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Abstract. We consider differentiable maps in the framework of Abstract Differential Geo-
metry and we prove a number of calculus-type results pertaining to the chain rule, restrictions
of differentiable maps to subspaces, and the differentiability of maps to and from cartesian
products of spaces. We elaborate the latter in the case of functional structure sheaves to
obtain a situation similar to that of smooth manifolds. Since the ε, δ-approach does not make
sense here, our machinery is the existence of a number of limits in the category of differential
triads.

Keywords: differential triad, morphism of differential triads, product, projective system,
projective limit, direct sum

MSC 2000 classification: primary 18F15, secondary 18F20, 13N15

Introduction

Differential calculus is the basic tool for the development of differential geo-
metry, which, in turn, provides a very powerful machinery to deal with problems
in many fields of mathematics and numerous applications.

However, the smooth manifold structure is a very strong assumption, not
valid on an arbitrary topological space. Besides, the smooth structure breaks
down when simple operations are applied on manifolds, such as the considera-
tion of subsets or the forming of quotients. More generally, in the category of
manifolds a number of limits, such as (infinite) products, projective or inductive
limits, pull-backs and push-outs, do not exist.

There have been several attempts to develop the machinery of CDG on
spaces that lack the manifold structure (i.e., “differential” and “diffeological”
spaces, as in [3], [15], [23], [24], [25], [26]; see also [16] and the references therein)
by introducing new classes of “smooth” functions, enlarging and substituting
the ordinary smooth structure sheaf.

In the late 1980’s (see [6]) A. Mallios, stimulated by a paper of S. Selesnick
[22], innovated by replacing the functional structure sheaves with an abstract
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algebra sheaf A, admitting a differential ∂ : A → Ω (in the algebraic sense)
taking values in an A-module Ω. The central idea in the work of A. Mallios
is that the classical differential geometry of a manifold is deduced from the
algebraic properties of its structure sheaf C∞X , the “smooth” structure of the
underlying manifold and the functional character of C∞X being of secondary
nature. He called the triplets (A, ∂,Ω) differential triads. Differential triads
generalize smooth manifolds (and differential spaces) and also include arbitrary
topological spaces with very general, non-functional, structural sheaves. Using
such structure sheaves, in this new framework of Abstract Differential Geometry
(ADG), A. Mallios introduced many basic notions of CDG (such as Riemannian
structures, connections, curvature, etc.) and proved numerous results analogous
to the classical ones; see [8], [7], [9]. A. Malllios’ machinery consists only of the
algebraic properties of sheaves and of sheaf cohomology. He focused his study on
“vector sheaves”, the abstract (sheaf-theoretic) analogue of vector bundles. In
the same vein, E. Vassiliou studied “principal sheaves”, the analogue of principal
bundles (cf. [28, 29, 30] and [31]). Possible applications of the above abstract
setting to theoretical physics have been proposed and discussed in [10] and [14].

On the other hand, the present author (see [19]) introduced, in a similar
algebraic way, a notion of “differentiable maps” between spaces with abstract
differential structure, organizing thus differential triads into a category, denoted
hereafter by DT , which proved to be much richer in “limits” than the category
of smooth manifolds.

Although in ADG “we do not use any notion of calculus (smoothness) in the
classical sense” ([10, General Preface]), and in spite of E. Galois’ claim that “les
calculs sont impraticables”, in the present paper we prove that the existence
of certain limits in DT (most of which do not exist in the category of smooth
manifolds) entails the development of a sort of “abstract differential calculus”,
thus extending and enforcing the machinery of ADG.

For instance, in contrast with the situation met in smooth manifolds, we
prove that every subset of a space with a differential triad inherits the differential
structure, and every differentiable map restricted to an arbitrary subset of the
original space remains differentiable (Section 2).

In Section 3, we prove first thatDT has (infinite) products (Theorem 3); then
we consider maps taking values in a cartesian product of spaces with differential
structure, and we obtain that the differentiability of such a “vector map” is
equivalent to the differentiability of its “coordinates” (Theorem 4).

Direct sums do not exist in DT , as it is also the case for smooth manifolds
and topological spaces. However, we do construct direct sums in the subcategory
DTX of differential triads over a fixed base space X (Theorem 5). Mimicking the
construction of direct sums, we define over X × Y a differential triad, which we
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call the fibre product of differential triads. Then, under an appropriate condition
similar to that of the classical smooth case, we prove that the differentiability
of a map on X × Y with respect to the fibre product is equivalent to the differ-
entiability of the partial maps (Theorem 6).

In the last section, restricting ourselves to functional structure sheaves, we
prove that the product of differential triads can be considered instead of the
fibre product, as it happens in the classical case of smooth manifolds, where one
uses the same differential structure (: differential atlas) to study maps either
from or to X × Y (Proposition 4).

1 The category of differential triads

For the reader’s convenience we recall the definitions of differential triads
and of their morphisms, and we give a brief account of their constituting a
category. Throughout the paper K stands for R or C.

