Zero-dimensional subschemes of projective spaces related to double points of linear subspaces and to fattening directions

Edoardo Ballicoⁱ

Department of Mathematics, University of Trento ballico@science.unitn.it

Received: 18.1.2016; accepted: 8.4.2016.

Abstract. Fix a linear subspace $V \subseteq \mathbb{P}^n$ and a linearly independent set $S \subset V$. Let $Z_{S,V} \subset V$ or $Z_{s,r}$ with $r := \dim(V)$ and $s = \sharp(S)$, be the zero-dimensional subscheme of V union of all double points $2p, p \in S$, of V (not of \mathbb{P}^n if n > r). We study the Hilbert function of $Z_{S,V}$ and of general unions in \mathbb{P}^n of these schemes. In characteristic 0 we determine the Hilbert function of general unions of $Z_{2,1}$ (easy), of $Z_{2,2}$ and, if n = 3, general unions of schemes $Z_{3,2}$ and $Z_{2,2}$.

Keywords: zero-dimensional scheme, Hilbert function, postulation

MSC 2000 classification: primary 14N05

Introduction

Fix $P \in \mathbb{P}^n$. Look at all possible zero-dimensional schemes Z with $Z_{\text{red}} = \{P\}$ and invariant for the action of the group G_P of all $h \in \text{Aut}(\mathbb{P}^n)$ such that h(P) = P. In characteristic zero we only get the infinitesimal neighborhoods mP of P in \mathbb{P}^n , m > 0, i.e the closed subschemes of \mathbb{P}^n with $(\mathcal{I}_P)^m$ as its ideal sheaf. If we take two distinct points $P, Q \in \mathbb{P}^n$, $P \neq Q$, we also have a line (the line L spanned by the set $\{P,Q\}$) and it is natural to look at the zero-dimensional schemes $Z \subset \mathbb{P}^n$ such that $Z_{\text{red}} = \{P,Q\}$ and $h^*(Z) \cong Z$ for all $h \in \text{Aut}(\mathbb{P}^n)$ fixing P and Q (or, if we take non-ordered points fixing the set $\{P,Q\}$) and in particular fixing L. A big restriction (if n > 1) is to look only to the previous schemes Z which are contained in L, not just with $Z_{\text{red}} = \{P,Q\} \subset L$. The easiest invariant zero-dimensional scheme (after the set $\{P,Q\}$) is the degree 4 zero-dimensional scheme (2P + 2Q, L), i.e. the zero-dimensional subscheme $Z_{2,1}$ of L with 2 connected components, both of degree 2, and with $\{P,Q\}$ as its support. We call them (2, 1)-schemes. This is a kind of collinear zero-dimensional schemes and hence the Hilbert function of a general

ⁱThis work is partially supported by MIUR and GNSAGA (INDAM)

http://siba-ese.unisalento.it/ © 2016 Università del Salento

union of them is known ([1], [6]). We may generalize this construction in the following way.

For any linear space $V \subseteq \mathbb{P}^n$ and any $P \in V$ let (2P, V) denote the closed subscheme of V with $(\mathcal{I}_{P,V})^2$ as its ideal sheaf. We have $(2P,V) = 2P \cap V$, $(2P, V)_{red} = \{P\}$ and $\deg(2P, V) = \dim(V) + 1$. Fix integer $n \ge r \ge s - 1 \ge 0$. Fix an r-dimensional linear subspace $V \subseteq \mathbb{P}^n$ and a linearly independent set $S \subset V$ with $\sharp(S) = s$. Set $Z_{S,V} := \bigcup_{p \in S} (2p, V)$. $Z_{S,V}$ is a zero-dimensional scheme, $(Z_{S,V})_{\text{red}} = S, Z_{S,V} \subset V$ and $\deg(Z_{S,V}) = s(r+1)$. Any two schemes $Z_{S',V'}$ and $Z_{S,V}$ with dim $(V) = \dim(V')$ and $\sharp(S) = \sharp(S')$ are projectively equivalent. In the case s = r + 1 we may see $Z_{S,V}$ as the first order invariant of the linearly independent set S inside the projective space V (not the full projective space \mathbb{P}^n if r < n) and V is exactly the linear span of S, so that it is uniquely determined by the set $S \subset \mathbb{P}^n$. In the case $s \leq r, Z_{S,V}$ is not uniquely determined by S. The scheme $Z_{S,V}$ prescribes some infinitesimal directions at each point of S, so that each connected component of $Z_{S,V}$ spans V. $Z_{S,V}$ is the minimal zero-dimensional subscheme $B \subset \mathbb{P}^n$ such that $B_{\text{red}} \supseteq S$ and the linear span of each connected component A of B spans a linear space $V_A \supseteq V$. In all cases $Z_{S,V}$ depends only on S and V and not on the projective space containing V. An (s,r)-scheme of \mathbb{P}^n or a scheme $Z_{s,r}$ of \mathbb{P}^n is any scheme $Z_{S,V} \subset \mathbb{P}^n$ for some S, V with dim(V) = r and $\sharp(S) = s$. Set $Z_s := Z_{s,s-1}$. We have $\deg(Z_{s,r}) = s(r+1)$. If $\sharp(S) = 1$ we say that $Z_{S,V}$ is a 2-point of V. A scheme $Z_{1,2}$ is called a planar 2-point.

Let $Z \subset \mathbb{P}^n$ be a zero-dimensional scheme. Consider the exact sequence

$$0 \to \mathcal{I}_Z(t) \to \mathcal{O}_{\mathbb{P}^n}(t) \to \mathcal{O}_Z(t) \to 0 \tag{0.1}$$

The exact sequence (0.1) induces the map $r_{Z,t} : H^0(\mathcal{O}_{\mathbb{P}^n}(t)) \to H^0(\mathcal{O}_Z(t))$ (the restriction map). We say that Z has maximal rank if for each $t \in \mathbb{N}$ the restriction map $r_{Z,t}$ is either injective (i.e. $h^0(\mathcal{I}_Z(t)) = 0$) or surjective (i.e. $h^1(\mathcal{I}_Z(t)) = 0$). For each $t \in \mathbb{N}$ let $h_Z(t)$ be the rank of the restriction map $r_{Z,t}$. We have $h_{\emptyset}(t) = 0$ for all $t \in \mathbb{N}$. If $Z \neq \emptyset$, then $h_Z(0) = 1$ and the function $h_Z(t)$ is strictly increasing until it stabilizes to the integer deg(Z). The regularity index ρ of Z is the first $t \in \mathbb{N}$ such that $h_Z(t) = \deg(Z)$, i.e. such that $h^1(\mathcal{I}_Z(t)) = 0$. By the Castelnuovo - Mumford lemma the homogeneous ideal of Z is generated in degree $\leq \rho(Z) + 1$ and $h^1(\mathcal{I}_Z(t)) = 0$ for all $t \geq \rho(Z)$. If Z is contained in a proper linear subspace $W \subset \mathbb{P}^n$, then each $h_Z(t)$ does not depend on whether one sees Z as a subscheme of \mathbb{P}^n or of W and a minimal set of generators of the homogeneous ideal of Z in \mathbb{P}^n is obtained lifting to \mathbb{P}^n a minimal set of generators of the homogeneous ideal of Z in W and adding $n - \dim(W)$ linear equations. The integer $h_{Z_{S,V}}(t)$ only depends on r, s and t (see Remark 2). See Proposition 1 for the Hilbert function of each $Z_{S,V}$. Zero-dimensional scheme

We study the Hilbert function of general unions of these schemes. There are obvious cases with non-maximal rank for $\mathcal{O}_{\mathbb{P}^n}(2)$, but we compute the exact values of $h_Z(2)$ (see Propositions 2 and 3). For $Z_{3,2}$ exceptional cases arise also with respect to $\mathcal{O}_{\mathbb{P}^n}(d)$ if d = 3 and $n \leq 4$ (Proposition 4) and one case with d = 4 and n = 3 (as expected by the Alexander-Hirschowitz theorem [1], [4]) (see Theorem 3).

For the schemes $Z_{2,2}$ we prove the following results (only in characteristic zero).

Theorem 1. Fix integers $n \ge 2$, $d \ge 3$ and $k \ge 2$. Let $Z \subset \mathbb{P}^n$ be a general union of k schemes $Z_{2,2}$. Then either $h^0(\mathcal{I}_Z(d)) = 0$ or $h^1(\mathcal{I}_Z(d)) = 0$.

Theorem 2. Fix integers $n \ge 2$, $d \ge 3$ and $k \ge 2$. Let $Z \subset \mathbb{P}^n$ be a general union of k schemes $Z_{2,2}$ and one planar 2-point. Then either $h^0(\mathcal{I}_Z(d)) = 0$ or $h^1(\mathcal{I}_Z(d)) = 0$, except in the case (n, k, d) = (2, 2, 4) in which $h^0(\mathcal{I}_Z(4)) =$ $h^1(\mathcal{I}_Z(4)) = 1$.

For general unions of an arbitrary number of schemes $Z_{3,2}$ and $Z_{2,2}$ we prove the case n = 3 (see Theorem 3 for $\mathcal{O}_{\mathbb{P}^3}(d), d \geq 3$).

We also explore the Hilbert function of general unions of zero-dimensional schemes and general lines (see Lemma 6 for a non-expected easy case with non maximal rank).

We work over an algebraically closed field \mathbb{K} with characteristic 0. We heavily use this assumption to apply several times Remark 3.

1 Preliminaries

For any closed subscheme $Z \subset \mathbb{P}^n$ and every hyperplane $H \subset \mathbb{P}^n$ let $\operatorname{Res}_H(Z)$ be the closed subscheme of \mathbb{P}^n with $\mathcal{I}_Z : \mathcal{I}_H$ as its ideal sheaf. For each $t \in \mathbb{Z}$ we have a residual exact sequence

$$0 \to \mathcal{I}_{\operatorname{Res}_H(Z)}(t-1) \to \mathcal{I}_Z(t) \to \mathcal{I}_{Z \cap H,H}(t) \to 0 \tag{1.1}$$

We say that (1.1) is the residual exact sequence of Z and H. We have $\operatorname{Res}_H(Z) \subseteq Z$. If Z is zero-dimensional, then $\deg(Z) = \deg(Z \cap H) + \deg(\operatorname{Res}_H(Z))$.

For any scheme $Z \subset \mathbb{P}^n$ let $h_Z : \mathbb{N} \to \mathbb{N}$ denote the Hilbert function of Z, i.e. for each $t \in \mathbb{N}$ let $h_Z(t)$ denote the rank of the restriction map $H^0(\mathcal{O}_{\mathbb{P}^n}(t)) \to H^0(\mathcal{O}_Z(t))$.

Remark 1. Let $V \subseteq \mathbb{P}^n$ be an *r*-dimensional linear subspace. Assume $Z \subset V$. Since for each $t \in \mathbb{N}$ the restriction map $H^0(\mathcal{O}_{\mathbb{P}^n}(t)) \to H^0(V, \mathcal{O}_V(t))$ is surjective, the Hilbert function of Z is the same if we see Z as a subscheme of \mathbb{P}^n or if we see it as a subscheme of the *r*-dimensional projective space V.

Remark 2. Fix integers $n \ge r > 0$ and s with $1 \le s \le r + 1$. Fix linear spaces $V_i \subseteq \mathbb{P}^n$, i = 1, 2, and sets $S_i \subset V_i$, i = 1, 2, such that $\dim(V_i) = r$, $\sharp(S_i) = s$ and each S_i is linearly independent. Since there is $h \in \operatorname{Aut}(\mathbb{P}^n)$ with $h(V_1) = V_2$ and $h(S_1) = S_2$, Z_{S_1,V_1} and Z_{S_2,V_2} have the same Hilbert function.

Proposition 1. Let $Z := Z_{S,V}$ be an (s, r)-scheme.

(i) If s = 1, then $h_Z(t) = r + 1$ for all $t \ge 1$ and the homogeneous ideal of Z_{SV} is generated by forms of degree ≤ 2 .

(ii) If $s \ge 2$, then $h_Z(0) = 1$, $h_Z(1) = r+1$, $h_Z(2) = (r+1)s - s(s-1)/2$, $h_Z(t) = s(r+1)$ for all $t \ge 3$ and the homogeneous ideal of $Z_{S,V}$ is generated by forms of degree ≤ 4 , but not of degree ≤ 3 . Outside S the scheme-theoretic base locus of $|\mathcal{I}_Z(3)|$ is the union of all lines spanned by 2 of the points of S. Outside S the scheme-theoretic base locus of $|\mathcal{I}_Z(2)|$ is the linear span of S.

Proof. Since $Z \subset V$, we may assume n = r, i.e. $V = \mathbb{P}^r$ (Remark 1).

Part (i) is well-known. The case $r = 1, s \ge 2$ is also obvious, by the cohomology of line bundles on \mathbb{P}^1 . Hence we may assume $r \ge 2, s \ge 2$ and use induction on the integer r. We assume that Proposition 1 is true for all pairs (s', r') with $1 \le r' < r$ and $1 \le s' \le r' + 1$. For any (s, r)-scheme Z we have $h_Z(0) = 1$ and $h_Z(1) = r + 1$. Since S is linearly independent, we have $h^1(\mathcal{I}_S(t)) = 0$ for all t > 0.

(a) Assume $s \leq r$. Let $H \subset \mathbb{P}^r$ be a hyperplane containing S. We have $Z \cap H = Z_{S,H}$ and $\operatorname{Res}_H(Z) = S$. From the residual exact sequence (1.1) and the inductive assumption we get $h^1(\mathcal{I}_Z(t)) = 0$ for all $t \geq 3$, $h^1(\mathcal{I}_Z(2)) = h^1(H, \mathcal{I}_{Z \cap H, H}(2))$ and $h^0(\mathcal{I}_Z(2)) = h^0(\mathcal{I}_{Z \cap H, V \cap H}(2)) + r + 1 - s$. The inductive assumption gives $h^1(H, \mathcal{I}_{Z \cap H, H}(2)) = s(s-1)/2$. Hence $h_Z(2) = \deg(Z) - s(s-1)/2 = s(r+1) - s(s-1)/2$. We also get that outside S the base locus of $|\mathcal{I}_Z(t)|$, t = 2, 3, and of $|\mathcal{I}_{Z \cap H}(t)|$ are the same. By the Castelnuovo-Mumford's lemma the homogeneous ideal of Z is generated in degree ≤ 4 . It is not generated in degree ≤ 3 , because $|\mathcal{I}_Z(3)|$ has a one-dimensional base locus.

