ON THE GEOMETRY OF THE FINSLERIAN ALMOST COMPLEX SPACES

Sorin DRAGOMIR - Stere IANUS (*)

Sommario. In questa nota, si studiano gli spazi di Finsler quasicomplessi e gli spazi di Finsler kaehleriani. I metodi usati sono di carattere globale ed utilizzano la complessificazione del fibrato indotto naturalmente dal fibrato tangente e dalla proiezione canonica del sottofibrato dei vettori tangenti non nulli, su una varietà differenziabile di classe C^{∞}

1. INTRODUCTION. The complex Finsler structures were first studied by G. Rizza, see [21]. H. Rund has explained the condition of complex homogenity of the foundamental metric function and has obtained the connection coefficients and the equation of geodedics, see [20]. M. Dhawan and M. Chawla have introduced the notion of almost complex Finsler space and kaehlerian Finsler metric. See [3], [4]. A different approach for the notion of a kaehlerian Finsler space was given by N. Prakash, see [18]. I Ghinea and Gh. Atanasiu have find the set of all Finsle connections compatible with almost complex of hermitian Finsler structures, in the more general sense of [17]. See [2], [10]. Complex Finsler geometry was also proved to be a successfull differential geometric method in studying,

^(*) University of Bucharest - ROMANIA.

ample and negative vector bundles, in the sense of algebraic geometry (see [12]) as shown by S. Kobayashi, [14]. Following the technique of H. Akbar-Zadeh and B.T.Hassan, see [1], [13], the authors of the present paper have tried to develop a curvature theory for the kaehlerian Finsler spaces, in a global manner. See [6], [7].

In the present paper we intend to continue the study of almost complex and kaehlerian Finsler spaces using the complexification of the naturally induced GL(2n,R)-vector bundle $\pi^{-1}T$ M.

2. ALMOSI COMPLEX T-STRUCTURES.

Let M be a real C^{∞} -differentiable connected m-dimensional m wifold M. We denote by: T(M) + M it's tangent bundle and by $\pi: V(M) \to M$ the subbundle of all non-nul tangent vectors on M. Let $\pi^{-1}TM \to V(M)$ be the bundle naturally induced by T(M) and π . See [9], [13] for details on the constructions summaried here. A fibre ovex \tilde{X} e V(M) in $\pi^{-1}TM$ is denoted by $\pi_{\tilde{X}}^{-1}TM$. A bundle morphism: $J:\pi^{-1}TM \to \pi^{-1}TM$ which is an anti-involution, that is $J^2=-I$, is called an almost complex π -structure on M. Here I denotes the identity transformation on $\pi^{-1}TM$. Let $(U,x^{\tilde{I}})$ be a coordinate system on M. Every tangent vector field X on M has a m tural lift $\tilde{X}:V(M) \to \pi^{-1}TM$ defined by: $\tilde{X}(\tilde{X})=(\tilde{X},X(\pi\tilde{X}))$, $\tilde{X}\in V(M)$. Let then $\{\tilde{\partial}_{\tilde{I}}\}$ be the natural lifts of the local tangent vector fields $\{-\frac{\partial}{\partial x^{\tilde{I}}}\}$. As the real vector space structure of $\pi_{\tilde{X}}^{-1}TM$ is induced by that of $T_{\pi}(\tilde{X})$ M we conclude that $\{\tilde{\partial}_{\tilde{I}}\}_{X}^{\infty}$ is a linear case of $\pi_{\tilde{X}}^{-1}TM$. Hence $\pi^{-1}TM$ is a vector bundle having $R^{\tilde{M}}$ as standard

fibre and GL(m,R) as structure group. Obviously the m-dimensional manifold M carrying an almost complex m-structure is even dimensional, that is m = 2n. We shall have locally: $J_{\bar{i}}^{\bar{j}} = J_{\bar{i}}^{\bar{j}} \cdot \overline{J}_{\bar{j}}$, where $J_{\bar{i}}^{\bar{j}} = J_{\bar{i}}^{\bar{j}} (x,u)$, and $J_{\bar{i}}^{\bar{k}} J_{\bar{k}}^{\bar{j}} = -\delta_{\bar{i}}^{\bar{j}}$.