Definition 1 ([9]). Let X be a topological space. A differential triad over X
is a triplet δ = (A, ∂,Ω), where A is a sheaf of unital, commutative, associative
K-algebras over X, Ω is an A-module and ∂ : A → Ω is a Leibniz morphism,
i.e., a K-linear sheaf morphism, satisfying the Leibniz condition:

∂(ab) = a∂(b) + b∂(a), (a, b) ∈ A×X A.

Examples 1. (1) Every smooth manifold X is provided with a real differential
triad (C∞X , dX ,Ω1

X), induced by the smooth structure: C∞X is the sheaf of germs
of smooth real valued functions on X, Ω1

X is the sheaf of germs of smooth 1-
forms on X, and dX is the sheafification of the ordinary differential. We call
(C∞X , dX ,Ω1

X) the smooth differential triad of the manifold X. Thus differential
triads generalize and extend the notion of smooth manifolds.

(2) The notion of differential spaces and the subsequent differential-geo-
metric concepts on them have been introduced by R. Sikorski ([23], [24]). Their
sheaf-theoretic generalization is due to M. A. Mostow ([15]). The latter approach
provides an example of a differential triad whose structure sheaf is still a func-
tional algebra sheaf. On the other hand, Spallek’s∞-standard differential spaces
[16] have structure sheaves induced by the quotient of C∞(Rn) by some closed
ideal a, thus constituting an example of a differential triad whose structure sheaf
is not a functional sheaf in the usual sense. A special case of an algebra which is
a quotient of a functional algebra by a certain ideal is Rosinger’s nowhere dense
differential algebra of generalized functions. The resulting differential triad is
studied in [12]; see also [13].

(3) Consider now an algebraized space (X,A), namely, a topological space X
along with a sheaf of (abstract) unital, commutative and associative K-algebras
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over X. For every open U ⊆ X, the algebra A(U) of continuous sections of A
over U admits its Kähler differential obtained by Kähler’s universal construction
([1, Ch. III, S 10.10-10.11]). The target spaces of these differentials form a
presheaf generating an A-module Ω, while the family of the Kähler differentials
constitute a presheaf morphism generating a differential ∂ : A → Ω (for details,
see [9, Vol. II]). Thus a differential triad arises on every algebraized space making
ADG applicable to arbitrary topological spaces.

In order to introduce the notion of a morphism of differential triads, we
notice that if δX := (AX , ∂X ,ΩX) is a differential triad over X and f : X → Y
is a continuous map, then the pull-back of δY by f

f∗(δY ) ≡ (f∗(AY ), f∗(∂Y ), f∗(ΩY ))

is a differential triad over X.

Definition 2. Let δX = (AX , ∂X ,ΩX) and δY = (AY , ∂Y ,ΩY ) be differen-
tial triads over the topological spaces X and Y , respectively. A morphism of
differential triads f̂ : δX → δY is a triplet f̂ = (f, fA, fΩ), where

(i) f : X → Y is a continuous map;

(ii) fA : f∗(AY )→ AX is a unit preserving morphism of sheaves of algebras;

(iii) fΩ : f∗(ΩY )→ ΩX is an fA-morphism, namely,

fΩ(x, aw) = fA(x, a)fΩ(x,w), ∀ ((x, a), (x,w)) ∈ f∗(AY )×X f∗(ΩY );

(iv) The diagram

f∗(AY )
fA- AX

f∗(ΩY )

f∗(∂Y )

?

fΩ

- ΩX

∂X

?

Diagram 1

is commutative.

Extending the standard terminology, we will say that a continuous mapping
f : X → Y is differentiable (with respect to δX and δY ), if it is completed into
a morphism f̂ = (f, fA, fΩ) : δX → δY .
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Note that if f : X → Y is differentiable, the morphism f̂ : δX → δY is not
uniquely determined. The set of morphisms over a fixed f : X → Y is denoted
by Morf (δX , δY ) .

If S and T are sheaves over the spaces X and Y , respectively, every con-
tinuous map f : X → Y defines a bijection (in fact, a natural isomorphism of
functors)

Φ : Mor(f∗(T ),S) −→Mor(T , f∗(S)) (1.1)

(see [2, S 4] or [27, Theor. 7.13]). Thus a morphism of differential triads

f̂ = (f, fA, fΩ) : (AX , ∂X ,ΩX) −→ (AY , ∂Y ,ΩY )

corresponds bijectively to a triplet (f, Φ(fA), Φ(fΩ)), where

Φ(fA) : AY −→ f∗(AX)

is a unit preserving morphism of sheaves of algebras and

Φ(fΩ) : ΩY −→ f∗(ΩX)

is a Φ(fA)-morphism, making the following diagram commutative:

AY
Φ(fA) - f∗(AX)

ΩY

∂Y

?

Φ(fΩ)
- f∗(ΩX)

f∗(∂X)

?

Diagram 2

We call (f, Φ(fA), Φ(fΩ)) the push-out of f̂ . Observe that the push-out of δX
by f

f∗(δX) := (f∗(AX), f∗(∂X), f∗(ΩX))

is a differential triad over Y .

