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DECOMPOSITION-AGGREGATION APPROACH IN STABILITY
PROBLEMS FOR LARGE-SCALE SYSTEMS INCLUDING
UNSTABLE ISOLATED SUBSYSTEMS{ )

(*%)
P.FERGOLA - C.TENNERIELLO

Abstract. Suffdicient conditions fon asymptotic partial stabLlity
o4 Lange scale systems Ancluding unstable Lsolated subsystems are
given. The proogs are based on the construction of a Lyapunov scalan
junction, obtained as a wedghted sum of the Lyapunov functions used
to "measune” edithen the stability propernties of the isolated subsy-

stems on the stabilizing effects o4 the interconnecting Ltenms.

1. When the decomposition-aggregation approach is adopted to in-
vestigate via Direct Lyapunov Method ([2] -[5] ,[7] -[16]) if a 1lar
ge-scale system has a stability property P, it is usually assumed

that a stability analysis performed on the isolated subsystems gi-

ves the following result

a) all the isolated subsystems have the property P, which is
"measurable" by means of Lyapunov functions. Conditions on the in-

terconnection structure are then specified in order to ensure that

the overall system has property P.

(*) This work has been performed under the auspices of G.N.F.M. of
Italian Council of Research (C.N.R.).

(**) Istituto di Matematica "R.Caccioppoli" University of Naples,
Naples, Italy.
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However, the analysis of stability of the isolated subsystems may

also give the following results

b) none of the isolated subsystems has property P or, anyhow, it

is impossible to state 1t, or

c) a part of the isolated subsystems has property P and the re-
maining onesthave not it or, anyhow, for them it is impossible to sta-

te 1t.

The difficulties whicharise when b) or c¢) happens could be, a
priori, theoretically bypassed adopting a different decomposition
of the overall system. But, in many practical examples the own stru
cture of processes suggests or imposes a well defined decomposition
so that, if b) or c¢) takes place, the mentioned approach could ap-
pear unsuitable. In these cases, obviously, 1t is not excluded that
the overall system could have property P, owing to a possible sta-
bilizing effect of the interconnecting terms. As it has been poin-
ted out ([1], [12]], that may happen in many practical problems con
cerning with interconnected systems (strongly coupled). Therefore
a careful analysis of the stabilizing effects of the interconnection
must be performed. We point out that if a '"measure'" of stabilizing
effects of the interconnection structure can be given in terms of
Lyapunov functions the decomposition-aggregation approach can be

usefully applied even in the cases b) and c).

In our paper, in order to 1llustrate the above considerations,we
give three theorems correspondingly to the cases a), b) and ¢) 1in
which property P 1s identified with the uniform asymptotic partial
stability. Partial stability problems for large-scale systems have
been considered in 13]. They arise, for example, when only some of
the state variables of a process may be accessible, whereas it 1s
impossible to obtain informations about the remaining ones because,

for instance, of unremovable disturbances.
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o prove our theorems we usc a s=¢alsnr Lyapunov function for the
overall system obtained as a weighttd sum of Lyapunov functions
which "measure' the partial stability (uniformly asympotic) of iso
lated subsystems or the partial stabilizing effects of the intercon
necting terms. The proofs are obtained by means of a suitable choice

1
of weights ( ].

2., Let us consider the system of m differential vectorial equa-

tions
(2.1) s = fi[zi,t) + gi(ET’EE""’Zm’t} (1=1,2,...,m),
n, n.
where ziém , R denotes the Euclidean n.-space with the usual
n.
norm. Here fi and g, are vectorial functions, fi : Qi x J =R 1,
n.
g, 91 X QZ X «.. Qm X J +:m.1, with Qi open neighborhood of the
. nj _—
origin of R and J = [1, +*[, T being a real number.

A system of the form (2.1) 1s called a composite sysitem, because
1t may be viewed as a nonlinear time-varying interconnection of m

tsolated subsystems

(2.2) z, = fi{zi,t] (. = 1,2,...,m),

[0 1nvestigate stability properties with respect to a part of

state variables let us set V¥i e {1,2,...,m}

El} In the same context the authors have obtained other results

which are contained in [6].
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ki L. ki £
where x., e R ", y.eR , 9. ¢eR ", 9. €R ~, k. > 0,°.>0,
1 1 1X — 1y — 1 — 1
K.+ 2. = n.,
i i i
and y m ks
£ = [x1,x2, ,xm], EelR = 5§1 R ", k =Kk +k2+_ +km’
g m 25
nEpYeenyp)y neR= LR L= 0 gy e
n
z = (31,22,...,zm] = {&,n), z e R, n = n1 R PR I

We assume that ?(zﬂi,tﬂ) € ﬂi Xx J for system (2.2) there

exists one and only

one solution Zi(zni’tg’t) = (xi{zoi’tu’tj’

y.{z .,t ,t)) satisfying condition z.(z .,t ,t ) = z . and defi-

1 o1 O

1 01 " 0 01

ned Vt > tD. The same hypotheses are assumed for system (2.1) and

1ts solution z(z ,t
0’ 0

initial data (z ,t )
o O

fi{U,t} = 0, gi(U,tJ

,t) (E(zﬂ,tﬂ,t], n{zﬂ,tﬂ,t]) correspmnding to

e (

= =

RIg 2.) x J. Furthermore, we suppose

0 Vteld, Vie{1,2,...

1t

m} , so that

systems (2.1) and (2.2) have the null solution.

