Zero-dimensional subschemes of projective spaces related to double points of linear subspaces and to fattening directions

Edoardo Ballico ${ }^{\text {i }}$
Department of Mathematics, University of Trento
ballico@science.unitn.it

Received: 18.1.2016; accepted: 8.4.2016.

Abstract

Fix a linear subspace $V \subseteq \mathbb{P}^{n}$ and a linearly independent set $S \subset V$. Let $Z_{S, V} \subset V$ or $Z_{s, r}$ with $r:=\operatorname{dim}(V)$ and $s=\sharp(S)$, be the zero-dimensional subscheme of V union of all double points $2 p, p \in S$, of V (not of \mathbb{P}^{n} if $n>r$). We study the Hilbert function of $Z_{S, V}$ and of general unions in \mathbb{P}^{n} of these schemes. In characteristic 0 we determine the Hilbert function of general unions of $Z_{2,1}$ (easy), of $Z_{2,2}$ and, if $n=3$, general unions of schemes $Z_{3,2}$ and $Z_{2,2}$.

Keywords: zero-dimensional scheme, Hilbert function, postulation
MSC 2000 classification: primary 14N05

Introduction

Fix $P \in \mathbb{P}^{n}$. Look at all possible zero-dimensional schemes Z with $Z_{\text {red }}=$ $\{P\}$ and invariant for the action of the group G_{P} of all $h \in \operatorname{Aut}\left(\mathbb{P}^{n}\right)$ such that $h(P)=P$. In characteristic zero we only get the infinitesimal neighborhoods $m P$ of P in $\mathbb{P}^{n}, m>0$, i.e the closed subschemes of \mathbb{P}^{n} with $\left(\mathcal{I}_{P}\right)^{m}$ as its ideal sheaf. If we take two distinct points $P, Q \in \mathbb{P}^{n}, P \neq Q$, we also have a line (the line L spanned by the set $\{P, Q\}$) and it is natural to look at the zero-dimensional schemes $Z \subset \mathbb{P}^{n}$ such that $Z_{\text {red }}=\{P, Q\}$ and $h^{*}(Z) \cong Z$ for all $h \in \operatorname{Aut}\left(\mathbb{P}^{n}\right)$ fixing P and Q (or, if we take non-ordered points fixing the set $\{P, Q\}$) and in particular fixing L. A big restriction (if $n>1$) is to look only to the previous schemes Z which are contained in L, not just with $Z_{\text {red }}=\{P, Q\} \subset L$. The easiest invariant zero-dimensional scheme (after the set $\{P, Q\})$ is the degree 4 zero-dimensional scheme $(2 P+2 Q, L)$, i.e. the zerodimensional subscheme $Z_{2,1}$ of L with 2 connected components, both of degree 2 , and with $\{P, Q\}$ as its support. We call them (2,1)-schemes. This is a kind of collinear zero-dimensional schemes and hence the Hilbert function of a general

[^0]union of them is known ([1], [6]). We may generalize this construction in the following way.

For any linear space $V \subseteq \mathbb{P}^{n}$ and any $P \in V$ let $(2 P, V)$ denote the closed subscheme of V with $\left(\mathcal{I}_{P, V}\right)^{2}$ as its ideal sheaf. We have $(2 P, V)=2 P \cap V$, $(2 P, V)_{\text {red }}=\{P\}$ and $\operatorname{deg}(2 P, V)=\operatorname{dim}(V)+1$. Fix integer $n \geq r \geq s-1 \geq 0$. Fix an r-dimensional linear subspace $V \subseteq \mathbb{P}^{n}$ and a linearly independent set $S \subset V$ with $\sharp(S)=s$. Set $Z_{S, V}:=\cup_{p \in S}(2 p, V) . Z_{S, V}$ is a zero-dimensional scheme, $\left(Z_{S, V}\right)_{\mathrm{red}}=S, Z_{S, V} \subset V$ and $\operatorname{deg}\left(Z_{S, V}\right)=s(r+1)$. Any two schemes $Z_{S^{\prime}, V^{\prime}}$ and $Z_{S, V}$ with $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\prime}\right)$ and $\sharp(S)=\sharp\left(S^{\prime}\right)$ are projectively equivalent. In the case $s=r+1$ we may see $Z_{S, V}$ as the first order invariant of the linearly independent set S inside the projective space V (not the full projective space \mathbb{P}^{n} if $r<n$) and V is exactly the linear span of S, so that it is uniquely determined by the set $S \subset \mathbb{P}^{n}$. In the case $s \leq r, Z_{S, V}$ is not uniquely determined by S. The scheme $Z_{S, V}$ prescribes some infinitesimal directions at each point of S, so that each connected component of $Z_{S, V}$ spans $V . Z_{S, V}$ is the minimal zero-dimensional subscheme $B \subset \mathbb{P}^{n}$ such that $B_{\text {red }} \supseteq S$ and the linear span of each connected component A of B spans a linear space $V_{A} \supseteq V$. In all cases $Z_{S, V}$ depends only on S and V and not on the projective space containing V. An (s, r)-scheme of \mathbb{P}^{n} or a scheme $Z_{s, r}$ of \mathbb{P}^{n} is any scheme $Z_{S, V} \subset \mathbb{P}^{n}$ for some S, V with $\operatorname{dim}(V)=r$ and $\sharp(S)=s$. Set $Z_{s}:=Z_{s, s-1}$. We have $\operatorname{deg}\left(Z_{s, r}\right)=s(r+1)$. If $\sharp(S)=1$ we say that $Z_{S, V}$ is a 2 -point of V. A scheme $Z_{1,2}$ is called a planar 2-point.

Let $Z \subset \mathbb{P}^{n}$ be a zero-dimensional scheme. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{Z}(t) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(t) \rightarrow \mathcal{O}_{Z}(t) \rightarrow 0 \tag{0.1}
\end{equation*}
$$

The exact sequence (0.1) induces the map $r_{Z, t}: H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(t)\right) \rightarrow H^{0}\left(\mathcal{O}_{Z}(t)\right)$ (the restriction map). We say that Z has maximal rank if for each $t \in \mathbb{N}$ the restriction map $r_{Z, t}$ is either injective (i.e. $h^{0}\left(\mathcal{I}_{Z}(t)\right)=0$) or surjective (i.e. $\left.h^{1}\left(\mathcal{I}_{Z}(t)\right)=0\right)$. For each $t \in \mathbb{N}$ let $h_{Z}(t)$ be the rank of the restriction map $r_{Z, t}$. We have $h_{\emptyset}(t)=0$ for all $t \in \mathbb{N}$. If $Z \neq \emptyset$, then $h_{Z}(0)=1$ and the function $h_{Z}(t)$ is strictly increasing until it stabilizes to the integer $\operatorname{deg}(Z)$. The regularity index ρ of Z is the first $t \in \mathbb{N}$ such that $h_{Z}(t)=\operatorname{deg}(Z)$, i.e. such that $h^{1}\left(\mathcal{I}_{Z}(t)\right)=0$. By the Castelnuovo - Mumford lemma the homogeneous ideal of Z is generated in degree $\leq \rho(Z)+1$ and $h^{1}\left(\mathcal{I}_{Z}(t)\right)=0$ for all $t \geq \rho(Z)$. If Z is contained in a proper linear subspace $W \subset \mathbb{P}^{n}$, then each $h_{Z}(t)$ does not depend on whether one sees Z as a subscheme of \mathbb{P}^{n} or of W and a minimal set of generators of the homogeneous ideal of Z in \mathbb{P}^{n} is obtained lifting to \mathbb{P}^{n} a minimal set of generators of the homogeneous ideal of Z in W and adding $n-\operatorname{dim}(W)$ linear equations. The integer $h_{Z_{S, V}}(t)$ only depends on r, s and t (see Remark 2). See Proposition 1 for the Hilbert function of each $Z_{S, V}$.

We study the Hilbert function of general unions of these schemes. There are obvious cases with non-maximal rank for $\mathcal{O}_{\mathbb{P}^{n}}(2)$, but we compute the exact values of $h_{Z}(2)$ (see Propositions 2 and 3). For $Z_{3,2}$ exceptional cases arise also with respect to $\mathcal{O}_{\mathbb{P}^{n}}(d)$ if $d=3$ and $n \leq 4$ (Proposition 4) and one case with $d=4$ and $n=3$ (as expected by the Alexander-Hirschowitz theorem [1], [4]) (see Theorem 3).

For the schemes $Z_{2,2}$ we prove the following results (only in characteristic zero).

Theorem 1. Fix integers $n \geq 2, d \geq 3$ and $k \geq 2$. Let $Z \subset \mathbb{P}^{n}$ be a general union of k schemes $Z_{2,2}$. Then either $h^{0}\left(\mathcal{I}_{Z}(d)\right)=0$ or $h^{1}\left(\mathcal{I}_{Z}(d)\right)=0$.

Theorem 2. Fix integers $n \geq 2, d \geq 3$ and $k \geq 2$. Let $Z \subset \mathbb{P}^{n}$ be a general union of k schemes $Z_{2,2}$ and one planar 2-point. Then either $h^{0}\left(\mathcal{I}_{Z}(d)\right)=0$ or $h^{1}\left(\mathcal{I}_{Z}(d)\right)=0$, except in the case $(n, k, d)=(2,2,4)$ in which $h^{0}\left(\mathcal{I}_{Z}(4)\right)=$ $h^{1}\left(\mathcal{I}_{Z}(4)\right)=1$.

For general unions of an arbitrary number of schemes $Z_{3,2}$ and $Z_{2,2}$ we prove the case $n=3$ (see Theorem 3 for $\mathcal{O}_{\mathbb{P}^{3}}(d), d \geq 3$).

We also explore the Hilbert function of general unions of zero-dimensional schemes and general lines (see Lemma 6 for a non-expected easy case with non maximal rank).

We work over an algebraically closed field \mathbb{K} with characteristic 0 . We heavily use this assumption to apply several times Remark 3.

1 Preliminaries

For any closed subscheme $Z \subset \mathbb{P}^{n}$ and every hyperplane $H \subset \mathbb{P}^{n}$ let $\operatorname{Res}_{H}(Z)$ be the closed subscheme of \mathbb{P}^{n} with $\mathcal{I}_{Z}: \mathcal{I}_{H}$ as its ideal sheaf. For each $t \in \mathbb{Z}$ we have a residual exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{H}(Z)}(t-1) \rightarrow \mathcal{I}_{Z}(t) \rightarrow \mathcal{I}_{Z \cap H, H}(t) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

We say that (1.1) is the residual exact sequence of Z and H. We have $\operatorname{Res}_{H}(Z) \subseteq$ Z. If Z is zero-dimensional, then $\operatorname{deg}(Z)=\operatorname{deg}(Z \cap H)+\operatorname{deg}\left(\operatorname{Res}_{H}(Z)\right)$.

For any scheme $Z \subset \mathbb{P}^{n}$ let $h_{Z}: \mathbb{N} \rightarrow \mathbb{N}$ denote the Hilbert function of Z, i.e. for each $t \in \mathbb{N}$ let $h_{Z}(t)$ denote the rank of the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(t)\right) \rightarrow$ $H^{0}\left(\mathcal{O}_{Z}(t)\right)$.

Remark 1. Let $V \subseteq \mathbb{P}^{n}$ be an r-dimensional linear subspace. Assume $Z \subset$ V. Since for each $t \in \mathbb{N}$ the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(t)\right) \rightarrow H^{0}\left(V, \mathcal{O}_{V}(t)\right)$ is surjective, the Hilbert function of Z is the same if we see Z as a subscheme of \mathbb{P}^{n} or if we see it as a subscheme of the r-dimensional projective space V.

Remark 2. Fix integers $n \geq r>0$ and s with $1 \leq s \leq r+1$. Fix linear spaces $V_{i} \subseteq \mathbb{P}^{n}, i=1,2$, and sets $S_{i} \subset V_{i}, i=1,2$, such that $\operatorname{dim}\left(V_{i}\right)=r$, $\sharp\left(S_{i}\right)=s$ and each S_{i} is linearly independent. Since there is $h \in \operatorname{Aut}\left(\mathbb{P}^{n}\right)$ with $h\left(V_{1}\right)=V_{2}$ and $h\left(S_{1}\right)=S_{2}, Z_{S_{1}, V_{1}}$ and $Z_{S_{2}, V_{2}}$ have the same Hilbert function.

Proposition 1. Let $Z:=Z_{S, V}$ be an (s, r)-scheme.
(i) If $s=1$, then $h_{Z}(t)=r+1$ for all $t \geq 1$ and the homogeneous ideal of $Z_{S, V}$ is generated by forms of degree ≤ 2.
(ii) If $s \geq 2$, then $h_{Z}(0)=1, h_{Z}(1)=r+1, h_{Z}(2)=(r+1) s-s(s-1) / 2$, $h_{Z}(t)=s(r+1)$ for all $t \geq 3$ and the homogeneous ideal of $Z_{S, V}$ is generated by forms of degree ≤ 4, but not of degree ≤ 3. Outside S the scheme-theoretic base locus of $\left|\mathcal{I}_{Z}(3)\right|$ is the union of all lines spanned by 2 of the points of S. Outside S the scheme-theoretic base locus of $\left|\mathcal{I}_{Z}(2)\right|$ is the linear span of S.