Every smooth map f : X → Y between smooth manifolds X,Y induces
a morphism (f, fA, fΩ) between the smooth differential triads (C∞X , dX ,ΩX),
(C∞Y , dY ,ΩY ), whose push-out is given by the equalities

Φ(fA)(α) := α ◦ f , α ∈ C∞Y (V ) ,

Φ(fΩ)(ω) := ω ◦ df , ω ∈ ΩY (V ),
(1.2)

for every open V ⊆ Y . In this case, the commutativity of Diagram 2 is a result
of the chain rule.
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Remarks 1. (1) Although the push-out version of a morphism of differential
triads is a straightforward abstraction of the situation met in the category of
manifolds (see (1.2)) and it has been used as the definition of morphism ([19]),
the pull-back version given in Definition 2 is more convenient for our purpose.

(2) If smooth differential triads are considered over smooth manifolds, the
theory of topological algebras ensures that a differentiable map between the
base spaces (in the abstract algebraic sense of Definition 2) is in fact a smooth
map in the ordinary sense. Thus, if ADG is applied on situations where CDG
is also applicable, both theories give the same results ([5]).

Differential triads and their morphisms form a category, with the following
composition law : If δX , δY , δZ are differential triads over the topological spaces
X,Y, Z, respectively, and f̂ = (f, fA, fΩ) : δX → δY , ĝ = (g, gA, gΩ) : δY → δZ
are morphisms, then the composite

ĝ ◦ f = (g ◦ f, (g ◦ f)A, (g ◦ f)Ω) : δX −→ δZ (1.3)

is given by
(g ◦ f)A := fA ◦ f∗(gA) ,

(g ◦ f)Ω := fΩ ◦ f∗(gΩ)
(1.4)

(see [19] for the push-out version of ĝ ◦ f). The category of differential triads,
their morphisms and the composition law defined by (1.3) and (1.4) will be
denoted by DT . Remark 1(2) implies that the category of smooth manifolds
is a full subcategory of DT . Note that the identity idδ of a differential triad
δ = (A, ∂,Ω) over X is the triplet (idX , idA, idΩ). The subcategory of DT
consisting of all differential triads over a fixed topological space X and of all
morphisms over the identity map idX , will be denoted by DTX .

Seen from the calculus point of view, the preceding can be rephrased as
follows:

Proposition 1. Let δI be a differential triad over the topological space I =
X,Y, Z and let f : X → Y and g : Y → Z be differentiable maps. Then g ◦ f
is differentiable. Besides, if f̂ = (f, fA, fΩ) and ĝ = (g, gA, gΩ) are morphisms,
then a morphism over g ◦f is the triplet (g ◦f, (g ◦f)A, (g ◦f)Ω), which satisfies
the “chain rule” (1.4).

2 Differential subspaces

If X is a manifold and A is an arbitrary subset of X, in general A does
not inherit the manifold structure. In the present section we prove that this
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shortcoming in dealing with subsets of the spaces under consideration is removed
in the category DT . First we give the following.

Definition 3. Let X be a topological space with a differential triad δ. A
differential subspace of X is an arbitrary subset A ⊆ X provided with the pull-
back triad i∗(δ), where i : A→ X is the canonical injection.

We note that the pull-back of δ by i coincides with the restriction of (A, ∂,Ω)
to A, namely

i∗(δ) = (A|A, ∂|A, Ω|A), (2.1)

where, of course, ∂|A denotes the restriction of ∂ to A|A.

Proposition 2 ([20]). Let X be a topological space with a differential triad
δ = (A, ∂,Ω) and let A ⊆ X be provided with the pull-back triad i∗(δ), where
i : A → X is the canonical injection. Then i is differentiable. More precisely,
the triplet

î := (i, idi∗(A), idi∗(Ω)) : i∗(δ) −→ δ (2.2)

is a morphism over i.
On the other hand, the pair (i∗(δ), î) has the following universal property: If

δA is a differential triad over A making i differentiable and

ĵ = (i, jA, jΩ) : δA −→ δ

is a morphism over i, then there exists a unique morphism ĥ : δA → i∗(δ) over
idA, with î ◦ ĥ = ĵ.

Apart from the subsets inheriting the differential structure of the space,
differentiable maps restricted to subsets remain differentiable. That is, we have:

Corollary 1. Let X, Y be endowed with the differential triads δX and δY ,
respectively, let f̂ : δX → δY be a morphism over the map f : X → Y and let
A ⊆ X be endowed with the pull-back i∗(δX) of δX by the canonical injection
i : A → X. Then f |A : A → Y is differentiable with respect to i∗(δX) and δY ,
while a morphism over f |A is the composite

f̂ |A = f̂ ◦ î. (2.3)

A classical property of submanifolds is also valid for differential subspaces.

Proposition 3. Let δX , δY be differential triads over the spaces X, Y ,
respectively, and let A ⊆ X with i : A→ X the canonical injection. Furthermore,
assume that f : Y → X is a continuous map, such that f(Y ) ⊆ A. Then
f : Y → X is differentiable with respect to δY and δX if and only if f : Y → A
is differentiable with respect to δY and i∗(δX).

