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Abstract. We characterize completely positive matrices of order five whose associated graph
is a ĈP -graph not completely positive, unifying and improving results obtained by Xu. We
show by counterexamples that two characterizations obtained by Xu are incorrect.
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1 Introduction

All matrices considered in this paper are real matrices. We follow notations
and terminology used in [2]. In particular, a matrix that is both entry-wise non-
negative and positive semidefinite is called doubly non-negative, and a matrix of
the form WW T , for W a non-negative matrix, is called completely positive. The
classes of doubly non-negative and completely positive n × n matrices are de-
noted, respectively, by DNN n and CPn. Obviously the inclusion CPn ⊆ DNN n

holds. It is well known that this inclusion is actually an equality for n ≤ 4, and
that for n ≥ 5 the inclusion is proper. We refer to the monograph [2] for all
information on these classes of matrices.

An essential tool in the investigation of completely positive matrices is
the graph theory. The vertex set of a graph G of order n is identified with
{1, 2, · · · , n}. Given a symmetric non-negative matrix A = [aij ] of order n, the
(undirected) graph G(A) associated with A has n vertices and edges (i, j) for
those i 6= j such that aij > 0 (it is understood that there are no loops in G(A)).

A graph G is completely positive if every matrix A ∈ DNN n such that
G(A) ∼= G is completely positive. The following characterization of completely
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positive graphs settles one of the so-called qualitative problem for completely
positive matrices, after the contributions by many authors (see [2]).

Theorem 1.1 (Kogan-Berman [3]). A graph G is completely positive if and
only if it does not contain cycles of odd length > 3.

It follows that a graph G with 5 vertices is not completely positive exactly
if it contains a cycle of length 5. Up to isomorphisms, there are 8 different types
of graphs with this property. We follow the notation in [4], where these graphs
are denoted by Gi (1 ≤ i ≤ 8). Their patterns, displayed in [4], are, up to
isomorphisms, the following:

G1 G2 G3 G4

G5 G6 G7 G8

It is understood that the vertices in the above graphs are numbered clockwise,
starting with the top vertex by 1. A graph G is a ĈP -graph if there is a vertex
j, that we call hat-vertex, such that there are exactly two vertices adjacent to
j, not adjacent to each other, and G \ {j} is completely positive. ĈP -graphs
have been introduced under the original name excellent graphs by Barioli [1],
who characterized completely positive matrices with excellent graphs among the
doubly non-negative ones. Among the eight non-CP graphs of order 5 illustrated
above, only the first three are ĈP -graphs.

Lemma 1.2. A graph G with five vertices which is not completely positive
is a ĈP -graph if and only if it is isomorphic to one of the graphs G1, G2, G3.

The three cases of doubly non-negative matrices of order 5 with associated
graphs G1, G2 and G3 are treated separately by Xu in [4] and [5]. Recall that the
matrices of these three types may be assumed, without loss of generality (after
normalization and cogredience), to be in the following forms (1), (2) and (3),
respectively (it is understood that an entry aij denotes a positive real number):

(1)


1 a12 0 0 a15

a12 1 a23 0 0
0 a13 1 a34 0
0 0 a34 1 a45

a15 0 0 a45 1

 ; (2)


1 a12 a13 0 a15

a12 1 a23 0 0
a13 a23 1 a34 0
0 0 a34 1 a45

a15 0 0 a45 1

 ;
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(3)


1 a12 a13 0 a15

a12 1 a23 a24 0
a13 a23 1 a34 0
0 a24 a34 1 a45

a15 0 0 a45 1

 .

Barioli characterized in [1] the CP matrices with associated graphs isomor-
phic to G1; the same result was also proved by Xu in [5].

Theorem 1.3 (Barioli [1]). For a doubly non-negative matrix A with asso-
ciated graph G1 in the form (1), the following are equivalent:

(1) A is completely positive;

(2) detA ≥ 4a12a23a34a45a51.

We will use the standard notation A[i1, · · · , ir|j1, · · · , jr] to denote the sub-
matrix of A obtained by intersecting the ordered set of rows {i1, · · · , ir} and
columns {j1, · · · , jr}. Recall that, if A = [aij ], the weight of a cycle C = {j1 →
j2 → · · · → jk → j1} in G(A) is the product wA(C) = (−1)k−1aj1j2aj2j3 · · · ajkj1
(see [4]). We follow Xu’s notation in [4], where he writes: “By A|n|, we mean the
algebraic sum of the weights of all cycles of length n of G(A)”.