As usual, we shal
to class K (a e K)
a(0) = 0.

We shall denote,

functions V., V.
17 1

1
1

1

b. : [U’ﬂjwj_+ R+, a.

1 say that a function a : [0,r[-£m+ belongs

1f 1t 1s contilnuous, strictly increasing and

for each 1 e {1,2,...,m} by Li the class of

+ .
S}{* (ﬂi) X ﬂi}’ xJ » R | SK'[Qi):{xiEQi};. ||}{i.]|<lpi, pi>{]},

1 1

. : _ +
V. e C, for which there exist two functions a. and bi’ ai:[ﬂ,pi[+R,

1

1,bi € K, such that
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a_ ( ||1*~1:.l 1) < V,(xyest) < b <, 11D Vix,,y.,t) e Sxitﬂi)mi}r x J

Furthermore we shall use the following notations

S = Sx (Q1] X £ X Sx (ﬂz)x Q. X...XxS (DmeQm ,

1 Y 2 £y “m 4

Si= {z : z = (x1,y1,x2,y2,...,xm,ym) e S, X, = 0},
Ny Im
S. ] M 5

1=1 1

. . (1,1’]‘[) :
Finally, setting 1 = {1,2,...,m}, we shall denote, with
*
respect to a given property (<), by I(E;’m) and IEE;’m) the sets

I(T,m)

of values 1€ for which property (+) 1is respectively verified

or not, anq by SE_) the set iiﬁe I* (1,m) S
(*)

ii‘

3. Now, correspondingly to the cases considered in the Sect. 1,

we are able to give the following three theorems.

(1,m)

THEOREM 1. Suppose that forn each i € 1 thene exists a fun-

ction V., V. : S (p.) x 8 xJ +me, such that the following con-
1 i X, 1 1y
ditions are satisfdied

i) V. e L. and there exists a function c. : [0,:ﬁ[+:m+, c €K,

such that

dv., V.,
1 1

G- =37 Y.y = ot

+UVe £z ,t) < —c. (| x [

v(xi,}ri,t} € Sxi(ﬂin Qi}r x J
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ii) ZLhenre exdsis a numbern p < 1 sach that one at Least of zthe

gollowing inequalities holds ¥(z,t) e S x J

. (1,m)
(3.2) ?Vi-gi E_QEi(||xi|iJ - hi(z) i e I ,

whene the functions X . : §- R are such that
1

A.(z) = 0 V z e S.
i i
A.(z) > 0 ¥V z € S~ S.
i i
- # v
iii) there exist a function U ; S+ R , u(z) > 0 ¥z € S‘ES 2JHS,
and, forn each 1i'e I'(1”n), a positive constant q, such that

(3.2) i!

(3.3) Li v a4V Vi' +g., < Zi'ui|p C., - u ¥Y(z,t) e SxJ

and

i p(z)
T = inf .{ },> _ o
355\8(3‘2) Ei*}ui*(zJ

whete L., = z and P = )

i o, - (1,m) i* L., L,m)
1'ells o) 1telis o)

Then the null solution of system (2.1) is uniformly asymptoti-

cally &-stable.

Proog. Hypothesis 1) implies that each of the isolated subsystans
verifies hypothesis i) of the Theorem in [3]. Furthermore, it 1is

easy to verify that also hypothesis ii) of that theorem is sati-
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sfied. Indeed, chosing a positive number a > -4 and setting

Vi* € 1[215?] ui* = g from (3.2) and (3.3) it follows that
*
V(z,t) € (SES(S'Z}) X J
ST S LR L ER S
1el "’ 1el " °
= F}El. &1' Cl' - Ziiﬂl'? Ul'-gi' +pL * ul* Elt - Ei*ﬂtl*"?vl; gi*i

> p[z)+uEi*{ﬂci* - ?Ui*'gi*) > u(z) +mEi*li* > 0.

On the other hand,in S, because of properties of functions C. and

Hi, we have

0 z a.C. - 7 a. YW.-g. =0 V¥t e J
(1,m) 1o (1,m) ! ol
i1 el "’ iel "’

v
whereas 1n SEE ZJE S, being p non negative, (3.3) implies
>
0 3 8. C. - % oy VWi 8y 20 vteJ
(1,m) * 1 gerttm
iel " °

Therefore the thesis follows from the mentioned theorem.