Proof. Since $Z \subset V$, we may assume $n=r$, i.e. $V=\mathbb{P}^{r}$ (Remark 1).
Part (i) is well-known. The case $r=1, s \geq 2$ is also obvious, by the cohomology of line bundles on \mathbb{P}^{1}. Hence we may assume $r \geq 2, s \geq 2$ and use induction on the integer r. We assume that Proposition 1 is true for all pairs $\left(s^{\prime}, r^{\prime}\right)$ with $1 \leq r^{\prime}<r$ and $1 \leq s^{\prime} \leq r^{\prime}+1$. For any (s, r)-scheme Z we have $h_{Z}(0)=1$ and $h_{Z}(1)=r+1$. Since S is linearly independent, we have $h^{1}\left(\mathcal{I}_{S}(t)\right)=0$ for all $t>0$.
(a) Assume $s \leq r$. Let $H \subset \mathbb{P}^{r}$ be a hyperplane containing S. We have $Z \cap H=Z_{S, H}$ and $\operatorname{Res}_{H}(Z)=S$. From the residual exact sequence (1.1) and the inductive assumption we get $h^{1}\left(\mathcal{I}_{Z}(t)\right)=0$ for all $t \geq 3, h^{1}\left(\mathcal{I}_{Z}(2)\right)=$ $h^{1}\left(H, \mathcal{I}_{Z \cap H, H}(2)\right)$ and $h^{0}\left(\mathcal{I}_{Z}(2)\right)=h^{0}\left(\mathcal{I}_{Z \cap H, V \cap H}(2)\right)+r+1-s$. The inductive assumption gives $h^{1}\left(H, \mathcal{I}_{Z \cap H, H}(2)\right)=s(s-1) / 2$. Hence $h_{Z}(2)=\operatorname{deg}(Z)-s(s-$ 1) $/ 2=s(r+1)-s(s-1) / 2$. We also get that outside S the base locus of $\left|\mathcal{I}_{Z}(t)\right|$, $t=2,3$, and of $\left|\mathcal{I}_{Z \cap H}(t)\right|$ are the same. By the Castelnuovo-Mumford's lemma the homogeneous ideal of Z is generated in degree ≤ 4. It is not generated in degree ≤ 3, because $\left|\mathcal{I}_{Z}(3)\right|$ has a one-dimensional base locus.
(b) Assume $s=r+1 \geq 3$. Since $V=\mathbb{P}^{r}, S$ spans \mathbb{P}^{r} and every quadric hypersurface of \mathbb{P}^{r} has as its singular locus a proper linear subspace of \mathbb{P}^{r}, we have $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$ and hence $h_{Z}(2)=\binom{r+2}{2}$ and $h^{1}\left(\mathcal{I}_{Z}(2)\right)=(r+1)^{2}-$ $\binom{r+2}{2}=(r+1) r / 2=s(s-1) / 2$. Fix $p \in S$ and set $S^{\prime}:=S \backslash\{p\}$. Let H be the hyperplane spanned by S^{\prime}. We have $Z \cap H=Z_{S^{\prime}, H}$ and $\operatorname{Res}_{H}(Z)=$ $2 p \cup S^{\prime}$. We have $h^{0}\left(\mathcal{I}_{2 p \cup S^{\prime}}(1)\right)=0$ and so $h^{1}\left(\mathcal{I}_{2 p \cup S^{\prime}}(1)\right)=s-1$. We have $\operatorname{Res}_{H}\left(2 p \cup S^{\prime}\right)=2 p$. Since $h^{1}\left(\mathcal{I}_{2 p}(x)\right)=0$ for all $x>0$ and $S^{\prime} \subset H$ is linearly independent, the residual exact sequence of $2 p \cup S^{\prime}$ with respect to H gives $h^{1}\left(\mathcal{I}_{2 p \cup S^{\prime}}(t)\right)=0$ for all $t \geq 2$. Hence (1.1) and the inductive assumption gives $h^{1}\left(\mathcal{I}_{Z}(t)\right)=0$ for all $t \geq 3$. The scheme-theoretic base locus of $\left|\mathcal{I}_{Z}(2)\right|$ is $V=$ \mathbb{P}^{r}. The scheme-theoretic base locus E of $\left|\mathcal{I}_{Z}(3)\right|$ contains the union T of all
lines spanned by two of the points of S, which in turn contains Z. Since Z is zero-dimensional, we have $h^{1}\left(Z, \mathcal{I}_{Z \cap H, Z}(3)\right)=0$ and so the restriction map $H^{0}\left(\mathcal{O}_{Z}(3)\right) \rightarrow H^{0}\left(\mathcal{O}_{Z \cap H}(3)\right)$ is surjective. Since $h^{1}\left(\mathcal{I}_{Z}(3)\right)=0$, the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}^{r}}(3)\right) \rightarrow H^{0}\left(\mathcal{O}_{Z \cap H}(3)\right)$ is surjective. Therefore $E \cap H$ is the schemetheoretic base locus of $\left|\mathcal{I}_{Z \cap H, H}(3)\right|$ in H. By the inductive assumption we get $E \cap H=T^{\prime}$ outside S^{\prime}.

Now we check that $E_{\text {red }}=T$. If $r=2$, then this is true (even schemetheoretically), because $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$ and so $\left|\mathcal{I}_{Z}(3)\right|=\{T\}$. Now assume $r \geq 3$ and that this assertion is true for lower dimensional projective spaces. Fix $q \in$ $\mathbb{P}^{r} \backslash T$. Let $S^{\prime \prime} \subseteq S$ be a minimal subset of S whose linear span contains q. Since S is linearly independent, if $S_{1} \subseteq S$ and the linear span of S_{1} contains q, then $S_{1} \supseteq S^{\prime \prime}$. Since $q \notin T$, we have $\sharp\left(S^{\prime \prime}\right) \geq 3$. Take 3 distinct points p_{1}, p_{2}, p_{3} of $S^{\prime \prime}$ and let $H_{i}, i=1,2,3$, be the linear span of $S \backslash\left\{p_{i}\right\}$. Since any two points of S are contained in at least one of the hyperplanes H_{1}, H_{2} or H_{3}, we have $T \subset H_{1} \cup H_{2} \cup H_{3}$. Since each point of S is contained in at least two of the hyperplanes H_{i}, we have $Z \subset H_{1} \cup H_{2} \cup H_{3}$. Since $p_{i} \in S^{\prime \prime}, i=1,2,3$, we have $q \notin H_{i}$ and so $q \notin\left(H_{1} \cup H_{2} \cup H_{3}\right)$. Thus $q \notin E_{\text {red }}$. Hence $E_{\text {red }}=T$.

To conclude the proof of (ii) it is sufficient to prove that E is reduced outside S. For any set $B \subset \mathbb{P}^{r}$ let $\langle B\rangle$ denote its linear span. Fix $p \in T \backslash S$ and call p_{1} and p_{2} the points of S such that p is contained in the line ℓ spanned by $\left\{p_{1}, p_{2}\right\}$. Since $\ell \subset T$, it is sufficient to prove that ℓ is the Zariski tangent space $T_{p} E$ of E at p. Assume the existence of a line $R \subset T_{p} E$ such that $p \in R$ and $R \neq \ell$. Let $S_{R} \subseteq S$ be a minimal subset of S whose linear span contains R. Since S is linearly independent, any $B \subseteq S$ with $R \subset\langle B\rangle$ contains S_{R}. Set $\alpha:=\sharp\left(S_{R}\right)$. Since $R \nsubseteq T$, we have $\alpha \geq 3$. Let G be the set of all $h \in \operatorname{Aut}\left(\mathbb{P}^{r}\right)$ such that $h(u)=u$ for all $u \in S$. Note that $g\left(Z_{S, V}\right)=Z_{S, V}$ for all $g \in G$. Set $G_{p}:=\{g \in G: g(p)=p\} . G_{p}$ acts transitively on the set Δ_{R} of all lines $L \subset\left\langle S_{R}\right\rangle$ such that $p \in L$ and S_{R} is the minimal subset of S whose linear span contains L. Since G_{p} acts transitively on Δ_{R}, each $L \in \Delta_{R}$ is contained in $T_{p} E$. Since $T_{p} E$ is closed, it contains all lines $L_{1} \subset\left\langle S_{R}\right\rangle$ such that $p \in L_{1}$. Hence (changing if necessary R) we reduce to the case $\alpha=3$. Assume for the moment $\left\{p_{1}, p_{2}\right\} \subset S_{R}$ and write $S_{R}=\left\{p_{1}, p_{2}, p_{3}\right\}$. Set $\Pi:=\left\langle S_{R}\right\rangle . E \cap \Pi$ contains $T \cap \Pi$, i.e. the 3 distinct lines of the plane Π spanned by 2 of the points of S_{R}. $E \cap \Pi \supsetneq T \cap \Pi$, because $T_{p} E$ contains the line $\left\langle\left\{p, p_{3}\right\}\right\rangle$ and so the scheme $E \cap \Pi$ contains the tangent vector of $\left\langle\left\{p, p_{3}\right\}\right\rangle$ at p. Since $T \cap \Pi$ is a cubic curve, we get $\Pi \subset E$. Hence $E_{\text {red }} \neq T$, a contradiction. Now assume $S_{R} \cap\left\{p_{1}, p_{2}\right\}=\emptyset$. Since $p \in \ell$, we have $\left\langle S_{R}\right\rangle \cap \ell \neq \emptyset$ and so $S_{R} \cup\left\{p_{1}, p_{2}\right\}$ is not linearly independent, a contradiction. Now assume $\sharp\left(S_{R} \cap\left\{p_{1}, p_{2}\right\}\right)=1$. Since $p \in \ell$, we get $\ell \subset\left\langle S_{R}\right\rangle$ and hence $\left\{p_{1}, p_{2}\right\} \subset S_{R}$, a contradiction.

Remark 3. Let X be an integral projective variety with $\operatorname{dim}(X)>0, \mathcal{L}$ a
line bundle on X and $V \subseteq H^{0}(\mathcal{L})$ any linear subspace. Take a general $p \in X_{\text {reg }}$ and a general tangent vector A of X at p. We have $\operatorname{dim}\left(H^{0}\left(\mathcal{I}_{A} \otimes \mathcal{L}\right) \cap V\right)=$ $\max \{0, \operatorname{dim}(V)-2\}$, because (in characteristic zero) any non-constant rational map $X \rightarrow \mathbb{P}^{r}, r \geq 1$, has non-zero differential at a general $p \in X_{\mathrm{reg}}$.

Lemma 1. Let $V \subseteq H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(2)\right), n \geq 2$, be any linear subspace such that $\operatorname{dim}(V) \geq n+2$. Let $L \subset \mathbb{P}^{n}$ be a general line. Then $\operatorname{dim}\left(V \cap H^{0}\left(\mathcal{I}_{L}(2)\right)\right)=$ $\operatorname{dim}(V)-3$.

Proof. Since two general points of \mathbb{P}^{n} are contained in a line, we have $\operatorname{dim}(V \cap$ $\left.H^{0}\left(\mathcal{I}_{L}(2)\right)\right) \leq \max \{0, \operatorname{dim}(V)-2\}$, without any assumption on $\operatorname{dim}(V)$. Let \mathcal{B} denote the scheme-theoretic base locus. Since $\operatorname{dim}(V) \geq n+2>h^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$, we have $\operatorname{dim}(\mathcal{B}) \leq n-2$. Hence $\mathcal{B} \cap L=\emptyset$ for a general line L. Let $f: \mathbb{P}^{n} \backslash \mathcal{B} \rightarrow \mathbb{P}^{r}$, $r=\operatorname{dim}(V)-1$, be the morphism induced by V. We have $\operatorname{dim}\left(V \cap H^{0}\left(\mathcal{I}_{L}(2)\right)\right)=$ $\operatorname{dim}(V)-2$ if and only if $f(L)$ is a line. Assume that this is the case for a general L. Since any two points of \mathbb{P}^{n} are contained in a line, we get that the closure Γ of $f\left(\mathbb{P}^{n} \backslash \mathcal{B}\right)$ in \mathbb{P}^{r} is a linear space. Since Γ spans \mathbb{P}^{r}, we get $\Gamma=\mathbb{P}^{r}$. Hence $\operatorname{dim}(V)=r+1 \leq n+1$, a contradiction.

Remark 4. Let $Z \subset \mathbb{P}^{n}, n \geq 2$, be a general union of k schemes $Z_{2,1}$. We have k general lines $L_{i}, 1 \leq i \leq k$, of \mathbb{P}^{n} and on each L_{i} a general subscheme of L_{i} with 2 connected components, each of them with degree 2 . Set $T:=L_{1} \cup \cdots \cup L_{k}$. We have $h^{0}\left(\mathcal{I}_{Z}(2)\right)=h^{0}\left(\mathcal{I}_{T}(2)\right)$, where $T \subset \mathbb{P}^{n}$ is a general union of k lines. If $n=2$, then $h^{0}\left(\mathcal{I}_{T}(2)\right)=0$ if $k \geq 3$ and $h^{0}\left(\mathcal{I}_{T}(2)\right)=\binom{4-k}{2}$ if $k=1,2$. If $n \geq 3$, then $h^{0}\left(\mathcal{I}_{T}(2)\right)=\max \left\{0,\binom{n+2}{2}-3 k\right\}([7])$.

Fix an integer $d \geq 3$. If $n=2$ assume $4 s \leq d s+1-\binom{s-1}{2}$ for all s with $2 \leq s \leq \min \{k, d+1\}$. Note that the family of all schemes Z has a degeneration Z^{\prime} in which Z^{\prime} has k connected components $W_{i}, 1 \leq i \leq k$, with $W_{i} \subset L_{i}$ and $\left(W_{i}\right)_{\text {red }}$ a general point of L_{i}. In the terminology of [2] each W_{i} is a collinear jet. By semicontinuity we have $h^{0}\left(\mathcal{I}_{Z}(d)\right) \leq h^{0}\left(\mathcal{I}_{Z^{\prime}}(d)\right)$ and $h^{1}\left(\mathcal{I}_{Z}(d)\right) \leq h^{1}\left(\mathcal{I}_{Z^{\prime}}(d)\right)$. Hence either $h^{0}\left(\mathcal{I}_{Z}(d)\right)=0$ or $h^{1}\left(\mathcal{I}_{Z}(d)\right)=0([2])$.

Notation Let $A \subseteq \mathbb{P}^{n}$ be a plane. Fix 3 non-collinear points $p_{1}, p_{2}, p_{3} \in A$. Let $L, R \subset A$ be lines with $L \cap\left\{p_{1}, p_{2}, p_{3}\right\}=\left\{p_{3}\right\}$ and $R \cap\left\{p_{1}, p_{2}, p_{3}\right\}=$ $\left\{p_{2}\right\}$. Let $Z[8] \subset \mathbb{P}^{n}$ denote any scheme projectively equivalent to $\left(2 p_{1}, A\right) \cup$ $\left(2 p_{2}, A\right) \cup\left(2 p_{3}, L\right)$. Let $Z[7] \subset \mathbb{P}^{n}$ denote any scheme projectively equivalent to $\left(2 p_{1}, A\right) \cup\left(2 p_{2}, A\right) \cup\left\{p_{3}\right\}$. In both cases p_{3} is called the vertex of $Z[8]$ or of $Z[7]$ and L is called the vertex line of $Z[8]$. Let $Z[5] \subset \mathbb{P}^{n}$ (resp. $Z[4] \subset \mathbb{P}^{n}$, resp. $\left.Z^{\prime}[5] \subset \mathbb{P}^{n}\right)$ denote any scheme projectively equivalent to $\left(2 p_{1}, A\right) \cup\left(2 p_{2}, R\right)$ (resp. $\left(2 p_{1}, A\right) \cup\left\{p_{2}\right\}$, resp. $\left.\left(2 p_{1}, A\right) \cup\left\{p_{2}, p_{3}\right\}\right)$.

Lemma 2. Fix integers $n \geq 2, d \geq 3, x \geq 0$ and $c \geq 0$ and a zerodimensional scheme $\Gamma \subset \mathbb{P}^{n}$ such that either $h^{0}\left(\mathcal{I}_{\Gamma \cup W}(d)\right)=0$ or $h^{1}\left(\mathcal{I}_{\Gamma \cup W}(d)\right)=$

0 , where $W \subset \mathbb{P}^{n}$ is a general union of $x+c$ schemes $Z_{3,2}$. Let $Z \subset \mathbb{P}^{n}$ be a general union of x schemes $Z_{3,2}$ and c schemes $Z[8]$. Then either $h^{0}\left(\mathcal{I}_{\Gamma \cup Z}(d)\right)=$ 0 or $h^{1}\left(\mathcal{I}_{\Gamma \cup Z}(d)\right)=0$.