(b) Assume $s = r + 1 \ge 3$. Since $V = \mathbb{P}^r$, S spans \mathbb{P}^r and every quadric hypersurface of \mathbb{P}^r has as its singular locus a proper linear subspace of \mathbb{P}^r , we have $h^0(\mathcal{I}_Z(2)) = 0$ and hence $h_Z(2) = \binom{r+2}{2}$ and $h^1(\mathcal{I}_Z(2)) = (r+1)^2 - \binom{r+2}{2} = (r+1)r/2 = s(s-1)/2$. Fix $p \in S$ and set $S' := S \setminus \{p\}$. Let Hbe the hyperplane spanned by S'. We have $Z \cap H = Z_{S',H}$ and $\operatorname{Res}_H(Z) = 2p \cup S'$. We have $h^0(\mathcal{I}_{2p \cup S'}(1)) = 0$ and so $h^1(\mathcal{I}_{2p \cup S'}(1)) = s - 1$. We have $\operatorname{Res}_H(2p \cup S') = 2p$. Since $h^1(\mathcal{I}_{2p}(x)) = 0$ for all x > 0 and $S' \subset H$ is linearly independent, the residual exact sequence of $2p \cup S'$ with respect to H gives $h^1(\mathcal{I}_{2p \cup S'}(t)) = 0$ for all $t \ge 2$. Hence (1.1) and the inductive assumption gives $h^1(\mathcal{I}_Z(t)) = 0$ for all $t \ge 3$. The scheme-theoretic base locus of $|\mathcal{I}_Z(2)|$ is $V = \mathbb{P}^r$. The scheme-theoretic base locus E of $|\mathcal{I}_Z(3)|$ contains the union T of all lines spanned by two of the points of S, which in turn contains Z. Since Z is zero-dimensional, we have $h^1(Z, \mathcal{I}_{Z \cap H,Z}(3)) = 0$ and so the restriction map $H^0(\mathcal{O}_Z(3)) \to H^0(\mathcal{O}_{Z \cap H}(3))$ is surjective. Since $h^1(\mathcal{I}_Z(3)) = 0$, the restriction map $H^0(\mathcal{O}_{\mathbb{P}^r}(3)) \to H^0(\mathcal{O}_{Z \cap H}(3))$ is surjective. Therefore $E \cap H$ is the scheme-theoretic base locus of $|\mathcal{I}_{Z \cap H,H}(3)|$ in H. By the inductive assumption we get $E \cap H = T'$ outside S'.

Now we check that $E_{\text{red}} = T$. If r = 2, then this is true (even schemetheoretically), because $h^0(\mathcal{I}_Z(3)) = 1$ and so $|\mathcal{I}_Z(3)| = \{T\}$. Now assume $r \geq 3$ and that this assertion is true for lower dimensional projective spaces. Fix $q \in \mathbb{P}^r \setminus T$. Let $S'' \subseteq S$ be a minimal subset of S whose linear span contains q. Since S is linearly independent, if $S_1 \subseteq S$ and the linear span of S_1 contains q, then $S_1 \supseteq S''$. Since $q \notin T$, we have $\sharp(S'') \geq 3$. Take 3 distinct points p_1, p_2, p_3 of S'' and let H_i , i = 1, 2, 3, be the linear span of $S \setminus \{p_i\}$. Since any two points of S are contained in at least one of the hyperplanes H_1 , H_2 or H_3 , we have $T \subset H_1 \cup H_2 \cup H_3$. Since each point of S is contained in at least two of the hyperplanes H_i , we have $Z \subset H_1 \cup H_2 \cup H_3$. Since $p_i \in S''$, i = 1, 2, 3, we have $q \notin H_i$ and so $q \notin (H_1 \cup H_2 \cup H_3)$. Thus $q \notin E_{\text{red}}$. Hence $E_{\text{red}} = T$.

To conclude the proof of (ii) it is sufficient to prove that E is reduced outside S. For any set $B \subset \mathbb{P}^r$ let $\langle B \rangle$ denote its linear span. Fix $p \in T \setminus S$ and call p_1 and p_2 the points of S such that p is contained in the line ℓ spanned by $\{p_1, p_2\}$. Since $\ell \subset T$, it is sufficient to prove that ℓ is the Zariski tangent space T_pE of E at p. Assume the existence of a line $R \subset T_pE$ such that $p \in R$ and $R \neq \ell$. Let $S_R \subseteq S$ be a minimal subset of S whose linear span contains R. Since S is linearly independent, any $B \subseteq S$ with $R \subset \langle B \rangle$ contains S_R . Set $\alpha := \sharp(S_R)$. Since $R \not\subseteq T$, we have $\alpha \geq 3$. Let G be the set of all $h \in \operatorname{Aut}(\mathbb{P}^r)$ such that h(u) = u for all $u \in S$. Note that $g(Z_{S,V}) = Z_{S,V}$ for all $g \in G$. Set $G_p := \{g \in G : g(p) = p\}$. G_p acts transitively on the set Δ_R of all lines $L \subset \langle S_R \rangle$ such that $p \in L$ and S_R is the minimal subset of S whose linear span contains L. Since G_p acts transitively on Δ_R , each $L \in \Delta_R$ is contained in T_pE . Since T_pE is closed, it contains all lines $L_1 \subset \langle S_R \rangle$ such that $p \in L_1$. Hence (changing if necessary R) we reduce to the case $\alpha = 3$. Assume for the moment $\{p_1, p_2\} \subset S_R$ and write $S_R = \{p_1, p_2, p_3\}$. Set $\Pi := \langle S_R \rangle$. $E \cap \Pi$ contains $T \cap \Pi$, i.e. the 3 distinct lines of the plane Π spanned by 2 of the points of S_R . $E \cap \Pi \supseteq T \cap \Pi$, because $T_p E$ contains the line $\langle \{p, p_3\} \rangle$ and so the scheme $E \cap \Pi$ contains the tangent vector of $\langle \{p, p_3\} \rangle$ at p. Since $T \cap \Pi$ is a cubic curve, we get $\Pi \subset E$. Hence $E_{\text{red}} \neq T$, a contradiction. Now assume $S_R \cap \{p_1, p_2\} = \emptyset$. Since $p \in \ell$, we have $\langle S_R \rangle \cap \ell \neq \emptyset$ and so $S_R \cup \{p_1, p_2\}$ is not linearly independent, a contradiction. Now assume $\sharp(S_R \cap \{p_1, p_2\}) = 1$. Since $p \in \ell$, we get $\ell \subset \langle S_R \rangle$ and hence $\{p_1, p_2\} \subset S_R$, a contradiction. QED

Remark 3. Let X be an integral projective variety with $\dim(X) > 0$, \mathcal{L} a

line bundle on X and $V \subseteq H^0(\mathcal{L})$ any linear subspace. Take a general $p \in X_{\text{reg}}$ and a general tangent vector A of X at p. We have $\dim(H^0(\mathcal{I}_A \otimes \mathcal{L}) \cap V) = \max\{0, \dim(V) - 2\}$, because (in characteristic zero) any non-constant rational map $X \dashrightarrow \mathbb{P}^r$, $r \ge 1$, has non-zero differential at a general $p \in X_{\text{reg}}$.

Lemma 1. Let $V \subseteq H^0(\mathcal{O}_{\mathbb{P}^n}(2))$, $n \geq 2$, be any linear subspace such that $\dim(V) \geq n+2$. Let $L \subset \mathbb{P}^n$ be a general line. Then $\dim(V \cap H^0(\mathcal{I}_L(2))) = \dim(V) - 3$.

Proof. Since two general points of \mathbb{P}^n are contained in a line, we have $\dim(V \cap H^0(\mathcal{I}_L(2))) \leq \max\{0, \dim(V) - 2\}$, without any assumption on $\dim(V)$. Let \mathcal{B} denote the scheme-theoretic base locus. Since $\dim(V) \geq n+2 > h^0(\mathcal{O}_{\mathbb{P}^n}(1))$, we have $\dim(\mathcal{B}) \leq n-2$. Hence $\mathcal{B} \cap L = \emptyset$ for a general line L. Let $f : \mathbb{P}^n \setminus \mathcal{B} \to \mathbb{P}^r$, $r = \dim(V) - 1$, be the morphism induced by V. We have $\dim(V \cap H^0(\mathcal{I}_L(2))) = \dim(V) - 2$ if and only if f(L) is a line. Assume that this is the case for a general L. Since any two points of \mathbb{P}^n are contained in a line, we get that the closure Γ of $f(\mathbb{P}^n \setminus \mathcal{B})$ in \mathbb{P}^r is a linear space. Since Γ spans \mathbb{P}^r , we get $\Gamma = \mathbb{P}^r$. Hence $\dim(V) = r + 1 \leq n + 1$, a contradiction.

Remark 4. Let $Z \subset \mathbb{P}^n$, $n \geq 2$, be a general union of k schemes $Z_{2,1}$. We have k general lines L_i , $1 \leq i \leq k$, of \mathbb{P}^n and on each L_i a general subscheme of L_i with 2 connected components, each of them with degree 2. Set $T := L_1 \cup \cdots \cup L_k$. We have $h^0(\mathcal{I}_Z(2)) = h^0(\mathcal{I}_T(2))$, where $T \subset \mathbb{P}^n$ is a general union of k lines. If n = 2, then $h^0(\mathcal{I}_T(2)) = 0$ if $k \geq 3$ and $h^0(\mathcal{I}_T(2)) = \binom{4-k}{2}$ if k = 1, 2. If $n \geq 3$, then $h^0(\mathcal{I}_T(2)) = \max\{0, \binom{n+2}{2} - 3k\}$ ([7]).

Fix an integer $d \geq 3$. If n = 2 assume $4s \leq ds + 1 - \binom{s-1}{2}$ for all s with $2 \leq s \leq \min\{k, d+1\}$. Note that the family of all schemes Z has a degeneration Z' in which Z' has k connected components W_i , $1 \leq i \leq k$, with $W_i \subset L_i$ and $(W_i)_{\text{red}}$ a general point of L_i . In the terminology of [2] each W_i is a collinear jet. By semicontinuity we have $h^0(\mathcal{I}_Z(d)) \leq h^0(\mathcal{I}_{Z'}(d))$ and $h^1(\mathcal{I}_Z(d)) \leq h^1(\mathcal{I}_{Z'}(d))$. Hence either $h^0(\mathcal{I}_Z(d)) = 0$ or $h^1(\mathcal{I}_Z(d)) = 0$ ([2]).

Notation Let $A \subseteq \mathbb{P}^n$ be a plane. Fix 3 non-collinear points $p_1, p_2, p_3 \in A$. Let $L, R \subset A$ be lines with $L \cap \{p_1, p_2, p_3\} = \{p_3\}$ and $R \cap \{p_1, p_2, p_3\} = \{p_2\}$. Let $Z[8] \subset \mathbb{P}^n$ denote any scheme projectively equivalent to $(2p_1, A) \cup (2p_2, A) \cup (2p_3, L)$. Let $Z[7] \subset \mathbb{P}^n$ denote any scheme projectively equivalent to $(2p_1, A) \cup (2p_2, A) \cup \{p_3\}$. In both cases p_3 is called the vertex of Z[8] or of Z[7] and L is called the vertex line of Z[8]. Let $Z[5] \subset \mathbb{P}^n$ (resp. $Z[4] \subset \mathbb{P}^n$, resp. $Z'[5] \subset \mathbb{P}^n$) denote any scheme projectively equivalent to $(2p_1, A) \cup (2p_2, R) \cup \{p_2\}$, resp. $(2p_1, A) \cup \{p_2, p_3\}$).

Lemma 2. Fix integers $n \geq 2$, $d \geq 3$, $x \geq 0$ and $c \geq 0$ and a zerodimensional scheme $\Gamma \subset \mathbb{P}^n$ such that either $h^0(\mathcal{I}_{\Gamma \cup W}(d)) = 0$ or $h^1(\mathcal{I}_{\Gamma \cup W}(d)) =$ 0, where $W \subset \mathbb{P}^n$ is a general union of x + c schemes $Z_{3,2}$. Let $Z \subset \mathbb{P}^n$ be a general union of x schemes $Z_{3,2}$ and c schemes Z[8]. Then either $h^0(\mathcal{I}_{\Gamma \cup Z}(d)) = 0$ or $h^1(\mathcal{I}_{\Gamma \cup Z}(d)) = 0$.