Proof. Since (i ◦ f)∗(δX) = f∗(i∗(δX)), every morphism î ◦ f : δY → δX over
i ◦ f corresponds bijectively to a morphism f̂ : δY → i∗(δX) over f . QED
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3 Products

Our aim is now to relate the differentiability of a map f : Y → X, taking
values in a product X =

∏
i∈I Xi, with that of its coordinates fi : Y → Xi.

To this end, for given differential triads δi on the factors Xi, i ∈ I, we need to
define a suitable differential triad on the product. It turns out that this triad is
the product of δi’s in DT .

First we define finite products. Details are found in [19]. Let δi = (Ai, ∂i,Ωi)
be a differential triad over Xi, i = 1, 2. The product of δ1 and δ2 is a differential
triad δ = (A, ∂,Ω) over X = X1 ×X2. The sheaf of algebras A is generated by
the presheaf

U × V 7−→ A1(U)⊗A2(V ), U ∈ τX1 , V ∈ τX2 , (3.1)

with restrictions

µU×VU ′×V ′ := ρUU ′ ⊗ λVV ′ : A1(U)⊗A2(V ) −→ A1(U ′)⊗A2(V ′),

where (ρUU ′) and (λVV ′) are the restrictions of the presheaves of sections of A1

and A2, respectively. The stalks of A satisfy

A(x,y) = A1x ⊗A2y. (3.2)

The A-module Ω is generated by the presheaf

U × V 7−→ (A1(U)⊗ Ω2(V ))× (Ω1(U)⊗A2(V )), U ∈ τX , V ∈ τY , (3.3)

with restrictions

νU×VU ′×V ′ := (ρUU ′ ⊗ `VV ′)× (rUU ′ ⊗ λVV ′),

where (rUU ′) and (`VV ′) are the restrictions of the presheaves of sections of Ω1 and
Ω2, respectively. Regarding the stalks of Ω, we have

Ω(x,y) = (A1x ⊗ Ω2y)× (Ω1x ⊗A2y). (3.4)

All the tensor products appearing here (and in what follows) are considered with
respect to K. Besides, ∂ : A → Ω is the sheafification of the presheaf morphism
(∂U×V ), where

∂U×V (α⊗ β) := (α⊗ ∂2V (β), ∂1U (α)⊗ β), (3.5)

for every decomposable element α⊗ β ∈ A1(U)⊗A2(V ).
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The product of δ1 and δ2 makes the canonical projections p1 : X1×X2 → X1

and p2 : X1 ×X2 → X2 differentiable: they are completed into the morphisms
p̂1 = (p1, p1A, p1Ω) and p̂2 = (p2, p2A, p2Ω), where

p1A : p∗1(A1) −→ A1 ⊗A2 : ((x, y), a) 7−→ a⊗ 1y, (3.6)

p1ω : p∗1(Ω1) −→ (A1 ⊗ Ω2)× (Ω1 ⊗A2) : ((x, y), ω) 7−→ (0, ω ⊗ 1y) (3.7)

and

p2A : p∗2(A2) −→ A1 ⊗A2 : ((x, y), b) 7−→ 1x ⊗ b, (3.8)

p2ω : p∗2(Ω2) −→ (A1 ⊗ Ω2)× (Ω1 ⊗A2) : ((x, y), ω) 7−→ (1x ⊗ ω, 0). (3.9)

We have the following

Theorem 1 ([19]). Let δi = (Ai, ∂i,Ωi) be differential triads over the topo-
logical spaces Xi, i = 1, 2. Then the product δ = (A, ∂,Ω) of δ1 and δ2 along
with the morphisms p̂1 : δ → δ1 and p̂2 : δ → δ2 satisfy the universal property of
the product in DT .

Since every pair of objects in DT has a product, every finite set of objects
also has a product. That is, we have:

Corollary 2. The category DT has finite products.

On the other hand, it is also known ([21]) that certain projective systems in
DT have limits:

Theorem 2. Let (δi, p̂ij) be a projective system of differential triads over
the spaces Xi, i ∈ I, where I is directed to the right. Then:

(i) (Xi, pij) is a projective system of topological spaces; denote by (X, pi) its
projective limit.

(ii) The system (δi, p̂ij) has a projective limit (δ, p̂i), where δ is a differential
triad over X and every p̂i is a morphism over the respective canonical projection
pi : X → Xi.

The existence of infinite products in DT is a result of the existence of finite
products and that of projective limits: Let {Xi}i∈I be a family of topological
spaces and let δi be a differential triad over Xi. We denote by A the set of all
finite subsets of I, directed to the right by the relation

β ≤ α ⇔ β ⊆ α.

For every α ∈ A we consider the finite product of δi, i ∈ α,

(δα, (q̂αi )i∈α)
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over the space Xα :=
∏
i∈αXi. If {β1, β2} is a partition of α, then δα is the

product of δβ1 and δβ2 . We denote by q̂αβ1
and q̂αβ2

the respective projections.
Then

q̂βki ◦ q̂
α
βk

= q̂αi , i ∈ βk, k = 1, 2.

Moreover, if γ ⊂ β ⊂ α ∈ A, then

q̂βγ ◦ q̂αβ = q̂αγ .

