SOME IDEMPOTENT-SEPARATING CONGRUENCES ON A ¶-REGULAR SEMIGROUP

Petar PROTIĆ-Stojan BOGDANOVIĆ

- 1. INTRODUCTION. Edwards describes in [4] the maximum idempotent-separating congruence on a eventually regular (equivalently, ¶-regular) semigroup which is given by
 - $\mu = \{(a,b) \in SxS : \text{if } x \in S \text{ is regular then each of } x\Re xa, x\Re xb \text{ implies } xa\Re xb, \text{ and each } x\Re xa, x\Re xb \text{ imples } ax\Re xb.$

In this paper we describe the maximum idempotent-separating congruence and their kernels on some subclasses of \P -regular semigroups. Also, we describe the minimum idempotent-separating remiprime congruence and its kernel on an resemigroup. In this way we obtain a generalization of results of Meakin [10],[11], Feigenbaum [5],[6] and Howie [8].

2. PRELIMINARIES. A semigroup S is ¶-regular if for every as there exists a positive integer m such that $a^m e a^m S a^m$. We shall denote by RegS the set of all regular elements of S. An element a' is an inverse for a if a=aa'a and a'=a'aa'. As usually we shall denote by V(a) the set of all inverses of a. A semigroup S is ¶-orthodox if S is ¶-regular and the set E(S) of all idempotents of S is a subsemigroup of S [2]. A semigroup S is strongly ¶-inverse if it is ¶-regular and idempotents commute [2]. Define on a ¶-regular semigroup an equivalence $\mathscr{Z}^*(\mathscr{R}^*)$ by

$$a2^*b \iff Sa^m = sb^n$$
 $(a9^*b \iff a^mS = b^nS)$

where m and n are the smallest positive integers such that a^m , b^n eRegS [7]. In [14] we define a mapping $r: S \to RegS$ with $r(a) = a^m$ where m is the smallest positive integer such that a^m eRegS. Recall that we can define a partial ordering on the \mathscr{Q}^* -(\mathscr{P}^* -) classes of a ¶-regular semigroup S by

$$L_a^* \le L_b^* \iff Sr(a) \subseteq Sr(b) \qquad (R_a^* \le R_b^* \iff r(a)S \subseteq r(b)S).$$

On a ¶-regular semigroup S we define an equivalence \mathscr{H}^* by $\mathscr{H}^* = \mathscr{L}^* \cap \mathscr{R}^*$, then each \mathscr{H}^* -class contains at most one idempotent [7]. Then

PROPOSITION 2.1. [7]. Let S be a ¶-regular semigroup, then a \mathcal{H}^* b if and only if there are a'eV(r(a)) and b'eV(r(b)) such that a'r(a) = b'r(b) and r(a)a' = r(b)b'. Also,

$$(a,b) \in \mathcal{H}^* \implies (\forall a' \in V(r(a)))(]b' \in V(r(b)))$$

$$a'r(a) = b'r(b), r(a)a' = r(b)b'.$$

3. IDEMPOTENT-SEPARATING CONGRUENCES

The first part of next lemma, which generalizes the known Lallement's lemma for regular semigroups, is proved in [1], [3] and [4].

LEMMA 3.1. Let ρ be a congruence on a ¶-regular semigroup S. If $a\rho$ is an idempotent in S/ρ then there exists an idempotent e in S such that $a\rho = e\rho$. Moreover, e can be chosen so that $R_e^* \leq R_a^*$, $L_e^* \leq L_a^*$.

Proof. If ap is an idempotent in S/p then ap = a^kp for every positive integer k, so ap = $r(a)^pp = r(a)^{2p}p$ and p is positive integer such that $r(a)^{2p}eRegS$. Let $yeV(r(a)^{2p})$ and $e=r(a)^pyr(a)^p$. Since $y=yr(a)^{2p}y$ we have

$$e^{2} = (r(a)^{p}yr(a)^{p})(r(a)^{p}yr(a)^{p}) = r(a)^{p}(yr(a)^{2p}y)r(a)$$

$$= r(a)^{p}yr(a)^{p} = e$$

and so e is an idempotent. Also

$$e = r(a)^p yr(a)^p \rho r(a)^{2p} yr(a)^{2p} = r(a)^{2p} \rho a$$

and so $a \rho = e \rho$. From $e = r(a)^p yr(a)^p$ it follows that

Se
$$\underline{c}$$
 Sr(a) \iff $L_e^* \leq L_a^*$ (eS \underline{c} r(a)S \iff $R_e^* \leq R_a^*$).

