a right ideal, that is [x, y], [y, x] ∈ A for
every x ∈ A, y ∈ L.

If A is an ideal of L, we can consider a factor-algebra L/A. It is not hard
to see that this factor-algebra also is Leibniz algebra.

Let L be a Leibniz algebra over a field F , M be non-empty subset of L, then
〈M〉 denotes the subalgebra of L generated by M .

Denote by Leib(L) the subspace generated by the elements [a, a], a ∈ L.
It is possible to show that Leib(L) is an ideal of L, and if H is an ideal of

L such that L/H is a Lie algebra, then Leib(L) ≤ H.
The ideal Leib(L) is called the Leibniz kernel of an algebra L.
We note also the following important property of the Leibniz kernel:

[[a, a], x] = 0 for arbitrary elements a, x ∈ L.

Let L be a Leibniz algebra over a field F , M be a non-empty subset of L and
H be a subalgebra of L. Put

AnnHleft(M) = {a ∈ H | [a,M ] = 0},AnnHright(M) = {a ∈ H | [M,a] = 0}.

The subset AnnHleft(M) is called the left annihilator or left centralizer of
M in the subalgebra H; the subset AnnHright(M) is called the right annihi-
lator or right centralizer of M in the subalgebra H. The intersection

AnnH(M) = AnnHleft(M) ∩AnnHright(M) = {a ∈ H | [a,M ] = 〈0〉 = [M,a]}

is called the annihilator or centralizer of M in the subalgebra H.
It is not hard to see that all these subsets are subalgebras of L. Moreover,

if M is a left ideal of L, then AnnLleft(M) is an ideal of L. If M is an ideal of
L, then AnnL(M) is an ideal of L.

The left (respectively right) center ζleft(L) (respectively ζright(L)) of L is
defined by the rule

ζleft(L) = {x ∈ L | [x, y] = 0 for each element y ∈ L}.

( respectively

ζright(L) = {x ∈ L | [y, x] = 0 for each element y ∈ L}).

By above noted, the left center of L is an ideal, moreover Leib(L) ≤ ζleft(L),
so that L/ζleft(L) is a Lie algebra.

The center ζ(L) of L is the intersection of the annihilators of all the ele-
ments of L. In other words,

ζ(L) = {x ∈ L | [x, y] = 0 = [y, x] for each element y ∈ L}.
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Thus the center is an annihilator of whole algebra L, it is an ideal of L. In
particular, we can consider the factor-algebra L/ζ(L).

The right center is an subalgebra of L, and, in general, the left and right
centers are different; they even may have different dimensions. It is possible to
construct an example to illustrate this statement.

Define now the lower central series of L

L = γ1(L) ≥ γ2(L) ≥ . . . ≥ γα(L) ≥ γα+1(L) ≥ . . . γδ(L)

by the following rule: γ1(L) = L, γ2(L) = [L, L], and recursively γα+1(L) =
[L, γα(L)] for all ordinals α and γλ(L) = ∩µ<λ γµ(L) for the limit ordinals λ.
The last term γδ(L) is called the lower hypocenter of L. We have γδ(L) =
[L, γδ(L)].

If α = k is a positive integer, then γk(L) = [L, [L, [L, . . . , L] . . . L] is a left
normed product of k copies of L.

A Leibniz algebra L is called nilpotent , if there exists a positive integer k
such that γk(L) = 〈0〉. More precisely, L is said to be nilpotent of nilpotency
class c if γc+1(L) = 〈0〉, but γc(L) 6= 〈0〉. We denote by ncl(L) the nilpotency
class of L.

It is useful to show some properties of Leibniz algebras.

Proposition 4.1. Let L be an Leibniz algebra over a field F . Then

(i) If H is an ideal of L, then [H, H] is an ideal of L, in particular the derived
subalgebra [L, L] is a ideal.

(ii) If H is an ideals of L, then [L, H] is a subalgebra of L.

(iii) If H is an ideals of L, then [H, L] is a subalgebra of L.

(iv) If H is an ideals of L, then [L, H] + [H, L] is an ideal of L.

(v) If H is an ideal of L, then [γj(H), γk(H)] ≤ γj+k(H) for every positive
integers j, k.

(vi) If H is an ideal of L, then γj(H) is an ideal of L for each positive integer
j. In particular, γj(L) is an ideal of L for each positive integer j.

(vii) If H is an ideal of L, then γj(γk(H)) ≤ γj k(H) for every positive integers
j, k.