Xu characterized in [5] the completely positive matrices with associated
graphs isomorphic to G2 and G3. We quote his theorems separately as stated
in [4] and adapted to our notation.

Theorem 1.4 (Xu, [4] Theorem 2). For a doubly non-negative matrix A
with associated graph G2 in the form (2), the following are equivalent:

(1) A is completely positive;

(2) either detA[1, 2|2, 3] ≤ 0, or detA[1, 2|2, 3] > 0 and detA ≥ 4A|5|.

We remark that the conditions in Theorem 1.4 are different from those in
Theorem 2 in [4], where detA[1, 2|2, 3] ≤ 0 is replaced by detA[1, 2|1, 3] ≥ 0
and detA[1, 2|2, 3] > 0 by detA[1, 2|1, 3] < 0. This difference is due to the
permutation of the vertices in Xu’s graph G2 with respect to our graph, as
displayed above.

We will show, by means of a counterexample (see Example 3.2), that, when
detA[1, 2|2, 3] > 0, the condition detA ≥ 4A|5| is not necessary for the complete
positivity of A; our Theorem 3.1 will provide the right sufficient and necessary
condition.

The matrix used by Xu in [4] to prove the next Theorem 1.5 is exactly in
our form (3). We follow his notation by setting µ = min{a23, a13/a12, a34/a24}.

Theorem 1.5 (Xu [4] Theorem 3). For a doubly non-negative matrix A
with associated graph G3 in the form (3) the following are equivalent:
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(1) A is completely positive;

(2) either µ = a23, or µ 6= a23 and detA ≥ 4A|5|.

Also for this case we will show, by means of a counterexample (see Exam-
ple 3.3), that, when µ 6= a23, the condition detA ≥ 4A|5| is not necessary for
the complete positivity of A; our Theorem 3.1 will provide the right condition.

The three cases of doubly non-negative matrices with associated graphs iso-
morphic to G1, G2 and G3 are covered by Barioli’s characterization of completely
positive matrices with ĈP -graph in [1]; we recall his result adapting it to our
setting and notation.

Theorem 1.6 (Barioli [1]). For a doubly non-negative matrix A with associ-
ated graph G1, G2 or G3 in the form (1), (2) or (3), the following are equivalent:

(1) A is completely positive;

(2) the matrix A− obtained by A replacing a15 by−a15 is positive semidefinite.

The goal of this paper is to unify in a single result Theorems 1.3, 1.4 and 1.5
using Barioli’s Theorem 1.6. We will characterize in Section 3 completely pos-
itive matrices with associated graph isomorphic to G1, G2 or G3 by means of
an inequality relating detA with the total weight of a hat-vertex, a quantity
defined in the next section that can be computed from the entries of A just
looking at its associate graph G(A). As mentioned above, our characterization
of matrices with associated graph isomorphic to G2 or G3 corrects those of Xu
in [4].

2 The total weight of a hat-vertex

The crucial tool in the proof of our main theorem is the notion of total weight
of a hat-vertex of the ĈP -graph G(A) associated with a matrix A = [aij ]i,j ∈
DNN 5. The total weight of such a vertex is defined starting from the notion of
corrected weight of a cycle.

Definition 2.1. Let A = [aij ] be a doubly non-negative matrix of order n.

(1) Given a cycle C = {j1 → j2 → · · · → jk → j1} in G(A), its corrected
weight is WA(C) = wA(C) ·

∏
i/∈C aii.

(2) The total weight WA(j) of a vertex j is the sum of the corrected weights
of the cycles of any length containing j: WA(j) =

∑
j∈CWA(C).

Example 2.2. Let A = [aij ] ∈ DNN 5 be such that G(A) = G1. Then the only
cycle containing vertex 5 (or any other vertex) is C = {1→ 2→ 3→ 4→ 5→
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1}, hence the total weight WA(5) of the vertex 5 (or any other vertex) coincides
with the weight and the corrected weight of C:

WA(5) = a12a23a34a45a51 = A|5|.

Example 2.3. Let A = [aij ]i,j ∈ DNN 5 be such that G(A) = G2. Then the
cycles containing the hat-vertex 5 (or the other hat-vertex 4) are the cycle C
as in Example 2.2, and the cycle C1 = {1 → 3 → 4 → 5 → 1}. The respective
corrected weights are

WA(C) = a12a23a34a45a51,

WA(C1) = − a13a34a45a51a22.