Let $(\pi_X^{-1} \text{ TM})^c$ be the complexification of $\pi_{\widetilde{X}}^{-1} \text{TM}$, that is $(\pi_{\widetilde{X}}^{-1} \text{T M})^c = (\pi_{\widetilde{X}}^{-1} \text{T M})^c + \mathbb{R}^c$. We obtain a C-vector bundle $(\pi^{-1} \text{TM})^c \to \mathbb{R}^c$

Let J be an almost complex π -structure on M; then J can be easily prolongated to $(\pi^{-1} TM)^C$. Obviously J has on real eigen-values. Let $(\pi_X^{-1} TM)^{1,0}$ and $(\pi_X^{-1} TM)^{0,1}$ be the eigen-values of J corresponding to the eigen-values i and -i, where $i = \sqrt{-1}$. The following result is obvious now:

Proposition 2.1.

1.
$$(\pi_{\bar{X}}^{-1} T M)^c = (\pi_{\bar{X}}^{-1} T M)^{1,0} + (\pi_{\bar{X}}^{-1} T M)^{0,1}$$
 (direct sum)

2.
$$(\pi_{\bar{X}}^{-1} TM)^{1,0} = {\bar{X} - i J \bar{X}/\bar{X} \in \pi_{\bar{X}}^{-1} T M}$$

3.
$$(\pi_{\bar{x}}^{\bar{1}} TM)^{0,1} = {\bar{X} + i J \bar{X}/\bar{X} \in \pi_{\bar{x}}^{\bar{1}} T M}$$

Cross-sections $\bar{X}:V(M)\to\pi^{-1}$ TM are referred to as π -vector fields on M. Also $\bar{Z}\in(\pi^{-1}$ TM) 1,0 is said to be a holomorphic π -vector on M and $\bar{Z}\in(\pi^{-1}$ T M) 0,1 is said to be an anti-holomorphic π -vector on M.

Let $T^{C}(M) \rightarrow M$ be the complexification of the tangent bundle T(M) over M, that is $T^{C}(M) = T(M) \otimes_{R} \mathbb{C}$. If $p : V(M) \times T^{C}(M) \rightarrow V(M)$ and $\hat{\pi} : V(M) \times T^{C}(M) \rightarrow T^{C}(M)$ are the natural projections of the product manifold $V(M) \times T^{C}(M)$, let $\pi^{-1}T^{C}M$ be the bundle naturally induced by $T^{C}(M)$ and π , that is, the following diagram is commutative:

Let $(\tilde{x},u) \in \pi_{\widetilde{X}}^{-1}T^{C}M$, $\tilde{x} \in V(M)$, be fixed. Then: $w \in T_{\pi X}^{C}(M)$, that is w = u + iv, $u, v \in T_{\pi \widetilde{X}}(M)$. We can build the linear map: $(\tilde{x},u) \mapsto \overline{Z}$, where $\overline{Z} = \overline{X} + i\overline{Y}$, $\overline{X} = (\widetilde{x},u)$, $\overline{Y} = (x,v)$. We conclude with the following:

Proposition 2.2.

The complexification $(\pi^{-1}T\ M)^{C}$ of $\pi^{-1}T\ M$ and $\pi^{-1}T^{C}M$ are isomorphic vector bundles.

Let M be a complex manifold of complex dimension n. We proceed to make the notations clear for all local computations. Let (z^{α}) be the complex coordinates of M, $\alpha = 1, 2, ..., n$. If we put: $z^{\alpha} = x^{\alpha} + iy^{\alpha}$, $\alpha = 1, 2, ..., n$, then M becomes a real analytic manifold with the coordinate (x^{α}, y^{α}) . If we put $x^{\bar{\alpha}} = y^{\alpha}$ then we denote (x^{α}, y^{α}) by $(x^{\bar{k}})$, k = 1, 2, ..., n. Then the va-