A congruence ρ on a semigroup will be called idempotent-separating if each ρ -class contains at most one idempotent.

DEFINITION 3.1. [14] A relation ρ on a \P -regular semigroup S is r-semiprime if

The following theorem generalizes a known result which holds for regular semigroups.

THEOREM 3.1. If S is ¶-regular semigroup, then an r-semiprime congruence ρ on S is idempotent-separating if and only if $\rho \in \mathscr{H}^*$. Hence $\mathscr{H}^{*b} = \{(a,b) \in SxS : (Vx,y \in S^1)(xay,xby) \in \mathscr{H}^*\}$ is the maximum idempotent-separating congruence on S.

Proof. Since each \mathscr{H}^* -class on a ¶-regular semigroup S contains

at most one idempotent, it follows that each congruence $\rho \subseteq \mathscr{H}^*$ is idempotent-separating. Conversely, let ρ be an r-semiprime idempotent-separating congruence on S, a,beS and suppose that a ρ b. Then $r(a)\rho a\rho b\rho r(b)$. If a'eV(r(a)), then $r(a)a'\rho = r(b)a'\rho$ is an idempotent in S/ρ . By Lemma 3.1 there exists eeE(S) such that $e \rho = r(b)a'\rho$ and $R_e^* \leq R_{r(b)a'}^*$. Since ρ is an idempotent-separating congruence we have e = r(a)a'. From r(a) = r(a)a'r(a) it follows that r(a)S = r(a)a'S and so $R_a^* = R_{r(a)a'}^*$. Let $r(r(b)a') = (r(b)a')^p$. Now we have

$$r(r(b)a')S = r(b)a'(r(b)a')^{p-1}S c r(b)S$$

whence $R_{r(b)a'}^* \leq R_b^*$. Hence,

$$R_e^* = R_a^* = R_{r(a)a'}^* \le R_{r(b)a'}^* \le R_b^*$$
.

Similarly $R_b^* \leq R_a^*$ and so

$$R_a^* = R_b^* \iff r(a)S = r(b)S \iff a\mathcal{R}^*b$$
.

But then one can use a closely similar argument to show that a 2*b. Hence a 4*b as required.

By Proposition I 5.13 [19]

$$\mathcal{H}^{*b} = \{(a,b) \in SxS : (\forall x,y \in S^1)(xay,xby) \in \mathcal{H}^*\}$$

is the largest congruence on S contained in \mathcal{H}^* . Since \mathcal{H}^* is an idempotent-separating equivalence, then \mathcal{H}^{*b} is also idempotent-separating. Let ρ be an idempotent-separating congruence on S such that $\mathcal{H}^{*b} \ \underline{c} \ \rho$, then $\mathcal{H}^* \ \underline{c} \ \rho$. Since \mathcal{H}^* is an r-semiprime equivalence, then ρ is an r-semiprime congruence on S and by preli-

minary consideration $\rho_{\underline{C}} \mathcal{H}^*$, which is a contradiction. Hence, \mathcal{H}^{*b} is the maximum idempotent-separating congruence on S and this completes the proof of theorem.