Proof. We use induction on c, the case c = 0 being true for all x by assumption. Assume c > 0 and set $e := h^0(\mathcal{I}_{\Gamma}(d)) - 9x - 8c$. First assume e > 0. Let $Z' \subset \mathbb{P}^n$ be a general union of x + 1 schemes $Z_{3,2}$ and c - 1 schemes Z[8]. The inductive assumption gives $h^0(\mathcal{I}_{\Gamma \cup Z'}(d)) = e - 1$ and $h^1(\mathcal{I}_{\Gamma \cup Z'}(d)) = 0$. Since Z is general, we may find Z' with $Z' \supset Z$ and $h^1(\mathcal{I}_{\Gamma \cup Z'}(d)) = 0$. Thus $h^1(\mathcal{I}_{\Gamma \cup Z}(d)) = 0$. Now assume $e \leq 0$. We need to prove that $h^0(\mathcal{I}_{\Gamma \cup Z}(d)) = 0$. Decreasing if necessary c we may assume $e \geq -7$. Let $E \subset \mathbb{P}^n$ be a general union of x schemes $Z_{3,2}$ and c-1 schemes Z[8]. Let $A\subset \mathbb{P}^n$ be a general plane. Let $U\subset A$ be a general scheme $Z_{3,2}$. Note that $(\Gamma \cup E) \cap U = \emptyset$ even if n = 2. The inductive assumption gives $h^1(\mathcal{I}_{\Gamma \cup E}(d)) = 0, \ h^0(\mathcal{I}_{\Gamma \cup E}(d)) = 8 + e \text{ and } h^0(\mathcal{I}_{\Gamma \cup E \cup U}(d)) = 0, \text{ i.e. } U \text{ imposes}$ 8 + e independent conditions to $H^0(\mathcal{I}_{\Gamma \cup E}(d))$. Let U' be a minimal subscheme of U with $h^0(\mathcal{I}_{\Gamma \cup E \cup U'}(d)) = 0$. If $U' \subsetneq U$, then we may find $Z[8] \supseteq U'$ and so $h^0(\mathcal{I}_{\Gamma \cup Z}(d)) = 0$. Now assume U' = U. We need to find a contradiction. Write $U = U_1 \cup U_2 \cup U_3$ with $U_i = (2p_i, U)$ and p_1, p_2, p_3 general in A. If $8 + e \leq 6$ we use Remark 3 and that U contains 3 general tangent vectors. Assume 8 + e = 7. We get $h^0(\mathcal{I}_{\Gamma \cup E \cup U_i}(d)) < h^0(\mathcal{I}_{\Gamma \cup E}(d)) - 2$ for at least one index i, say $h^0(\mathcal{I}_{\Gamma \cup E \cup U_1}(d)) = h^0(\mathcal{I}_{\Gamma \cup E}(d)) - 3$; then we use Remark 3 and that we may find $Z[8] \subset A$ containing U_1 and 2 general tangent vectors of A. Now assume 8 + e = 8. In this case we first get $h^0(\mathcal{I}_{\Gamma \cup E \cup U_i \cup U_i}(d)) = h^0(\mathcal{I}_{\Gamma \cup E}(d)) - 6$ for some $i \neq j$ and then apply once Remark 3. QED

2 Proof of Theorems 1 and 2

Unless otherwise stated from now on a 2-point means a planar 2-point.

For all positive integers n, d set $u_{d,n} := \lfloor \binom{n+d}{n} / 6 \rfloor$ and $v_{d,n} = \binom{n+d}{n} - 6u_{d,n}$. We have

$$6u_{d,n} + v_{d,n} = \binom{n+d}{d}, \ 0 \le v_{d,n} \le 5$$
 (2.1)

Note that if $Z \subset \mathbb{P}^n$ is a disjoint union of x schemes $Z_{2,2}$ we have $h^0(\mathcal{O}_Z(d)) \leq h^0(\mathcal{O}_{\mathbb{P}^n}(d))$ if and only if $x \leq u_{d,n}$. If $d \geq 2$ and $n \geq 2$ from (2.1) for the integers d and d-1 we get

$$6(u_{d,n} - u_{d-1,n}) + v_{d,n} - v_{d-1,n} = \binom{n+d-1}{n-1}$$
(2.2)

From (2.2) we get that $u_{d,n-1} = u_{d,n} - u_{d-1,n}$ and $v_{d,n-1} = v_{d,n} - v_{d-1,n}$ if $v_{d,n} \ge v_{d-1,n}$, while $u_{d,n-1} = u_{d,n} - u_{d-1,n} - 1$ and $v_{d,n-1} = 6 + v_{d,n} - v_{d-1,n}$ if $v_{d,n} < v_{d-1,n}$.

E. Ballico

Proposition 2. Fix integers $n \ge 2$ and k > 0. Let $Z \subset \mathbb{P}^n$ be a general union of k schemes $Z_{2,2}$.

(a) Assume n = 2. If k = 1, then $h^0(\mathcal{I}_Z(2)) = 1$. If $k \ge 2$, then $h^0(\mathcal{I}_Z(2)) = 0$.

(b) Assume n = 3. If k = 1, then $h^0(\mathcal{I}_Z(2)) = 5$. If k = 2, then $h^0(\mathcal{I}_Z(2)) = 1$. If $k \ge 3$, then $h^0(\mathcal{I}_Z(2)) = 0$.

(c) If $n \ge 4$, then $h^0(\mathcal{I}_Z(2)) = \max\{0, \binom{n+2}{2} - 5k\}.$

Proof. Let W be any scheme of type $Z_{2,2}$ and let A be the plane containing W. We have $h^0(A, \mathcal{I}_{W,A}(2)) = 1$ (the only conic of A containing W is a double line) and hence $h^1(A, \mathcal{I}_{W,A}(2)) = 1$. Hence $h^0(\mathcal{I}_Z(2)) \ge \max\{0, \binom{n+2}{2} - 5k\}$ and $h^1(\mathcal{I}_Z(2)) \ge k$. Let J be the line spanned by $\{p_1, p_2\} := W_{\text{red}}$. We have $h^0(\mathcal{I}_W(2)) = H^0(\mathcal{I}_B(2))$, where B is the union of $(2p_1, A)$ and any degree 2 scheme with p_2 as its reduction, contained in A and not contained in J. Therefore it is sufficient to prove that a general union Z' of k degree 5 schemes projectively equivalent to B satisfies $h^0(\mathcal{I}_{Z'}(2)) = \max\{0, \binom{n+2}{2} - 5k\}$, except in the case (n, k) = (3, 2). B is a scheme Z[5].

If n = 2, then the result is obvious. Now assume n = 3. If k = 1, then Z is contained in a plane and from the case n = 2, k = 1 we get $h^1(\mathcal{I}_Z(2)) = 1$. If k = 2, then $h^0(\mathcal{I}_Z(2)) \ge 1$, because Z is contained in a reducible quadric. Let A_1, A_2 be the two planes containing the two schemes $Z_{2,2}$ of Z and call $N_i \subset A_i$ the scheme $Z_{2,2}$ contained in A_i and let L_i be the line spanned by $(N_i)_{\text{red}}$. Fix $p \in A_1 \setminus L_1$. By the case n = 2 we have $h^0(A_1, \mathcal{I}_{N_1 \cup \{p\}, A_1}(2)) = 0$. Taking $p = A_1 \cap L_2$ we get that $f_{|A_1|} \equiv 0$ for each $f \in H^0(\mathcal{I}_Z(2))$ vanishes on A_1 . Similarly $f_{|A_2|} \equiv 0$. Hence $|\mathcal{I}_Z(2)| = \{A_1 \cup A_2\}$. The case k = 2 obviously implies the case $k \ge 3$.

Now assume $n \ge 4$ and that Proposition 2 is true in \mathbb{P}^{n-1} . It is sufficient to do the cases $k = \lfloor \binom{n+2}{2}/5 \rfloor$ and $k = \lceil \binom{n+2}{2}/5 \rceil$ and in particular we may assume that $k \ge \lceil (n+1)/3 \rceil$. Fix a hyperplane $H \subset \mathbb{P}^n$.

(i) First assume $n+1 \equiv 0, 2 \pmod{3}$. Write n+1 = 3a+2b with $a \in \mathbb{N}$ and $0 \leq b \leq 1$. Let $A_i, 1 \leq i \leq a+b$, be general planes. If $1 \leq i \leq a$, let $L_i \subset A_i$ be a general line and let p_{i1} be a general point of L_i ; set $\{p_{i2}\} := L_i \cap H$ and let v_i be the connected zero-dimensional scheme with p_{i2} as its support and contained in the line $H \cap A_i$. For $i = 1, \ldots, a$ set $B_i := (2p_{i1}, A_i) \cup v_i$. Each B_i is a degree 5 subscheme of A_i projectively equivalent to the scheme B described in the first paragraph of the proof. If b = 1 set $L_{a+1} := A_{a+1} \cap H$, fix two general points p_{a+11} and p_{a+12} of L_{a+1} , and set $B_{a+1} := (2p_{a+1}, A_{a+1}) \cup v_{a+12}$, where v_{a+12} is a degree 2 zero-dimensional scheme contained in A_{a+1} , not contained L_{a+1} and with p_{a+12} as its support. Let $E \subset H$ be a general union of k - a - b schemes Z[5]. Set $F := E \cup \bigcup_{i=1}^{a+b} B_i$. We have $\operatorname{Res}_H(F) = \bigcup_{i=1}^a (2p_{i1}, A_i) \cup G$ with $G = \emptyset$ if b = 0 and $G = \{p_{a+11} \cup p_{a+12}\}$ if b = 1. Thus $h^i(\mathcal{I}_{\operatorname{Res}_H(F)}(1)) = 0, i = 0, 1$. Set

 $G' := \emptyset$ if b = 0 and $G' = (2p_{a+11}, L_{a+1}) \cup \{p_{a+12}\}$ if b = 1. The scheme $F \cap H$ is the union of E, G' and a general tangent vectors. The inductive assumption gives that either $h^0(H, \mathcal{I}_{E,H}(2)) = 0$ or $h^1(\mathcal{I}_{E,H}(2)) = 0$. If $h^0(\mathcal{I}_{E,H}(2)) = 0$, then we get $h^0(\mathcal{I}_F(2)) = 0$, proving Proposition 2 in this case. Now assume $h^1(H, \mathcal{I}_{E,H}(2)) = 0$. If b = 0, then it is sufficient to use Remark 3. Now assume b = 1. By Remark 3 we have $h^0(H, \mathcal{I}_{E\cup G',H}(2)) \leq \max\{0, h^0(\mathcal{I}_{E,H}(2)) - 2\}$ and to prove the proposition in this case it is sufficient to exclude the case $h^0(H, \mathcal{I}_{E\cup G',H}(2)) = h^0(\mathcal{I}_{E,H}(2)) - 2 > 0$, i.e. the case in which a general line of H imposes only 2 conditions to $|\mathcal{I}_{E,H}(2)|$.

First assume n = 4. We have a = b = 1 and it is sufficient to prove that $h^0(\mathcal{I}_Z(2)) = 0$ when k = 3. Since k - a - b = 1, we have $h^0(H, \mathcal{I}_{E,H}(2)) = 5$ and so $h^0(H, \mathcal{I}_{E\cup L,H}(2)) = 2$ for a general line $L \subset H$ by the case n = 3 of Lemma 1.

Now assume $n \geq 5$ and b = 1. We have $h^1(H, \mathcal{I}_{E \cup U, H}(2)) = 0$ for a general degree 5 scheme $U \subset H$ projectively equivalent to B by the inductive assumption. Since the base locus of $|\mathcal{I}_U(2)|$ contains the line spanned by U_{red} , we get $h^0(H, \mathcal{I}_{E \cup G'}(2)) = h^0(H, \mathcal{I}_{E, H}(2)) - 3$. Apply a times Remark 3.

(ii) Now assume $n \equiv 0 \pmod{3}$. Write a := n/3 - 1. Let $A_i, 1 \le i \le a+2$, be general planes. If $1 \le i \le a$, let $L_i \subset A_i$ be a general line and p_{i1} a general point of L_i ; set $\{p_{i2}\} := L_i \cap H$ and let v_i be the connected zero-dimensional scheme with p_{i2} as its support and contained in the line $H \cap A_i$. For $i = 1, \ldots, a$ set $B_i := (2p_{i1}, A_i) \cup v_i$. For i = a + 1, a + 2 set $L_i := A_i \cap H$, fix two general points p_{i1} and p_{i2} of L_i , and set $B_i := (2p_{i1}, A_i) \cup v_{i2}$, where v_{i2} is a degree 2 zero-dimensional scheme contained in A_i , not contained L_i and with p_{i2} as its support. Let $E \subset H$ be a general union of k - a - 2 schemes Z[5]. Set $F := E \cup \bigcup_{i=1}^{a+2} B_i$. We conclude as above using Remark 3 and twice Lemma 1.

Proposition 3. Fix integers $n \ge 2$ and k > 0. Let $Z \subset \mathbb{P}^n$ be a general union of k schemes $Z_{2,2}$ and one planar 2-point.

(a) If n = 2, then $h^0(\mathcal{I}_Z(2)) = 0$.

(b) Assume n = 3. If k = 1, then $h^0(\mathcal{I}_Z(2)) = 2$. If $k \ge 2$, then $h^0(\mathcal{I}_Z(2)) = 0$.

(c) Assume $n \ge 4$. Then $h^0(\mathcal{I}_Z(2)) = \max\{0, \binom{n+2}{2} - 5k - 3\}.$

Proof. Part (a) and the second half of part (b) follow from Proposition 2. Assume n = 3 and k = 1. Write $Z = U \sqcup M$ with U a (2,2)-scheme and M a planar 2-point. Since $h^0(\mathcal{I}_U(2)) = 5$ (Proposition 2), we have $h^0(\mathcal{I}_Z(2)) \ge 2$. Let N be the plane spanned by M and let L be the line spanned by U_{red} . Fix a general $p \in N$. For a general Z we have $U \cap N = \emptyset$ and $L \cap N$ is a general point of N. Since L is in the base locus \mathcal{B} of $|\mathcal{I}_{Z \cup \{p\}}(2)|$, we have $N \subset \mathcal{B}$. Since $h^0(\mathcal{I}_U(1)) = 1$, we get $h^0(\mathcal{I}_{Z \cup \{p\}}(2)) \leq 1$ and so $h^0(\mathcal{I}_Z(2)) \leq 2$. Now assume $n \ge 4$. Proposition 2 gives $h^0(\mathcal{I}_Z(2)) \ge \max\{0, \binom{n+2}{2} - 5k - 3\}$. By Proposition 2 and Remark 3 it is sufficient to do the case $k = \lfloor \binom{n+2}{2}/5 \rfloor$ and only for the integers $n \ge 4$ such that $\binom{n+2}{2} \equiv 3, 4 \pmod{5}$. Fix a hyperplane $H \subset \mathbb{P}^n$. If $n + 1 \equiv 0, 2 \pmod{3}$ we use part (i) of the proof of Proposition 2 taking as $E \subset H$ a general union of one planar 2-point and k - a - b scheme Z[5]; if $n \equiv 0 \pmod{3}$ we use part (ii) of the proof of Proposition 2 with as $E \subset H$ a general union of a planar 2-point and k - a - 2 schemes Z[5]. We explain now why this construction works. In the proof of Proposition 2 we constructed a zero-dimensional scheme $\mathcal{W} \subset \mathbb{P}^n$ for which we proved that either $h^{0}(H, \mathcal{I}_{W \cap H, H}(2)) = 0$ or $h^{1}(\mathcal{I}_{W \cap H, H}(2)) = 0$, deg(Res_H(W)) = n + 1 and $\operatorname{Res}_{H}(\mathcal{W})$ is linearly independent. Thus $h^{i}(\mathcal{I}_{\operatorname{Res}_{H}(\mathcal{W})}(1)) = 0, i = 0, 1. \operatorname{Res}_{H}(\mathcal{W})$ does not depend on the scheme $E \subset H$ and so it is the same as in Proposition 2. Assume n = 5c + 1 with c a positive integer. We have $\binom{n+2}{2} = 5k + 3$ and so we need to prove that $h^i(\mathcal{I}_Z(2)) = 0, i = 0, 1$. So we need to prove that $h^i(H, \mathcal{I}_{W \cap H, H}(2)) = 0, i = 0, 1$. We have the inductive assumption in H to handle E and then we continue as in steps (i) and (ii) of the proof of Proposition 2.QED

Lemma 3. Let $G \subset \mathbb{P}^3$ be a general union of 3 planar 2-points. Then $h^1(\mathcal{I}_G(2)) = 0$ and $h^0(\mathcal{I}_G(2)) = 1$.