Proof. We use induction on c, the case $c=0$ being true for all x by assumption. Assume $c>0$ and set $e:=h^{0}\left(\mathcal{I}_{\Gamma}(d)\right)-9 x-8 c$. First assume $e>0$. Let $Z^{\prime} \subset \mathbb{P}^{n}$ be a general union of $x+1$ schemes $Z_{3,2}$ and $c-1$ schemes $Z[8]$. The inductive assumption gives $h^{0}\left(\mathcal{I}_{\Gamma \cup Z^{\prime}}(d)\right)=e-1$ and $h^{1}\left(\mathcal{I}_{\Gamma \cup Z^{\prime}}(d)\right)=0$. Since Z is general, we may find Z^{\prime} with $Z^{\prime} \supset Z$ and $h^{1}\left(\mathcal{I}_{\Gamma \cup Z^{\prime}}(d)\right)=0$. Thus $h^{1}\left(\mathcal{I}_{\Gamma \cup Z}(d)\right)=0$. Now assume $e \leq 0$. We need to prove that $h^{0}\left(\mathcal{I}_{\Gamma \cup Z}(d)\right)=0$. Decreasing if necessary c we may assume $e \geq-7$. Let $E \subset \mathbb{P}^{n}$ be a general union of x schemes $Z_{3,2}$ and $c-1$ schemes $Z[8]$. Let $A \subset \mathbb{P}^{n}$ be a general plane. Let $U \subset A$ be a general scheme $Z_{3,2}$. Note that $(\Gamma \cup E) \cap U=\emptyset$ even if $n=2$. The inductive assumption gives $h^{1}\left(\mathcal{I}_{\Gamma \cup E}(d)\right)=0, h^{0}\left(\mathcal{I}_{\Gamma \cup E}(d)\right)=8+e$ and $h^{0}\left(\mathcal{I}_{\Gamma \cup E \cup U}(d)\right)=0$, i.e. U imposes $8+e$ independent conditions to $H^{0}\left(\mathcal{I}_{\Gamma \cup E}(d)\right)$. Let U^{\prime} be a minimal subscheme of U with $h^{0}\left(\mathcal{I}_{\Gamma \cup E \cup U^{\prime}}(d)\right)=0$. If $U^{\prime} \subsetneq U$, then we may find $Z[8] \supseteq U^{\prime}$ and so $h^{0}\left(\mathcal{I}_{\Gamma \cup Z}(d)\right)=0$. Now assume $U^{\prime}=U$. We need to find a contradiction. Write $U=U_{1} \cup U_{2} \cup U_{3}$ with $U_{i}=\left(2 p_{i}, U\right)$ and p_{1}, p_{2}, p_{3} general in A. If $8+e \leq 6$ we use Remark 3 and that U contains 3 general tangent vectors. Assume $8+e=7$. We get $h^{0}\left(\mathcal{I}_{\Gamma \cup E \cup U_{i}}(d)\right)<h^{0}\left(\mathcal{I}_{\Gamma \cup E}(d)\right)-2$ for at least one index i, say $h^{0}\left(\mathcal{I}_{\Gamma \cup E \cup U_{1}}(d)\right)=h^{0}\left(\mathcal{I}_{\Gamma \cup E}(d)\right)-3$; then we use Remark 3 and that we may find $Z[8] \subset A$ containing U_{1} and 2 general tangent vectors of A. Now assume $8+e=8$. In this case we first get $h^{0}\left(\mathcal{I}_{\Gamma \cup E \cup U_{i} \cup U_{j}}(d)\right)=h^{0}\left(\mathcal{I}_{\Gamma \cup E}(d)\right)-6$ for some $i \neq j$ and then apply once Remark 3 .

2 Proof of Theorems 1 and 2

Unless otherwise stated from now on a 2-point means a planar 2-point.
For all positive integers n, d set $u_{d, n}:=\left\lfloor\binom{ n+d}{n} / 6\right\rfloor$ and $v_{d, n}=\binom{n+d}{n}-6 u_{d, n}$. We have

$$
\begin{equation*}
6 u_{d, n}+v_{d, n}=\binom{n+d}{d}, 0 \leq v_{d, n} \leq 5 \tag{2.1}
\end{equation*}
$$

Note that if $Z \subset \mathbb{P}^{n}$ is a disjoint union of x schemes $Z_{2,2}$ we have $h^{0}\left(\mathcal{O}_{Z}(d)\right) \leq$ $h^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(d)\right)$ if and only if $x \leq u_{d, n}$. If $d \geq 2$ and $n \geq 2$ from (2.1) for the integers d and $d-1$ we get

$$
\begin{equation*}
6\left(u_{d, n}-u_{d-1, n}\right)+v_{d, n}-v_{d-1, n}=\binom{n+d-1}{n-1} \tag{2.2}
\end{equation*}
$$

From (2.2) we get that $u_{d, n-1}=u_{d, n}-u_{d-1, n}$ and $v_{d, n-1}=v_{d, n}-v_{d-1, n}$ if $v_{d, n} \geq v_{d-1, n}$, while $u_{d, n-1}=u_{d, n}-u_{d-1, n}-1$ and $v_{d, n-1}=6+v_{d, n}-v_{d-1, n}$ if $v_{d, n}<v_{d-1, n}$.

Proposition 2. Fix integers $n \geq 2$ and $k>0$. Let $Z \subset \mathbb{P}^{n}$ be a general union of k schemes $Z_{2,2}$.
(a) Assume $n=2$. If $k=1$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=1$. If $k \geq 2$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$.
(b) Assume $n=3$. If $k=1$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=5$. If $k=2$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=1$. If $k \geq 3$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$.
(c) If $n \geq 4$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=\max \left\{0,\binom{n+2}{2}-5 k\right\}$.

Proof. Let W be any scheme of type $Z_{2,2}$ and let A be the plane containing W. We have $h^{0}\left(A, \mathcal{I}_{W, A}(2)\right)=1$ (the only conic of A containing W is a double line) and hence $h^{1}\left(A, \mathcal{I}_{W, A}(2)\right)=1$. Hence $h^{0}\left(\mathcal{I}_{Z}(2)\right) \geq \max \left\{0,\binom{n+2}{2}-5 k\right\}$ and $h^{1}\left(\mathcal{I}_{Z}(2)\right) \geq k$. Let J be the line spanned by $\left\{p_{1}, p_{2}\right\}:=W_{\text {red }}$. We have $h^{0}\left(\mathcal{I}_{W}(2)\right)=H^{0}\left(\mathcal{I}_{B}(2)\right)$, where B is the union of $\left(2 p_{1}, A\right)$ and any degree 2 scheme with p_{2} as its reduction, contained in A and not contained in J. Therefore it is sufficient to prove that a general union Z^{\prime} of k degree 5 schemes projectively equivalent to B satisfies $h^{0}\left(\mathcal{I}_{Z^{\prime}}(2)\right)=\max \left\{0,\binom{n+2}{2}-5 k\right\}$, except in the case $(n, k)=(3,2) . B$ is a scheme $Z[5]$.

If $n=2$, then the result is obvious. Now assume $n=3$. If $k=1$, then Z is contained in a plane and from the case $n=2, k=1$ we get $h^{1}\left(\mathcal{I}_{Z}(2)\right)=1$. If $k=2$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right) \geq 1$, because Z is contained in a reducible quadric. Let A_{1}, A_{2} be the two planes containing the two schemes $Z_{2,2}$ of Z and call $N_{i} \subset A_{i}$ the scheme $Z_{2,2}$ contained in A_{i} and let L_{i} be the line spanned by $\left(N_{i}\right)_{\text {red }}$. Fix $p \in A_{1} \backslash L_{1}$. By the case $n=2$ we have $h^{0}\left(A_{1}, \mathcal{I}_{N_{1} \cup\{p\}, A_{1}}(2)\right)=0$. Taking $p=A_{1} \cap L_{2}$ we get that $f_{\mid A_{1}} \equiv 0$ for each $f \in H^{0}\left(\mathcal{I}_{Z}(2)\right)$ vanishes on A_{1}. Similarly $f_{\mid A_{2}} \equiv 0$. Hence $\left|\mathcal{I}_{Z}(2)\right|=\left\{A_{1} \cup A_{2}\right\}$. The case $k=2$ obviously implies the case $k \geq 3$.

Now assume $n \geq 4$ and that Proposition 2 is true in \mathbb{P}^{n-1}. It is sufficient to do the cases $k=\left\lfloor\binom{ n+2}{2} / 5\right\rfloor$ and $k=\left\lceil\binom{ n+2}{2} / 5\right\rceil$ and in particular we may assume that $k \geq\lceil(n+1) / 3\rceil$. Fix a hyperplane $H \subset \mathbb{P}^{n}$.
(i) First assume $n+1 \equiv 0,2(\bmod 3)$. Write $n+1=3 a+2 b$ with $a \in \mathbb{N}$ and $0 \leq b \leq 1$. Let $A_{i}, 1 \leq i \leq a+b$, be general planes. If $1 \leq i \leq a$, let $L_{i} \subset A_{i}$ be a general line and let $p_{i 1}$ be a general point of L_{i}; set $\left\{p_{i 2}\right\}:=L_{i} \cap H$ and let v_{i} be the connected zero-dimensional scheme with $p_{i 2}$ as its support and contained in the line $H \cap A_{i}$. For $i=1, \ldots, a$ set $B_{i}:=\left(2 p_{i 1}, A_{i}\right) \cup v_{i}$. Each B_{i} is a degree 5 subscheme of A_{i} projectively equivalent to the scheme B described in the first paragraph of the proof. If $b=1$ set $L_{a+1}:=A_{a+1} \cap H$, fix two general points p_{a+11} and p_{a+12} of L_{a+1}, and set $B_{a+1}:=\left(2 p_{a+1}, A_{a+1}\right) \cup v_{a+12}$, where v_{a+12} is a degree 2 zero-dimensional scheme contained in A_{a+1}, not contained L_{a+1} and with p_{a+12} as its support. Let $E \subset H$ be a general union of $k-a-b$ schemes $Z[5]$. Set $F:=E \cup \bigcup_{i=1}^{a+b} B_{i}$. We have $\operatorname{Res}_{H}(F)=\cup_{i=1}^{a}\left(2 p_{i 1}, A_{i}\right) \cup G$ with $G=\emptyset$ if $b=0$ and $G=\left\{p_{a+11} \cup p_{a+12}\right\}$ if $b=1$. Thus $h^{i}\left(\mathcal{I}_{\operatorname{Res}_{H}(F)}(1)\right)=0, i=0,1$. Set
$G^{\prime}:=\emptyset$ if $b=0$ and $G^{\prime}=\left(2 p_{a+11}, L_{a+1}\right) \cup\left\{p_{a+12}\right\}$ if $b=1$. The scheme $F \cap H$ is the union of E, G^{\prime} and a general tangent vectors. The inductive assumption gives that either $h^{0}\left(H, \mathcal{I}_{E, H}(2)\right)=0$ or $h^{1}\left(\mathcal{I}_{E, H}(2)\right)=0$. If $h^{0}\left(\mathcal{I}_{E, H}(2)\right)=0$, then we get $h^{0}\left(\mathcal{I}_{F}(2)\right)=0$, proving Proposition 2 in this case. Now assume $h^{1}\left(H, \mathcal{I}_{E, H}(2)\right)=0$. If $b=0$, then it is sufficient to use Remark 3. Now assume $b=1$. By Remark 3 we have $h^{0}\left(H, \mathcal{I}_{E \cup G^{\prime}, H}(2)\right) \leq \max \left\{0, h^{0}\left(\mathcal{I}_{E, H}(2)\right)-2\right\}$ and to prove the proposition in this case it is sufficient to exclude the case $h^{0}\left(H, \mathcal{I}_{E \cup G^{\prime}, H}(2)\right)=h^{0}\left(\mathcal{I}_{E, H}(2)\right)-2>0$, i.e. the case in which a general line of H imposes only 2 conditions to $\left|\mathcal{I}_{E, H}(2)\right|$.

First assume $n=4$. We have $a=b=1$ and it is sufficient to prove that $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$ when $k=3$. Since $k-a-b=1$, we have $h^{0}\left(H, \mathcal{I}_{E, H}(2)\right)=5$ and so $h^{0}\left(H, \mathcal{I}_{E \cup L, H}(2)\right)=2$ for a general line $L \subset H$ by the case $n=3$ of Lemma 1.

Now assume $n \geq 5$ and $b=1$. We have $h^{1}\left(H, \mathcal{I}_{E \cup U, H}(2)\right)=0$ for a general degree 5 scheme $U \subset H$ projectively equivalent to B by the inductive assumption. Since the base locus of $\left|\mathcal{I}_{U}(2)\right|$ contains the line spanned by $U_{\text {red }}$, we get $h^{0}\left(H, \mathcal{I}_{E \cup G^{\prime}}(2)\right)=h^{0}\left(H, \mathcal{I}_{E, H}(2)\right)-3$. Apply a times Remark 3.
(ii) Now assume $n \equiv 0(\bmod 3)$. Write $a:=n / 3-1$. Let $A_{i}, 1 \leq i \leq a+2$, be general planes. If $1 \leq i \leq a$, let $L_{i} \subset A_{i}$ be a general line and $p_{i 1}$ a general point of L_{i}; set $\left\{p_{i 2}\right\}:=L_{i} \cap H$ and let v_{i} be the connected zero-dimensional scheme with $p_{i 2}$ as its support and contained in the line $H \cap A_{i}$. For $i=1, \ldots, a$ set $B_{i}:=\left(2 p_{i 1}, A_{i}\right) \cup v_{i}$. For $i=a+1, a+2$ set $L_{i}:=A_{i} \cap H$, fix two general points $p_{i 1}$ and $p_{i 2}$ of L_{i}, and set $B_{i}:=\left(2 p_{i 1}, A_{i}\right) \cup v_{i 2}$, where $v_{i 2}$ is a degree 2 zero-dimensional scheme contained in A_{i}, not contained L_{i} and with $p_{i 2}$ as its support. Let $E \subset H$ be a general union of $k-a-2$ schemes $Z[5]$. Set $F:=E \cup \bigcup_{i=1}^{a+2} B_{i}$. We conclude as above using Remark 3 and twice Lemma 1.

Proposition 3. Fix integers $n \geq 2$ and $k>0$. Let $Z \subset \mathbb{P}^{n}$ be a general union of k schemes $Z_{2,2}$ and one planar 2-point.
(a) If $n=2$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$.
(b) Assume $n=3$. If $k=1$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=2$. If $k \geq 2$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$.
(c) Assume $n \geq 4$. Then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=\max \left\{0,\binom{n+2}{2}-5 k-3\right\}$.

Proof. Part (a) and the second half of part (b) follow from Proposition 2. Assume $n=3$ and $k=1$. Write $Z=U \sqcup M$ with U a (2,2)-scheme and M a planar 2-point. Since $h^{0}\left(\mathcal{I}_{U}(2)\right)=5$ (Proposition 2), we have $h^{0}\left(\mathcal{I}_{Z}(2)\right) \geq 2$. Let N be the plane spanned by M and let L be the line spanned by $U_{\text {red }}$. Fix a general $p \in N$. For a general Z we have $U \cap N=\emptyset$ and $L \cap N$ is a general point of N. Since L is in the base locus \mathcal{B} of $\left|\mathcal{I}_{Z \cup\{p\}}(2)\right|$, we have $N \subset \mathcal{B}$.

