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SHIFTED MOMENTS OF GAUSSIAN MEASURES IN HILBERT SPACES L)

Werner LINDE

rf H is a Hilbert space,thena measure |y 1s completely described

by the function

y > [Ix+yPdu(x) , yeH,
H

wrovided that p32,4,6,... . We prove that for Caussian measures

on o Hilbert space H this is valid for all p>(0 with D#z.

1. NOTATION AND DEFINITIONS

Let [E,|.]] be a Banach space. A number p>0 is said to be E-
reguldar or regular whenever the following is valid:

If uw and v are two Radon measures on E with

JIxI1Pdu(x) < © as well as [ x|Pdv(x) < =
£ E

then these two measures coincide iff

(+) [Ix+yPdu(x) = [ix+yPdv(x) for all yeE.
| E E

1) Part of this paper has been written during the author's stay
in Lecce. He 1is grateful for the hospitality during his wvisit

at the University of Lecce.
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A general chdaracterization of E-regular numbers is not known.
Only is some concrete spdces 4s 12, C(K), Ly or C (2), & locally
compdact, the set of reguldar numbers is completely described (cf.
5],[4] and [6]). The first result in this dii-ction goes back
to W.Rudin ([10]) (a somewhat wedker result is due to A.I.Plotkin
{[9]}) who proved that p>0 is (C-regular, € complex plane, iff
p 1s not 4an even integer. The same is valid in the case of arbitrary

Hilbert spaces (cf. [11],[5],[7]).

A Radon probability measure u on 4 Bandach spdce E is said to
be Gaussidan whenever a(u) is Gaussidan for all aeE'. Here E' denotes
the topological dual space of E and a(p) 1is the image measure

of ¢ with respect to aekbk'.
The following properties of Gdussidn measures dre well-known:

(A) If u is Gaussian, then for all p>0 we have
[ix1Pdu(x)< = (cf. [2]).
E

(B) Given a4 Gaussian measure p there exists 4 unique element xDEE

such that U01=U*5x0 {uU[szu(B-xU}} is symmetric, i.e. uD(BJ:

= u,(-B) (cf. [1]).

(C) A symmetric Gdaussidn measure p on E is completely described

by its weak qg-th moments

[ l<x,a>]%u(x), A€eE "',
E

for some fixed gq>0. This is an easy consequence of
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Lwo
all

but

{[]ex,a>]%du(x)3179 = cqfﬁud,dplfz

where

R.a : = f&x,a}x du(x)
E

denotes the covdaridnce operdator of y (Ry 1is 4an operdator from

E' into E) and fq}[} is a fixed constant only depending on

q (cf. [12] and [8]).

Let us say that a real number p>0 is Gauss-regular whenever

Gaussian measures  and y on E coincide iff (+) holds for
yeE. Of course, each regular number is Gauss-regular as well,

As we shall prove below in general the latter set is strictly

larger

2. BASIC RESULTS

We shall prove now the announced result, first 1in the case

of symmetric medsures.

THEOREM 1. Let MW and V be two Gaussian symmetric measures on

a Hilbert space H. If p>0 and p3%2, then

Lux+yu“du(x) = ﬁHK+Ydeu(K]. yeH,

yields uyu=v.

(ct.

Proof.

Since the only non-H-regular numbers are the even integers

[5] and [7]) we only have to prove the theorem in the case

p=2k, k=2,3,4,...

To do so, choose two symmetric Gaussian measures W and V,
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sdtisfying

- 7 1-
ﬁux+yu2k du(x) = £Hx+yn‘kdv(x)
r

for all yeH. Fix yeH for a4 moment 4and define a4 function P on the

real line by
_ 2k
P(a) = [ix+ay]“ d(u-v)(x), a e R.
H

By Assumption we have P(a) = 0 for all a € R,

On the other hand, since

P(a) = ﬂ(uxnz v 2a<x,y> + ol ]y Dd(u-v) (x)

s 28 2] 2
SRy Lexy> SN N (u-v) (x)
H

H |
.

“i,j.,00

where

) _ 2%3x)
i,j,20 ° TI(Z))1er

P is 4 polynomial of degree 2k. Observe that 4ll terms with{K,F}J,

i odd, vanish by the symmetry of p and v

Thus, all coefficients of P are zero, especially, the coefficient

2k-2
a .

of It is edasy to see that this coefficient equals

2k-4 2
r[]‘l‘k_zu}’ﬂ IH{K'F} d(U'U](x)

T It 0.

+

1,0, k-1 VI
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Here we use the assumption k>2,

Hence it follows

0

2 2 2 -
'["“*} {1“{],],1(-2“’}'} l f]’{]‘k_l!i}’ll ”:':” Jd(l.l‘-'ﬂ)(}i)

for all yeH.

Let us first assume dim H =<, Then we find 4 sequence {yj) c H
tending weakly to zero vyet HFJH:I, Putting the yj's into (++)
from Lebesgue's theorem we derive

_,rH|ix|t2d(u-uJ(x) - 0

ind, consequently, by (++) we have

J{x,ybzdu[x] = I{K,Y}EdU(K)
! H

for all yeH. Property (C) ends the proof 1in this case, 1i.e. it

follows u=v 4as asserted. To complete the proof dassume dim H <=,

Of course, it suffices to investigate the case H = R" endowed
with the Euclidean norm. Let 0.1 be the normalized Haar measure
| n-1 : n : | ‘ - ~-n-1 .
on the sphere S of R and integrate (++) over ye€S with

respect 1o 0© . Then this yields

C1,0,k 1] }J’illxilzd(u-u)[x) = 0,

and we can proceed 4s in the proof for infinite dimensional Hilbert

spaces. This ends the proof of Theorem 1.
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OQur next 4im is to prove Th.1l in the case of arbitrary Gdaussiadan

medasures,

THEOREM 2. Two Gaussian measures |y and v on a Hilbert space

H coincide iff

éux+ynpdutx) = éux+yupdv(xJ. yeH,

for some fixed p>() with p3$2

Proof. Let 4 and Vv be as in the statement of the theorem. Then

there are elements IG,YGEH for which M P=H * 6. as well as Uniévﬁﬁr

QO “ 0

X

are Gaussian symmetric.