We remark that if A, B are ideals of a Leibniz algebra L, then, in general,
[A, B] need not be an ideal. A correspondent examples has been constructed by
D. Barnes in his paper [3].
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Consider a factor γk(L)/γk+1(L), k ∈ N. By definition, [L, γk(L)] = γk+1(L).
By above property (iii), [γk(L), L] = [γk(L), γ1(L)] ≤ γk+1(L). Let

〈0〉 = C0 ≤ C1 ≤ . . . ≤ Cα ≤ Cα+1 ≤ . . . Cγ = L

be an ascending series of ideals of the Leibniz algebra L. This series is called
central if Cα+1/Cα ≤ ζ(L/ζα(L)) for each ordinal α < γ. In other words,
[Cα+1, L], [L, Cα+1] ≤ Cα for each ordinal α < γ.

Define now the upper central series

〈0〉 = ζ0(L) ≤ ζ1(L) ≤ ζ2(L) ≤ . . . ≤ ζα(L) ≤ ζα+1(L) ≤ . . . ζγ(L) = ζ∞(L)

of a Leibniz algebra L by the following rule: ζ1(L) = ζ(L) is the center of L, and
recursively ζα+1(L)/ζα(L) = ζ(L/ζα(L)) for all ordinals α, ζλ(L) = ∪µ<λ ζµ(L)
for a limit ordinals λ. By definition, each term of this series is an ideal of L. The
last term ζ∞(L) of this series is called the upper hypercenter of L. Denote
by zl(L) the length of upper central series of L.

Suppose now that a Leibniz algebra L has a finite central series

〈0〉 = C0 ≤ C1 ≤ . . . ≤ Cn = L.

Then

(i) γj(L) ≤ Cn−j+1, so that γn+1(L) = 〈0〉.

(ii) Cj ≤ ζj(L), so that ζn(L) = L.

(iii) L is nilpotent and ncl(L) ≤ n. Furthermore, the upper central series of L
is finite, ζ∞(L) = L, zl(L) ≤ n, moreover ncl(L) =zl(L).

The following example shows that the finiteness of codimension of the left
center does not imply the finiteness of dimension of the derived ideal.

Let F be a field. Put L = Fe1⊕Fe2⊕Z where a subspace Z has a countable
basis {zn, | n ∈ N}. Put [zn, x] = 0 for every x ∈ L and

[e1, e1] = [e2, e2] = [e1, e2] = [e2, e1] = z1, [e1, z1] = [e2, z1] = 0.

It is possible to check that L is a Leibniz algebra. By it construction, Z is a left
center of L, the right center coincides with the center and coincides
with Fz1, so that the left center has finite codimension (and therefore, infinite
dimension) and the right center and the center have finite dimension. By its
construction, [L,L] = Z. Furthermore Leib(L) = Z.

An analog of Theorem BN was proved by L.A. Kurdachenko. A.A, Pypka,
J. Otal [11] and looks as following.
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Theorem 4.2. Let L be a Leibniz algebra over a field F . Suppose that codimF (ζleft

(L)) = d and codimF (ζright (L)) = r are finite. Then [L,L] has finite dimen-
sion, moreover dimF ([L,L]) ≤ d(d + r).

In particular, if codimF (ζ(L)) = d is finite. Then [L,L] has finite dimen-
sion, moreover dimF ([L,L]) ≤ d2. And the Leibniz kernel of L has finite di-
mension at most 1

2d(d− 1).

An analog of Theorem B for Leibniz algebras is also proved in the paper
[11].

Theorem 4.3. Let L be a Leibniz algebra over a field F . Suppose that codimF (ζk(L)) =
d is finite. Then γk+1(L) has finite dimension, moreover dimF (γk+1(L)) ≤
2k−1dk+1, k ≥ 1.

As a corollary we obtained the bound for a dimension of γk+1(L) in Lie
algebra L.

Corollary 4.4. Let L be a Leibniz algebra over a field F . Suppose that codimF (ζk(L)) =
d is finite. Then γk+1(L) has finite dimension. Moreover, dimF (γk+1(L)) ≤
1
2dk−1(d− 1).

The next algebraic structure we considered is a vector space A over a field F
and acting on it a group G of non-singular linear transformations. In this case
we can consider A as a FG-module. There fore we give more general definition.

Let G be a group, R a ring and A an RG-module. Put

ζRG(A) = {a ∈ A | a(g − 1) = 0 for each element g ∈ G} = CA(G).

Clearly ζRG(A) is an RG-submodule of A. This submodule is called the RG-
center of A.