Since $h^{0}\left(\mathcal{I}_{U}(1)\right)=1$, we get $h^{0}\left(\mathcal{I}_{Z \cup\{p\}}(2)\right) \leq 1$ and so $h^{0}\left(\mathcal{I}_{Z}(2)\right) \leq 2$. Now assume $n \geq 4$. Proposition 2 gives $h^{0}\left(\mathcal{I}_{Z}(2)\right) \geq \max \left\{0,\binom{n+2}{2}-5 k-3\right\}$. By Proposition 2 and Remark 3 it is sufficient to do the case $k=\left\lfloor\binom{ n+2}{2} / 5\right\rfloor$ and only for the integers $n \geq 4$ such that $\binom{n+2}{2} \equiv 3,4(\bmod 5)$. Fix a hyperplane $H \subset \mathbb{P}^{n}$. If $n+1 \equiv 0,2(\bmod 3)$ we use part (i) of the proof of Proposition 2 taking as $E \subset H$ a general union of one planar 2-point and $k-a-b$ scheme $Z[5]$; if $n \equiv 0(\bmod 3)$ we use part (ii) of the proof of Proposition 2 with as $E \subset H$ a general union of a planar 2-point and $k-a-2$ schemes $Z[5]$. We explain now why this construction works. In the proof of Proposition 2 we constructed a zero-dimensional scheme $\mathcal{W} \subset \mathbb{P}^{n}$ for which we proved that either $h^{0}\left(H, \mathcal{I}_{\mathcal{W} \cap H, H}(2)\right)=0$ or $h^{1}\left(\mathcal{I}_{\mathcal{W} \cap H, H}(2)\right)=0, \operatorname{deg}\left(\operatorname{Res}_{H}(\mathcal{W})\right)=n+1$ and $\operatorname{Res}_{H}(\mathcal{W})$ is linearly independent. Thus $h^{i}\left(\mathcal{I}_{\operatorname{Res}_{H}(\mathcal{W})}(1)\right)=0, i=0,1 \cdot \operatorname{Res}_{H}(\mathcal{W})$ does not depend on the scheme $E \subset H$ and so it is the same as in Proposition 2. Assume $n=5 c+1$ with c a positive integer. We have $\binom{n+2}{2}=5 k+3$ and so we need to prove that $h^{i}\left(\mathcal{I}_{Z}(2)\right)=0, i=0,1$. So we need to prove that $h^{i}\left(H, \mathcal{I}_{\mathcal{W} \cap H, H}(2)\right)=0, i=0,1$. We have the inductive assumption in H to handle E and then we continue as in steps (i) and (ii) of the proof of Proposition 2.

Lemma 3. Let $G \subset \mathbb{P}^{3}$ be a general union of 3 planar 2-points. Then $h^{1}\left(\mathcal{I}_{G}(2)\right)=0$ and $h^{0}\left(\mathcal{I}_{G}(2)\right)=1$.

Proof. Let A be the plane spanned by $G_{\text {red }}$. Keeping A fixed and moving G among the union of 3 planar 2-points with support on A we see that for a general G the scheme $G \cap A$ is a general union of 3 tangent vectors of A. Remark 3 gives $h^{i}\left(A, \mathcal{I}_{G \cap A}(2)\right)=0$. Since $\operatorname{Res}_{A}(G)=G_{\text {red }}$, we have $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{A}(G)}(1)\right)=1$ and $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{A}(G)}(1)\right)=0$.

Proofs of Theorems 1 and 2. First assume $n=2$. Since any two points of \mathbb{P}^{n} are collinear, in the case $n=2$ of Theorem 1 (resp. Theorem 2) Z is a general union of $2 k$ (resp. $2 k+1$) general 2-points of \mathbb{P}^{2}. The Alexander-Hirschowitz list ([1], [4]) gives Theorems 1 and 2 . We assume $n \geq 3$ and that Theorems 1 and 2 are true in \mathbb{P}^{n-1}. To prove Theorem 1 is sufficient to do the cases $k=\left\lfloor\binom{ n+d}{n} / 6\right\rfloor=u_{d, n}$ and $k=\left\lceil\binom{ n+d}{n} / 6\right\rceil$. Let $H \subset \mathbb{P}^{n}$ be a hyperplane.
(a) Assume $d=n=3$. Since $u_{3,3}=3$ and $v_{3,3}=2$, to prove Theorem 1 it is sufficient to prove that $h^{1}\left(\mathcal{I}_{Z}(3)\right)=0$ if $k=3$ and $h^{0}\left(\mathcal{I}_{Z}(3)\right)=0$ if $k=4$. First assume $k=3$. Let $Y \subset \mathbb{P}^{3}$ be a union of 3 schemes $Z_{2,2}$ such that one of them is contained in H and that each of the other ones have a point in its support contained in H and that Y is general with these restrictions. The scheme $Y \cap H$ is a general union of one scheme $Z_{2,2}($ call it β) and 2 tangent
vectors. We obviously have $h^{1}\left(H, \mathcal{I}_{\beta, H}(3)\right)=0$ and hence $h^{i}\left(H, \mathcal{I}_{Y \cap H, H}(3)\right)=0$, $i=0,1$, by Remark 3. Hence it is sufficient to prove that $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y)}(2)\right)=0$. We have $\operatorname{Res}_{H}(Y)=U_{1} \sqcup U_{2}$ with U_{i} spanning a general plane A_{i} and U_{i} union of a general 2-point $\left(2 P_{i}, A_{i}\right)$ of A_{i} and a general point q_{i} of the line $A_{i} \cap H$. We have $h^{1}\left(\mathcal{I}_{\left(2 P_{1}, A_{1}\right) \cup\left(2 P_{2}, A_{2}\right)}(2)\right)=0$ (Lemma 3) and so $h^{0}\left(\mathcal{I}_{\left(2 P_{1}, A_{1}\right) \cup\left(2 P_{2}, A_{2}\right)}(2)\right)=4$. The scheme $\left(2 P_{1}, A_{1}\right) \cup\left(2 P_{2}, A_{2}\right)$ does not depend on H. Since any two points of \mathbb{P}^{3} are collinear, moving H we may assume that $\left(q_{1}, q_{2}\right)$ is a general element of $A_{1} \times A_{2}$.

Since $h^{0}\left(\mathcal{I}_{A_{1} \cup\left(2 P_{2}, A_{2}\right)}(2)\right)=h^{0}\left(\mathcal{I}_{\left(2 P_{2}, A_{2}\right)}(1)\right)=1$ and q_{1} is general in A_{1}, we get $h^{0}\left(\mathcal{I}_{\left(2 P_{1}, A_{1}\right) \cup\left(2 P_{2}, A_{2}\right) \cup\left\{q_{1}\right\}}(2)\right)=3$. Since $h^{0}\left(\mathcal{I}_{\left(2 P_{1}, A_{1}\right) \cup\left(2 P_{2}, A_{2}\right) \cup\left\{q_{1}\right\} \cup A_{2}}(2)\right)=$ $h^{0}\left(\mathcal{I}_{\left(2 P_{2}, A_{2}\right) \cup\left\{q_{1}\right\}}(1)\right)=1$, we obtain that $h^{0}\left(\mathcal{I}_{\left(2 P_{1}, A_{1}\right) \cup\left(2 P_{2}, A_{2}\right) \cup\left\{q_{1}\right\} \cup\left\{q_{2}\right\}}(2)\right)=2$, i.e. we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y)}(2)\right)=0$.

Now assume $k=4$. Since two general points of \mathbb{P}^{n} are contained in a scheme $Z_{2,2}$ and $v_{3,3}=2$, the case $k=4$ of Theorem 1 follows from the case $k=3$. For Theorem 2 it is sufficient to do the cases $k=2$ (true because Z is contained in a general disjoint union of 3 schemes $Z_{2,2}$) and $k=3$ (we use that a planar 2 -point contains a tangent vector, Remark 3 and that $v_{3,3}=2$).
(b) Assume $d=3$ and $n \geq 4$. To prove Theorem 1 is sufficient to prove the cases $k=\left\lfloor\binom{ n+3}{3} / 6\right\rfloor$ and $k=\left\lceil\binom{ n+3}{3} / 6\right\rceil$. Fix any k disjoint schemes B_{i} projectively equivalent to $Z_{2,2}$. Let A_{i} be the plane containing B_{i} and let L_{i} be the line spanned by the reduction of B_{i}. We assume that $L_{i} \cap L_{j}=\emptyset$ for all i, j such that $i \neq j$. Since $\binom{6}{2}=15$ and $\binom{n+2}{2} \geq 20$ for all $n \geq 5$, we may write $\binom{n+2}{2}=5 x+4 a$ with a, x non-negative integers and $0 \leq a \leq 4$. Now we check that $k \geq x+a$. Assume $k \leq x+a-1$. Since $a \leq 4$, we get $5 k \leq 5 x+5 a-5 \leq\binom{ n+2}{2}-1$, contradicting the inequality $6 k \geq\binom{ n+3}{3}-5$. Let $G \subset \mathbb{P}^{n}$ be a general union of x schemes of type $Z_{2,2}$ and let $S \subset H$ be the intersection with H of the lines associated to each scheme $Z_{2,2}$. Since G is general, these x lines are x general lines of \mathbb{P}^{n} and so S is a general subset of H. Fix a general planes $A_{i}, 1 \leq i \leq a$, and let $B_{i} \subset A_{i}$ be a general scheme of type $Z_{2,2}$ with the restriction that one of the points of $\left(B_{i}\right)_{\text {red }}$ is contained in $H \cap A_{i}$. Let $E \subset H$ be a general union of $k-a-x$ schemes $Z_{2,2}$ of H. Set $Y:=G \cup E \cup \bigcup_{i=1}^{a} B_{i}$. For all $i=1, \ldots, a$ the scheme $\operatorname{Res}_{H}\left(B_{i}\right)$ is a general union of a 2-point of A_{i} and a general point of the line $A_{i} \cap H$. Let M be the union of the reduced components of $\cup_{i=1}^{a} \operatorname{Res}_{H}\left(B_{i}\right)$. Since any $Z_{2,2}$ is a degeneration of a family of general planar 2 points, by Proposition 3 we have $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y) \backslash M}(2)\right)=0$ and so $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y) \backslash M}(2)\right)=a . \operatorname{Res}_{H}(Y) \backslash M$ does not depend on H. Since $a \leq 4 \leq n$, any a points of \mathbb{P}^{n} are contained in a hyperplane. Hence, writing $M=\left\{q_{1}, \ldots, q_{a}\right\}$ with $q_{i} \in A_{i}$, we may assume that $\left(q_{1}, \ldots, q_{a}\right)$ is a general element of $\times_{i=1}^{a} A_{i}$. As in step (a) we get $h^{i}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y)}(2)\right)=0$, $i=0,1$. Hence it is sufficient to prove that $h^{0}\left(H, \mathcal{I}_{S \cup(Y \cap H)}(3)\right)=\max \left\{0,\binom{n+2}{3}-\right.$
$6(k-a-x)-x-2 a\}=\max \left\{0,\binom{n+3}{3}-6 k\right\}$. Since $S \subset H$ is general, it is sufficient to prove that $h^{0}\left(H, \mathcal{I}_{Y \cap H}(3)\right)=\max \left\{0,\binom{n+3}{3}-6 k+x\right\}$. We have either $h^{1}\left(H, \mathcal{I}_{E, H}(3)\right)=0$ or $h^{0}\left(H, \mathcal{I}_{E, H}(3)\right)=0$ by step (a) and the inductive assumption. Therefore we may assume that $h^{1}\left(H, \mathcal{I}_{E, H}(3)\right)=0$. Use Remark 3. To check Theorem 2 for $d=3$ and $n \geq 4$ we leave to the reader at least 3 options. We may add in H one more planar 2-point or add it outside H using the integers x^{\prime}, a^{\prime} with $\binom{n+2}{2}=3+5 x^{\prime}+4 a^{\prime}$ or insert with its support on H, but not contained in H so that in the residual we have a general point (taking integers $x^{\prime \prime}, a^{\prime \prime}$ with $\binom{n+2}{2}=1+5 x^{\prime \prime}+4 a^{\prime \prime}$ and whose intersection with H is a general tangent vector).
(c) Assume $d \geq 4$ and $n \geq 3$. We prove Theorem 1 for (n, d). By steps (a), (b) and induction on d we may assume that Theorems 1 and 2 are true in \mathbb{P}^{n} for the integer $d-1$. In all cases for Theorem 1 it is sufficient to do the case $k=\left\lfloor\binom{ n+d}{n} / 6\right\rfloor$ and $k=\left\lceil\binom{ n+d}{n} / 6\right\rceil$. In particular we assume $6 k \geq\binom{ n+d}{n}-5$.
(c1) First assume that $v_{d-1, n}$ is even. Write $\binom{n+d-1}{n}=6 x+4 a$ with x, a non-negative integers and $0 \leq a \leq 2$. Since $6 k \geq\binom{ n+d}{n}^{n}-5$ and $a \leq 2$, we have $k \geq a+x$. Let $G \subset \mathbb{P}^{n}$ be a general union of x schemes $Z_{2,2}$. Fix a general planes $A_{i}, 1 \leq i \leq a$ and let $B_{i} \subset A_{i}$ be a general scheme of type $Z_{2,2}$ with the restriction that one of the points of $\left(B_{i}\right)_{\text {red }}$ is contained in $H \cap A_{i}$. Let $E \subset H$ be a general union of $k-a-x$ schemes $Z_{2,2}$ of H. Set $Y:=G \cup E \cup \bigcup_{i=1}^{a} B_{i}$. By Remark 3 and the inductive assumption on n, we may assume that either $h^{0}\left(H, \mathcal{I}_{Y \cap H, H}(d)\right)=0$ or $h^{1} H,\left(\mathcal{I}_{Y \cap H, H}(d)\right)=0$.

Claim 1: We have $h^{i}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y)}(d-1)\right)=0$.
Proof of Claim 1: Since $\operatorname{deg}\left(\operatorname{Res}_{H}(Y)\right)=\binom{n+d-1}{n}$, it is sufficient to prove that $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y)}(d-1)\right)=0$. For $1 \leq i \leq a$ write $B_{i}=\left(2 p_{i 1}, A_{i}\right) \cup\left(2 p_{i 2}, A_{i}\right)$ with $p_{i 2} \in A_{i} \cap H$. We have $\operatorname{Res}_{H}\left(B_{i}\right)=\left(2 p_{i 1}, A_{i}\right) \cup\left\{p_{i 2}\right\}$. The inductive assumption gives $h^{1}\left(\mathcal{I}_{G}(d-1)\right)=0$. Hence Claim 1 is true if $a=0$. Now assume $a=1$. By the inductive assumption we have $h^{0}\left(\mathcal{I}_{G \cup B_{1}}(d-1)\right)=0$. By the inductive assumption for Theorem 2 we have $h^{1}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right)}(d-1)\right)=0$. Since $h^{0}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right)}(d-1)\right)>0$ and $h^{0}\left(\mathcal{I}_{G \cup B_{1}}(d-1)\right)=0, A_{1}$ is not contained in the base locus of $\left|\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right)}(d-1)\right|$. For a general H we may assume that p_{12} is a general point of A_{1}. Hence $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y)}(d-1)\right)=0$. Now assume $a=2$. The inductive assumption gives $h^{1}\left(\mathcal{I}_{G \cup B_{1}}(d-1)\right)=0$ and hence by semicontinuity $h^{1}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup\left(2 p_{21}, A_{2}\right)}(d-1)\right)=0$ and so $h^{0}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup\left(2 p_{21}, A_{2}\right)}(d-1)\right)=2$. The scheme $G \cup\left(2 p_{11}, A_{1}\right) \cup\left(2 p_{21}, A_{2}\right)$ does not depend from H. Since any two points of \mathbb{P}^{n} are collinear, moving H we see that we may take as $\left(p_{21}, p_{22}\right)$ a general element of $A_{1} \times A_{2}$. Hence $h^{0}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup\left(2 p_{21}, A_{2}\right) \cup\left\{p_{2 i}\right\}}(d-1)\right)=2$ if and only A_{i} is in the base locus of $\left|\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup\left(2 p_{21}, A_{2}\right)}(d-1)\right|$. By monodromy for general A_{1}, A_{2} if one of them is in the base locus, then so is the other one. But in this case we would have $h^{0}\left(\mathcal{I}_{G \cup B_{1} \cup B_{2}}(d-1)\right)=2$, contradicting
the inductive assumption. Now assume $h^{0}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup\left(2 p_{21}, A_{2}\right) \cup\left\{p_{12}\right\}}(d-1)\right)=$ $1=h^{0}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup\left(2 p_{21}, A_{2}\right) \cup\left\{p_{21}, p_{22}\right\}}(d-1)\right)$. Since p_{22} is general in A_{2}, we get $1=h^{0}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup\left\{p_{11}\right\} \cup A_{2}}(d-1)\right)$. The inductive assumption for Theorem 2 gives $h^{0}\left(\mathcal{I}_{G \cup\left(2 p_{11}, A_{1}\right) \cup B_{2}}(d-1)\right)=0$, a contradiction.