By assumption we have

éHK+Y-KGdeUD(KJ - éux*y-yﬂupduﬂix)

for all yeH. Setting Zy P =X this implies

o Yo

P - (P
£“1+YH du_(x) £Hx+y+znﬂ duD(x), yeH.

Using the symmetry of M and Vo respectively, it follows

ﬂux+y+2zﬂupduﬂch - ﬂux+y+z0npduﬂ(x) = &ﬂx-y-zmﬂpduG{xJ

= JlIx-yIPdv_(x) = flx+yiPdv_(x),
H H

which clearly yields
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p o p
éﬂx" duﬁ(x) _hﬂx+2nzﬂﬂ duﬂ(x)

for all natural numbers n. Dividing both sides of the last equation
by nP and taking the limit n +»e we obtain zD=D, i.e. X =Y, s from

which we easily derive

éux+ynpduﬂ(x) = [lIx+ylPdv_(x)

H
for all yeH. Hence, we are in the situation of Th.l and get
Hoo= v i.e. uw =v ending the proof.

REMARKS. (1) The preceding theorems are no longer valid for
p=2 and dim(H)>2. Observe that two symmetric measures on a4 Hilbert
space satisfy (+) with p=2 iff their second absolute moments coin-
cide. But it is easy to construct two different Gaussian measures
possessing the same second moments provided that the dimension

of the underlying space is larger than 2.

(2) A careful inspection of the proof of Th.2Z shows
that we did not use the fact that the measures are defined on
a Hilbert space. In other words, if E is an arbitrary Banach space,
then a number p>0 1is Gauss-regular w.r.t. E iff (+) implies
u=v for all Gaussian symmetric measures p and v on E. Consequently,
in order to decide whether a real number is Gaussian-regular one

only has to investigate symmetric measures.

(3) Very little seems to be known about Gauss-regular
numbers in arbitrary Banach spaces. C.Borell ([1]) proved the

following general fact: if two Gaussian measures pu and v on 4
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Banach space satify

. . ":} .
JHK+FH2kdU(xJ - iux+yu“hdu(x)

for all yeE and all natural numbers k, then py = v.

(4) Th.2 suggests that the number 2 1is probably
the only non-Gauss-regular number in arbitrary Bandach spaces.

We shall disprove this now.

PROPOSITION 3. Let q be 4an even integ ~ Inen

j
Gdussidan meAdasures M and v on R with

there are different

[Ix+ylgdu(x) = [ Jxeyfdde(x)

RZ R?
£ 2 . g q\1/q __ 2
or all yeR”. Here as usual quq T o= (|§1! + j£2| ) : 1—L§],£EJER :

: -2 -
In other words, q is not a Gduss-regular number w.r.t.LR",H.qu.

Proof. Setting E]:={1,U} And ez::[ﬂ,l} we hdave

Hx+yug = |<x+y,e;> |

+ ]{x+}«'_ez} | 4

| ¥

and, if q=2k for some natural number k, then this coincides with

2k . o .
{2?)[{I,El}J{y,e }Ek-J+{x152}J{yFe >

2k - |
i 2 I

]=0
Integrating this expression with respect to 4 symmetric measure

A1l terms with j odd vanish. Consequently, two symmetric medsures

and v on Rz sdatisfy



Shifted moments of Gaussian ... 201

IHK+FHgd(u-v}(K) = 0

7
RH
i ff
K 9k 2k-2] 2
z (2.){¥,E-} ‘ {{K,Ef} d(p-v)(x) = 0, 1i=1,2,
j=0 2 i i

R

for all yERz.

Let b And v be Gaussidan. Then for some constants fj?ﬂ

[ exses Hdu-v)(x) = c 10 ] cx,e>ldu ()T f <xie>Zdv(x))?)

i
R? R R

where i1i=1,2 and j=1,2,...,k (use property (C) stated above).

Hence, if two Gaussian symmetric measures p and v satisfy

f{x,e.>2du{x) = f fx,e.ﬁzdv(x}, i=1,2,
22 : R 2 !

then necessarily

[ Ix+ylod(u-v) (x) = 0

RZ

To end the proof take two different Gaussian symmetric measures
2 . . . . .
on R™ possessing the same diagonal elements in their covariadnce

matrices. These measures have the desired properties.

The following general problem remains open:

PROBLEM. Describe the Gauss-regular numbers of a given Banach

space. Which are those numbers in Lq, l<qew, q#27
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REMARK. There exist Banach spdaces E where eadach positive readl
number is E-regular (C(K) with K without 1isolated points and
Cn{ ), & locally compact but not compdact, are such examples).

Of course, in this case all positive redl numbers are Gauss-regular

As well.

Added in proof

Recently M. Lewandowski (Technical University of Wroclaw, Poland)
solved the problem of our paper in the case g>2. He proved that
qg 1s the only non-Gauss-regular number 1in LIF q>2. Recall that

the non-regul ar numbers are q,2q,5¢q,... (ct. [6]). The characteriza

tion of Gauss-regular numbers in Lq, 1 < q<2, remains open.,
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