Proof. Let A be the plane spanned by G_{red} . Keeping A fixed and moving G among the union of 3 planar 2-points with support on A we see that for a general G the scheme $G \cap A$ is a general union of 3 tangent vectors of A. Remark 3 gives $h^i(A, \mathcal{I}_{G \cap A}(2)) = 0$. Since $\text{Res}_A(G) = G_{\text{red}}$, we have $h^0(\mathcal{I}_{\text{Res}_A(G)}(1)) = 1$ and $h^1(\mathcal{I}_{\text{Res}_A(G)}(1)) = 0$. QED

Proofs of Theorems 1 and 2. First assume n = 2. Since any two points of \mathbb{P}^n are collinear, in the case n = 2 of Theorem 1 (resp. Theorem 2) Z is a general union of 2k (resp. 2k + 1) general 2-points of \mathbb{P}^2 . The Alexander-Hirschowitz list ([1], [4]) gives Theorems 1 and 2. We assume $n \ge 3$ and that Theorems 1 and 2 are true in \mathbb{P}^{n-1} . To prove Theorem 1 is sufficient to do the cases $k = \lfloor \binom{n+d}{n}/6 \rfloor = u_{d,n}$ and $k = \lceil \binom{n+d}{n}/6 \rceil$. Let $H \subset \mathbb{P}^n$ be a hyperplane.

(a) Assume d = n = 3. Since $u_{3,3} = 3$ and $v_{3,3} = 2$, to prove Theorem 1 it is sufficient to prove that $h^1(\mathcal{I}_Z(3)) = 0$ if k = 3 and $h^0(\mathcal{I}_Z(3)) = 0$ if k = 4. First assume k = 3. Let $Y \subset \mathbb{P}^3$ be a union of 3 schemes $Z_{2,2}$ such that one of them is contained in H and that each of the other ones have a point in its support contained in H and that Y is general with these restrictions. The scheme $Y \cap H$ is a general union of one scheme $Z_{2,2}$ (call it β) and 2 tangent

vectors. We obviously have $h^1(H, \mathcal{I}_{\beta,H}(3)) = 0$ and hence $h^i(H, \mathcal{I}_{Y \cap H,H}(3)) = 0$, i = 0, 1, by Remark 3. Hence it is sufficient to prove that $h^1(\mathcal{I}_{\operatorname{Res}_H(Y)}(2)) = 0$. We have $\operatorname{Res}_H(Y) = U_1 \sqcup U_2$ with U_i spanning a general plane A_i and U_i union of a general 2-point $(2P_i, A_i)$ of A_i and a general point q_i of the line $A_i \cap H$. We have $h^1(\mathcal{I}_{(2P_1,A_1)\cup(2P_2,A_2)}(2)) = 0$ (Lemma 3) and so $h^0(\mathcal{I}_{(2P_1,A_1)\cup(2P_2,A_2)}(2)) = 4$. The scheme $(2P_1, A_1) \cup (2P_2, A_2)$ does not depend on H. Since any two points of \mathbb{P}^3 are collinear, moving H we may assume that (q_1, q_2) is a general element of $A_1 \times A_2$.

Since $h^0(\mathcal{I}_{A_1\cup(2P_2,A_2)}(2)) = h^0(\mathcal{I}_{(2P_2,A_2)}(1)) = 1$ and q_1 is general in A_1 , we get $h^0(\mathcal{I}_{(2P_1,A_1)\cup(2P_2,A_2)\cup\{q_1\}}(2)) = 3$. Since $h^0(\mathcal{I}_{(2P_1,A_1)\cup(2P_2,A_2)\cup\{q_1\}\cup A_2}(2)) = h^0(\mathcal{I}_{(2P_2,A_2)\cup\{q_1\}}(1)) = 1$, we obtain that $h^0(\mathcal{I}_{(2P_1,A_1)\cup(2P_2,A_2)\cup\{q_1\}\cup\{q_2\}}(2)) = 2$, i.e. we have $h^1(\mathcal{I}_{\operatorname{Res}_H(Y)}(2)) = 0$.

Now assume k = 4. Since two general points of \mathbb{P}^n are contained in a scheme $Z_{2,2}$ and $v_{3,3} = 2$, the case k = 4 of Theorem 1 follows from the case k = 3. For Theorem 2 it is sufficient to do the cases k = 2 (true because Z is contained in a general disjoint union of 3 schemes $Z_{2,2}$) and k = 3 (we use that a planar 2-point contains a tangent vector, Remark 3 and that $v_{3,3} = 2$).

(b) Assume d = 3 and $n \ge 4$. To prove Theorem 1 is sufficient to prove the cases $k = \lfloor \binom{n+3}{3}/6 \rfloor$ and $k = \lceil \binom{n+3}{3}/6 \rceil$. Fix any k disjoint schemes B_i projectively equivalent to $Z_{2,2}$. Let A_i be the plane containing B_i and let L_i be the line spanned by the reduction of B_i . We assume that $L_i \cap L_j = \emptyset$ for all i, j such that $i \neq j$. Since $\binom{6}{2} = 15$ and $\binom{n+2}{2} \geq 20$ for all $n \geq 5$, we may write $\binom{n+2}{2} = 5x + 4a$ with a, x non-negative integers and $0 \le a \le 4$. Now we check that $k \ge x + a$. Assume $k \le x + a - 1$. Since $a \le 4$, we get $5k \le 5x + 5a - 5 \le {\binom{n+2}{2}} - 1$, contradicting the inequality $6k \ge {\binom{n+3}{3}} - 5$. Let $G \subset \mathbb{P}^n$ be a general union of x schemes of type $Z_{2,2}$ and let $S \subset H$ be the intersection with H of the lines associated to each scheme $Z_{2,2}$. Since G is general, these x lines are x general lines of \mathbb{P}^n and so S is a general subset of H. Fix a general planes A_i , $1 \leq i \leq a$, and let $B_i \subset A_i$ be a general scheme of type $Z_{2,2}$ with the restriction that one of the points of $(B_i)_{red}$ is contained in $H \cap A_i$. Let $E \subset H$ be a general union of k - a - x schemes $Z_{2,2}$ of H. Set $Y := G \cup E \cup \bigcup_{i=1}^{a} B_i$. For all $i = 1, \ldots, a$ the scheme $\operatorname{Res}_H(B_i)$ is a general union of a 2-point of A_i and a general point of the line $A_i \cap H$. Let M be the union of the reduced components of $\bigcup_{i=1}^{a} \operatorname{Res}_{H}(B_{i})$. Since any $Z_{2,2}$ is a degeneration of a family of general planar 2 points, by Proposition 3 we have $h^1(\mathcal{I}_{\operatorname{Res}_H(Y)\setminus M}(2)) = 0$ and so $h^0(\mathcal{I}_{\operatorname{Res}_H(Y)\setminus M}(2)) = a$. $\operatorname{Res}_H(Y)\setminus M$ does not depend on H. Since $a \leq 4 \leq n$, any a points of \mathbb{P}^n are contained in a hyperplane. Hence, writing $M = \{q_1, \ldots, q_a\}$ with $q_i \in A_i$, we may assume that (q_1, \ldots, q_a) is a general element of $\times_{i=1}^{a} A_i$. As in step (a) we get $h^i(\mathcal{I}_{\operatorname{Res}_H(Y)}(2)) = 0$, i = 0, 1. Hence it is sufficient to prove that $h^0(H, \mathcal{I}_{S \cup (Y \cap H)}(3)) = \max\{0, \binom{n+2}{3}\}$

 $6(k - a - x) - x - 2a\} = \max\{0, \binom{n+3}{3} - 6k\}$. Since $S \subset H$ is general, it is sufficient to prove that $h^0(H, \mathcal{I}_{Y \cap H}(3)) = \max\{0, \binom{n+3}{3} - 6k + x\}$. We have either $h^1(H, \mathcal{I}_{E,H}(3)) = 0$ or $h^0(H, \mathcal{I}_{E,H}(3)) = 0$ by step (a) and the inductive assumption. Therefore we may assume that $h^1(H, \mathcal{I}_{E,H}(3)) = 0$. Use Remark 3. To check Theorem 2 for d = 3 and $n \ge 4$ we leave to the reader at least 3 options. We may add in H one more planar 2-point or add it outside H using the integers x', a' with $\binom{n+2}{2} = 3 + 5x' + 4a'$ or insert with its support on H, but not contained in H so that in the residual we have a general point (taking integers x'', a'' with $\binom{n+2}{2} = 1 + 5x'' + 4a''$ and whose intersection with H is a general tangent vector).

(c) Assume $d \ge 4$ and $n \ge 3$. We prove Theorem 1 for (n, d). By steps (a), (b) and induction on d we may assume that Theorems 1 and 2 are true in \mathbb{P}^n for the integer d-1. In all cases for Theorem 1 it is sufficient to do the case $k = \lfloor \binom{n+d}{n}/6 \rfloor$ and $k = \lceil \binom{n+d}{n}/6 \rceil$. In particular we assume $6k \ge \binom{n+d}{n} - 5$.

(c1) First assume that $v_{d-1,n}$ is even. Write $\binom{n+d-1}{n} = 6x + 4a$ with x, a non-negative integers and $0 \le a \le 2$. Since $6k \ge \binom{n+d}{n} - 5$ and $a \le 2$, we have $k \ge a + x$. Let $G \subset \mathbb{P}^n$ be a general union of x schemes $Z_{2,2}$. Fix a general planes $A_i, 1 \le i \le a$ and let $B_i \subset A_i$ be a general scheme of type $Z_{2,2}$ with the restriction that one of the points of $(B_i)_{\text{red}}$ is contained in $H \cap A_i$. Let $E \subset H$ be a general union of k - a - x schemes $Z_{2,2}$ of H. Set $Y := G \cup E \cup \bigcup_{i=1}^{a} B_i$. By Remark 3 and the inductive assumption on n, we may assume that either $h^0(H, \mathcal{I}_{Y \cap H, H}(d)) = 0$ or $h^1H, (\mathcal{I}_{Y \cap H, H}(d)) = 0$.

Claim 1: We have $h^i(\mathcal{I}_{\operatorname{Res}_H(Y)}(d-1)) = 0.$

Proof of Claim 1: Since $\deg(\operatorname{Res}_H(Y)) = \binom{n+d-1}{n}$, it is sufficient to prove that $h^1(\mathcal{I}_{\text{Res}_H(Y)}(d-1)) = 0$. For $1 \le i \le a$ write $B_i = (2p_{i1}, A_i) \cup (2p_{i2}, A_i)$ with $p_{i2} \in A_i \cap H$. We have $\operatorname{Res}_H(B_i) = (2p_{i1}, A_i) \cup \{p_{i2}\}$. The inductive assumption gives $h^1(\mathcal{I}_G(d-1)) = 0$. Hence Claim 1 is true if a = 0. Now assume a = 1. By the inductive assumption we have $h^0(\mathcal{I}_{G \cup B_1}(d-1)) = 0$. By the inductive assumption for Theorem 2 we have $h^1(\mathcal{I}_{G\cup(2p_{11},A_1)}(d-1)) = 0$. Since $h^{0}(\mathcal{I}_{G\cup(2p_{11},A_{1})}(d-1)) > 0 \text{ and } h^{0}(\mathcal{I}_{G\cup B_{1}}(d-1)) = 0, A_{1} \text{ is not contained in the}$ base locus of $|\mathcal{I}_{G\cup(2p_{11},A_1)}(d-1)|$. For a general H we may assume that p_{12} is a general point of A_1 . Hence $h^1(\mathcal{I}_{\operatorname{Res}_H(Y)}(d-1)) = 0$. Now assume a = 2. The inductive assumption gives $h^1(\mathcal{I}_{G\cup B_1}(d-1)) = 0$ and hence by semicontinuity $h^{1}(\mathcal{I}_{G\cup(2p_{11},A_{1})\cup(2p_{21},A_{2})}(d-1)) = 0$ and so $h^{0}(\mathcal{I}_{G\cup(2p_{11},A_{1})\cup(2p_{21},A_{2})}(d-1)) = 2$. The scheme $G \cup (2p_{11}, A_1) \cup (2p_{21}, A_2)$ does not depend from H. Since any two points of \mathbb{P}^n are collinear, moving H we see that we may take as (p_{21}, p_{22}) a general element of $A_1 \times A_2$. Hence $h^0(\mathcal{I}_{G \cup (2p_{11},A_1) \cup (2p_{21},A_2) \cup \{p_{2i}\}}(d-1)) = 2$ if and only A_i is in the base locus of $|\mathcal{I}_{G\cup(2p_{11},A_1)\cup(2p_{21},A_2)}(d-1)|$. By monodromy for general A_1, A_2 if one of them is in the base locus, then so is the other one. But in this case we would have $h^0(\mathcal{I}_{G \cup B_1 \cup B_2}(d-1)) = 2$, contradicting the inductive assumption. Now assume $h^0(\mathcal{I}_{G\cup(2p_{11},A_1)\cup(2p_{21},A_2)\cup\{p_{12}\}}(d-1)) = 1 = h^0(\mathcal{I}_{G\cup(2p_{11},A_1)\cup(2p_{21},A_2)\cup\{p_{21},p_{22}\}}(d-1))$. Since p_{22} is general in A_2 , we get $1 = h^0(\mathcal{I}_{G\cup(2p_{11},A_1)\cup\{p_{11}\}\cup A_2}(d-1))$. The inductive assumption for Theorem 2 gives $h^0(\mathcal{I}_{G\cup(2p_{11},A_1)\cup B_2}(d-1)) = 0$, a contradiction. QED