QED
(c2) Now assume that $v_{d-1, n}$ is odd. Let $\Gamma \subset \mathbb{P}^{n}$ be a zero-dimensional scheme and let p be a general point of H. By the differential Horace lemma to prove that $h^{1}\left(\mathcal{I}_{\Gamma \cup K}(d)\right)=0\left(\right.$ resp. $\left.h^{0} \mathcal{I}_{\Gamma \cup K}(d)\right)=0$ for a general planar 2-point $K \subset \mathbb{P}^{n}$ it is sufficient to prove that $h^{1}\left(H, \mathcal{I}_{(\Gamma \cap H) \cup\{p\}, H}(d)\right)=h^{1}\left(\mathcal{I}_{\text {Res }_{H}(\Gamma) \cup v}(d-\right.$ $1))=0\left(\operatorname{resp} . h^{0}\left(H, \mathcal{I}_{(\Gamma \cap H) \cup\{p\}, H}(d)\right)=h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}(\Gamma) \cup v}(d-1)\right)=0\right)$, where $v \subset H$ is a general tangent vector of H with p as its support ([3]). Instead of K we may use a general $Z_{2,2}$. Instead of v we get a scheme $B \subset A$ with A general plane containing $p, \operatorname{deg}(B)=5$ and B a disjoint union of the general planar 2-point of A and a general tangent vector of the line $A \cap H$. Let $B^{\prime} \supset B$ denote the scheme $Z_{2,2}$ containing B. Since $v_{d-1, n}$ is odd, $\binom{n+d-1}{n}$ is odd and so we may write $\left({ }_{n}^{n+d-1}\right)-5=6 x+4 a$ with x, a non-negative integers and $0 \leq a \leq 2$. Since $6 k \geq\binom{ n+d}{n}-5$, and $a \leq 2$, we have $k \geq x+a+1$. Let $G \subset \mathbb{P}^{n}$ be a general union of x schemes $Z_{2,2}$. Fix a general planes $A_{i}, 1 \leq i \leq a$ and let $B_{i} \subset A_{i}$ be a general scheme of type $Z_{2,2}$ with the restriction that one of the points of $\left(B_{i}\right)_{\text {red }}$ is contained in $H \cap A_{i}$. Let A_{a+1} be a general plane. Let B_{a+1} be a general scheme $Z_{2,2}$ whose reduction spans the line $A_{a+1} \cap H$. Let $E \subset H$ be a general union of $k-x-a-1$ schemes $Z_{2,2}$ of H. Set $Y:=G \cup E \cup \bigcup_{i=1}^{a+1} B_{i}$. By the inductive assumption on n either $h^{0}\left(H, \mathcal{I}_{(Y \cap H) \cup\{p\}}(d)\right)=0$ or $h^{1}\left(H, \mathcal{I}_{(Y \cap H) \cup\{p\}}(d)\right)=0$. Therefore it is sufficient to prove that $h^{i}\left(\mathcal{I}_{\operatorname{Res}_{H}(Y) \cup B^{\prime}}(d-1)\right)=0, i=0,1$. Let γ (resp. β) be the union of the connected components of $\operatorname{Res}_{H}(Y) \cup B^{\prime}$ contained in H (resp. not contained in H). Note that $\beta \cap H=\emptyset . \beta$ is a general union of a 2-point of A and several $Z_{2,2}$. The inductive assumption for Theorem 2 gives $h^{1}\left(\mathcal{I}_{\beta}(d-1)\right)=0$, i.e. $h^{0}\left(\mathcal{I}_{\beta}(d-1)\right)=\operatorname{deg}(\gamma)$. The scheme γ is a general union of a tangent vector of $H \cap A$ and a points of H. Since $\beta \cap H=\emptyset$, by Remark 3 we have $h^{0}\left(\mathcal{I}_{\beta \cup \gamma}(d-1)\right)=\max \left\{0, h^{0}\left(\mathcal{I}_{\beta}(d-2)\right)\right\}$. Even when $d=4,5$ we have $h^{0}\left(\mathcal{I}_{\beta}(d-2)\right)=0$ by the inductive assumption, because $\operatorname{deg}(\beta)=\binom{n+d-1}{n}-a-2$ and $0 \leq a \leq 2$.
(d) To conclude we need to prove Theorem 2 for (n, d). By Remark 3 and Theorem 1 for (n, d) it is sufficient to do the case $k=\left\lfloor\binom{ n+d}{n} / 6\right\rfloor$ and $\binom{n+d}{n} \equiv 3,4,5(\bmod 6)$. If $v_{d-1, n}$ is even we make the same construction as in steps (c1) taking instead of E a general union $E^{\prime} \subset H$ of $k-x-a$ schemes $Z_{2,2}$ and a planar 2-point. The case considered in (c2) is easier: take the planar 2 -scheme outside H and define x, a by the relations $\binom{n+d-1}{n}-3=6 x+4 a$, $0 \leq a \leq 2$.

3 General unions of schemes $Z_{3,2}$

Consider the following assertion $H_{d, n}$:
Assertion $H_{d, n}$: For all $x, y \in \mathbb{N}$ either $h^{0}\left(\mathcal{I}_{Z}(d)\right)=0$ or $h^{1}\left(\mathcal{I}_{Z}(d)\right)=0$ for a general union $Z \subset \mathbb{P}^{n}$ of x schemes $Z_{3,2}$ and y schemes $Z_{2,2}$.

For all positive integers n, d set $a_{d, n}:=\left\lfloor\binom{ n+d}{n} / 9\right\rfloor$ and $b_{d, n}=\binom{n+d}{n}-9 a_{d, n}$. We have

$$
\begin{equation*}
9 a_{d, n}+b_{d, n}=\binom{n+d}{d}, 0 \leq b_{d, n} \leq 8 \tag{3.1}
\end{equation*}
$$

If $d \geq 2$ and $n \geq 2$ from (3.1) for the integers d and $d-1$ we get

$$
\begin{equation*}
9\left(a_{d, n}-a_{d-1, n}\right)+b_{d, n}-b_{d-1, n}=\binom{n+d-1}{n-1} \tag{3.2}
\end{equation*}
$$

From (3.2) we get that $a_{d, n-1}=a_{d, n}-a_{d-1, n}$ and $b_{d, n-1}=b_{d, n}-b_{d-1, n}$ if $b_{d, n} \geq b_{d-1, n}$, while $a_{d, n-1}=a_{d, n}-a_{d-1, n}-1$ and $b_{d, n-1}=9+b_{d, n}-b_{d-1, n}$ if $b_{d, n}<b_{d-1, n}$.

Our original aim was the construction of exceptional cases for general unions of these zero-dimensional schemes and a prescribed number of lines. See Lemma 6 for one such case.

In the next section we prove $H_{d, 3}$ for all $d \geq 5$ and give the list of all exceptional cases in \mathbb{P}^{3} for $d=3,4$ (Theorem 3). We list the possible values $h^{0}\left(\mathcal{I}_{Z}(d)\right)$ if $d=3, n=4$ and Z is unions of $Z_{3,2}$ (Proposition 4).

Lemma 4. Fix integers $n \geq 2$ and $k>0$. Let $Z \subset \mathbb{P}^{n}$ be a general union of k schemes $Z_{3,2}$.
(a) If $n=2$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$.
(b) Assume $n=3$. If $k=1$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=4$. If $k=2$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=1$. If $k \geq 3$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=0$.
(c) Assume $n=4$. If $k=1$ (resp. $k=2$, resp. $k \geq 3$), then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=9$ $\left(\right.$ resp. $h^{0}\left(\mathcal{I}_{Z}(2)\right)=4$, resp. $\left.h^{0}\left(\mathcal{I}_{Z}(2)\right)=0\right)$.
(d) If $n \geq 5$, then $h^{0}\left(\mathcal{I}_{Z}(2)\right)=\max \left\{0,\binom{n+2}{2}-6 k\right\}$.

Proof. Let W be a $Z_{3,2}$-configuration of Z and A the plane containing W. Since $H^{0}\left(\mathcal{I}_{W}(2)\right)=H^{0}\left(\mathcal{I}_{A}(2)\right)$, we have $h^{0}\left(\mathcal{I}_{Z}(2)\right)=h^{0}\left(\mathcal{I}_{T}(2)\right)$, where T is the union of the planes containing the $Z_{3,2}$-configurations of $Z . T$ is a general union of k planes of \mathbb{P}^{n}. Thus parts (a) and (b) and the case $k=1$ of parts (c) and (d) are obvious.

Now assume $n=4$ and $k>1$. If T_{1} and T_{2} are general planes, then every quadric hypersurface containing $T_{1} \cup T_{2}$ is a cone with vertex containing the point $T_{1} \cap T_{2}$. Taking the linear projection from the linear span of $\operatorname{Sing}(T)$ we
get part (c), (in the case $k=3$, because $h^{0}\left(\mathbb{P}^{1}, \mathcal{I}_{\beta}(2)\right)=0$ for any degree 3 scheme $\left.\beta \subset \mathbb{P}^{1}\right)$.

Part (d) follows from [5, Theorem 3.2] applied to T.
Lemma 5. Let $T \subset \mathbb{P}^{3}$ be a general union of one $Z_{2,2}$ and 3 lines. Then $h^{1}\left(\mathcal{I}_{T}(3)\right)=0$. If Z is a general union of one $Z_{2,2}$ and 3 general collinear degree 4 schemes, then $h^{1}\left(\mathcal{I}_{Z}(3)\right)=0$.

Proof. Write $T=B \sqcup R$ with B zero-dimensional and R a union of 3 general lines. Note that $\left|\mathcal{I}_{R}(2)\right|$ is formed by a unique quadric, which is smooth and in particular that $h^{1}\left(\mathcal{I}_{R}(2)\right)=0$. Let $H \subset \mathbb{P}^{3}$ be the plane spanned by B. Since $R \cap H$ is a general union of 3 points, we have $h^{1}\left(H, \mathcal{I}_{T \cap H, H}(3)\right)=0$. Use that $\operatorname{Res}_{H}(T)=R, h^{1}\left(\mathcal{I}_{R}(2)\right)=0$ and the residual exact sequence of T and H. The statement for Z follows from the one for T, because $h^{0}\left(\mathcal{O}_{Z}(3)\right)=h^{0}\left(\mathcal{O}_{T}(3)\right)$ and $H^{0}\left(\mathcal{I}_{W}(3)\right)=H^{0}\left(\mathcal{I}_{L}(3)\right)$ for any line $L \subset \mathbb{P}^{3}$ and any zero-dimensional scheme $W \subset L$ with $\operatorname{deg}(W)=4$.

We found the following counterexample if we also add lines.
Lemma 6. Let $T \subset \mathbb{P}^{3}$ be a general union of one $Z_{3,2}$ and 2 lines and let $Y \subset \mathbb{P}^{3}$ be a general union of one $Z_{3,2}$ and one line. Then $h^{1}\left(\mathcal{I}_{T}(3)\right)=1$, $h^{0}\left(\mathcal{I}_{T}(3)\right)=4$ and $h^{1}\left(\mathcal{I}_{Y}(3)\right)=0$.

Proof. Write $T=B \sqcup R \sqcup L$ with B a $Z_{3,2}$-scheme and R, L lines. Let H be the plane spanned by B. We have $\operatorname{Res}_{H}(T)=R \cup L$ and hence $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}(T)}(2)\right)=4$. Since $h^{0}\left(H, \mathcal{I}_{Z_{3,2}}(3)\right)=1$ and $R \cap H$ is general in H, we have $h^{0}\left(H, \mathcal{I}_{H \cap T, H}(3)\right)=$ 0 . The residual exact sequence of T and H gives $h^{0}\left(\mathcal{I}_{T}(3)\right)=h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}(T)}(2)\right)=$ 4. Since $h^{0}\left(\mathcal{I}_{T}(3)\right)=4$, we have $h^{1}\left(\mathcal{I}_{T}(3)\right)=1$.

Take $Y=B \cup R$. We have $h^{i}\left(\mathcal{I}_{Y \cap H, H}(3)\right)=0, i=0,1$ and hence $h^{1}\left(\mathcal{I}_{Y}(3)\right)=$ $h^{1}\left(\mathcal{I}_{R}(2)\right)=0$.

Proposition 4. Let $Z \subset \mathbb{P}^{n}$, $n \geq 2$, be a general union of k schemes $Z_{3,2}$.
(i) Assume $n=2$. We have $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$ and $h^{1}\left(\mathcal{I}_{Z}(3)\right)=0$ if $k=1$, and $h^{0}\left(\mathcal{I}_{Z}(3)\right)=0$ if $k \geq 2$.
(ii) Assume $n=3$. We have $h^{0}\left(\mathcal{I}_{Z}(3)\right)=11$ and $h^{1}\left(\mathcal{I}_{Z}(3)\right)=0$ (resp. $h^{0}\left(\mathcal{I}_{Z}(3)\right)=4$ and $h^{1}\left(\mathcal{I}_{Z}(3)\right)=2$, resp. $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$ and $h^{1}\left(\mathcal{I}_{Z}(3)\right)=8$, resp. $h^{0}\left(\mathcal{I}_{Z}(3)\right)=0$) if $k=1$ and $h^{1}\left(\mathcal{I}_{Z}(3)\right)=8$ (resp. $k=2$, resp. $k=3$, resp. $k \geq 4)$.
(iii) Assume $n=4$. We have $h^{1}\left(\mathcal{I}_{Z}(3)\right)=0$ if $k \leq 3, h^{0}\left(\mathcal{I}_{Z}(k)\right)=0$ if $k \geq 5$ and $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1, h^{1}\left(\mathcal{I}_{Z}(3)\right)=2$ if $k=4$.