Consequently the total weight of the hat-vertex 5 (and of the hat-vertex 4) is

WA(5) = a12a23a34a45a51 − a13a34a45a51a22.

Since A|5| = a12a23a34a45a51, we have that WA(5) = A|5| − a13a34a45a51a22,
hence WA(5) < A|5|.

Example 2.4. Let A = [aij ] ∈ DNN 5 be such that G(A) = G3. The only
hat-vertex is 5, and there are four cycles containing 5: C = {1→ 2→ 3→ 4→
5 → 1}, C1 = {1 → 3 → 2 → 4 → 5 → 1}, C2 = {1 → 3 → 4 → 5 → 1},
C3 = {1→ 2→ 4→ 5→ 1}. The respective corrected weights are

WA(C) = a12a23a34a45a51,

WA(C1) = a13a32a24a45a51,

WA(C2) = − a13a34a45a51a22,

WA(C3) = − a12a24a45a51a33.

Consequently the total weight of the only hat-vertex 5 is

WA(5) = a12a23a34a45a51 + a13a32a24a45a51

− a13a34a45a51a22 − a12a24a45a51a33.

Since A|5| = a12a23a34a45a51 + a13a23a24a45a51, we have

WA(5) = A|5| − a13a34a45a51a22 − a12a24a45a51a33.

Remark 2.5. We note that the weight and the corrected weight of a cycle are
identical for normalized matrices in the forms (1), (2) and (3). Non-normalized
matrices better reveal the role of the corrected weight and of the total weight,
as the proof of the main theorem below will show considering the matrix Ã.
A straightforward computation shows that the relationship between the total
weight of a vertex j of G(A) of a non-normalized matrix A and its normalized
form DAD, where D = Diag(d1, . . . , dn), is the following: WDAD(j) = WA(j) ·∏
i d

2
i .
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3 The main theorem

Our main result collects Theorems 1.3, 1.4 and 1.5 quoted in Section 2 in
a single theorem, which characterizes 5 × 5 completely positive matrices with
ĈP -graphs by means of the total weight of a hat-vertex, improving the charac-
terizations appearing in Xu’s papers [4] and [5]. Our theorem relies on Barioli’s
Theorem 1.6.

Theorem 3.1. For a doubly non-negative matrix A with associated graph
G(A) isomorphic to G1, G2 or G3, the following conditions are equivalent:

(1) A is completely positive;

(2) detA ≥ 4WA(5).

Proof. In view of Remark 2.5, we can assume, without loss of generality, that the
matrix A is in normalized form (1), (2) or (3), since WDAD(5) = WA(5) ·

∏
i d

2
i

and det(DAD) = det(A) ·
∏
i d

2
i .

If G(A) = G1, our result coincides with Theorem 1.3, once it is recalled that
a12a23a34a45a51 = WA(5), as seen in Example 2.2. We prove now the theorem
separately for the cases G(A) = G2 and G(A) = G3.

CASE G(A) = G2. (1) ⇒ (2) By Theorem 1.6, det(A−) ≥ 0. So we have:

0 ≤ det(A−) = detA[1, 2, 3, 4|1, 2, 3, 4]

− a54 det


1 a12 a13 −a15

a21 1 a23 0
a31 a32 1 0
0 0 a43 a45

+ a51 det


a12 a13 0 −a15

1 a23 0 0
a23 1 a34 0
0 a34 1 a45


= detA[1, 2, 3, 4|1, 2, 3, 4]

− a54

{
a15 detA[2, 3, 4|1, 2, 3] + a45 detA[1, 2, 3|1, 2, 3]

}
− a51

{
a15 detA[2, 3, 4|2, 3, 4] + a45 detA[1, 2, 3|2, 3, 4]

}
.

Comparing with the analogous expression of detA, we get

det(A−) = detA− 2a54a15 detA[1, 2, 3|2, 3, 4]− 2a51a45 detA[1, 2, 3|2, 3, 4]

= detA− 2a54a15a34 detA[1, 2|2, 3]− 2a51a45a34 detA[1, 2|2, 3]

= detA− 4a51a45a34 detA[1, 2|2, 3]

= detA− 4a51a45a34(a12a23 − a31)

= detA− 4(a51a45a34a12a23 − a31a51a45a34)

= detA− 4WA(5).