(c2) Now assume that $v_{d-1,n}$ is odd. Let $\Gamma \subset \mathbb{P}^n$ be a zero-dimensional scheme and let p be a general point of H. By the differential Horace lemma to prove that $h^1(\mathcal{I}_{\Gamma \cup K}(d)) = 0$ (resp. $h^0(\mathcal{I}_{\Gamma \cup K}(d)) = 0$ for a general planar 2-point $K \subset \mathbb{P}^n$ it is sufficient to prove that $h^1(H, \mathcal{I}_{(\Gamma \cap H) \cup \{p\}, H}(d)) = h^1(\mathcal{I}_{\operatorname{Res}_H(\Gamma) \cup v}(d - d))$ $1)) = 0 \text{ (resp. } h^0(H, \mathcal{I}_{(\Gamma \cap H) \cup \{p\}, H}(d)) = h^0(\mathcal{I}_{\operatorname{Res}_H(\Gamma) \cup v}(d-1)) = 0), \text{ where } v \subset H$ is a general tangent vector of H with p as its support ([3]). Instead of K we may use a general $Z_{2,2}$. Instead of v we get a scheme $B \subset A$ with A general plane containing p, $\deg(B) = 5$ and B a disjoint union of the general planar 2-point of A and a general tangent vector of the line $A \cap H$. Let $B' \supset B$ denote the scheme $Z_{2,2}$ containing B. Since $v_{d-1,n}$ is odd, $\binom{n+d-1}{n}$ is odd and so we may write $\binom{n+d-1}{n} - 5 = 6x + 4a$ with x, a non-negative integers and $0 \le a \le 2$. Since $6k \ge {n \choose k} - 5$, and $a \le 2$, we have $k \ge x + a + 1$. Let $G \subset \mathbb{P}^n$ be a general union of x schemes $Z_{2,2}$. Fix a general planes A_i , $1 \le i \le a$ and let $B_i \subset A_i$ be a general scheme of type $Z_{2,2}$ with the restriction that one of the points of $(B_i)_{red}$ is contained in $H \cap A_i$. Let A_{a+1} be a general plane. Let B_{a+1} be a general scheme $Z_{2,2}$ whose reduction spans the line $A_{a+1} \cap H$. Let $E \subset H$ be a general union of k - x - a - 1 schemes $Z_{2,2}$ of H. Set $Y := G \cup E \cup \bigcup_{i=1}^{a+1} B_i$. By the inductive assumption on n either $h^0(H, \mathcal{I}_{(Y \cap H) \cup \{p\}}(d)) = 0$ or $h^1(H, \mathcal{I}_{(Y \cap H) \cup \{p\}}(d)) = 0$. Therefore it is sufficient to prove that $h^i(\mathcal{I}_{\operatorname{Res}_H(Y)\cup B'}(d-1))=0, i=0,1.$ Let γ (resp. β) be the union of the connected components of $\operatorname{Res}_H(Y) \cup B'$ contained in H (resp. not contained in H). Note that $\beta \cap H = \emptyset$. β is a general union of a 2-point of A and several $Z_{2,2}$. The inductive assumption for Theorem 2 gives $h^1(\mathcal{I}_\beta(d-1)) = 0$, i.e. $h^0(\mathcal{I}_\beta(d-1)) = \deg(\gamma)$. The scheme γ is a general union of a tangent vector of $H \cap A$ and a points of H. Since $\beta \cap H = \emptyset$, by Remark 3 we have $h^0(\mathcal{I}_{\beta\cup\gamma}(d-1)) = \max\{0, h^0(\mathcal{I}_{\beta}(d-2))\}$. Even when d = 4, 5 we have $h^0(\mathcal{I}_{\beta}(d-2)) = 0$ by the inductive assumption, because $\deg(\beta) = \binom{n+d-1}{n} - a - 2$ and $0 \le a \le 2$.

(d) To conclude we need to prove Theorem 2 for (n, d). By Remark 3 and Theorem 1 for (n, d) it is sufficient to do the case $k = \lfloor \binom{n+d}{n}/6 \rfloor$ and $\binom{n+d}{n} \equiv 3, 4, 5 \pmod{6}$. If $v_{d-1,n}$ is even we make the same construction as in steps (c1) taking instead of E a general union $E' \subset H$ of k - x - a schemes $Z_{2,2}$ and a planar 2-point. The case considered in (c2) is easier: take the planar 2-scheme outside H and define x, a by the relations $\binom{n+d-1}{n} - 3 = 6x + 4a,$ $0 \le a \le 2$.

E. Ballico

3 General unions of schemes $Z_{3,2}$

Consider the following assertion $H_{d,n}$:

Assertion $H_{d,n}$: For all $x, y \in \mathbb{N}$ either $h^0(\mathcal{I}_Z(d)) = 0$ or $h^1(\mathcal{I}_Z(d)) = 0$ for a general union $Z \subset \mathbb{P}^n$ of x schemes $Z_{3,2}$ and y schemes $Z_{2,2}$.

For all positive integers n, d set $a_{d,n} := \lfloor \binom{n+d}{n}/9 \rfloor$ and $b_{d,n} = \binom{n+d}{n} - 9a_{d,n}$. We have

$$9a_{d,n} + b_{d,n} = \binom{n+d}{d}, \ 0 \le b_{d,n} \le 8$$
 (3.1)

If $d \ge 2$ and $n \ge 2$ from (3.1) for the integers d and d-1 we get

$$9(a_{d,n} - a_{d-1,n}) + b_{d,n} - b_{d-1,n} = \binom{n+d-1}{n-1}$$
(3.2)

From (3.2) we get that $a_{d,n-1} = a_{d,n} - a_{d-1,n}$ and $b_{d,n-1} = b_{d,n} - b_{d-1,n}$ if $b_{d,n} \ge b_{d-1,n}$, while $a_{d,n-1} = a_{d,n} - a_{d-1,n} - 1$ and $b_{d,n-1} = 9 + b_{d,n} - b_{d-1,n}$ if $b_{d,n} < b_{d-1,n}$.

Our original aim was the construction of exceptional cases for general unions of these zero-dimensional schemes and a prescribed number of lines. See Lemma 6 for one such case.

In the next section we prove $H_{d,3}$ for all $d \geq 5$ and give the list of all exceptional cases in \mathbb{P}^3 for d = 3, 4 (Theorem 3). We list the possible values $h^0(\mathcal{I}_Z(d))$ if d = 3, n = 4 and Z is unions of $Z_{3,2}$ (Proposition 4).

Lemma 4. Fix integers $n \ge 2$ and k > 0. Let $Z \subset \mathbb{P}^n$ be a general union of k schemes $Z_{3,2}$.

(a) If n = 2, then $h^0(\mathcal{I}_Z(2)) = 0$.

(b) Assume n = 3. If k = 1, then $h^0(\mathcal{I}_Z(2)) = 4$. If k = 2, then $h^0(\mathcal{I}_Z(2)) = 1$. If $k \ge 3$, then $h^0(\mathcal{I}_Z(2)) = 0$.

(c) Assume n = 4. If k = 1 (resp. k = 2, resp. $k \ge 3$), then $h^0(\mathcal{I}_Z(2)) = 9$ (resp. $h^0(\mathcal{I}_Z(2)) = 4$, resp. $h^0(\mathcal{I}_Z(2)) = 0$).

(d) If $n \ge 5$, then $h^0(\mathcal{I}_Z(2)) = \max\{0, \binom{n+2}{2} - 6k\}.$

Proof. Let W be a $Z_{3,2}$ -configuration of Z and A the plane containing W. Since $H^0(\mathcal{I}_W(2)) = H^0(\mathcal{I}_A(2))$, we have $h^0(\mathcal{I}_Z(2)) = h^0(\mathcal{I}_T(2))$, where T is the union of the planes containing the $Z_{3,2}$ -configurations of Z. T is a general union of k planes of \mathbb{P}^n . Thus parts (a) and (b) and the case k = 1 of parts (c) and (d) are obvious.

Now assume n = 4 and k > 1. If T_1 and T_2 are general planes, then every quadric hypersurface containing $T_1 \cup T_2$ is a cone with vertex containing the point $T_1 \cap T_2$. Taking the linear projection from the linear span of Sing(T) we

92

Zero-dimensional scheme

get part (c), (in the case k = 3, because $h^0(\mathbb{P}^1, \mathcal{I}_{\beta}(2)) = 0$ for any degree 3 scheme $\beta \subset \mathbb{P}^1$).

Part (d) follows from [5, Theorem 3.2] applied to T.

Lemma 5. Let $T \subset \mathbb{P}^3$ be a general union of one $Z_{2,2}$ and 3 lines. Then $h^1(\mathcal{I}_T(3)) = 0$. If Z is a general union of one $Z_{2,2}$ and 3 general collinear degree 4 schemes, then $h^1(\mathcal{I}_Z(3)) = 0$.

Proof. Write $T = B \sqcup R$ with B zero-dimensional and R a union of 3 general lines. Note that $|\mathcal{I}_R(2)|$ is formed by a unique quadric, which is smooth and in particular that $h^1(\mathcal{I}_R(2)) = 0$. Let $H \subset \mathbb{P}^3$ be the plane spanned by B. Since $R \cap H$ is a general union of 3 points, we have $h^1(H, \mathcal{I}_{T \cap H, H}(3)) = 0$. Use that $\operatorname{Res}_H(T) = R$, $h^1(\mathcal{I}_R(2)) = 0$ and the residual exact sequence of T and H. The statement for Z follows from the one for T, because $h^0(\mathcal{O}_Z(3)) = h^0(\mathcal{O}_T(3))$ and $H^0(\mathcal{I}_W(3)) = H^0(\mathcal{I}_L(3))$ for any line $L \subset \mathbb{P}^3$ and any zero-dimensional scheme $W \subset L$ with deg(W) = 4.

We found the following counterexample if we also add lines.

Lemma 6. Let $T \subset \mathbb{P}^3$ be a general union of one $Z_{3,2}$ and 2 lines and let $Y \subset \mathbb{P}^3$ be a general union of one $Z_{3,2}$ and one line. Then $h^1(\mathcal{I}_T(3)) = 1$, $h^0(\mathcal{I}_T(3)) = 4$ and $h^1(\mathcal{I}_Y(3)) = 0$.

Proof. Write $T = B \sqcup R \sqcup L$ with $B \neq Z_{3,2}$ -scheme and R, L lines. Let H be the plane spanned by B. We have $\operatorname{Res}_H(T) = R \cup L$ and hence $h^0(\mathcal{I}_{\operatorname{Res}_H(T)}(2)) = 4$. Since $h^0(H, \mathcal{I}_{Z_{3,2}}(3)) = 1$ and $R \cap H$ is general in H, we have $h^0(H, \mathcal{I}_{H \cap T, H}(3)) = 0$. The residual exact sequence of T and H gives $h^0(\mathcal{I}_T(3)) = h^0(\mathcal{I}_{\operatorname{Res}_H(T)}(2)) = 4$. Since $h^0(\mathcal{I}_T(3)) = 4$, we have $h^1(\mathcal{I}_T(3)) = 1$.

Take $Y = B \cup R$. We have $h^i(\mathcal{I}_{Y \cap H,H}(3)) = 0$, i = 0, 1 and hence $h^1(\mathcal{I}_Y(3)) = h^1(\mathcal{I}_R(2)) = 0$.

Proposition 4. Let $Z \subset \mathbb{P}^n$, $n \geq 2$, be a general union of k schemes $Z_{3,2}$. (i) Assume n = 2. We have $h^0(\mathcal{I}_Z(3)) = 1$ and $h^1(\mathcal{I}_Z(3)) = 0$ if k = 1, and $h^0(\mathcal{I}_Z(3)) = 0$ if $k \geq 2$.

(ii) Assume n = 3. We have $h^0(\mathcal{I}_Z(3)) = 11$ and $h^1(\mathcal{I}_Z(3)) = 0$ (resp. $h^0(\mathcal{I}_Z(3)) = 4$ and $h^1(\mathcal{I}_Z(3)) = 2$, resp. $h^0(\mathcal{I}_Z(3)) = 1$ and $h^1(\mathcal{I}_Z(3)) = 8$, resp. $h^0(\mathcal{I}_Z(3)) = 0$) if k = 1 and $h^1(\mathcal{I}_Z(3)) = 8$ (resp. k = 2, resp. k = 3, resp. $k \ge 4$).

(iii) Assume n = 4. We have $h^1(\mathcal{I}_Z(3)) = 0$ if $k \leq 3$, $h^0(\mathcal{I}_Z(k)) = 0$ if $k \geq 5$ and $h^0(\mathcal{I}_Z(3)) = 1$, $h^1(\mathcal{I}_Z(3)) = 2$ if k = 4.

Proof. Proposition 1 gives $|\mathcal{I}_Z(3)| = |\mathcal{I}_T(3)|$, where T is the union of the 3 lines spanned by each pair of points of the reduction of any $Z_{3,2} \subseteq Z$. Part (i)

and all cases with k = 1 follow. Now assume n > 2 and $k \ge 2$. The values of $h^1(\mathcal{I}_Z(3))$ in parts (ii) and (iii) are uniquely determined by n, k and the values of $h^0(\mathcal{I}_Z(2))$.