Proof. Proposition 1 gives $\left|\mathcal{I}_{Z}(3)\right|=\left|\mathcal{I}_{T}(3)\right|$, where T is the union of the 3 lines spanned by each pair of points of the reduction of any $Z_{3,2} \subseteq Z$. Part (i)
and all cases with $k=1$ follow. Now assume $n>2$ and $k \geq 2$. The values of $h^{1}\left(\mathcal{I}_{Z}(3)\right)$ in parts (ii) and (iii) are uniquely determined by n, k and the values of $h^{0}\left(\mathcal{I}_{Z}(2)\right)$.
(a) Assume $n=3$. We have $\binom{6}{3}=2 \cdot 9+2$. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be general planes and B_{i} a general union of 3 lines of A_{i}. We have $h^{0}\left(\mathcal{I}_{A_{1} \cup A_{2}}(3)\right)=4$. We fix A_{1} and B_{1}. For a general A_{2}, the line $A_{1} \cap A_{2}$ is a general line of A_{1}. For a general B_{2} the set $B_{2} \cap\left(A_{1} \cap A_{2}\right)$ contains a general point of $A_{1} \cap A_{2}$. Hence $h^{0}\left(A_{1}, \mathcal{I}_{B_{1} \cup\left(B_{2} \cap A_{2}\right)}(3)\right)=0$. In the same way we get $h^{0}\left(A_{i}, \mathcal{I}_{B_{i} \cap\left(B_{j} \cap A_{i}\right)}(3)\right)=0$ for all $i \neq j$. Hence $h^{0}\left(\mathcal{I}_{B_{1} \cup B_{2}}(3)\right)=h^{0}\left(\mathcal{I}_{A_{1} \cup A_{2}}(3)\right)=4, h^{0}\left(\mathcal{I}_{B_{1} \cup B_{2} \cup B_{3}}(3)\right)=$ $h^{0}\left(\mathcal{I}_{A_{1} \cup A_{2} \cup A_{3}}(3)\right)=1$. Therefore $h^{0}\left(\mathcal{I}_{Z}(3)\right)=0$ if $k \geq 4$.
(b) Assume $n=4$. We have $\binom{7}{3}=3 \cdot 9+8$. Let $H \subset \mathbb{P}^{4}$ be a hyperplane. Let $A_{i}, 1 \leq i \leq k$, be general planes. Let $E_{i} \subset A_{i}$ be a general reducible conic. Set $L_{i}:=A_{i} \cap H$ and $T_{i}:=E_{i} \cup L_{i}$.

Claim 1: We have $h^{i}\left(\mathcal{I}_{E_{1} \cup E_{2} \cup E_{3}}(2)\right)=0, i=0,1$.
Proof of Claim 1: Since $h^{0}\left(\mathcal{O}_{E_{1} \cup E_{2} \cup E_{3}}(2)\right)=15$, the claim is equivalent to prove that a general union of 3 reducible conics is contained in no quadric hypersurface. We degenerate $E_{2} \cup E_{3}$ to $F:=F_{1} \cup F_{2} \cup v_{1} \cup v_{2}$ with $F_{1} \cup F_{2} \subset$ $H, F_{1} \cup F_{2}$ a connected nodal union of 4 lines with arithmetic genus $1, F_{1}$ and F_{2} reducible conics, v_{1} and v_{2} tangent vectors not contained in H and supported at the two points of $F_{1} \cap F_{2}$. Set $Y:=F \cup E_{1}$. We have $H \cap F=$ $F_{1} \cup F_{2}$ and $Y \cap H=F_{1} \cup F_{2} \cup\left(E_{1} \cap H\right)$ with $H \cap E_{1}$ two general points of H. Hence $h^{0}\left(H, \mathcal{I}_{Y \cap H, H}(2)\right)=0$. We have $\operatorname{Res}_{H}(Y)=E_{1} \cup\left(F_{1} \cap F_{2}\right)$. Since $h^{0}\left(\mathcal{I}_{E_{1} \cup\left(F_{1} \cap F_{2}\right)}(1)\right)=0$ for general E_{1} and $F_{1} \cup F_{2}$, a residual exact sequence gives Claim 1.

QED
Since $h^{1}\left(H, \mathcal{I}_{L_{1} \cup L_{2} \cup L_{3}}(3)\right)=0$, Claim 1 proves the case $k=3$. Now we check the case $k=4$ and hence all cases with $k \geq 4$. We will also prove that $h^{0}\left(\mathcal{I}_{U}(3)\right)=1$ for a general union of 4 planes and so $h^{0}\left(\mathcal{I}_{Z}(3)\right)>0$ if $k=4$. Fix a general $p \in L_{1}$. We take as A_{4} a general plane containing p and let $T_{4} \subset A_{4}$ be the union of 3 general lines. Set $Y:=T_{1} \cup T_{2} \cup T_{3} \cup T_{4}$. Take $G \in\left|\mathcal{I}_{Y}(3)\right|$. Since $p \notin T_{4}, G \supset A_{4} . A_{2} \cap A_{4}$ and $A_{3} \cap A_{4}$ are general points of A_{2} and A_{3}, respectively. Hence $A_{2} \cup A_{3} \subset G$. Since $A_{2} \cap A_{1} \notin T_{1}$, we also get $A_{1} \subset G$. Although $T_{3} \cup A_{4}$ is not general, $W:=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ is a general union of 4 planes. Hence to prove the case $k=4$ it is sufficient to prove that $h^{0}\left(\mathcal{I}_{W}(3)\right)=1$. Taking into account the 6 points $A_{i} \cap A_{j}, 1 \leq i<j \leq 4$, show that $h^{0}\left(\mathcal{O}_{W}(3)\right)=34$ (use 4 Mayer-Vietoris exact sequences to check that $h^{1}\left(\mathcal{O}_{W}(3)\right)=0$). Hence $h^{0}\left(\mathcal{I}_{W}(3)\right) \geq 1$. Let $M \subset \mathbb{P}^{4}$ be a general hyperplane containing A_{4}. Since $\operatorname{Res}_{M}(W)=A_{1} \cup A_{2} \cup A_{3}$, Claim 1 gives $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{M}(W)}(2)\right)=0 . W \cap M$ is the union of A_{4} and 3 general lines. Hence $h^{0}\left(M, \mathcal{I}_{W \cap M}(3)\right)=1$. The residual sequence of M gives $h^{0}\left(\mathcal{I}_{W}(3)\right) \leq 1$. Since $h^{0}\left(\mathcal{I}_{W}(3)\right)>0$, the proof of the case $k=4$ is finished.

4 General unions of schemes $Z_{3,2}$ and $Z_{2,2}$ in \mathbb{P}^{3}

The aim of this section is to prove the following result.
Theorem 3. Take $x, y, d \in \mathbb{N}$ with $d \geq 3$. Let $Z \subset \mathbb{P}^{3}$ be a general union of $x Z_{3,2}$ and $y Z_{2,2}$. We have $h^{0}\left(\mathcal{I}_{Z}(d)\right) \cdot h^{1}\left(\mathcal{I}_{Z}(d)\right)=0$, except in the following cases:
(1) $(d, x, y)=(3,2,0), h^{0}\left(\mathcal{I}_{Z}(3)\right)=4, h^{1}\left(\mathcal{I}_{Z}(3)\right)=2$:
(2) $(d, x, y)=(3,3,0), h^{0}\left(\mathcal{I}_{Z}(3)\right)=1, h^{1}\left(\mathcal{I}_{Z}(3)\right)=8$;
(3) $(d, x, y)=(3,1,2), h^{0}\left(\mathcal{I}_{Z}(3)\right)=1, h^{1}\left(\mathcal{I}_{Z}(3)\right)=2$;
(4) $(d, x, y)=(3,2,1), h^{0}\left(\mathcal{I}_{Z}(3)\right)=1, h^{1}\left(\mathcal{I}_{Z}(3)\right)=5$;
(5) $(d, x, y)=(4,4,0), h^{0}\left(\mathcal{I}_{Z}(4)\right)=1, h^{1}\left(\mathcal{I}_{Z}(4)\right)=2$.

In this section we take $n=3$. Let $H \subset \mathbb{P}^{3}$ be a plane. Let $U(x, y) \subset \mathbb{P}^{3}$ be a general union of x schemes $Z_{3,2}$ and y schemes $Z_{2,2}$. Let $V(x, y) \subset \mathbb{P}^{3}$ be a general union of x schemes $Z_{3,2}$ and y schemes $Z[7]$ with vertex contained in H; note that the latter condition is not restrictive if $y \leq 3$, because any 3 points of \mathbb{P}^{3} are contained in a plane. Set $V(x)=U(x)=U(x, 0)=V(x, 0)$.

Lemma 7. Let $Z \subset \mathbb{P}^{3}$, be a general union of x schemes $Z_{3,2}$ and y schemes $Z_{2,2}$. Then either $h^{0}\left(\mathcal{I}_{Z}(3)\right)=0$ or $h^{1}\left(\mathcal{I}_{Z}(3)\right)=0$, except the cases with $y=0$ listed in Proposition 4 and the following cases with $y>0$:
(1) $(x, y)=(1,2)$ with $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$ and $h^{1}\left(\mathcal{I}_{Z}(3)\right)=2$;
(2) $(x, y)=(2,1)$ with $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$ and $h^{1}\left(\mathcal{I}_{Z}(3)\right)=5$.

Proof. All cases with $y=0$ are covered by Proposition 4. All cases with $x=0$ are true by Theorem 1 . The case $(x, y)=(0,4)$ covered by Theorem 1 shows that $h^{0}\left(\mathcal{I}_{Z}(3)\right)=0$ if $x+y \geq 4$.

Assume $x=y=1$. Let A be the plane containing $Z_{3,2}$. Fix a general $p \in A$. We have $h^{i}\left(A, \mathcal{I}_{Z_{3,2} \cup\{p\}}(3)\right)=0, i=0,1$. Let $B \subset \mathbb{P}^{3}$ be a general plane containing p. We take a general $Z_{2,2} \subset B$ such that $\left(Z_{2,2}\right)_{\text {red }} \cap A=\{p\}$. Let $L \subset$ B be a general line with $p \in L$. By the residual sequence of A and the differential Horace lemma applied to the connected component of $Z_{2,2}$ with p as its reduction it is sufficient to prove that $h^{1}\left(\mathcal{I}_{(2 q, B) \cup(2 p, L)}(2)\right)=0$, where q is a general point of B. This is true for every $q \in B \backslash L$, because $h^{1}\left(B, \mathcal{I}_{(2 q, B) \cup(2 p, L), B}(2)\right)=0$. In all cases with $x+y=3$ we have $h^{0}\left(\mathcal{I}_{Z}(3)\right)>0$, because Z is contained in $x+y$ planes.

Now assume $x=1$ and $y=2$; we want to prove that $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$ and hence $h^{1}\left(\mathcal{I}_{Z}(3)\right)=2$. Let $Z^{\prime} \subset Z$ be any disjoint union of 3 schemes $Z_{2,2}$ contained
in Z (with $Z \backslash Z^{\prime}$ a 2-point of a plane A). Theorem 1 gives $h^{1}\left(\mathcal{I}_{Z^{\prime}}(3)\right)=0$ and so $h^{0}\left(\mathcal{I}_{Z^{\prime}}(3)\right)=2 . \operatorname{Res}_{A}\left(Z^{\prime}\right)$ is a general union of two schemes $Z_{2,2}$ and so $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{A}\left(Z^{\prime}\right)}(2)\right)=1$ (Proposition 2). Since $Z \backslash Z^{\prime}$ contains a general point of A and $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{A}\left(Z^{\prime}\right)}(2)\right)<h^{0}\left(\mathcal{I}_{Z^{\prime}}(3)\right)$, we get $h^{0}\left(\mathcal{I}_{Z}(3)\right)<h^{0}\left(\mathcal{I}_{Z^{\prime}}(3)\right)$ and so $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$.

Finally, we consider the case $x=2, y=1$. Take $Z^{\prime \prime} \subset Z$ with $Z^{\prime \prime}$ union of one $Z_{3,2}$ and two $Z_{2,2}$. Since $h^{0}\left(\mathcal{I}_{Z}(3)\right) \geq 1$ and $h^{0}\left(\mathcal{I}_{Z^{\prime \prime}}(3)\right)=1$ by the case $(x, y)=(1,2)$ just done, we get $h^{0}\left(\mathcal{I}_{Z}(3)\right)=1$ and hence $h^{1}\left(\mathcal{I}_{Z}(3)\right)=5 . \quad$ QED

Proposition 5. Fix $x, y \in \mathbb{N}$. We have $h^{0}\left(\mathcal{I}_{U(x, y)}(4)\right) \cdot h^{1}\left(\mathcal{I}_{U(x, y)}(4)\right)=0$ if and only if $(x, y) \neq(4,0)$.