We deduce that detA ≥ 4WA(5), as desired.
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(2)⇒ (1) For the sake of completeness, we include a sketch of Xu’s proof that
detA[1, 2|2, 3] ≤ 0 implies A completely positive. Let us consider the matrix

A′ = PAP =

(
1 aT

a A1

)
where P is the transposition matrix permuting first and second row of I5. The
Schur complement A/A[1|1] = A1 − aaT is positive semidefinite, and the hy-
pothesis that detA[1, 2|2, 3] ≤ 0 ensures that it is also entry-wise non-negative.
Therefore A/A[1|1] ∈ DNN 4 = CP4 and consequently A/A[1|1] = B1B

T
1 for

a non-negative matrix B1. Then a direct computation shows that A′ = BBT ,
where

B =

(
1 0T

a B1

)
thus A′, and consequently A, is completely positive.

Let us assume now that detA[1, 2|2, 3] = a12a23 − a13 > 0. Setting µ =
a13/a23, we have that µ < a12 ≤ 1 ≤ 1/a12. Let ei denote an elementary vector
of appropriate dimension whose i-th component is equal to 1, and Eij = eie

T
j .

Now we follow the line of the proof in [5]. Let S = I − µE12 be the elementary
transformation matrix and consider Ã = SAST . Then Ã is obviously positive
semidefinite, and the inequalities µ < a12 ≤ 1 ≤ 1/a12 ensure that Ã is non-
negative. Furthermore, the (1, 3)-entry of Ã is 0, as is easy to check, so G(Ã) =
G1. A direct computation shows that

Ã|5| = (a12 − µ)a23a34a45a51 = WA(5)

so the hypothesis ensures that det Ã = detA ≥ 4WA(5) = 4Ã|5|. Now Theo-

rem 1.3 implies that Ã is completely positive. But then also A is completely
positive, because A = S−1Ã(S−1)T and S−1 = I + µE12 is non-negative.

CASE G(A) = G3. (1) ⇒ (2) By Theorem 1.6, det(A−) ≥ 0. So we have:

0 ≤ det(A−) = detA[1, 2, 3, 4|1, 2, 3, 4]

− a54 det


1 a12 a13 −a15

a21 1 a23 0
a31 a32 1 0
0 a42 a43 a45

+ a51 det


a12 a13 0 −a15

1 a23 a24 0
a32 1 a34 0
a42 a43 1 a45


= detA[1, 2, 3, 4|1, 2, 3, 4]

− a54

{
a15 detA[2, 3, 4|1, 2, 3] + a45 detA[1, 2, 3|1, 2, 3]

}
− a51

{
a15 detA[2, 3, 4|2, 3, 4] + a45 detA[1, 2, 3|2, 3, 4]

}
.
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Comparing with the analogous expression of detA, we get

det(A−) = detA− 2a54a15 detA[2, 3, 4|1, 2, 3]− 2a51a45 detA[1, 2, 3|2, 3, 4].

As A[2, 3, 4|1, 2, 3] = A[1, 2, 3|2, 3, 4]T , we get

det(A−) = detA− 2a54a15 detA[1, 2, 3|2, 3, 4]− 2a51a45 detA[1, 2, 3|2, 3, 4]

= detA− 4a45a15 detA[1, 2, 3|2, 3, 4]

= detA− 4a45a15(−a24a12 + a24a13a32 + a34a12a23 − a34a13)

= detA− 4(−a12a24a45a51 + a13a32a24a45a51 + a12a23a34a45a51

− a13a34a45a51).

Comparing with WA(5) as computed in Example 2.4, and since a22 = a33 = 1,
the last expression equals detA − 4WA(5) So we have the desired inequality
detA ≥ 4WA(5).

(2)⇒ (1) Also in this case, for the sake of completeness, we include a sketch
of Xu’s proof that µ = a23 implies A completely positive. Let Ã = SAST ,
where S = I−µE23. Then Ã is positive semidefinite, being congruent to A, and
the hypotesis µ = a23 ensures that it is non-negative. Furthermore, being the
(2, 3)-entry of Ã zero, the graph G(Ã) is completely positive, since it does not
contain cycles of odd length ≥ 5. Therefore Ã is completely positive, and such
is obviously A.