(a) Assume n = 3. We have $\binom{6}{3} = 2 \cdot 9 + 2$. Let A_1, A_2, A_3, A_4 be general planes and B_i a general union of 3 lines of A_i . We have $h^0(\mathcal{I}_{A_1\cup A_2}(3)) = 4$. We fix A_1 and B_1 . For a general A_2 , the line $A_1 \cap A_2$ is a general line of A_1 . For a general B_2 the set $B_2 \cap (A_1 \cap A_2)$ contains a general point of $A_1 \cap A_2$. Hence $h^0(A_1, \mathcal{I}_{B_1\cup (B_2\cap A_2)}(3)) = 0$. In the same way we get $h^0(A_i, \mathcal{I}_{B_i\cap (B_j\cap A_i)}(3)) = 0$ for all $i \neq j$. Hence $h^0(\mathcal{I}_{B_1\cup B_2}(3)) = h^0(\mathcal{I}_{A_1\cup A_2}(3)) = 4$, $h^0(\mathcal{I}_{B_1\cup B_2\cup B_3}(3)) = h^0(\mathcal{I}_{A_1\cup A_2\cup A_3}(3)) = 1$. Therefore $h^0(\mathcal{I}_Z(3)) = 0$ if $k \geq 4$.

(b) Assume n = 4. We have $\binom{7}{3} = 3 \cdot 9 + 8$. Let $H \subset \mathbb{P}^4$ be a hyperplane. Let $A_i, 1 \leq i \leq k$, be general planes. Let $E_i \subset A_i$ be a general reducible conic. Set $L_i := A_i \cap H$ and $T_i := E_i \cup L_i$.

Claim 1: We have $h^i(\mathcal{I}_{E_1 \cup E_2 \cup E_3}(2)) = 0, i = 0, 1.$

Proof of Claim 1: Since $h^0(\mathcal{O}_{E_1\cup E_2\cup E_3}(2)) = 15$, the claim is equivalent to prove that a general union of 3 reducible conics is contained in no quadric hypersurface. We degenerate $E_2 \cup E_3$ to $F := F_1 \cup F_2 \cup v_1 \cup v_2$ with $F_1 \cup F_2 \subset$ $H, F_1 \cup F_2$ a connected nodal union of 4 lines with arithmetic genus 1, F_1 and F_2 reducible conics, v_1 and v_2 tangent vectors not contained in H and supported at the two points of $F_1 \cap F_2$. Set $Y := F \cup E_1$. We have $H \cap F =$ $F_1 \cup F_2$ and $Y \cap H = F_1 \cup F_2 \cup (E_1 \cap H)$ with $H \cap E_1$ two general points of H. Hence $h^0(H, \mathcal{I}_{Y \cap H, H}(2)) = 0$. We have $\operatorname{Res}_H(Y) = E_1 \cup (F_1 \cap F_2)$. Since $h^0(\mathcal{I}_{E_1 \cup (F_1 \cap F_2)}(1)) = 0$ for general E_1 and $F_1 \cup F_2$, a residual exact sequence gives Claim 1. QED

Since $h^1(H, \mathcal{I}_{L_1 \cup L_2 \cup L_3}(3)) = 0$, Claim 1 proves the case k = 3. Now we check the case k = 4 and hence all cases with $k \ge 4$. We will also prove that $h^0(\mathcal{I}_U(3)) = 1$ for a general union of 4 planes and so $h^0(\mathcal{I}_Z(3)) > 0$ if k = 4. Fix a general $p \in L_1$. We take as A_4 a general plane containing p and let $T_4 \subset A_4$ be the union of 3 general lines. Set $Y := T_1 \cup T_2 \cup T_3 \cup T_4$. Take $G \in |\mathcal{I}_Y(3)|$. Since $p \notin T_4, G \supset A_4$. $A_2 \cap A_4$ and $A_3 \cap A_4$ are general points of A_2 and A_3 , respectively. Hence $A_2 \cup A_3 \subset G$. Since $A_2 \cap A_1 \notin T_1$, we also get $A_1 \subset G$. Although $T_3 \cup A_4$ is not general, $W := A_1 \cup A_2 \cup A_3 \cup A_4$ is a general union of 4 planes. Hence to prove the case k = 4 it is sufficient to prove that $h^0(\mathcal{I}_W(3)) = 1$. Taking into account the 6 points $A_i \cap A_j$, $1 \le i < j \le 4$, show that $h^0(\mathcal{O}_W(3)) = 34$ (use 4 Mayer-Vietoris exact sequences to check that $h^1(\mathcal{O}_W(3)) = 0$). Hence $h^0(\mathcal{I}_W(3)) \geq 1$. Let $M \subset \mathbb{P}^4$ be a general hyperplane containing A_4 . Since $\operatorname{Res}_M(W) = A_1 \cup A_2 \cup A_3$, Claim 1 gives $h^0(\mathcal{I}_{\operatorname{Res}_M(W)}(2)) = 0$. $W \cap M$ is the union of A_4 and 3 general lines. Hence $h^0(M, \mathcal{I}_{W \cap M}(3)) = 1$. The residual sequence of M gives $h^0(\mathcal{I}_W(3)) \leq 1$. Since $h^0(\mathcal{I}_W(3)) > 0$, the proof of the case k = 4 is finished. QED Zero-dimensional scheme

4 General unions of schemes $Z_{3,2}$ and $Z_{2,2}$ in \mathbb{P}^3

The aim of this section is to prove the following result.

Theorem 3. Take $x, y, d \in \mathbb{N}$ with $d \geq 3$. Let $Z \subset \mathbb{P}^3$ be a general union of $x Z_{3,2}$ and $y Z_{2,2}$. We have $h^0(\mathcal{I}_Z(d)) \cdot h^1(\mathcal{I}_Z(d)) = 0$, except in the following cases:

- (1) $(d, x, y) = (3, 2, 0), h^0(\mathcal{I}_Z(3)) = 4, h^1(\mathcal{I}_Z(3)) = 2:$
- (2) $(d, x, y) = (3, 3, 0), h^0(\mathcal{I}_Z(3)) = 1, h^1(\mathcal{I}_Z(3)) = 8;$
- (3) $(d, x, y) = (3, 1, 2), h^0(\mathcal{I}_Z(3)) = 1, h^1(\mathcal{I}_Z(3)) = 2;$
- (4) $(d, x, y) = (3, 2, 1), h^0(\mathcal{I}_Z(3)) = 1, h^1(\mathcal{I}_Z(3)) = 5;$
- (5) $(d, x, y) = (4, 4, 0), h^0(\mathcal{I}_Z(4)) = 1, h^1(\mathcal{I}_Z(4)) = 2.$

In this section we take n = 3. Let $H \subset \mathbb{P}^3$ be a plane. Let $U(x, y) \subset \mathbb{P}^3$ be a general union of x schemes $Z_{3,2}$ and y schemes $Z_{2,2}$. Let $V(x, y) \subset \mathbb{P}^3$ be a general union of x schemes $Z_{3,2}$ and y schemes Z[7] with vertex contained in H; note that the latter condition is not restrictive if $y \leq 3$, because any 3 points of \mathbb{P}^3 are contained in a plane. Set V(x) = U(x) = U(x, 0) = V(x, 0).

Lemma 7. Let $Z \subset \mathbb{P}^3$, be a general union of x schemes $Z_{3,2}$ and y schemes $Z_{2,2}$. Then either $h^0(\mathcal{I}_Z(3)) = 0$ or $h^1(\mathcal{I}_Z(3)) = 0$, except the cases with y = 0 listed in Proposition 4 and the following cases with y > 0:

- (1) (x, y) = (1, 2) with $h^0(\mathcal{I}_Z(3)) = 1$ and $h^1(\mathcal{I}_Z(3)) = 2$;
- (2) (x,y) = (2,1) with $h^0(\mathcal{I}_Z(3)) = 1$ and $h^1(\mathcal{I}_Z(3)) = 5$.

Proof. All cases with y = 0 are covered by Proposition 4. All cases with x = 0 are true by Theorem 1. The case (x, y) = (0, 4) covered by Theorem 1 shows that $h^0(\mathcal{I}_Z(3)) = 0$ if $x + y \ge 4$.

Assume x = y = 1. Let A be the plane containing $Z_{3,2}$. Fix a general $p \in A$. We have $h^i(A, \mathcal{I}_{Z_{3,2}\cup\{p\}}(3)) = 0$, i = 0, 1. Let $B \subset \mathbb{P}^3$ be a general plane containing p. We take a general $Z_{2,2} \subset B$ such that $(Z_{2,2})_{\mathrm{red}} \cap A = \{p\}$. Let $L \subset B$ be a general line with $p \in L$. By the residual sequence of A and the differential Horace lemma applied to the connected component of $Z_{2,2}$ with p as its reduction it is sufficient to prove that $h^1(\mathcal{I}_{(2q,B)\cup(2p,L)}(2)) = 0$, where q is a general point of B. This is true for every $q \in B \setminus L$, because $h^1(B, \mathcal{I}_{(2q,B)\cup(2p,L),B}(2)) = 0$. In all cases with x + y = 3 we have $h^0(\mathcal{I}_Z(3)) > 0$, because Z is contained in x + y planes.

Now assume x = 1 and y = 2; we want to prove that $h^0(\mathcal{I}_Z(3)) = 1$ and hence $h^1(\mathcal{I}_Z(3)) = 2$. Let $Z' \subset Z$ be any disjoint union of 3 schemes $Z_{2,2}$ contained

in Z (with $Z \setminus Z'$ a 2-point of a plane A). Theorem 1 gives $h^1(\mathcal{I}_{Z'}(3)) = 0$ and so $h^0(\mathcal{I}_{Z'}(3)) = 2$. Res_A(Z') is a general union of two schemes $Z_{2,2}$ and so $h^0(\mathcal{I}_{\text{Res}_A(Z')}(2)) = 1$ (Proposition 2). Since $Z \setminus Z'$ contains a general point of A and $h^0(\mathcal{I}_{\text{Res}_A(Z')}(2)) < h^0(\mathcal{I}_{Z'}(3))$, we get $h^0(\mathcal{I}_Z(3)) < h^0(\mathcal{I}_{Z'}(3))$ and so $h^0(\mathcal{I}_Z(3)) = 1$.

Finally, we consider the case x = 2, y = 1. Take $Z'' \subset Z$ with Z'' union of one $Z_{3,2}$ and two $Z_{2,2}$. Since $h^0(\mathcal{I}_Z(3)) \ge 1$ and $h^0(\mathcal{I}_{Z''}(3)) = 1$ by the case (x, y) = (1, 2) just done, we get $h^0(\mathcal{I}_Z(3)) = 1$ and hence $h^1(\mathcal{I}_Z(3)) = 5$. QED

Proposition 5. Fix $x, y \in \mathbb{N}$. We have $h^0(\mathcal{I}_{U(x,y)}(4)) \cdot h^1(\mathcal{I}_{U(x,y)}(4)) = 0$ if and only if $(x, y) \neq (4, 0)$. We have $h^0(\mathcal{I}_{U(4)}(4)) = 1$, $h^1(\mathcal{I}_{U(4)}(4)) = 2$ and $h^1(\mathcal{I}_{V(3,1)}(4)) = 0$.

Proof. By Theorem 1 we may assume x > 0. Since V(x, y) is contained in x + yplanes, we have $h^0(\mathcal{I}_{U(4)}(4)) > 0$. We first check that $h^0(\mathcal{I}_{U(4)}(4)) = 1$ and hence $h^1(\mathcal{I}_{U(4)}(4)) = 2$. We degenerate U(4) to a general union Z' of one $Z_{3,2} \subset H$ and 3 general schemes $Z_{3,2}$ such that exactly one of the points of their support is contained in $H. Z' \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors and so $h^i(H, \mathcal{I}_{Z'\cap H, H}(4)) = 0, i = 0, 1$. Since any 3 points of \mathbb{P}^3 are contained in a plane, $\operatorname{Res}_H(Z')$ may be considered as a general V(0,3). V(0,3)is contained in a union of 3 planes and so to prove that $h^0(\mathcal{I}_{Z'}(4)) \leq 1$ (and hence $h^0(\mathcal{I}_{U(4)}(4)) = 1$ it is sufficient to prove that $h^0(\mathcal{I}_{V(0,3)}(3)) \leq 1$. Fix U(0,3) and call A_1, A_2, A_3 the 3 planes spanned by the connected components of U(0,3). Since any 3 points of \mathbb{P}^3 are contained in a plane, V(0,3) has the Hilbert function of $U(0,3) \cup \{P_1, P_2, P_3\}$, where each P_i is a general point of A_i . By Theorem 1 we have $h^1(\mathcal{I}_{U(0,3)}(3)) = 0$ and so $h^0(\mathcal{I}_{U(0,3)}(3)) = 2$. Hence there is $q \in$ $A_1 \cup A_2 \cup A_3$ such that $h^0(\mathcal{I}_{U(0,3)\cup\{q\}}(3)) = 1$. Thus $|\mathcal{I}_{V(0,3)}(3)| = \{A_1 \cup A_2 \cup A_3\},\$ i.e. $h^0(\mathcal{I}_{V(0,3)}(3)) = 1$. Thus $h^0(\mathcal{I}_{U(4)}(4)) = 1$. Since $h^0(\mathcal{I}_{U(4)}(4)) = 1$ we have $h^0(\mathcal{I}_{U(x,y)}(4)) = 0$ if $x \ge 4$ and x + y > 4. Now assume $x \le 3$. To prove that $h^1(\mathcal{I}_{U(x,y)}(4)) \cdot h^0(\mathcal{I}_{U(x,y)}(4)) = 0$ it is sufficient to check the following pairs (x, y): (1, 4), (1, 5), (2, 2), (2, 3), (3, 1), (3, 2).