Thus we obtain a projective system (δα; q̂αβ )β⊆α∈A indexed by the directed set
A, which has a limit in DT

(δX , (q̂α)α∈A),

over the space X = lim←−Xα =
∏
iXi. Since, for each i ∈ I, we have {i} ∈ A, the

family {q̂α}α∈A contains the subfamily { q̂{i}}{i}∈A. By combining together the
universal properties of (finite) products and projective limits, it easily follows
that

(δX , (p̂i := q̂{i})i∈I)

satisfies the universal property of the product of the family (δi)i∈I in DT . Con-
sequently, we have shown the following

Theorem 3. Every family of differential triads has a product in DT .

Rephrasing the universal property of the product, we obtain the following
calculus-type result:

Theorem 4. Assume that Xi, i ∈ I, and Y are topological spaces and δi,
δY are differential triads over Xi, Y , respectively. Let (X, (pi)i∈I) denote the
product of the topological spaces Xi, let (δ, (p̂i)i∈I) be the product of (δi)i∈I in
DT . Then a continuous map f : Y → X is differentiable with respect to δY and
δ, if and only if each coordinate fi := pi ◦ f is differentiable with respect to δY
and δi, i ∈ I.

Proof. If f is differentiable, then there exists a morphism f̂ : δY → δ. By the
composition law, p̂i ◦ f̂ : δY → δi is a morphism over fi = pi ◦ f , that is, each fi
is differentiable.

Conversely, if each fi is differentiable and f̂i is the respective morphism,
then by the universal property of the product there is a unique morphism

ĝ = (g, gA, gΩ) : δY −→ δ

such that p̂i ◦ ĝ = f̂i. This implies that pi ◦ g = fi, and the universal property
of the product of topological spaces assures that g = f . Thus (f, gA, gΩ) is a
morphism over f and f is differentiable. QED
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In the preceding theorem, if f is differentiable, there exists a morphism
f̂ : δY → δX over f . Then each fi is differentiable, because it is completed into
the morphism

f̂i := p̂i ◦ f̂ , (3.10)

given by the composition law. As we noted before, the morphism f̂i over fi is not
uniquely determined, thus there may be other morphisms over fi. Conversely, if
fi are differentiable and f̂i are morphisms over fi, i ∈ I, then by the universal
property of the product, there is a unique morphism f̂ : δY → δX satisfying
(3.10). Again, there may be other morphisms over f , too.

Thus, there may exist many pairs (f̂ , (f̂i)i∈I) satisfying (3.10), but in each
pair f̂ and (f̂i)i∈I determine each other. In other words, we have

Corollary 3. Under the assumptions of the preceding theorem, there exists
a bijection

Morf (δY , δ) ∼=
∏
i

Morfi(δY , δi)

induced by the composition law.

4 Direct sums over X

In the category of manifolds, one treats differentiable maps to and from a
product X × Y of manifolds, by considering on X × Y the same differential
structure (: the same atlas), in both cases. In the present abstract setting, the
differential structure (: differential triad) which is suitable to treat maps to a
product is the product of differential triads; but this structure is not appropriate
for treating maps from a cartesian product of spaces with differential structure.
In the latter case, a kind of dual structure (: direct product) is needed. However,
direct sums do not exist in DT , because their existence would imply the exis-
tence of direct sums in the category of topological spaces: Indeed, let X and Y
be topological spaces endowed with differential triads δX and δY , respectively,
and assume that they have a direct sum (δ; îX , îY ), where δ is a differential triad
over some topological space Z and îX : δX → δ, îY : δY → δ are morphisms
in DT , over some continuous maps iX : X → Z and iY : Y → Z. If δK is a
differential triad over a topological space K and f̂X : δX → δ, f̂Y : δY → δ
are morphisms over fX : X → K, fY : Y → K, by the universal property of
the direct sum, there would exist a unique morphism f̂ : δ → δK , such that
f̂ ◦ îX = f̂X and f̂ ◦ îY = f̂Y . The latter equalities imply f ◦ iX = fX and
f ◦ iY = fY , a situation not attained, in general, in the category of topological
spaces.
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Since this difficulty disappears when we restrict ourselves to differential tri-
ads over a fixed base space X, we consider the same problem in DTX . Let
δi = (Ai, ∂i,Ωi) ∈ DTX , i ∈ I. We define the fibre product of (δi)i∈I to be the
triplet

δ = (A, ∂,Ω) := (
∏
XAi,

∏
X∂i,

∏
XΩi), (4.1)

where
∏
X Ai and

∏
X Ωi are the fibre products of the families (Ai)i∈I and

(Ωi)i∈I ; namely, they are generated by the presheaves

(
∏
XAi)(U) =

∏
i∈I Ai(U),

(
∏
XΩi)(U) =

∏
i∈I Ωi(U), U ∈ τX

which define the total spaces∏
XAi =

⋃
x∈X

∏
i∈I Aix∏

XΩi =
⋃
x∈X

∏
i∈I Ωix

and ∂ =
∏
X∂i is the sheaf morphism induced by the presheaf morphism

(∂U )U∈τX , where

∂U :
∏
XAi(U) −→

∏
XΩi(U) : (αi) 7−→ (∂iU (αi)).