Let us assume now that µ = a13/a12. Let Ã = SAST as above. Since ã13 =
a13 − a12µ = 0, ã23 = a23 − µ > 0, ã33 = µ2 − 2a23µ + 1 = (a23 − µ)2 >
0, ã34 = a34 − a24µ, and the remaining elements of Ã are as those in A, the
inequalities µ ≤ a12 ≤ 1 ≤ a34/a24, a23 ensure that Ã is non-negative. But G(Ã)
is isomorphic to G2, so, by the preceding case, we can infer that Ã is completely
positive if we can prove that det Ã ≥ 4WÃ(5) (the vertex 5 is still a hat-vertex of

G(Ã)). Obviously detÃ = detA. Taking care of the fact that G(Ã) is obtained
from G2 by vertex permutation (1→ 2→ 3→ 4→ 5→ 1), we get:

WÃ(5) = ã12ã23ã34ã45ã51 − ã12ã24ã45ã51ã33

= a12(−µ+ a23)(−µa24 + a34)a45a51 − a12a24a45a51(µ2 − 2a23µ+ 1)

= a12

(
−a13

a12
+ a23

)(
−a13

a12
a24 + a34

)
a45a51

− a12a24a45a51

(a2
13

a2
12

− 2a23
a13

a12
+ 1
)

=
a2

13

a12
a24a45a51 − a13a34a45a51 − a23a13a24a45a51 + a12a23a34a45a51

− a24a45a51
a2

13

a12
+ 2a24a45a51a23a13 − a12a24a45a51
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= a13a32a24a45a51 + a12a23a34a45a51 − a12a24a45a51 − a13a34a45a51

= WA(5).

Note that ã33 cannot be omitted in the expression of WÃ(5) since it is not equal
to 1, while a33 = 1 and a22 = 1 leads to their disappearance respectively from
the last two terms in the expression of WA(5). We deduce that the hypothesis
detA ≥ 4WA(5) is equivalent to det Ã ≥ 4WÃ(5), so Ã is completely positive
by CASE G(A) = G2, and A is also obviously completely positive.

Assume now that µ = a34/a24. The same matrix Ã as above can be used,
which in this case has G(Ã) exactly equal to G2, since ã34 = 0. Also in this
case, with similar calculation, one can prove that Ã is non-negative and that
WÃ(5) = WA(5), so the conclusion holds in a similar way as above. QED

It should be pointed out that, in case G(A) ∼= G2, condition detA[1, 2|2, 3] ≤
0 in Theorem 1.4(2) is equivalent to requiring WA(5) ≤ 0, since WA(5) =
a34a45a51 detA[1, 2|2, 3]; so in that case condition (2) in Theorem 3.1 is auto-
matically verified by any matrix A ∈ DNN 5.

We now provide two examples of completely positive matrices to show that
the necessary conditions in Theorems 1.4 and 1.5 are wrong. Recall that, given
a square matrix A, the principal submatrix Ak denotes the k × k upper-left
corner of A.

Example 3.2. Let us consider the non-negative matrix

A =


1 1/2 1/5 0 1/2

1/2 1 1/2 0 0
1/5 1/2 1 1/2 0
0 0 1/2 1 1/2

1/2 0 0 1/2 1

 .

Since all the principal submatrices Ak (1 ≤ k ≤ 5) have positive determinant, A
is positive definite, hence it is doubly non-negative. Note that detA[1, 2|2, 3] =
1/4− 1/5 = 1/20 > 0. Straightforward calculations give

4 ·WA(5) = 1/40 < det(A) = 3/25 < 4 ·A|5| = 1/8

and, as shown in the proof of Theorem 3.1, det(A−) = 19/200 = det(A) − 4 ·
WA(5). The matrix A is completely positive, either by Barioli’s Theorem 1.6,
since A− is positive definite, or by our Theorem 3.1.



132 M. Cedolin, L. Salce

Example 3.3. Let us consider the doubly non-negative matrix

A =


1 1/2 1/5 0 1/2

1/2 1 1/2 1/3 0
1/5 1/2 1 1/2 0
0 1/3 1/2 1 1/2

1/2 0 0 1/2 1

 .

Note that a13/a12 = 2/5 < a23 = 1/2. Straightforward calculations give

4 ·WA(5) = −13/120 < det(A) = 119/1800 < 4 ·A|5| = 19/120.

The matrix A is completely positive, either by Barioli’s Theorem 1.6, since A−

is positive definite, or by our Theorem 3.1.
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