lues of $\{\frac{\partial}{\partial x^k}\}=\{\frac{\partial}{\partial x^\alpha},\frac{\partial}{\partial y^\alpha}\}$ at $x \in M$ give a linear basis of $T_x(M)$. Let $\{\bar{\partial}_k\}=\{\bar{\partial}_{\alpha},\bar{\partial}_{\alpha}^-\}$ be the natural lifts of $\{\frac{\partial}{\partial x^k}\}$. Then M admits a natural almost complex π -structure: $J:\pi^{-1}TM \rightarrow \pi^{-1}TM$, $J\ \bar{\partial}_{\alpha}=\bar{\partial}_{\bar{\alpha}}$, $J\ \bar{\partial}_{\bar{\alpha}}=\bar{\partial}_{\alpha}$, $\alpha=1,2,\ldots,n$. Let us put also:

$$\frac{\partial}{\partial z^{\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial x^{\alpha}} - i \frac{\partial}{\partial y^{\alpha}} \right)$$

$$\frac{\partial}{\partial z^{*\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial x^{\alpha}} + i \frac{\partial}{\partial y^{\alpha}} \right)$$

If we denote $\frac{\partial}{\partial z^{*\alpha}}$ by $\frac{\partial}{\partial z^{\overline{\alpha}}}$ we can denote $\{\frac{\partial}{\partial z^{\alpha}}, \frac{\partial}{\partial z^{\overline{\alpha}}}\}$

by $\{\frac{\partial}{\partial z^k}\}$, $k = 1, 2, ..., n, \overline{1}, \overline{2}, ..., \overline{n}$. It is known that $\{\frac{\partial}{\partial z^{\alpha}}\}_{x}$

is a basis for the space of holomorphic vector $T_x^{1,0}(M)$ and

 $\{\frac{-\frac{\partial}{\partial z^{\alpha}}\}_{x}$ is a basis for the space of anti-holomorphic vectors

 $T_x^{0,1}$ (M), where $x \in M$. In an analogous manner, let us put:

$$\frac{\bar{\partial}}{\partial z^{\alpha}} = \frac{1}{2}(\bar{\partial}_{\alpha} - 1\bar{\partial}_{\bar{\alpha}})$$

$$\frac{\bar{\partial}}{\partial z^{\bar{\alpha}}} = \frac{1}{2}(\bar{\partial}_{\alpha} + i\bar{\partial}_{\bar{\alpha}})$$

We obtain a local basis for the space of holomorphic π -vectors, respectively for the space of anti-holomorphic π -vectors.

Let $(x^{\hat{i}}, u^{\hat{i}})$ be the coordinates on T(M) and V(M) naturally induced by $(U, x^{\hat{i}})$. If we put $(u^{\hat{i}}) = (u^{\alpha}, u^{\bar{\alpha}})$, where: $i=1,2,\ldots,n,\bar{1},\bar{2},\ldots,\bar{n}$, $\alpha=1,2,\ldots,n$, and $v^{\alpha}=u^{\bar{\alpha}}$, and $\dot{z}^{\alpha}=u^{\alpha}+i\cdot v^{\alpha}$, then T(M) and V(M) have as well the coordinates (z,\dot{z}) . Then $\{\frac{\partial}{\partial x^k},\frac{\partial}{\partial u^k}\}$

is a basis for $T_{\tilde{X}}(V(M))$ and $\{\frac{\partial}{\partial z^k}, \frac{\partial}{\partial \dot{z}^k}\}_{\tilde{X}}$ is a basis for $T_{\tilde{X}}^C(V(M))$. Here we have denoted: $\frac{\partial}{\partial z^k} = \{\frac{\partial}{\partial z^\alpha}, \frac{\partial}{\partial z^\alpha}\}$,

$$\left\{\frac{\partial}{\partial \dot{z}^{k}}\right\} = \left\{\frac{\partial}{\partial \dot{z}^{\alpha}}, \frac{\partial}{\partial \dot{z}^{\bar{\alpha}}}\right\}, \text{ where: } \frac{\partial}{\partial \dot{z}^{\bar{\alpha}}} = \frac{\partial}{\partial \dot{z}^{*\alpha}}$$

and:

$$\frac{\partial}{\partial \dot{z}^{\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial u^{\alpha}} - i \frac{\partial}{\partial v} \right)$$

$$\frac{\partial}{\partial \dot{z}^{*\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial u^{\alpha}} + i \frac{\partial}{\partial v^{\alpha}} \right)$$