(a) Take (x, y) = (3, 2). We degenerate U(x, y) to a general union Z' of one $Z_{3,2}$ contained in H, two $Z_{3,2}$ with a point of their reduction contained in H, one $Z_{2,2}$ with a point of its support in H and a general $Z_{2,2}$. Since $Z' \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors, we have $h^i(H, \mathcal{I}_{Z'\cap H, H}(4)) = 0$, i = 0, 1 and so it is sufficient to prove that $h^0(\mathcal{I}_{\text{Res}_H(Z')}(3)) = 0$. Res $_H(Z')$ is a general union of one $Z_{2,2}$, two Z[7] with vertex in H and one Z[4] with vertex in H. Since $h^0(\mathcal{I}_{U(0,2)}(2)) = 1$ (Proposition 2), we have $h^0(\mathcal{I}_W(2)) = 0$ for a general union of one $Z_{2,2}$, two Z[7] with vertex contained in H and one Z[4] with vertex contained in H. Since any 3 points of \mathbb{P}^3 are contained in a plane, adding one vertex at each step we see that $h^0(\mathcal{I}_{\text{Res}_H(Z')}(3)) = 0$ if $h^0(\mathcal{I}_E(3)) \leq 3$,

where E is a general union of 3 $Z_{2,2}$ and one planar 2-point. Theorem 2 gives $h^0(\mathcal{I}_E(3)) = 0.$

(b) Take (x, y) = (3, 1). We make the same construction taking now as Z' a general union of one $Z_{3,2}$ contained in H, two $Z_{3,2}$ with a point of their reduction contained in H, one $Z_{2,2}$ with a point of its support in H.

(c) Take either (x, y) = (1, 5) or (x, y) = (1, 4). We degenerate U(x, y) to a general union Z' of y-3 schemes $Z_{2,2}$, one scheme $Z_{3,2}$ contained in H and 3 general $Z_{2,2}$ with one point of their support contained in H. Since $Z' \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors, we have $h^i(H, \mathcal{I}_{Z'\cap H, H}(4)) = 0$, i = 0, 1, and so it is sufficient to prove that $h^0(\mathcal{I}_{\operatorname{Res}_H(Z')}(3)) = 0$ if y = 5and $h^1(\mathcal{I}_{\operatorname{Res}_H(Z')}(3)) = 0$ if y = 4. $\operatorname{Res}_H(Z')$ is a general union of $y - 3 Z_{2,2}$ and 3 Z[4] with vertex contained in H. Let E be the union of the unreduced connected components of $\operatorname{Res}_H(Z')$. E is a general union of $y - 3 Z_{2,2}$ and 3 planar 2-points. We degenerate two general planar 2-points to two disjoint, but coplanar 2-points, i.e., to a scheme $Z_{2,2}$. In this way we degenerate E to a scheme E_1 to which we apply Theorem 2. Theorem 2 gives $h^1(\mathcal{I}_{E_1}(3)) = 0$ if y = 4 and $h^0(\mathcal{I}_{E_1}(3)) = 0$ if y = 5 and so $h^1(\mathcal{I}_E(3)) = 0$ if y = 4 and $h^{0}(\mathcal{I}_{E}(3)) = 0$ if y = 5. Hence $h^{0}(\mathcal{I}_{\text{Res}_{H}(Z')}(3)) = 0$ if y = 5. Now assume y = 4and hence $h^0(\mathcal{I}_E(3)) = 5$. Recall that to prove this case it is sufficient to prove that $h^0(\mathcal{I}_{\text{Res}_H(Z')}(3)) = 2$, i.e. $h^0(\mathcal{I}_{\text{Res}_H(Z')}(3)) = h^0(\mathcal{I}_E(3)) - 3$. $\text{Res}_H(Z') \setminus E$ is a general union of 3 points of H. Hence $h^0(\mathcal{I}_{\operatorname{Res}_H(Z')}(3)) = \max\{2, h^0(\mathcal{I}_{E\cup H}(3))\}.$ We have $h^0(\mathcal{I}_{E\cup H}(3)) = h^0(\mathcal{I}_E(2)) \leq 1$, because E contains 4 general tangent vectors of \mathbb{P}^3 and another general point of \mathbb{P}^3 .

(d) Take either (x, y) = (2, 3) or (x, y) = (2, 2). We degenerate U(x, y) to a general union Z' of one $Z_{3,2}$ contained in H, one $Z_{3,2}$ with a point of its reduction contained in H, two $Z_{2,2}$ with a point of its support in H and y - 2 general $Z_{2,2}$. Since $Z' \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors, we have $h^i(H, \mathcal{I}_{Z \cap H, H}(4)) = 0$, i = 0, 1, and so it is sufficient to prove that $h^0(\mathcal{I}_{\text{Res}_H(Z')}(3)) = 0$ if y = 3 and $h^1(\mathcal{I}_{\text{Res}_H(Z')}(3)) = 0$ if y = 2. $\text{Res}_H(Z')$ is a general union of y - 2 schemes $Z_{2,2}$, one Z[7] with vertex contained in H and two Z[4] with vertex contained in H. Let E be the union of the unreduced connected components of $\text{Res}_H(Z')$. As in the previous step we reduce to prove that $h^1(\mathcal{I}_E(3)) = 0$. To prove this h^1 -vanishing it is sufficient to do the case y = 3. In this case E is a general union of $2 Z_{2,2}$ and two planar 2-points and hence U(0,3) is a specialization of it. Use the semicontinuity theorem and Theorem 1.

(e) Now we check that $h^1(\mathcal{I}_{V(3,1)}(4)) = 0$, i.e. $h^0(\mathcal{I}_{V(3,1)}(4)) = 1$. We proved that $h^1(\mathcal{I}_{U(3,1)}(4)) = 0$, i.e. $h^0(\mathcal{I}_{U(3,1)}(4)) = 2$. Since $y \leq 3 V(3,1)$ has the Hilbert function of a general union β of $3 Z_{3,2}$ and one Z[7]. Assume $h^1(\mathcal{I}_{\beta}(4)) > 0$, i.e. (since $\beta \supset U(3,1)$ and $\deg(\beta) = \deg(U(3,1)) + 1$) assume

 $H^0(\mathcal{I}_{\beta}(4)) = H^0(\mathcal{I}_{U(3,1)}(4)).$ Write $U(3,1) = U \sqcup B$ with B the $Z_{2,2}$. Let A be the plane spanned by B. A general β is obtained from U(3,1) adding a general point of A. Hence $H^0(\mathcal{I}_{A\cup U(3,1)}(4)) = H^0(\mathcal{I}_{U(3,1)}(4)).$ Since $\operatorname{Res}_A(U(3,1)) = U$, we get $h^0(\mathcal{I}_U(3)) = 2$. Since U = U(3,0), the case (n,k) = (3,3) of Proposition 4 gives a contradiction. QED

Lemma 8. Let $Z \subset \mathbb{P}^3$ be a general union of 2 $Z_{2,2}$ and 3 planar 2-points. Then $h^0(\mathcal{I}_Z(3)) = 0$.

Proof. Let $A', A'' \subset \mathbb{P}^3$ be general planes. Fix one $Z_{2,2}, B \subset H$, and call B'a general $Z_{2,2}$ of A' with the only restriction that one of the points of B'_{red} is general in the line $A' \cap H$. Let D be a general planar 2-point of A'' with D_{red} contained in the line $A'' \cap H$. Let $G \subset \mathbb{P}^3$ be a general union of 2 planar 2points. Set $Z' := G \cup B \cup B' \cup D$. By semicontinuity it is sufficient to prove that $h^0(\mathcal{I}_{Z'}(3)) = 0$. Since $Z' \cap H$ is a general union of B and 2 general tangent vectors of H, Theorem 1 and Remark 3 give $h^i(H, \mathcal{I}_{Z'\cap H}(3)) = 0, i = 0, 1$. $\text{Res}_H(Z')$ is a general union of 2 planar 2 points (i.e. G), a scheme Z[4] whose vertex is a general point of H (i.e. $\text{Res}_H(B')$) and a general point of H (i.e. $\text{Res}_H(D)$). Since $\text{Res}_H(\text{Res}_H(Z'))$ contains G, we have $h^0(\mathcal{I}_{\text{Res}_H(\text{Res}_H(Z'))}(1)) = 0$. Hence $h^0(\mathcal{I}_{\text{Res}_H(Z')\cup H}(2)) = 0$. Since $\text{Res}_H(D)$ is general in H, to prove the lemma it is sufficient to prove that $h^0(\mathcal{I}_{G\cup\text{Res}_H(B')}(2)) \leq 1$.

Since $G \cup \operatorname{Res}_H(B')$ contains 3 general planar 2-points, it is sufficient to quote Lemma 3.

Lemma 9. $H_{5,3}$ is true.

Proof. By Theorem 1 we may assume x > 0. We have $a_{5,3} = 6$ and $b_{5,3} = 2$. We first check that $h^1(\mathcal{I}_{U(6,0)}(5)) = 0$. We specialize U(6,0) to a scheme Z' which is a general union of 3 general schemes $Z_{3,2}$, 2 schemes $Z_{3,2}$ contained in H and a scheme $Z_{3,2}$ whose reduction contains a point of H. By the case n = 2 of the Alexander-Hirschowitz theorem and Remark 3 we have $h^1(\mathcal{I}_{H\cap Z'}(3)) = 0$. Since $\operatorname{Res}_H(Z')$ is a scheme V(3,1), the last assertion of Proposition 5 gives $h^1(\mathcal{I}_{\operatorname{Res}_H(Z')}(4)) = 0$ and hence $h^1(\mathcal{I}_{U(6,0)}(5)) = 0$ and $h^0(\mathcal{I}_{U(6,0)}(5)) = 2$. Hence $h^0(\mathcal{I}_{U(6,1)}(5)) = 0$ and $h^1(\mathcal{I}_{U(x,y)}(5)) = 0$ if $x + y \leq 6$. We just solved all cases with $y \leq 1$ and hence now we may assume that $y \geq 2$.

First assume $x \neq 5$. Let $F \subset H$ be a general union of one $Z_{3,2}$ and two $Z_{2,2}$, i.e. a general union of 7 2-points of H. Since $h^i(H, \mathcal{I}_{F,H}(5)) = 0$, i = 0, 1, it is sufficient to use that either $h^0(\mathcal{I}_{U(x-1,y-2)}(4)) = 0$ or $h^1(\mathcal{I}_{U(x-1,y-2)}(4)) = 0$ by Proposition 5.

Now we prove that $h^0(\mathcal{I}_{U(5,2)}(5)) = 0$. Let $E \subset H$ be a general union of two $Z_{3,2}$, i.e. a general union of 6 2-points of H. Fix general $p_1, p_2 \in H$. Let $G \subset \mathbb{P}^3$ be a general union of 3 $Z_{3,2}$. Let $v_i \subset H$ be a general tangent vector of H with

 $(v_i)_{\text{red}} = \{p_i\}$. An elementary case of the Alexander-Hirschowitz theorem and Remark 3 gives $h^0(H, \mathcal{I}_{E\cup v_1\cup v_2, H}(5)) = 0$, i = 0, 1. Let $B_i \subset \mathbb{P}^3$ be a general $Z_{2,2}$ containing v_i and let A_i be the plane spanned by B_i . Note that $B_i \cap H = v_i$ and $\text{Res}_H(B_i) = \{p_i\} \cup \{2o, A\}$ with o general in A_2 . Fix a general plane $A_2 \subset \mathbb{P}^3$ with $p_2 \in A$. It is sufficient to prove that $h^0(\mathcal{I}_{G\cup(2o_1,A_1)\cup\{q_1\}\cup(2o_2,A_2\}\cup\{q_2\}}(4)) = 0$. By Proposition 5 we have $h^0(\mathcal{I}_{G\cup(2o_1,A_1)\cup(2o_2,A_2)}(4)) = 2$ (degenerate $(2o_1,A_1) \cup (2o_2,A_2)$ to a general $Z_{2,2}$). The scheme $G \cup (2o_1,A_1) \cup (2o_2,A_2)$ does not depend on H. Moving H we may assume that (q_1,q_2) is a general element of $A_1 \times A_2$. Hence it is sufficient to use that $h^0(\mathcal{I}_{G\cup A_1\cup A_2}(4)) = h^0(\mathcal{I}_G(2)) = 0$ by Lemma 4. QED

Lemma 10. Fix an integer $d \ge 6$. Assume that $H_{d-1,3}$ is true. If $d \ge 7$ also assume that $H_{d-2,3}$ is true. Then $H_{d,3}$ is true.

Proof. Increasing or decreasing if necessary x or y it is sufficient to do all cases with $|\binom{d+3}{3} - 9x - 6y| \leq 5$ and all cases with y = 0. To cover all pairs (x, 0)it is sufficient to do the cases $x = \lfloor \binom{d+3}{3}/9 \rfloor$ and $x = \lceil \binom{d+3}{3}/9 \rceil$. Moreover, if we take $x = \lfloor \binom{d+3}{3}/9 \rfloor$ (and hence we need to prove an h^1 -vanishing) we may assume $b_{d,3} \leq 5$ (otherwise we check $h^1 = 0$ for the pair (x, 1)). If $b_{d-1,3} \leq b_{d,3}$, then $b_{d,3} - b_{d-1,3} = b_{d,2}$. If $b_{d-1,3} > b_{d,3}$, then $b_{d,2} = 9 + b_{d,3} - b_{d-1,3}$. We have $b_{d,2} = 1$ if $d \equiv 0, 3, 6 \pmod{9}$, $b_{d,2} = 3$ if $d \equiv 1, 5 \pmod{9}$, $b_{d,2} = 6$ if $d \equiv 2, 4 \pmod{9}$ and $b_{d,2} = 0$ if $d \equiv 7, 8 \pmod{9}$. Let $E \subset H$ be a general union of $a_{d,2}$ schemes $Z_{3,2}$. We have $h^1(H, \mathcal{I}_{E,H}(d)) = 0$, $h^0(H, \mathcal{I}_{E,H}(d)) = b_{d,2}$ and $h^0(H, \mathcal{I}_{E,H}(d-1)) = 0$. We have $b_{6,2} = 1$. By Theorem 1 we may assume x > 0.

(a) Assume $b_{d,2} = 6$.