We have $h^{0}\left(\mathcal{I}_{U(4)}(4)\right)=1, h^{1}\left(\mathcal{I}_{U(4)}(4)\right)=2$ and $h^{1}\left(\mathcal{I}_{V(3,1)}(4)\right)=0$.
Proof. By Theorem 1 we may assume $x>0$. Since $V(x, y)$ is contained in $x+y$ planes, we have $h^{0}\left(\mathcal{I}_{U(4)}(4)\right)>0$. We first check that $h^{0}\left(\mathcal{I}_{U(4)}(4)\right)=1$ and hence $h^{1}\left(\mathcal{I}_{U(4)}(4)\right)=2$. We degenerate $U(4)$ to a general union Z^{\prime} of one $Z_{3,2} \subset H$ and 3 general schemes $Z_{3,2}$ such that exactly one of the points of their support is contained in $H . Z^{\prime} \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors and so $h^{i}\left(H, \mathcal{I}_{Z^{\prime} \cap H, H}(4)\right)=0, i=0,1$. Since any 3 points of \mathbb{P}^{3} are contained in a plane, $\operatorname{Res}_{H}\left(Z^{\prime}\right)$ may be considered as a general $V(0,3) . V(0,3)$ is contained in a union of 3 planes and so to prove that $h^{0}\left(\mathcal{I}_{Z^{\prime}}(4)\right) \leq 1$ (and hence $\left.h^{0}\left(\mathcal{I}_{U(4)}(4)\right)=1\right)$ it is sufficient to prove that $h^{0}\left(\mathcal{I}_{V(0,3)}(3)\right) \leq 1$. Fix $U(0,3)$ and call A_{1}, A_{2}, A_{3} the 3 planes spanned by the connected components of $U(0,3)$. Since any 3 points of \mathbb{P}^{3} are contained in a plane, $V(0,3)$ has the Hilbert function of $U(0,3) \cup\left\{P_{1}, P_{2}, P_{3}\right\}$, where each P_{i} is a general point of A_{i}. By Theorem 1 we have $h^{1}\left(\mathcal{I}_{U(0,3)}(3)\right)=0$ and so $h^{0}\left(\mathcal{I}_{U(0,3)}(3)\right)=2$. Hence there is $q \in$ $A_{1} \cup A_{2} \cup A_{3}$ such that $h^{0}\left(\mathcal{I}_{U(0,3) \cup\{q\}}(3)\right)=1$. Thus $\left|\mathcal{I}_{V(0,3)}(3)\right|=\left\{A_{1} \cup A_{2} \cup A_{3}\right\}$, i.e. $h^{0}\left(\mathcal{I}_{V(0,3)}(3)\right)=1$. Thus $h^{0}\left(\mathcal{I}_{U(4)}(4)\right)=1$. Since $h^{0}\left(\mathcal{I}_{U(4)}(4)\right)=1$ we have $h^{0}\left(\mathcal{I}_{U(x, y)}(4)\right)=0$ if $x \geq 4$ and $x+y>4$. Now assume $x \leq 3$. To prove that $h^{1}\left(\mathcal{I}_{U(x, y)}(4)\right) \cdot h^{0}\left(\mathcal{I}_{U(x, y)}(4)\right)=0$ it is sufficient to check the following pairs $(x, y):(1,4),(1,5),(2,2),(2,3),(3,1),(3,2)$.
(a) Take $(x, y)=(3,2)$. We degenerate $U(x, y)$ to a general union Z^{\prime} of one $Z_{3,2}$ contained in H, two $Z_{3,2}$ with a point of their reduction contained in H, one $Z_{2,2}$ with a point of its support in H and a general $Z_{2,2}$. Since $Z^{\prime} \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors, we have $h^{i}\left(H, \mathcal{I}_{Z^{\prime} \cap H, H}(4)\right)=0$, $i=0,1$ and so it is sufficient to prove that $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=0 . \operatorname{Res}_{H}\left(Z^{\prime}\right)$ is a general union of one $Z_{2,2}$, two $Z[7]$ with vertex in H and one $Z[4]$ with vertex in H. Since $h^{0}\left(\mathcal{I}_{U(0,2)}(2)\right)=1$ (Proposition 2), we have $h^{0}\left(\mathcal{I}_{W}(2)\right)=0$ for a general union of one $Z_{2,2}$, two $Z[7]$ with vertex contained in H and one $Z[4]$ with vertex contained in H. Since any 3 points of \mathbb{P}^{3} are contained in a plane, adding one vertex at each step we see that $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=0$ if $h^{0}\left(\mathcal{I}_{E}(3)\right) \leq 3$,
where E is a general union of $3 Z_{2,2}$ and one planar 2-point. Theorem 2 gives $h^{0}\left(\mathcal{I}_{E}(3)\right)=0$.
(b) Take $(x, y)=(3,1)$. We make the same construction taking now as Z^{\prime} a general union of one $Z_{3,2}$ contained in H, two $Z_{3,2}$ with a point of their reduction contained in H, one $Z_{2,2}$ with a point of its support in H.
(c) Take either $(x, y)=(1,5)$ or $(x, y)=(1,4)$. We degenerate $U(x, y)$ to a general union Z^{\prime} of $y-3$ schemes $Z_{2,2}$, one scheme $Z_{3,2}$ contained in H and 3 general $Z_{2,2}$ with one point of their support contained in H. Since $Z^{\prime} \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors, we have $h^{i}\left(H, \mathcal{I}_{Z^{\prime} \cap H, H}(4)\right)=0$, $i=0,1$, and so it is sufficient to prove that $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=0$ if $y=5$ and $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=0$ if $y=4$. $\operatorname{Res}_{H}\left(Z^{\prime}\right)$ is a general union of $y-3 Z_{2,2}$ and $3 Z[4]$ with vertex contained in H. Let E be the union of the unreduced connected components of $\operatorname{Res}_{H}\left(Z^{\prime}\right) . E$ is a general union of $y-3 Z_{2,2}$ and 3 planar 2-points. We degenerate two general planar 2-points to two disjoint, but coplanar 2-points, i.e., to a scheme $Z_{2,2}$. In this way we degenerate E to a scheme E_{1} to which we apply Theorem 2 . Theorem 2 gives $h^{1}\left(\mathcal{I}_{E_{1}}(3)\right)=0$ if $y=4$ and $h^{0}\left(\mathcal{I}_{E_{1}}(3)\right)=0$ if $y=5$ and so $h^{1}\left(\mathcal{I}_{E}(3)\right)=0$ if $y=4$ and $h^{0}\left(\mathcal{I}_{E}(3)\right)=0$ if $y=5$. Hence $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=0$ if $y=5$. Now assume $y=4$ and hence $h^{0}\left(\mathcal{I}_{E}(3)\right)=5$. Recall that to prove this case it is sufficient to prove that $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=2$, i.e. $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=h^{0}\left(\mathcal{I}_{E}(3)\right)-3 . \operatorname{Res}_{H}\left(Z^{\prime}\right) \backslash E$ is a general union of 3 points of H. Hence $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=\max \left\{2, h^{0}\left(\mathcal{I}_{E \cup H}(3)\right)\right\}$. We have $h^{0}\left(\mathcal{I}_{E \cup H}(3)\right)=h^{0}\left(\mathcal{I}_{E}(2)\right) \leq 1$, because E contains 4 general tangent vectors of \mathbb{P}^{3} and another general point of \mathbb{P}^{3}.
(d) Take either $(x, y)=(2,3)$ or $(x, y)=(2,2)$. We degenerate $U(x, y)$ to a general union Z^{\prime} of one $Z_{3,2}$ contained in H, one $Z_{3,2}$ with a point of its reduction contained in H, two $Z_{2,2}$ with a point of its support in H and $y-2$ general $Z_{2,2}$. Since $Z^{\prime} \cap H$ is a general union of 3 planar 2-points and 3 tangent vectors, we have $h^{i}\left(H, \mathcal{I}_{Z \cap H, H}(4)\right)=0, i=0,1$, and so it is sufficient to prove that $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=0$ if $y=3$ and $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(3)\right)=0$ if $y=2 . \operatorname{Res}_{H}\left(Z^{\prime}\right)$ is a general union of $y-2$ schemes $Z_{2,2}$, one $Z[7]$ with vertex contained in H and two $Z[4]$ with vertex contained in H. Let E be the union of the unreduced connected components of $\operatorname{Res}_{H}\left(Z^{\prime}\right)$. As in the previous step we reduce to prove that $h^{1}\left(\mathcal{I}_{E}(3)\right)=0$. To prove this h^{1}-vanishing it is sufficient to do the case $y=3$. In this case E is a general union of $2 Z_{2,2}$ and two planar 2-points and hence $U(0,3)$ is a specialization of it. Use the semicontinuity theorem and Theorem 1.
(e) Now we check that $h^{1}\left(\mathcal{I}_{V(3,1)}(4)\right)=0$, i.e. $h^{0}\left(\mathcal{I}_{V(3,1)}(4)\right)=1$. We proved that $h^{1}\left(\mathcal{I}_{U(3,1)}(4)\right)=0$, i.e. $h^{0}\left(\mathcal{I}_{U(3,1)}(4)\right)=2$. Since $y \leq 3 V(3,1)$ has the Hilbert function of a general union β of $3 Z_{3,2}$ and one $Z[7]$. Assume $h^{1}\left(\mathcal{I}_{\beta}(4)\right)>0$, i.e. (since $\beta \supset U(3,1)$ and $\left.\operatorname{deg}(\beta)=\operatorname{deg}(U(3,1))+1\right)$ assume
$H^{0}\left(\mathcal{I}_{\beta}(4)\right)=H^{0}\left(\mathcal{I}_{U(3,1)}(4)\right)$. Write $U(3,1)=U \sqcup B$ with B the $Z_{2,2}$. Let A be the plane spanned by B. A general β is obtained from $U(3,1)$ adding a general point of A. Hence $H^{0}\left(\mathcal{I}_{A \cup U(3,1)}(4)\right)=H^{0}\left(\mathcal{I}_{U(3,1)}(4)\right)$. Since $\operatorname{Res}_{A}(U(3,1))=U$, we get $h^{0}\left(\mathcal{I}_{U}(3)\right)=2$. Since $U=U(3,0)$, the case $(n, k)=(3,3)$ of Proposition 4 gives a contradiction.

Lemma 8. Let $Z \subset \mathbb{P}^{3}$ be a general union of $2 Z_{2,2}$ and 3 planar 2-points. Then $h^{0}\left(\mathcal{I}_{Z}(3)\right)=0$.

Proof. Let $A^{\prime}, A^{\prime \prime} \subset \mathbb{P}^{3}$ be general planes. Fix one $Z_{2,2}, B \subset H$, and call B^{\prime} a general $Z_{2,2}$ of A^{\prime} with the only restriction that one of the points of $B_{\mathrm{red}}^{\prime}$ is general in the line $A^{\prime} \cap H$. Let D be a general planar 2-point of $A^{\prime \prime}$ with $D_{\text {red }}$ contained in the line $A^{\prime \prime} \cap H$. Let $G \subset \mathbb{P}^{3}$ be a general union of 2 planar 2points. Set $Z^{\prime}:=G \cup B \cup B^{\prime} \cup D$. By semicontinuity it is sufficient to prove that $h^{0}\left(\mathcal{I}_{Z^{\prime}}(3)\right)=0$. Since $Z^{\prime} \cap H$ is a general union of B and 2 general tangent vectors of H, Theorem 1 and Remark 3 give $h^{i}\left(H, \mathcal{I}_{Z^{\prime} \cap H}(3)\right)=0, i=0,1 . \operatorname{Res}_{H}\left(Z^{\prime}\right)$ is a general union of 2 planar 2 points (i.e. G), a scheme $Z[4]$ whose vertex is a general point of $H\left(\right.$ i.e. $\left.\operatorname{Res}_{H}\left(B^{\prime}\right)\right)$ and a general point of H (i.e. $\operatorname{Res}_{H}(D)$). Since $\operatorname{Res}_{H}\left(\operatorname{Res}_{H}\left(Z^{\prime}\right)\right)$ contains G, we have $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(\operatorname{Res}_{H}\left(Z^{\prime}\right)\right)}(1)\right)=0$. Hence $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right) \cup H}(2)\right)=0$. Since $\operatorname{Res}_{H}(D)$ is general in H, to prove the lemma it is sufficient to prove that $h^{0}\left(\mathcal{I}_{G \cup \operatorname{Res}_{H}\left(B^{\prime}\right)}(2)\right) \leq 1$.

Since $G \cup \operatorname{Res}_{H}\left(B^{\prime}\right)$ contains 3 general planar 2-points, it is sufficient to quote Lemma 3.

Lemma 9. $H_{5,3}$ is true.
Proof. By Theorem 1 we may assume $x>0$. We have $a_{5,3}=6$ and $b_{5,3}=2$. We first check that $h^{1}\left(\mathcal{I}_{U(6,0)}(5)\right)=0$. We specialize $U(6,0)$ to a scheme Z^{\prime} which is a general union of 3 general schemes $Z_{3,2}, 2$ schemes $Z_{3,2}$ contained in H and a scheme $Z_{3,2}$ whose reduction contains a point of H. By the case $n=2$ of the Alexander-Hirschowitz theorem and Remark 3 we have $h^{1}\left(\mathcal{I}_{H \cap Z^{\prime}}(3)\right)=0$. Since $\operatorname{Res}_{H}\left(Z^{\prime}\right)$ is a scheme $V(3,1)$, the last assertion of Proposition 5 gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{H}\left(Z^{\prime}\right)}(4)\right)=0$ and hence $h^{1}\left(\mathcal{I}_{U(6,0)}(5)\right)=0$ and $h^{0}\left(\mathcal{I}_{U(6,0)}(5)\right)=2$. Hence $h^{0}\left(\mathcal{I}_{U(6,1)}(5)\right)=0$ and $h^{1}\left(\mathcal{I}_{U(x, y)}(5)\right)=0$ if $x+y \leq 6$. We just solved all cases with $y \leq 1$ and hence now we may assume that $y \geq 2$.

First assume $x \neq 5$. Let $F \subset H$ be a general union of one $Z_{3,2}$ and two $Z_{2,2}$, i.e. a general union of 72 -points of H. Since $h^{i}\left(H, \mathcal{I}_{F, H}(5)\right)=0, i=0,1$, it is sufficient to use that either $h^{0}\left(\mathcal{I}_{U(x-1, y-2)}(4)\right)=0$ or $h^{1}\left(\mathcal{I}_{U(x-1, y-2)}(4)\right)=0$ by Proposition 5.

Now we prove that $h^{0}\left(\mathcal{I}_{U(5,2)}(5)\right)=0$. Let $E \subset H$ be a general union of two $Z_{3,2}$, i.e. a general union of 62 -points of H. Fix general $p_{1}, p_{2} \in H$. Let $G \subset \mathbb{P}^{3}$ be a general union of $3 Z_{3,2}$. Let $v_{i} \subset H$ be a general tangent vector of H with
$\left(v_{i}\right)_{\text {red }}=\left\{p_{i}\right\}$. An elementary case of the Alexander-Hirschowitz theorem and Remark 3 gives $h^{0}\left(H, \mathcal{I}_{E \cup v_{1} \cup v_{2}, H}(5)\right)=0, i=0,1$. Let $B_{i} \subset \mathbb{P}^{3}$ be a general $Z_{2,2}$ containing v_{i} and let A_{i} be the plane spanned by B_{i}. Note that $B_{i} \cap H=v_{i}$ and $\operatorname{Res}_{H}\left(B_{i}\right)=\left\{p_{i}\right\} \cup\{2 o, A\}$ with o general in A_{2}. Fix a general plane $A_{2} \subset \mathbb{P}^{3}$ with $p_{2} \in A$. It is sufficient to prove that $h^{0}\left(\mathcal{I}_{G \cup\left(2 o_{1}, A_{1}\right) \cup\left\{q_{1}\right\} \cup\left(2 o_{2}, A_{2}\right\} \cup\left\{q_{2}\right\}}(4)\right)=0$. By Proposition 5 we have $h^{0}\left(\mathcal{I}_{G \cup\left(2 o_{1}, A_{1}\right) \cup\left(2 o_{2}, A_{2}\right)}(4)\right)=2$ (degenerate $\left(2 o_{1}, A_{1}\right) \cup$ $\left(2 o_{2}, A_{2}\right)$ to a general $\left.Z_{2,2}\right)$. The scheme $G \cup\left(2 o_{1}, A_{1}\right) \cup\left(2 o_{2}, A_{2}\right)$ does not depend on H. Moving H we may assume that $\left(q_{1}, q_{2}\right)$ is a general element of $A_{1} \times A_{2}$. Hence it is sufficient to use that $h^{0}\left(\mathcal{I}_{G \cup A_{1} \cup A_{2}}(4)\right)=h^{0}\left(\mathcal{I}_{G}(2)\right)=0$ by Lemma 4.

Lemma 10. Fix an integer $d \geq 6$. Assume that $H_{d-1,3}$ is true. If $d \geq 7$ also assume that $H_{d-2,3}$ is true. Then $H_{d, 3}$ is true.