THEOREM 2. Suppose that forn each ieItj’m) therne exists a function
Vi’ Vi : Sx (pi) X ﬁiy X J +IR+, such that the following conditions
i

are satisfied

i) Vi e L., vIH.= 0 <=>x. =0, a1 <0
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. . - +
11) Ztherne exist Awo gunctions Cis C. ¢ Lo,pi[faem , cieK, and
1

Bi ,Bi: Sx.{ﬂi} X Qiy X J +ﬁR,,Ei continuous such that

oV,
1

o + Ei[” xi'H}

(3.4) B (z.,t) < - Tov_ ] . V{xi,}fi,t)E'ESxi(ﬂi)\{U})xﬁiny

iii) therne exdist a numbern p < 1 such that one at Least of the

pollowing Anequalities holds

. I[T,m}

(3.5)  VV.-g. < mci(” X 1) - vvi'(fi_ﬁi?vi)hli ie V(z,t)eSxJ
Aherne the functions li . S >R’ axne such that
A.(z) =0 Vz e S.
i i
A.(z) > 0 Vz e S\ S.
i i
A
iv) there exdist a function w : S + R, u(z) > 0 VZESES 5)\”5’
and, Afon each i‘EIE§1§T), a positive constant o , such that
. 1L

(3.6) Ei'ﬂi‘vvi"gi‘ <pl.a,C.

11" 1! B %'ui' vvlf'[flt_Blllvvlt}_U U(z,tJES}{J

and

whg}f_e Ei' :E [1,]’[‘]) ﬂﬂd E]‘_* Ezl*el*(‘[,m}

(3.5) (3.5)
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Then, the null solution of system (2.1) is uniformly asymptoti-

cally E-stable.

Proof. Let us consider the systems

1

(3.7) 7. = 6. (z.,t) (i = 1,2,...,m),

1

where

¢i(zi,t) - Bi?VI

By virtue of hypotheses 1) and 1ii) the functions $, are continuou:

and such that ¢i(U,t) = 0 Vvt € J, and furthermore

AV .
1 -
[zi,tj e (Sxi(pi)x{ﬂ}) X ﬁiy x J => ?Vi-¢i < T Li( Hxi ),
whereas 1if (zi,t) Z(U,yi,tj, y; € Qiy and t € J we have
avi BVi
5t T Wiy e 20
Therefore V¥(z.,t) € S (p.) x Q. x J we get
1 X, 1 1y
dVi an
= + V..., < - c.(C|[x, [])
dt (3.7) ot 1 "1 1 1

and, being Vi € Li’ systems (3.7¢ satisfy hypothesis 1) of the

Theorem in [3].

Furthermore, chosing a positive number o > -% and setting for

each 1* € I*(1’m]

O w= 0, from (3.5) and (3.6) it follows that
(3.5)

) .C. X - i . . .- W, =
0 . o Ol ) 5 . m]ul UV, o (£ +g.-9.)
1el " ’ iel " °
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> ulz) +al., A.,(2)

Therefore, reasoning as in the proof of Theorem 1, we have ¥(z,t) €

eS x J

) o . ci[1|xi|1j - I oy ?Vi-(fi+gi ~ ¢i] > 0

L .
e (1M fer1om)

Then, for system (2.1) written in the form

: | +
z, = ¢i[zi,t] + gi(z,t) (i=1,2,...,m)

v -
with g. = fi tgs ot bl all the hypotheses of the Theorem in |3]

are verified and its null solution 1s uniformly asymptotically

f-stable.

(1,m)

THEOREM 3. Suppose that forn each 1iel thene exists a fun-

ction V., V. : S (p.) x Q. xJ +HR+, such that the following con-
1 1 X, 1 1y

ditions arne saftisfied

i) ?iEI{1’p} , 0 < p < m, hypothesis 1) of Th.,1 holds and, 44

(p+1,m) hypotheses 1) and 1i) of Th.?2 hold;

p < m, ¥iel

11) there exAists a numbenr o < 1 such that one at Least o4

p (Pl g T RTM)
(3.2) (3.5)

sets 44 not empiy;
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iii) there exist a function u : S +R such that

v
a) u(z) >0 Vze ONS whenre O

3 K

17el]

1 1(1:1}) .(IIH*T,ITIJ
b) fon each i 51(3_2} U 1[3‘5}

B S.

1#
*(1,p), ., (p+1,m)
(3.2) Y305

thene exists a positive con

stant ., such that V(z,t) € S x J
Zil‘ ui! vvii. gil E
< pZ.,0a.,c., =L  a.,  VV, (£, -8, VV, ) - yp
- i 1 i i i i i i i
¢) 7 = inf {z e (ij} > - o
ZES N 0O 1* 1%
where Ziv T Lirep (HP) I'(p+1’m], Sth Eje};{ﬂ+1,m] ’
(3.2) (3.5) (3.5)

Ei* EEi*EI [1,p)U I (p+1,m)

(3.2) (3.5)

Then the null solution of system (2.1)
cally E-stable.

is uniformly asymptoti-

The proof is similar to those of Theorems 1 and 2 wich are actual-

ly particular cases of this theorenmn.
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