(a1) First assume $x \ge a_{d,2}$ and y > 0. Let $E_1 \subset H$ be a general union of E and one scheme $Z_{2,2}$. Since $h^i(H, \mathcal{I}_{E_1,H}(d)) = 0$, i = 0, 1, it is sufficient to apply $H_{d-1,3}$ to $U(x - a_{d,2}, y - 1)$.

(a2) Now assume $x < a_{d,2}$ and hence $6y \ge {\binom{d+2}{2}}$. Set $w := 2\lfloor x/2 \rfloor$. So w = x if x is even and w = x - 1 if x is odd. Let $F \subset H$ be a general union of w schemes $Z_{3,2}$ and 3w/2 + 1 schemes $Z_{2,2}$. Since $h^i(H, \mathcal{I}_{F,H}(d)) = 0$, i = 0, 1, it is sufficient to apply $H_{d-1,3}$ to the scheme U(x - w, y - 1 - 3w/2).

(a3) Now assume y = 0. Fix a general line $L \subset H$. Since $h^0(H, \mathcal{I}_{E,H}(d - 1)) = 0$, the image of the restriction map $H^0(H, \mathcal{I}_{E,H}(d)) \to H^0(L, \mathcal{O}_L(d))$ has dimension 6. By Remark 3 for general tangent vectors $v, v' \subset L$ we have $h^0(H, \mathcal{I}_{E \cup v' \cup v, H}(d)) = 2$. Hence $h^i(H, \mathcal{I}_{E \cup v' \cup v \cup w}(d)) = 0$, i = 0, 1, for a general tangent vector $w \subset H$ (Remark 3). Call S the reduction of $v \cup v'$ and $\{q\}$ the reduction of w. Let $M \subset \mathbb{P}^3$ be a general plane containing L. Let $N \subset \mathbb{P}^3$ be a general union of $x - a_{d,2} - 2$ schemes $Z_{3,2}$. Let $U \subset M$ be a general scheme $Z_{3,2}$ containing S. Let $V \,\subset N$ be a general $\mathbb{Z}_{3,2}$ containing q. Note that $U \cap H = v \cup v'$ and $V \cap N = w$ and that $\operatorname{Res}_H(U \cup V) = S \cup W'$ with W' a scheme $\mathbb{Z}[7]$. By semicontinuity and the residual exact sequence of H it is sufficient to prove that either $h^0(\mathcal{I}_{G \cup W' \cup S}(d-1)) = 0$ or $h^1(\mathcal{I}_{G \cup W' \cup S}(d-1)) = 0$. Let $W'' \subset W'$ be the scheme $\mathbb{Z}_{2,2}$ contained in W'. We have $W' = W'' \cup \{q\}$. Since G is general and each point of \mathbb{P}^3 is contained in a hyperplane, $G \cup W''$ has the Hilbert function of $U(x - a_{d,2} - 2, 1)$. By $H_{d-1,3}$ either $h^0(\mathcal{I}_{G \cup W''}(d-1)) = 0$ or $h^1(\mathcal{I}_{G \cup W''}(d-1)) = 0$. Therefore we may assume $h^1(\mathcal{I}_{G \cup W''}(d-1)) = 0$. The only restriction on $W' \cup S$ is that both S and the vertex q of W' are contained in H. Since any 3 points of \mathbb{P}^3 are contained in a plane, for a general S we have $h^0(\mathcal{I}_{G \cup W' \cup S}(d-1)) = 0$ or $h^1(\mathcal{I}_{G \cup W''}(d-1)) = -3, 0$ and so either $h^0(\mathcal{I}_{G \cup W' \cup S}(d-1)) = 0$ or $h^1(\mathcal{I}_{G \cup W' \cup S}(d-1)) = 0$.

(b) Assume $b_{d,2} = 3$ and so $d \ge 10$ and $d \equiv 1, 5 \pmod{9}$.

(b1) Assume $y \ge 2$. Since $\binom{d+2}{2} \equiv 0 \pmod{3}$, there are unique integers a, b such that $9a + 6b = \binom{d+2}{2}$ and $\min\{x, a_{d,2} - 1\} - 1 \le a \le \min\{x, a_{d,2} - 1\}$. Since x > 0, we have $a \ge 0$. Since $9x + 6y \ge \binom{d+3}{3} - 5$ and $y \ge 2$, we have $y \ge b$. Let $F \subset H$ be a general union of a schemes $Z_{3,2}$ and b schemes $Z_{2,2}$. Since $h^i(H, \mathcal{I}_{F,H}(d)) = 0$, i = 0, 1, it is sufficient to apply $H_{d-1,3}$ to the scheme U(x - a, y - b).

(b2) Assume $y \leq 1$. Hence $x \geq a_{d,2} + 2$. Since $h^0(H, \mathcal{I}_{E,H}(d)) = 3$, we have $h^i(H, \mathcal{I}_{E\cup v\cup \{q\}}(d)) = 0$, i = 0, 1, for a general $q \in H$ and a general tangent vector $v \subset H$. Let $G \subset \mathbb{P}^3$ be a general union of $x - a_{d,2} - 2$ schemes $Z_{3,2}$ and y schemes $Z_{2,2}$. Let $L \subset H$ be the line spanned by v. Let $M \subset \mathbb{P}^3$ be a general plane containing L and let $N \subset \mathbb{P}^3$ be a general plane containing tL. Set $\{p\} := v_{\text{red}}$. Let $W \subset M$ be a general scheme Z[8] with p as its vertex and L as its vertex line. Let $U \subset N$ be a general scheme Z[7] with q as its vertex. Let W' (resp. U') be the $Z_{3,2}$ scheme containing W (resp. U) and let W_1 (resp. U_1) be the $Z_{2,2}$ scheme contained in W (resp. U). Since $\text{Res}_H(U') = U$, the differential Horace lemma applied to H, q and W' shows that it is sufficient to prove that either $h^1(\mathcal{I}_{G\cup W\cup U}(d-1)) = 0$ or $h^0(\mathcal{I}_{G\cup W\cup U}(d-1)) = 0$. Note that either $h^1(\mathcal{I}_{G\cup U_1\cup W'}(d-1)) = 0$ (case $9x + 6y \leq {d+3} \choose 3}$) or $h^0(\mathcal{I}_{G\cup U_1\cup W'}(d-1)) = 0$ (case $9x + 6y \geq {d+3} \choose 3}$).

Assume for the moment $9x + 6y < \binom{d+3}{3}$ and hence $h^0(\mathcal{I}_{G \cup W \cup U_1}(d-1)) > 0$. Since $h^1(\mathcal{I}_{G \cup U_1 \cup W'}(d-1)) = 0$, we have $h^1(\mathcal{I}_{G \cup U_1 \cup W}(d-1)) = 0$ and so it is sufficient to prove that $h^0(\mathcal{I}_{G \cup W \cup U}(d-1)) < h^0(\mathcal{I}_{G \cup W \cup U_1}(d-1))$. Since q is general in $H, G \cup U_1$ is a general union of $x - a_{d-2} - 2Z_{3,2}$ and $y + 1Z_{2,2}$. Uis obtained from U_1 adding a general point of $N \cap H$; since for a fixed W we may take as H a general plane containing L, moving H we may assume that Uis obtained from U_1 adding a general point of N. Hence $h^0(\mathcal{I}_{G \cup W \cup U}(d-1)) <$ $h^0(\mathcal{I}_{G\cup W\cup U_1}(d-1)), \text{ unless } h^0(\mathcal{I}_{G\cup W\cup N}(d-1)) = h^0(\mathcal{I}_{G\cup W\cup U_1}(d-1)), \text{ i.e.}$ unless $h^0(\mathcal{I}_{G\cup W}(d-2)) = h^0(\mathcal{I}_{G\cup W\cup U_1}(d-1)).$ The inductive assumption gives $h^0(\mathcal{I}_{G\cup W_1}(d-2)) = 0$ and so $h^0(\mathcal{I}_{G\cup W}(d-2)) = 0$, a contradiction.

Now assume $9x + 6y \ge \binom{d+3}{3}$. Therefore we have $h^0(\mathcal{I}_{G\cup U_1\cup W'}(d-1)) = 0$. If $h^0(\mathcal{I}_{G\cup U_1\cup W}(d-1)) = 0$, then we are done, because $U_1 \subset U$. Now assume $h^0(\mathcal{I}_{G\cup U_1\cup W}(d-1)) > 0$ and hence $h^0(\mathcal{I}_{G\cup U_1\cup W}(d-1)) = 1$. Hence $h^0(\mathcal{I}_{G\cup U_1\cup W_1}(d-1)) > 0$. Since v and q are general in $H, G \cup U_1 \cup W_1$ is a general union of $x - a_{d,2} - 2Z_{3,2}$ and $y + 2Z_{2,2}$. The inductive assumption gives $h^1(\mathcal{I}_{G\cup U_1\cup W_1}(d-1)) = 0$ and so (since $b_{d,2} = 3$) $h^0(\mathcal{I}_{G\cup U_1\cup W_1}(d-1)) = \binom{d+3}{3} - 9x - 6y + 3$. Of course, we get $9x + 6y \le \binom{d+3}{3} + 2$ and $h^0(\mathcal{I}_{G\cup U_1\cup W_1}(d-1)) \le 2$. To get $h^0(\mathcal{I}_{G\cup U_1\cup W}(d-1)) = 0$ (i.e. a contradiction) it is sufficient to prove that $h^0(\mathcal{I}_{G\cup U_1\cup W_1\cup \{0, o'\}}(d-1)) = 0$ for a general $o \in M$ and a general $o' \in N$ (because $G \cup U_1 \cup W_1$ does not depend on H, p (resp. q) is a general point of $N \cap H$ (resp. $M \cap H$) and hence varying H we may assume that (p,q) is a general element of $N \times M$ and for a general line L' through q we may find a hyperplane H' containing $L' \cup \{p\}$ (the linear span of $L' \cup \{p\}$)). This is very easy and we write down only the less trivial case $h^0(\mathcal{I}_{G\cup U_1\cup W_1}(d-1)) = 2$ and $h^0(\mathcal{I}_{G\cup U_1\cup W_1\cup \{o\}}(d-1)) = 1$. We have $h^0(\mathcal{I}_{G\cup U_1\cup W_1\cup \{0,c'\}}(d-1)) = 1$ if and only if $H^0(\mathcal{I}_{G\cup U_1\cup W_1\cup \{0\}}(d-1)) = H^0(\mathcal{I}_{G\cup U_1\cup \{0\}\cup (0,-1)\}}(d-1)) = 0$.

- (c) Assume $b_{d,2} = 1$.
- (c1) Assume $x \ge a_{d,2} + 1$. Look at step (b2). We use Z[8], but not Z[7].

(c2) Assume $x \leq a_{d,2}$. Write w := x if x is even and w := x - 1 if x is odd. We have $\binom{d+2}{2} - 9w \equiv 1 \pmod{6}$ and $6y \geq \binom{d+2}{2} - 9u$. Let $F \subset H$ be a general union of w schemes $Z_{3,2}$, $\binom{d+2}{2} - 9w/6$ schemes $Z_{2,2}$ and one point. We have $h^i(H, \mathcal{I}_{F,H}(d)) = 0$, i = 0, 1. If x is odd, we use the differential Horace and reduce to prove that either $h^0(\mathcal{I}_G(d-1)) = 0$ or $h^1(\mathcal{I}_G(d-1)) = 0$, where G is a general union of one scheme Z[8] and $y - \binom{d+2}{2} - 9w - 1/6$ schemes $Z_{2,2}$. Use $H_{d-1,3}$ and Lemma 2. If x = w as G we take a general union of one scheme Z[5] and $y - 1 - \binom{d+2}{2} - 9w - 1/6$ schemes $Z_{2,2}$.

(d) Assume $b_{d,2} = 0$. First assume $x \ge a_{d,2}$. We use that $h^i(H, \mathcal{I}_{E,H}(d)) = 0$, i = 0, 1, and apply $H_{d-1,3}$ to $U(x - a_{d,2}, y)$. Now assume $x < a_{d,2}$. Set u = x if $a_{d,2} - x$ is even and u = x - 1 if $a_{d,2} - x$ is odd. Since x > 0, in all cases we have $u \ge 0$ and $\binom{d+2}{2} - 9u \equiv 0 \pmod{6}$ and $6y \ge \binom{d+2}{2} - 9u$. Let $F \subset H$ be a general union of u schemes $Z_{3,2}$ and $\binom{d+2}{3} - 9u/6$ schemes $Z_{2,2}$. Since $h^i(H, \mathcal{I}_{F,H}(d)) = 0$, i = 0, 1, it is sufficient to apply $H_{d-1,3}$ to the scheme $U(x - u, y - \binom{d+2}{3} - 9u/6)$.

Proof of Theorem 3: Use Proposition 4 and Lemma 7 for the case d = 3, Proposition 5 for the case d = 4 and Lemmas 9 and 10 for the cases $d \ge 5$.

Acknowledgements. Many thanks to a referee for several very useful suggestions.

References

- J. ALEXANDER, A. HIRSCHOWITZ: Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201–222.
- [2] J. ALEXANDER, A. HIRSCHOWITZ: Interpolation of jets, J. Algebra 192 (1997), no. 1, 412–417.
- [3] J. ALEXANDER, A. HIRSCHOWITZ: An asymptotic vanishing theorem for generic unions of multiple points, Invent. Math. 140 (2000), 303–325.
- [4] M. C. BRAMBILLA, G. OTTAVIANI: On the Alexander-Hirschowitz Theorem, J. Pure Appl. Algebra 212 (2008), no. 5, 1229–1251.
- [5] E. CARLINI, M. V. CATALISANO, A. V. GERAMITA: Subspace arrangements, configurations of linear spaces and the quadrics containing them, J. Algebra 362 (2012), 70–83.
- [6] A. EASTWOOD: Collision the biais et application a l'interpolation, Manuscripta Math. 67 (1990), 227–249.
- [7] R. HARTSHORNE, A. HIRSCHOWITZ: Droites en position générale dans \mathbb{P}^n , Algebraic Geometry, Proceedings, La Rábida 1981, 169–188, Lect. Notes in Math. 961, Springer, Berlin 1982.

102