Also we denote, for simplicity:

$$\frac{\partial}{\partial x^{k}} = \partial_{k}, \quad \frac{\partial}{\partial u^{k}} = \partial_{k}, k$$

$$\frac{\partial}{\partial x^{k}} = \partial_{k}^{c}, \quad \frac{\partial}{\partial x^{k}} = \partial_{k}^{c}$$

3. SELF-ADJOINT TENSOR FIELDS.

Let $\overset{\circ}{x} \in V(M)$ be fixed. A multillinear map:

 $\bar{K}_{\widetilde{X}}$: $\pi_{\widetilde{X}}^{-1}T$ M x ... $\pi_{\widetilde{X}}^{-1}T$ M \rightarrow R, where the direct product has s factors is said to be a π -tensor of type (0,s). Then \bar{K} : $\bar{X} \mapsto \bar{K}_{\widetilde{X}}$ is said to be a π -tensor field of type (0,s), and we can write:

 $\bar{K} \in (\pi^{-1}T\ M)^* \otimes \ldots \otimes (\pi^{-1}T\ M)^*$, where $(\pi^{-1}T\ M)^*$ denotes the dual vector bundle of $\pi^{-1}T\ M$.

We denote by $\Lambda^S(\pi,M)$ the space of all π -tensor fields of type (0,s) which are skew-symmetric. They are referred to as π -forms of degree s. Let $\Lambda^S(M) \to M$ be the vector bundle of all differentiable s-forms on M. Let then x^{-1} $\Lambda^S(M) \to V(M)$ be the bundle naturally induced by $\Lambda^S(M)$ and π . Let $\bar{\omega} \in \Lambda_X^S(\pi,M)$ be fixed. We define an element: $\bar{\omega}' \in \Lambda_X^{-1}$ S(M) by $\bar{\omega}' = (x,\pi)$, where $\pi(X_1,X_2,\ldots,X_s) = \bar{\omega}(\bar{X}_1,\bar{X}_2,\ldots,\bar{X}_s)$ where $\bar{X}_1 = (x,X_1)$, $i=1,2,\ldots,s$, for any $X_1,X_2,\ldots,X_s \in T_X(M)$. Hence $\bar{\omega} \to \bar{\omega}'$ gives an izomorphism of $\Lambda_X^S(\pi,M)$ on-to π_X^{-1} $\Lambda^S(M)$. We conclude with the following:

Proposition 3.1.

 $\Lambda^{s}(\pi,M)$ and $\pi^{-1}\Lambda^{s}(M)$ are izomorphic vector bundles.

Hence a cross-section $\bar{\omega}: V(M) \to \pi^{-1} \Lambda^S(M)$ is exactly a π -form of decree s. Similar constructions were done in [11] for π -forms of degree 1. Using the izomorphism given by prop. 4.1. it follows that a π -tensor field of type (0,s) is an element $\bar{K} \in \pi^{-1} T^*M \ \Omega \dots \Omega$ $\pi^{-1} T^*M$. We denote by $\mathcal{F}_{r,s}(\pi,M) = \pi^{-1} T^*M \ \Omega \dots \Omega$ $\pi^{-1} T^*M \ \Omega$

 $\mathbb{Q} \ \pi^{-1} \ T \ M \ \mathbb{Q} \ \dots \ \mathbb{Q} \ \pi^{-1} \ T \ \mbox{M}, \ \ \mbox{the space of all π-tensor fields of type} (r,s). Then let <math>\ \mathcal{F}^{C}_{r,s}(\pi,M)$ be the complexification of $\ \mathcal{F}_{r,s}(\pi,M)$, that is $\ \mathcal{F}^{C}_{r,s}(\pi,M) = \mathcal{F}_{r,s}(\pi,M) \ \mbox{Q} \ \mbox{C}$. We define the notion of self-adjoint \$\pi\$-tensor field for the case of the \$\pi\$-tensor fields of type (1,2), for the sake of simplicity.