An analog of the derived subgroup is the following. Denote by $RG the
augmentation ideal of a group ring RG, that is the two-sided ideal, generated
by all elements g − 1, g ∈ G. The submodule [A,G] = A($RG) generated by
the elements a(g − 1), a ∈ A, g ∈ G, is called the derived submodule of A.

The first case here is the case when R is a field. In this case, A becomes a
vector space over R, and the natural substitution of the restriction of finiteness
becomes the finiteness of dimensionality over R. The group G (more precisely
G/CG(A)) could be considered as a subgroup of a group GL(R,A) of all non-
singular linear transformations of the R-vector space A.

We observe that in reality we cannot have full analogy here. If A is an RG-
module, then we have a natural semidirect product K = AλG. Instead of the
center ζ(K) we will consider ζ(K)∩A = CA(G). This observation leads us to the
conclusion that we cannot obtain for modules a complete analog of Theorem
BN. The following example justifies this.
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Let A be a vector space over the field F of infinite countable dimension and
let {an | n ∈ N} be a basis of A. Define the following F -automorphism gk of A
by the rule:

angk =


a1 + ak, if n = 1

an, if n > 1.

Let G = 〈gn | n ∈ N〉. Clearly, G = Drn∈N〈gn〉. In particular, if char(F ) = p >
0, then G is an elementary abelian p-group; if char(F ) = 0, then G is a free
abelian group,. Then ζFG(A) is a subspace⊕n>1 Fan, so that codimF (ζFG(A)) =
1. In the same time, [A, G] s also a subspace ⊕n>1 Fan, so that dimF (A($FG))
is infinite.

This shows that the question about an appropriate module analog for The-
orem BN should be expressed in the following form.

Let F be a field, A be a vector space over F and G be a subgroup
of GL(F,A). Suppose that ζFG(A) has finite codimension. For what
group G a derived submodule [A,G] has finite dimension?

In the mentioned above example, the group G has an infinite elementary
abelian section. This is a hint for considering the following possibility.

Let p be a prime. We say that a group G has finite section p-rank
srp(G) = r if every elementary abelian p-section of G is finite of order at most
pr and there is an elementary abelian p-section A/B of G such that | A/B |= pr.

And similarly, we say that a group G has finite section 0-rank sr0(G) = r
if for every torsion-free abelian section U/V of G the inequality rZ(U/V ) ≤ r
holds and there is an abelian torsion-free section A/B such that rZ(U/V ) = r.

Here rZ(A) is the Z-rank of an abelian group A (that is a rank A as a
Z-module).

We note that if a group G has finite section p-rank for some prime p, then
G has finite section 0-rank, moreover sr0(G) ≤ srp(G).

Recall that a group G has finite special rank r(G) = r if every finitely
generated subgroup of G can be generated by r elements and r is the least
positive integer with this property.

We can see that the concept of section p-rank generalizes the concept of
special rank. Indeed if a group G has a finite special rank r, then G has finite
section p-rank for every prime p, moreover srp(G) ≤ r.

The following result was obtained by M.R. Dixon, L.A. Kurdachenko and J.
Otal in the paper [4].

Theorem 5.1. Let F be a field, A be an F -vector space and G be a subgroup
of GL(F,A). Suppose that codimF (ζFG(A)) = c is finite. Then the following
assertions hold.
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(A) If char(F ) = 0 and sr0(G) = r is finite, then [A, G] has finite dimension.

(B) If char(F ) = p > 0 and srp(G) = r is finite, then [A, G] has finite
dimension.

Moreover there exists a function κ such that dimF ([A,G]) ≤ κ(c, r).
Starting from the RG-center, we can construct the upper RG-central series

of A:

〈0〉 = ζRG 0(A) ≤ ζRG 1(A) ≤ . . . ≤ ζRG α(A) ≤ ζRG α+1(A) ≤ . . . ζRG γ(A),

defined the rule ζRG 1(A) = ζRG(A) is the center of G, and recursively ζRG α+1

(A)/ζRG α(A) = ζRG(A/ζRG α(A)) for all ordinals α, ζRG λ(A) = ∪µ<λ ζRG µ(A)
for the limit ordinals λ and ζRG(A/ζRG γ(A)) = 〈0〉. The last term ζRG γ(A) =
ζRG∞(A) of this series is called the upper RG-hypercenter of A and the
ordinal γ is called the RG-hypercentral length of a module A and will
denoted by zlRG(A). We observe that | ζRG α+1(A), G] ≤ ζRG α(A) for all α < γ.

If the upper RG-hypercenter of A coincides with A, then A is called RG-
hypercentral .