Proof. Increasing or decreasing if necessary x or y it is sufficient to do all cases with $\left|\binom{d+3}{3}-9 x-6 y\right| \leq 5$ and all cases with $y=0$. To cover all pairs $(x, 0)$ it is sufficient to do the cases $x=\left\lfloor\binom{ d+3}{3} / 9\right\rfloor$ and $x=\left\lceil\binom{ d+3}{3} / 9\right\rceil$. Moreover, if we take $x=\left\lfloor\binom{ d+3}{3} / 9\right\rfloor$ (and hence we need to prove an h^{1}-vanishing) we may assume $b_{d, 3} \leq 5$ (otherwise we check $h^{1}=0$ for the pair $(x, 1)$). If $b_{d-1,3} \leq b_{d, 3}$, then $b_{d, 3}-b_{d-1,3}=b_{d, 2}$. If $b_{d-1,3}>b_{d, 3}$, then $b_{d, 2}=9+b_{d, 3}-b_{d-1,3}$. We have $b_{d, 2}=1$ if $d \equiv 0,3,6(\bmod 9), b_{d, 2}=3$ if $d \equiv 1,5(\bmod 9), b_{d, 2}=6$ if $d \equiv 2,4(\bmod 9)$ and $b_{d, 2}=0$ if $d \equiv 7,8(\bmod 9)$. Let $E \subset H$ be a general union of $a_{d, 2}$ schemes $Z_{3,2}$. We have $h^{1}\left(H, \mathcal{I}_{E, H}(d)\right)=0, h^{0}\left(H, \mathcal{I}_{E, H}(d)\right)=b_{d, 2}$ and $h^{0}\left(H, \mathcal{I}_{E, H}(d-1)\right)=0$. We have $b_{6,2}=1$. By Theorem 1 we may assume $x>0$.
(a) Assume $b_{d, 2}=6$.
(a1) First assume $x \geq a_{d, 2}$ and $y>0$. Let $E_{1} \subset H$ be a general union of E and one scheme $Z_{2,2}$. Since $h^{i}\left(H, \mathcal{I}_{E_{1}, H}(d)\right)=0, i=0,1$, it is sufficient to apply $H_{d-1,3}$ to $U\left(x-a_{d, 2}, y-1\right)$.
(a2) Now assume $x<a_{d, 2}$ and hence $6 y \geq\binom{ d+2}{2}$. Set $w:=2\lfloor x / 2\rfloor$. So $w=x$ if x is even and $w=x-1$ if x is odd. Let $F \subset H$ be a general union of w schemes $Z_{3,2}$ and $3 w / 2+1$ schemes $Z_{2,2}$. Since $h^{i}\left(H, \mathcal{I}_{F, H}(d)\right)=0, i=0,1$, it is sufficient to apply $H_{d-1,3}$ to the scheme $U(x-w, y-1-3 w / 2)$.
(a3) Now assume $y=0$. Fix a general line $L \subset H$. Since $h^{0}\left(H, \mathcal{I}_{E, H}(d-\right.$ $1))=0$, the image of the restriction map $H^{0}\left(H, \mathcal{I}_{E, H}(d)\right) \rightarrow H^{0}\left(L, \mathcal{O}_{L}(d)\right)$ has dimension 6. By Remark 3 for general tangent vectors $v, v^{\prime} \subset L$ we have $h^{0}\left(H, \mathcal{I}_{E \cup v^{\prime} \cup v, H}(d)\right)=2$. Hence $h^{i}\left(H, \mathcal{I}_{E \cup v^{\prime} \cup v \cup w}(d)\right)=0, i=0,1$, for a general tangent vector $w \subset H$ (Remark 3). Call S the reduction of $v \cup v^{\prime}$ and $\{q\}$ the reduction of w. Let $M \subset \mathbb{P}^{3}$ be a general plane containing L. Let $N \subset \mathbb{P}^{3}$ be a general plane containing the line spanned by w. Let $G \subset \mathbb{P}^{3}$ be a general union of $x-a_{d, 2}-2$ schemes $Z_{3,2}$. Let $U \subset M$ be a general scheme $Z_{3,2}$ containing
S. Let $V \subset N$ be a general $Z_{3,2}$ containing q. Note that $U \cap H=v \cup v^{\prime}$ and $V \cap N=w$ and that $\operatorname{Res}_{H}(U \cup V)=S \cup W^{\prime}$ with W^{\prime} a scheme $Z[7]$. By semicontinuity and the residual exact sequence of H it is sufficient to prove that either $h^{0}\left(\mathcal{I}_{G \cup W^{\prime} \cup S}(d-1)\right)=0$ or $h^{1}\left(\mathcal{I}_{G \cup W^{\prime} \cup S}(d-1)\right)=0$. Let $W^{\prime \prime} \subset W^{\prime}$ be the scheme $Z_{2,2}$ contained in W^{\prime}. We have $W^{\prime}=W^{\prime \prime} \cup\{q\}$. Since G is general and each point of \mathbb{P}^{3} is contained in a hyperplane, $G \cup W^{\prime \prime}$ has the Hilbert function of $U\left(x-a_{d, 2}-2,1\right)$. By $H_{d-1,3}$ either $h^{0}\left(\mathcal{I}_{G \cup W^{\prime \prime}}(d-1)\right)=0$ or $h^{1}\left(\mathcal{I}_{G \cup W^{\prime \prime}}(d-1)\right)=0$. Therefore we may assume $h^{1}\left(\mathcal{I}_{G \cup W^{\prime \prime}}(d-1)\right)=0$. The only restriction on $W^{\prime} \cup S$ is that both S and the vertex q of W^{\prime} are contained in H. Since any 3 points of \mathbb{P}^{3} are contained in a plane, for a general S we have $h^{0}\left(\mathcal{I}_{G \cup W^{\prime \prime} \cup\{q\} \cup S}(d-1)\right)=\max \left\{h^{0}\left(\mathcal{I}_{G \cup W^{\prime \prime}}(d-1)\right)-3,0\right\}$ and so either $h^{0}\left(\mathcal{I}_{G \cup W^{\prime} \cup S}(d-1)\right)=0$ or $h^{1}\left(\mathcal{I}_{G \cup W^{\prime} \cup S}(d-1)\right)=0$.
(b) Assume $b_{d, 2}=3$ and so $d \geq 10$ and $d \equiv 1,5(\bmod 9)$.
(b1) Assume $y \geq 2$. Since $\binom{d+2}{2} \equiv 0(\bmod 3)$, there are unique integers a, b such that $9 a+6 b=\binom{d+2}{2}$ and $\min \left\{x, a_{d, 2}-1\right\}-1 \leq a \leq \min \left\{x, a_{d, 2}-1\right\}$. Since $x>0$, we have $a \geq 0$. Since $9 x+6 y \geq\binom{ d+3}{3}-5$ and $y \geq 2$, we have $y \geq b$. Let $F \subset H$ be a general union of a schemes $Z_{3,2}$ and b schemes $Z_{2,2}$. Since $h^{i}\left(H, \mathcal{I}_{F, H}(d)\right)=0, i=0,1$, it is sufficient to apply $H_{d-1,3}$ to the scheme $U(x-a, y-b)$.
(b2) Assume $y \leq 1$. Hence $x \geq a_{d, 2}+2$. Since $h^{0}\left(H, \mathcal{I}_{E, H}(d)\right)=3$, we have $h^{i}\left(H, \mathcal{I}_{E \cup v \cup\{q\}}(d)\right)=0, i=0$, 1 , for a general $q \in H$ and a general tangent vector $v \subset H$. Let $G \subset \mathbb{P}^{3}$ be a general union of $x-a_{d, 2}-2$ schemes $Z_{3,2}$ and y schemes $Z_{2,2}$. Let $L \subset H$ be the line spanned by v. Let $M \subset \mathbb{P}^{3}$ be a general plane containing L and let $N \subset \mathbb{P}^{3}$ be a general plane containing $\mathrm{t} L$. Set $\{p\}:=v_{\text {red }}$. Let $W \subset M$ be a general scheme $Z[8]$ with p as its vertex and L as its vertex line. Let $U \subset N$ be a general scheme $Z[7]$ with q as its vertex. Let W^{\prime} (resp. U^{\prime}) be the $Z_{3,2}$ scheme containing W (resp. U) and let W_{1} (resp. U_{1}) be the $Z_{2,2}$ scheme contained in W (resp. U). Since $\operatorname{Res}_{H}\left(U^{\prime}\right)=U$, the differential Horace lemma applied to H, q and W^{\prime} shows that it is sufficient to prove that either $h^{1}\left(\mathcal{I}_{G \cup W \cup U}(d-1)\right)=0$ or $h^{0}\left(\mathcal{I}_{G \cup W \cup U}(d-1)\right)=0$. Note that $\operatorname{deg}\left(U_{1}\right)+\operatorname{deg}\left(W^{\prime}\right)=\operatorname{deg}(U)+\operatorname{deg}(W)$. The inductive assumption gives that either $h^{1}\left(\mathcal{I}_{G \cup U_{1} \cup W^{\prime}}(d-1)\right)=0\left(\right.$ case $\left.9 x+6 y \leq\binom{ d+3}{3}\right)$ or $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W^{\prime}}(d-1)\right)=0$ (case $9 x+6 y \geq\binom{ d+3}{3}$).

Assume for the moment $9 x+6 y<\binom{d+3}{3}$ and hence $h^{0}\left(\mathcal{I}_{G \cup W \cup U_{1}}(d-1)\right)>0$. Since $h^{1}\left(\mathcal{I}_{G \cup U_{1} \cup W^{\prime}}(d-1)\right)=0$, we have $h^{1}\left(\mathcal{I}_{G \cup U_{1} \cup W}(d-1)\right)=0$ and so it is sufficient to prove that $h^{0}\left(\mathcal{I}_{G \cup W \cup U}(d-1)\right)<h^{0}\left(\mathcal{I}_{G \cup W \cup U_{1}}(d-1)\right)$. Since q is general in $H, G \cup U_{1}$ is a general union of $x-a_{d-2}-2 Z_{3,2}$ and $y+1 Z_{2,2} . U$ is obtained from U_{1} adding a general point of $N \cap H$; since for a fixed W we may take as H a general plane containing L, moving H we may assume that U is obtained from U_{1} adding a general point of N. Hence $h^{0}\left(\mathcal{I}_{G \cup W \cup U}(d-1)\right)<$
$h^{0}\left(\mathcal{I}_{G \cup W \cup U_{1}}(d-1)\right)$, unless $h^{0}\left(\mathcal{I}_{G \cup W \cup N}(d-1)\right)=h^{0}\left(\mathcal{I}_{G \cup W \cup U_{1}}(d-1)\right)$, i.e. unless $h^{0}\left(\mathcal{I}_{G \cup W}(d-2)\right)=h^{0}\left(\mathcal{I}_{G \cup W \cup U_{1}}(d-1)\right)$. The inductive assumption gives $h^{0}\left(\mathcal{I}_{G \cup W_{1}}(d-2)\right)=0$ and so $h^{0}\left(\mathcal{I}_{G \cup W}(d-2)\right)=0$, a contradiction.

Now assume $9 x+6 y \geq\binom{ d+3}{3}$. Therefore we have $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W^{\prime}}(d-1)\right)=0$. If $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W}(d-1)\right)=0$, then we are done, because $U_{1} \subset U$. Now assume $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W}(d-1)\right)>0$ and hence $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W}(d-1)\right)=1$. Hence $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1}}(d-1)\right)>0$. Since v and q are general in $H, G \cup U_{1} \cup W_{1}$ is a general union of $x-a_{d, 2}-2 Z_{3,2}$ and $y+2 Z_{2,2}$. The inductive assumption gives $h^{1}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1}}(d-1)\right)=0$ and so (since $\left.b_{d, 2}=3\right) h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1}}(d-1)\right)=\binom{d+3}{3}-$ $9 x-6 y+3$. Of course, we get $9 x+6 y \leq\binom{ d+3}{3}+2$ and $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1}}(d-1)\right) \leq 2$. To get $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W}(d-1)\right)=0$ (i.e. a contradiction) it is sufficient to prove that $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1} \cup\left\{o, o^{\prime}\right\}}(d-1)\right)=0$ for a general $o \in M$ and a general $o^{\prime} \in N$ (because $G \cup U_{1} \cup W_{1}$ does not depend on H, p (resp. q) is a general point of $N \cap H$ (resp. $M \cap H$) and hence varying H we may assume that (p, q) is a general element of $N \times M$ and for a general line L^{\prime} through q we may find a hyperplane H^{\prime} containing $L^{\prime} \cup\{p\}$ (the linear span of $L^{\prime} \cup\{p\}$)). This is very easy and we write down only the less trivial case $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1}}(d-1)\right)=2$ and $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1} \cup\{0\}}(d-1)\right)=1$. We have $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1} \cup\left\{o, o^{\prime}\right\}}(d-1)\right)=1$ if and only if $H^{0}\left(\mathcal{I}_{G \cup U_{1} \cup W_{1} \cup\{o\}}(d-1)\right)=H^{0}\left(\mathcal{I}_{G \cup U_{1} \cup\{o\} \cup N}(d-1)\right)$. The latter vector space is 0 , because $h^{0}\left(\mathcal{I}_{G \cup U_{1} \cup\{0\}}(d-2)\right) \leq h^{0}\left(\mathcal{I}_{G \cup U_{1}}(d-2)\right)=0$.
(c) Assume $b_{d, 2}=1$.
(c1) Assume $x \geq a_{d, 2}+1$. Look at step (b2). We use $Z[8]$, but not $Z[7]$.
(c2) Assume $x \leq a_{d, 2}$. Write $w:=x$ if x is even and $w:=x-1$ if x is odd. We have $\binom{d+2}{2}-9 w \equiv 1(\bmod 6)$ and $6 y \geq\binom{ d+2}{2}-9 u$. Let $F \subset H$ be a general union of w schemes $Z_{3,2},\left(\binom{d+2}{2}-9 w\right) / 6$ schemes $Z_{2,2}$ and one point. We have $h^{i}\left(H, \mathcal{I}_{F, H}(d)\right)=0, i=0,1$. If x is odd, we use the differential Horace and reduce to prove that either $h^{0}\left(\mathcal{I}_{G}(d-1)\right)=0$ or $h^{1}\left(\mathcal{I}_{G}(d-1)\right)=0$, where G is a general union of one scheme $Z[8]$ and $y-\left(\binom{d+2}{2}-9 w-1\right) / 6$ schemes $Z_{2,2}$. Use $H_{d-1,3}$ and Lemma 2. If $x=w$ as G we take a general union of one scheme $Z[5]$ and $y-1-\left(\binom{d+2}{2}-9 w-1\right) / 6$ schemes $Z_{2,2}$.
(d) Assume $b_{d, 2}=0$. First assume $x \geq a_{d, 2}$. We use that $h^{i}\left(H, \mathcal{I}_{E, H}(d)\right)=$ $0, i=0,1$, and apply $H_{d-1,3}$ to $U\left(x-a_{d, 2}, y\right)$. Now assume $x<a_{d, 2}$. Set $u=x$ if $a_{d, 2}-x$ is even and $u=x-1$ if $a_{d, 2}-x$ is odd. Since $x>0$, in all cases we have $u \geq 0$ and $\binom{d+2}{2}-9 u \equiv 0(\bmod 6)$ and $6 y \geq\binom{ d+2}{2}-9 u$. Let $F \subset H$ be a general union of u schemes $Z_{3,2}$ and $\left(\binom{d+2}{3}-9 u\right) / 6$ schemes $Z_{2,2}$. Since $h^{i}\left(H, \mathcal{I}_{F, H}(d)\right)=0, i=0,1$, it is sufficient to apply $H_{d-1,3}$ to the scheme $U\left(x-u, y-\left(\binom{d+2}{3}-9 u\right) / 6\right)$.

Proof of Theorem 3: Use Proposition 4 and Lemma 7 for the case $d=3$, Proposition 5 for the case $d=4$ and Lemmas 9 and 10 for the cases $d \geq 5$. QED

Acknowledgements. Many thanks to a referee for several very useful suggestions.

References

[1] J. Alexander, A. Hirschowitz: Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222.
[2] J. Alexander, A. Hirschowitz: Interpolation of jets, J. Algebra 192 (1997), no. 1, 412-417.
[3] J. Alexander, A. Hirschowitz: An asymptotic vanishing theorem for generic unions of multiple points, Invent. Math. 140 (2000), 303-325.
[4] M. C. Brambilla, G. Ottaviani: On the Alexander-Hirschowitz Theorem, J. Pure Appl. Algebra 212 (2008), no. 5, 1229-1251.
[5] E. Carlini, M. V. Catalisano, A. V. Geramita: Subspace arrangements, configurations of linear spaces and the quadrics containing them, J. Algebra 362 (2012), 70-83.
[6] A. Eastwood: Collision the biais et application a l'interpolation, Manuscripta Math. 67 (1990), 227-249.
[7] R. Hartshorne, A. Hirschowitz: Droites en position générale dans \mathbb{P}^{n}, Algebraic Geometry, Proceedings, La Rábida 1981, 169-188, Lect. Notes in Math. 961, Springer, Berlin 1982.

[^0]: ${ }^{\mathrm{i}}$ This work is partially supported by MIUR and GNSAGA (INDAM)
 http://siba-ese.unisalento.it/ © 2016 Università del Salento