Let $\bar{K} \in \mathcal{F}_{r,s}^c(\pi,M)$ be fixed; then \bar{K} can be regarded as a morphism: $\bar{K} : \pi^{-1}T^cM \times \pi^{-1}T^cM$. Hence we can put

 \bar{K} ($\frac{\bar{\partial}}{\partial z^k}$, $\frac{\bar{\partial}}{\partial z^j}$) = K_{kj}^m · $\frac{\bar{\partial}}{\partial z^m}$ and \bar{K} has various components

$$K^{\alpha}_{\beta\gamma}$$
 , $K^{\alpha}_{\overline{\beta}\gamma}$, $K^{\alpha}_{\overline{\beta}\gamma}$, $K^{\alpha}_{\overline{\beta}\gamma}$ $K^{\overline{\alpha}}_{\beta\gamma}$

We define the adjoint $A(\bar{K})$ of \bar{K} by: $A(\bar{K})(\frac{\bar{\partial}}{\partial z^k}, \frac{\bar{\partial}}{\partial z^j}) = K^{\bar{m}} \cdot \frac{\bar{\partial}}{\partial z^m}$, where $\bar{k} = \alpha$, if $k = \bar{\alpha}$, and $\bar{k} = \bar{\alpha}$ if $k = \alpha$.

Then \bar{K} is said to be self-adjoint if $A(\bar{K}) = \bar{K}^*$; here the star denotes the complex conjugation. That is, \bar{K} is said self-adjoint if barring and unbarring all indices simultaneously the value of the component changes into it's complex conjugate.

4. HERMITIAN FINSLER SPACES.

Let M be a 2 n-dimensional differentiable connected manifold and et J be an almost complex $\pi\text{-structure}$ on M.

Let E: $V(M) \rightarrow R_{+}$ be a Finsler energy on M, that is a C-differentiable function on V(M) having the following properties:

- 1. $E \in C^{1}(T(M))$, if extended to be zero on the zero-section.
- 2. E is positively-homogeneous of degree 2, that is: $E(kv) = k^2 E(v)$, for any k > 0, $v \in V(M)$.
 - 3. The quadratic form: $g_{ij}(x,u) = \frac{1}{2} \frac{\partial^2 E}{\partial u^i \partial u^j}$ is positive-definite.

The Finsler energy E on M induces naturally a metric -- tensor

field $g \in \pi^{-1}T^*M \otimes \pi^{-1}T^*M$. Then (M,E,J) is said to be an almost complex Finsler space. The almost complex Finsler space (M,E,J) is said to be a hermitian Finsler space if: $g(J\bar{X},J\bar{Y})=g(\bar{X},\bar{Y})$ for any π -vector fields \bar{X},\bar{Y} on M. Then g can be easily extended to a hermitian inner product on $\pi^{-1}T^CM$, that is:

(4.1)
$$g(\bar{Z}^*, \bar{W}^*) = g(\bar{Z}, \bar{W})^*$$

for any complex $\pi\text{-vector fields }\bar{Z}$, \bar{W} on M.

$$g(\bar{Z}, \bar{Z}^*) > 0$$

for all non-zero complex $\,\pi\text{-vector field}\,\,\,\bar{\bar{Z}}\,\,$ on $\,M\,.$

$$g(\bar{Z}, \bar{W}^*) = 0$$

for any holomorphic $\pi\text{-vector field}$ \bar{Z} on M and any anti-holomorphic $\pi\text{-vector field}$ \bar{W} on M.