It is straightforward that (4.1) is a differential triad.

Theorem 5. The category DTX has direct products.

Proof. Let δi = (Ai, ∂i,Ωi), i ∈ I, be a family of differential triads in DTX and
let δ = (A, ∂,Ω) denote their fibre product. Then, for every i ∈ I, the canonical
projections

uiA : A −→ Ai and uiΩ : Ω −→ Ωi

are sheaf morphisms inducing the morphism of differential triads

ûi = (idX , uiA, uiΩ) : δi → δ. (4.2)

We claim that (δ, (ûi)) has the universal property of the direct product in DTX .
Indeed, let δX = (AX , ∂X ,ΩX) be a differential triad over X and let

f̂i = (idX , fiA, fiΩ) : δi −→ δX

be a family of morphisms. We set

fA := (fiA) : AX −→ A : a 7−→ (fiA(a)),

fΩ := (fiΩ) : ΩX −→ Ω : ω 7−→ (fiΩ(ω)).

Then f̂ = (idX , fA, fΩ) : δ → δX is the unique morphism in DTX which satisfies

f̂ ◦ ûi = f̂i,

for every i ∈ I. QED
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5 Partial maps with respect to the fibre product

The way we construct the direct product in DTX can be extended to provide
a differential triad over X × Y , which is suitable to handle maps from the
cartesian product X×Y : Thus, we consider X and Y provided with differential
triads δX = (AX , ∂X ,ΩX) and δY = (AY , ∂Y ,ΩY ), respectively, and we define
on X × Y the fibre product

(A, ∂,Ω) := (AX ×AY , ∂X × ∂Y ,ΩX × ΩY ). (5.1)

The sheaves A and Ω are the sheafifications of the presheaves(
AX(U)×AY (V ), ρUXU ′ × ρVY V ′

)
(
ΩX(U)× ΩY (V ), λUXU ′ × λVY V ′

)
and ∂ is the sheafification of the presheaf morphism(

∂XU × ∂Y V : AX(U)×AY (V ) −→ ΩX(U)× ΩY (V )
)
.

The triplet (5.1) obviously is a differential triad.

Lemma 1. Let δX = (AX , ∂X ,ΩX) and δY = (AY , ∂Y ,ΩY ) be differential
triads over X and Y , respectively, and let X × Y be provided with the fibre
product (5.1). Then, for every xo ∈ X and yo ∈ Y , the canonical injections

iyo : X −→ X × Y : x 7−→ (x, yo),

ixo : Y −→ X × Y : y 7−→ (xo, y)

are differentiable.

Proof. We prove the differentiability of iyo : We first notice that

i∗yo(A) = {(x, a, b) ∈ X ×AX ×AY : a ∈ AX,x and b ∈ AY,yo};

namely,
(i∗yo(A))x = {x} × AX,x ×AY,yo .

We set
iyoA : i∗yo(A) −→ AX : (x, a, b) 7−→ a.

Since the pull-back has the relative topology induced by the product topology
of X ×AX ×AY , iyoA is continuous; clearly it is a unit preserving morphism of
sheaves of algebras. Analogously, we have that

i∗yo(Ω) = {(x, ω, φ) ∈ X × ΩX × ΩY : ω ∈ ΩX,x and φ ∈ ΩY,yo},
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thus we now set

iyoΩ : i∗yo(Ω) −→ ΩX : (x, ω, φ) 7−→ ω.

Then iyoΩ is an iyoA-morphism and the analog of Diagram 1 is commutative,
since, for every (x, a, b) ∈ i∗yo(AX ×AY ), we have

∂X ◦ iyoA(x, a, b) = ∂X(a) = iyoΩ(x, ∂X(a), ∂Y (b))

= iyoΩ ◦ i∗yo(∂X × ∂Y )(x, a, b).

Hence, the triplet (iyo , iyoA, iyoΩ) satisfies the conditions of Definition 2, making
iyo differentiable. Similar reasoning proves that the maps

ixoA : i∗xo(A) −→ AY : (y, a, b) 7−→ b ,

ixoΩ : i∗xo(Ω) −→ ΩY : (y, ω, φ) 7−→ φ

complete ixo into a morphism îxo = (ixo , ixoA, ixoΩ) in DT . QED

We consider now a continuous map f : X × Y → Z, where X, Y , Z have
differential triads δX , δY , δZ , respectively, and X × Y is provided with the
fibre product (5.1). If f is differentiable, a straightforward consequence of the
preceding lemma is the differentiability of all its partial maps. We will study
now the converse situation.

For every yo ∈ Y , the differentiability of the partial map fyo : X → Z with

respect to δX and δZ implies the existence of a morphism f̂yo : δX → δZ ; that
is, of a pair of sheaf morphisms

(fyo)A : f∗yo(AZ)→ AX ,
(fyo)Ω : f∗yo(ΩZ)→ ΩX .