If A is an RG-hypercentral module and zlRG(A) is finite, then we will say
that A is RG-nilpotent .

We defined also the lower RG-central series of A. It is a series

A = γRG 1(A) ≥ γRG 2(A) ≥ . . . ≥ γRG α(A) ≥ γRG α+1(A) ≥ . . .

defined by the rule γRG 2(G) = [A,G] and recursively γRG α+1(A) = [γRG α(A), G]
for all ordinals α and γRG γ(G) = ∩µ<λ γRG µ(G) for the limit ordinals λ.

The following linear analog of Theorem B has also been obtained in paper
[4].

Theorem 5.2. Let F be a field, A be an F -vector space and G be a sub-
group of GL(F,A). Suppose that there exists a positive integer k such that
codimF (ζFG k(A)) = c is finite. Then the following assertions hold.

(A) If char(F ) = 0 and sr0(G) = r is finite, then γFG k+1(A) has finite
dimension.

(B) If char(F ) = p > 0 and srp(G) = r is finite, then γFG k+1(A) has finite
dimension.

Moreover there exists a function κ1 such that dimF (γFG k+1(A)) ≤ κ1(c, r, k).
Some linear analogs of Theorem GB, GB1 have been obtained by M.R.

Dixon, L.A. Kurdachenko and J. Otal in the paper [5].

Theorem 5.3. Let F be a field, A be an F -vector space and G be a sub-
group of GL(F,A). Suppose that there exists a positive integer k such that
codimF (ζFG∞(A)) = c is finite. Then the following assertions hold.
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(A) If char(F ) = 0 and sr0(G) = r0 is finite, then A includes an FG-
submodule C, having finite dimension, such that A/D is FG-hypercentral.

(B) If char(F ) = p > 0 and srp(G) = r is finite, then A includes an FG-
submodule D, having finite dimension, such that A/D is FG-hypercentral.

Moreover there exist the functions κ2, κ3 such that dimF (C) ≤ κ2(c, r0),
dimF (D) ≤ κ3(c, rp).

The study of this topics for the case of RG-modules where R is not a field is
at the beginning stage yet. There are quite many generalizations of the notion
of finite dimensionality for rings. The very first one is based on the following
property of a finite dimensional vector space: every finite dimensional vector
space has a finite F -composition series. Recently we obtained the following
analog of Theorem BN. But first we need some definitions.

Let R be an integral domain and A an R-module. Suppose that A has a
finite composition series

〈0〉 = C0 ≤ C1 ≤ . . . ≤ Cn = A

of submodules. Then Cj/Cj−1 = R(cj + Cj−1) ∼=R R/AnnR(cj + Cj−1). Since
Cj/Cj−1 is a simple R-module, AnnR(cj +Cj−1) = AnnR(Cj/Cj−1) is a maxi-
mal ideal of R. Then a factor-ring R/AnnR(cj +Cj−1) is a field. We recall that
every two composition series of A are isomorphic. It follows that the length n
of composition series and the sets

Spec(A) = {char(Fj) | Fj = R/AnnR(Cj/Cj−1)), 1 ≤ j ≤ n},

are the invariants of module A. The length of composition series of A is called
the composition length of A and will denotes by cR(A).

As we mentioned above, an analog of Theorem BN for the case when R
is a field takes place only under restrictions imposed on the abelian p-sections
of G where p = char(F ). Therefore it is natural to keep here the same restric-
tions. Next result has been obtained by L.A. Kurdachenko, I.Ya. Subbotin, V.A.
Chupordya in the paper [9].

Theorem 5.4. Let R be an integral domain, G be a group and A be an RG-
module. Suppose that A/ζRG(A) has finite composition series as an R-module.
If a group G has finite section p-rank rp for every p ∈ Spec(A/ζRG(A)), then
[A,G] has finite R-composition series and Spec([A,G]) ⊆ Spec(A/ζRG(A)).
Moreover, there exists a function κ4 such that cR([A,G]) ≤ κ4(rp, cR(A/ζRG(A))/p ∈
SpecR(A/ζRG(A)).

For the case R = Z we have
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Theorem 5.5. Let G be a group and A be a ZG-module. Suppose that A/ζZG(A)
is finite. If a group G has finite section p-rank rp for every p ∈ Π(A/ζRG(A)),
then [A,G] is finite and Π([A,G]) ⊆ Π(A/ζRG(A)). Moreover, there exists a
function κ5 such that

| [A,G]| ≤ κ5(rp, | A/ζRG(A) | /p ∈ Π(A/ζRG(A))).
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