The fundamental π -form is a π -form of degree 2 on M defined by $\overline{\emptyset}(\overline{X}, \overline{Y}) = g(\overline{X}, J\overline{Y})$, for any π -vector fields \overline{X} , \overline{Y} on M. Then $\overline{\emptyset}$ can be easily extended to $\pi^{-1}T^{C}M$. Obviously $g(\overline{X}, \overline{Y}) = 0$,

 $\vec{\emptyset}(\vec{X}$, $\vec{Y})$ = 0 if \vec{X} , \vec{Y} are both holomorphic or both anti-holomorphic π -vector fields on M. Hence we have:

$$g_{\alpha\beta} = 0 , \qquad g_{\overline{\alpha}\overline{\beta}} = 0$$

$$\emptyset_{\alpha\beta} = 0 , \qquad \emptyset_{\overline{\alpha}\overline{\beta}} = 0$$

Using (4.1) and (4.2) we can establish the following:

Proposition 4.1.

$$g = g^*$$
 $\alpha \bar{\beta} = \bar{\alpha} \beta$

Proof.

$$g_{\alpha\bar{\beta}} = g(\frac{\bar{\partial}}{\partial z^{\alpha}}, \frac{\bar{\partial}}{\partial z^{\beta}}) = g(\frac{\bar{\partial}}{\partial z^{\alpha}}, \frac{\bar{\partial}}{\partial z^{\alpha}}) =$$

$$= g(\frac{\bar{\partial}}{\partial z^{\alpha}}, (\frac{\bar{\partial}}{\partial z^{\beta}})^{*}) = g(\frac{\bar{\partial}}{\partial z^{\alpha}})^{*}, \frac{\bar{\partial}}{\partial z^{\beta}})^{*} = g_{\bar{\alpha}\beta}^{*}.$$

Let $\pi^{-1}T^{*C}M \to V(M)$ be the complexification of $\pi^{-1}T^{*M}$, that is $\pi^{-1}T^{*C}M = \pi^{-1}T^{*M} \otimes \mathbb{C}$. Then let $\{\bar{d}x^k\}$ be the natural lifts of the local 1-forms $\{dx^i\}$ on M. If $\omega: M \to T^*(M)$ is a 1-form on M, then $\bar{\omega}: V(M) \to \pi^{-1}T^{*M}$ defined by $\bar{\omega}(x) = (x, \omega(\pi x))$, $x \in V(M)$ is said to be the natural lift of ω . Then we can put:

$$\bar{d} z^{\alpha} = \bar{d}x^{\alpha} + i \bar{d} y^{\alpha}$$

$$\bar{d} z^{*\alpha} = \bar{d}x^{\alpha} - i \bar{d} y^{\alpha}$$

and denote $\{\bar{d}z^{\alpha}, \bar{d}z^{\bar{\alpha}}\}$, where $\bar{d}z^{\bar{\alpha}} = \bar{d}z^{*\alpha}$, by $\{\bar{d}z^{k}\}$. Then the almost complex π -structure J can be easily extended to $\pi^{-1}T^{*M}$ and hence to $\pi^{-1}T^{*C}M$. If $(\pi^{-1}T^{-1}M)^{1,0}$, and $(-1T^{-1}M)^{0,1}$ are the eigen-spaces of J corresponding to the eigen-values i and -i, then we could easily give an analogous of prop. 2.1. Then $\bar{b} = (\pi^{-1}T^{*M})^{1,0}$ is called a holomorphic π -form of degree 1 and $\bar{b} = (\pi^{-1}T^{*M})^{0,1}$ an anti-holomorphic π -form of degree 1 on M.

The exterior product of two π -forms of tegree 1 could be given as: $(\bar{\omega} \ \Lambda \ \bar{\theta})(\bar{X} \ , \ \bar{Y}) = \frac{1}{2} \{\bar{\omega}(\bar{X}) \ \bar{\theta}(\bar{Y}) - \bar{\omega}(\bar{Y}) \ \bar{\theta}(\bar{X})\}$, for any π -vector fields \bar{X} , \bar{Y} on M.

Proposition 4.2.

$$\emptyset = -2 i g \bar{d} z^{\alpha} \wedge \bar{d} z^{\bar{\beta}}$$

Proof.