Since

f∗yo(AZ) = {(x, c) ∈ X ×AZ : c ∈ AZ,f(x,yo)}

and

f∗(AZ) = {(x, y, c) ∈ X × Y ×AZ : c ∈ AZ,f(x,y)},

the differentiability of all fy’s induces the well defined, fibre preserving map

fYA : f∗(AZ) −→ AX : (x, y, c) 7−→ (fy)A(x, c); (5.2)

it also induces

fY Ω : f∗(ΩZ) −→ AX : (x, y, w) 7−→ (fy)Ω(x,w). (5.3)
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Similarly, the differentiability of all fx’s, x ∈ X, results in the existence of two
well defined, fibre preserving maps

fXA : f∗(AZ) −→ AY : (x, y, c) 7−→ (fx)A(y, c), (5.4)

fXΩ : f∗(ΩZ) −→ ΩY : (x, y, w) 7−→ (fx)Ω(y, w). (5.5)

It is clear that the maps (5.2)-(5.5) are sheaf morphisms, if and only if they
are continuous. Thus we have the following:

Theorem 6. Let δI = (AI , ∂I ,ΩI) be differential triads over the spaces
I = X,Y, Z. Besides, let X × Y be endowed with the fibre product δ = (A, ∂,Ω)
of δX and δY and let f : X × Y → Z be a continuous map.

If f is differentiable with respect to δ and δZ , then, for every x ∈ X, the
partial map fx is differentiable with respect to δY and δZ . Similarly, for every
y ∈ Y , fy is differentiable with respect to δX and δZ .

Conversely, if, for every y ∈ Y and x ∈ X, the partial maps fy : X → Z
and fx : Y → Z are differentiable, so that the maps (5.2)-(5.5) are continuous,
then f is differentiable with respect to δ and δZ .

In both cases, the induced morphisms over f , fx and fy satisfy the relations

fA(x, y, a) := ((fy)A(x, a), (fx)A(y, a))

= (fYA(x, y, a), fXA(x, y, a))
(5.6)

and
fΩ(x, y, ω) := ((fy)Ω(x, ω), (fx)Ω(y, ω))

= (fY Ω(x, y, ω), fXΩ(x, y, ω)).
(5.7)

Proof. Let f be differentiable and f̂ = (f, fA, fΩ) a morphism over f . The
differentiability of fy = f ◦ iy and fx = f ◦ ix is a result of Lemma 1. Moreover,
if (x, y, a) ∈ f∗(AZ) and (x, y, ω) ∈ f∗(ΩZ), then

fA(x, y, a) = (aX , aY ) ∈ AX,x ×AY,y,
fΩ(x, y, w) = (ωX , ωY ) ∈ ΩX,x × ΩY,y.

Using the composition law (1.4) and the identification

(f ◦ iy)∗(AZ) 3 (x, a) ≡ (x, (x, y, a)) ∈ i∗y(f∗(AZ)),

we obtain

(fy)A(x, a) = iyA ◦ i∗y(fA)(x, (x, y, a))

= iyA(x, fA(x, y, a)) (5.8)

= iyA(x, aX , aY ) = aX ,
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and, similarly,
(fy)Ω(x, ω) = iyΩ(x, ωX , ωY ) = ωX . (5.9)

Obviously, we also have

(fx)A(y, α) = αY , and (fx)Ω(y, ω) = ωY , (5.10)

that is, (5.6) and (5.7) hold.
Conversely, if all partial maps are differentiable so that (5.2)-(5.5) are con-

tinuous, then the triplet (f, fA, fΩ), given by (5.6) and (5.7), is a morphism
in DT . Indeed, the continuity of fYA and fXA makes them unit preserving
morphisms of sheaves of algebras, thus fA has the same property. On the other
hand, since fY Ω (resp. fXΩ) is an fYA-morphism (resp. fXA-morphism), fΩ is an
fA-morphism. The commutativity of Diagram 1 is known stalk-wisely. QED

6 Partial maps on functional sheaves

Summarizing our discussion in Sections 3 and 5, we conclude that, given the
differential triads δX and δY over the spaces X and Y , we treat maps to X ×Y
by considering the product of δX and δY , while maps from X × Y are treated
by considering the fibre product δX × δY . Of course, these two constructions,
in general, do not coincide. However, in the full subcategory of manifolds, one
treats maps to and from a product X × Y using the same differential structure
(: atlas) on X×Y . This is due to a particular property shared by the differential
triads with functional algebra sheaves, as we explain below. In this respect, we
recall that a functional algebra sheaf over X is a sheaf of algebras which is a
subsheaf of the sheaf CX of germs of continuous K-valued functions on X.

Lemma 2. Let δX = (AX , ∂X ,ΩX), δY = (AY , ∂Y ,ΩY ) be differential tri-
ads over the spaces X, Y and let X×Y be provided with the product δ = (A, ∂,Ω)
of δX and δY . If the sheaf AY is functional, then, for every y ∈ Y , the canonical
injection iy : X → X × Y is differentiable.

Proof. First we notice that

i∗y(AX ⊗AY ) ≡ (AX ⊗AY )|X×{y} =
⋃
x∈X
AX,x ⊗AY,y = AX ⊗AY,y.

The preceding sheaf is the sheafification of the presheaf(
AX(U)⊗AY,y , rUU ′ ⊗ idAY,y

)
,

where (rUU ′) are the restrictions of the presheaf of sections of AX . We consider
the K-bilinear map

AX(U)×AY,y −→ AX(U) : (α, [β]y) 7−→ β(y) · α
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and the induced K-linear map

(iy)AU : AX(U)⊗AY,y −→ AX(U),

which is a unit preserving algebra morphism. Clearly, the family ((iy)AU )U∈τX
is a presheaf morphism inducing the sheaf morphism

(iy)A : AX ⊗AY,y −→ AX ,

given by
(iy)A([α]x ⊗ [β]y) = β(y)[α]x = [β(y)α]x (6.1)

on decomposable elements. In a similar way,

i∗y((AX ⊗ ΩY )× (ΩX ⊗AY )) = (AX ⊗ ΩY,y)× (ΩX ⊗AY,y),

the latter being the sheafification of the presheaf

((AX(U)⊗ ΩY,y)× (ΩX(U)⊗AY,y), (rUU ′ ⊗ idΩY,y)× (`UU ′ ⊗ idAY,y)),

where (`UU ′) are the restrictions of the presheaf of sections of ΩX . Then a K-linear
map

ΩX(U)⊗AY,y −→ ΩX(U) : ω ⊗ [β]y 7−→ β(y) · ω
is induced by the K-bilinear map

ΩX(U)×AY,y −→ ΩX(U) : (ω, [β]y) 7−→ β(y) · ω

and extends to an (iy)AU -map

(iy)ΩU : (A(U)⊗ Ωy)× (ΩX(U)⊗AY,y) −→ ΩX(U) :

(α⊗ [φ]y, ω ⊗ [β]y) 7−→ β(y) · ω.

Similarly, the family ((iy)ΩU )U∈τX is a presheaf morphism inducing the (iy)A-
morphism

(iy)Ω : (AX ⊗ ΩY,y)× (ΩX ⊗AY,y) −→ ΩX

given by
(iy)Ω([α]x ⊗ [φ]y, [ω]x ⊗ [β]y) = β(y)[ω]x = [β(y)ω]x (6.2)

on decomposable elements. Besides, the pair ((iy)A, (iy)Ω) makes Diagram 1
commutative. In fact, i∗y(∂) ≡ ∂|i∗y(A) and

(iy)Ω ◦ ∂|i∗y(A)([α]x ⊗ [β]y) = (iy)Ω([α]x ⊗ ∂Y ([β]y), ∂X([α]x)⊗ [β]y)

= β(y) · ∂X([α]x) = ∂X(β(y) · [α]x)

= ∂X ◦ (iy)A([α]x ⊗ [β]y),

for every decomposable element [α]x ⊗ [β]y ∈ i∗y(A). We deduce that the triplet
(iy, (iy)A, (iy)Ω) is a morphism over iy. QED
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Similar reasoning proves the differentiability of each ix, if the sheaf AX is
functional. As a result, we have the following:

Proposition 4. Consider the differential triads δI = (AI , ∂I ,ΩI) over the
spaces I = X,Y, Z and let AX and AY be functional. Besides, let X × Y be
provided with the product δ = (A, ∂,Ω) of δX and δY . If f : X × Y → Z is
differentiable with respect to δ and δZ , then, for every x ∈ X (resp. y ∈ Y ), the
partial map fx (resp. fy) is differentiable with respect to δY (resp. δX) and δZ .

In particular, if f̂ = (f, fA, fΩ) is a morphism over f , then a pair of mor-
phisms f̂x and f̂y is given by

fxA(y, c) =
∑
i

[αi(x)βi]y (6.3)

fyA(x, c) =
∑
i

[βi(y)αi]x (6.4)

for every c ∈ AZ,f(x,y) with

fA((x, y), c) =
∑
i

[αi]x ⊗ [βi]y ∈ AX,x ⊗AY,y,

and by

fxΩ(y, ψ) =
∑
i

[αi(x)φi]y (6.5)

fyA(x, ψ) =
∑
i

[βi(y)ωi]x (6.6)

for every ψ ∈ ΩZ,f(x,y) with

fΩ((x, y), ψ) =
∑
i

([αi]x ⊗ [φi]y, [ωi]x ⊗ [βi]y) ∈ (AX,x ⊗ ΩY,y)× (ΩX,x ⊗AY,y).

Proof. The differentiability of the partial maps is a result of Lemma 2. The
relations (6.3)–(6.6) are a consequence of the chain rule. QED

Final Remark. In the present work, we have dealt only with the differen-
tial calculus within the framework of commutative algebras. Preliminary results
pertaining to sheaves of specific non-commutative algebras have been discussed,
for instance in [9, 11, 17, 18]. These results are intended to lead to aspects of
symplectic geometry but they may also pave the way to the study of sheaves of
C∗-algebras and a sheaf-theoretic differential calculus in the sense of A.Connes
[4]. This point of view is beyond the scope of the present paper.
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