The desired result follows by computation using the formulae:

$$\emptyset = -i g$$

$$\alpha \overline{\beta} = \alpha \overline{\beta}$$

$$\emptyset = i g$$

$$\overline{\alpha} \beta = \overline{\alpha} \beta$$

We have to note that the meaning of prop. 4.1. is that $A(g) = g^*$, that is the Finsler hermitian metric g is self-adjoint. See also [18]. The formalism developed in the present paper will be used in a fortheoming paper in order to make a comparisson between the two existent definitions of a kaehlerian Finsler space, that is the definitions from [3] and from [18]. It is known that they are equivalent in the Riemannian case.

REFERENCES

- [1] H.AKBAR-ZADEH: "Les espaces de Finsler et certaines de leurs generalisations", Ann. Scient. Ec. Norm. Sup., 80, (1963),1-79
- [2] G.ATANASIU: "Structures et connexions Finsler presque hermittienes", Proc. of the Nat. Sem. on Finsler Sp., Brasov, 1980, 41-55.
- [3] M.CHAWLA & R.BEHARI: "Almost complex space with Finsler metric Indian J. Pure Appl. Math., 2(1971), 401-408.
- [4] M.DHAWAN & N.PRAKASH: "Adjoint complex Finsler manifolds", Indian J. Pure Appl. Math., 1(1970), 8-16.
- [5] M.DHAWAN: "A study of complex structures in Riemannian and Finsler manifolds and their prolongation to tangent and cotan gent bundle", Thesis, Delhi, 1969, 267 p.
- [6] S.DRAGOMIR & S.IANUS: "On the holomorphic sectional curvature of the kaehlerian Finsler spaces", I, to appear in Tensor.
- [7] S.DRAGOMIR & S.IANUS: "On the holomorphic sectional curvature of the kaehlerian Finsler spaces II", to appear in Rend. di Math.
- [8] S.DRAGOMIR & S.IANUS: "Almost complex structures associated to a Finsler connection", Proc. of the 13th Nat. Coloq. on Diff. Geom. and Topology, Cluj-Mures, 1982, in press.
- [9] S.DRAGOMIR: "The theorem of K. Nomizu on Finsler manifolds", An Univ. Timisoara, seria st. mat., vol. XIX, fasc.2, (1981), 117-127.
- [10] I.CHINEA: "Connexions Finsleriennes presque complexes", Math. Rev. Anal. Numer. Theo. Appro. Math. 19(42), (1977), 55-61.
- [11] S.DRAGOMIR: "π-distributions on differentiable manifolds", Ann. of the Univ. "Al. I.Cuza", Jassy, 1981, in press.
- [12] S.HARTHSHORHE: "Ample vector bundles", Publ. I.H.E.S., 29 (1966), 319-350.
- [13] B.T.M.HASSAN: "The theory of geodesics in Finsler spaces", Ph D. thesis, Southampton, 1966, 108 p.

- [14] S.KOBAYASHI: "Negative vector bundles and complex Finsler structures", Nagoya Math. J., vol. 57, (1975), 153-166.
- [15] S.KOBAYASHI & K.NOMIZU: "Foundations of differential geometry", Vol. I-II, Interscience Publishers, 1969.
- [16] D.LOVECK: "Complex spaces with locally product metrics: General theory", Ann. Math. Pura. Appl. (4) 83 (1969), 53-72.
- [17] R.MIRON & M.HASHIGUCHI: "Almost symplectic Finsler structures' Rep. Fac. Sci. Kagoshima Univ., 14 (1981), in press.
- [18] N.PRAKASH: "Kaehlerian Finsler manifolds", Math. Stud. 30 (1962), 1-12.
- [19] N.RANI: "A note on a complex Finsler manifold", Tensor, N.S., 20(1969), 91-94.
- [20] H.RUND: "Generalised metrics on complex manifolds", Math. Nach. 34 (1967), 55-77.
- [21] G.RIZZA: "Strutture di Finsler sulle varietà quasi complesse" Lincei Rend. (8) 33, (1962), 271-275.

Lavoro pervenuto alla Redazione il 28 Giugno 1983 ed accettato per la pubblicazione l'8 Novembre 1983 su parere favorevolz di A. Cossu e G. di Comite