We now introduce the following notation: if a is an element of a ¶-regular semigroup S then we define

$$EL^*(a) = \{e \in E(S) : L_e^* \le L_a^*\} \text{ and } ER^*(a) = \{e \in E(S) : R_e^* \le R_a^*\}.$$

We remark that for any aeS,EL*(a) $\neq \emptyset$ and ER*(a) $\neq \emptyset$. From a2*b \iff L*_a = L*_b(a2*b \iff R*_a = R*_b) we have EL*(a) = EL*(b) (ER*(a) = ER*(b)). Hence, if a2*b then EL*(a) = EL*(b) and ER*(a) = ER*(b). Also EL*(a) = EL*(r(a)) and ER*(a) = ER*(r(a)). If e and f are idempotents of S then

$$L_e^* \le L_f^* \iff ef = e \text{ and } R_e^* \le R_f^* \iff fe = e.$$

THEOREM 3.2. Let S be a \P -regular semigroup, then the following relation

(1)
$$\mu = \{(a,b) \in SxS: (\exists a' \in V(r(a))) (\exists b' \in V(r(b)))\}$$

$$[(\forall e \in EL*(a) \cup EL*(b)) \ r(a)ea' = r(b)eb' \quad and \quad (\forall f \in ER*(a) \cup ER*(b)) \ a'fr(a) = b'fr(b)]\}$$

is an τ -semiprime idempotent-separating equivalence relation containing every τ -semiprime idempotent-separating congruence on τ . The maximum idempotent-separating congruence on τ is given by:

$$\mu^{b} = \{(a,b) \in SxS : (\forall x,y \in S^{1})(xay,xby) \in \mu\}.$$

Proof. It is obvious that μ is reflexive, symmetric and resemiprime relation. To show that μ is transitive, we first show that μ is contained in the equivalence \mathscr{H}^* .

Let $(a,b) \in \mathbb{P}$, then $(r(a), r(b)) \in \mathbb{P}$ and let a',b' be the inverses of r(a) and r(b), respectively, as in the definition (1) of \mathbb{P} . Since $r(a)S = r(a)a'S \iff a \mathscr{R}^*r(a)a'$ we have $R_a^* = R_{r(a)a}^*$ so $r(a)a' \in ER^*(a) = ER^*(r(a)a')$. By (1) it follows that

$$a'r(a) = a'(r(a)a')r(a) = b'(r(a)a')r(b)$$

and since $r(b)b' \in ER*(b) = ER*(r(b)b')$

$$b'r(b) = b'(r(b)b')r(b) = a'(r(b)b')r(a)$$
.

Similarly, $a'r(a)eEL^*(a) = EL^*(a'r(a))$ and

$$r(a)a' = r(b)(a'r(a))b', r(b)b' = r(a)(b'r(b))a'.$$

Since $b'r(a)a'r(b) \in EL^*(a)$, it follows that

$$r(a)a' = r(a)(a'r(a))a' = r(a)(b'r(a)a'r(b))a'$$

= $r(b)(b'r(a)a'r(b))b' = (r(b)b')(r(a)a')(r(b)b')$.

Hence

$$(r(b)b')(r(a)a') = (r(b)b')(r(a)a')(r(b)b') = r(a)a'$$

and

$$(r(a)a')(r(b)b') = (r(b)b')(r(a)a')(r(b)b') = r(a)a'.$$

By symmetry, $r(b)b' = (r(b)b')(r(a)a') = (r(a)a')(r(b)b')$ and

so r(a)a' = r(b)b'. Similarly, a'r(a) = b'r(b), and by Proposition 2.1 it follows that $(a,b)\in \mathcal{H}^*$, and so $\mu \in \mathcal{H}^*$.

We now prove that the relation μ defined by (1) is transitive. Let $(a,b)e\mu$ and $(b,c)e\mu$. Then $a\mathcal{H}^*b\mathcal{H}^*c$ and there are a'eV(r(a)), b',b'eV(r(b)) and c'eV(r(c)) such that r(a)ea'=r(b)eb', r(b)eb'=r(c)ec' for each $eeEL^*(a)=EL^*(a'r(a))=EL^*(b'r(b))=EL^*(b)=EL^*(b'r(b))=EL^*(c)=EL^*(c'r(c))$, and similarly a'fr(a)=b'fr(b), b'fr(b)=c'fr(c) for each $feER^*(a)=ER^*(b)=ER^*(c)$. Hence r(a)a'=r(b)b', a'r(a)=b'r(b), r(b)b'=r(c)c', b'r(b)=c'r(c), and by Proposition 2.1 there exists a'eV(r(a)) and c'eV(r(c)) such that r(a)a'=r(c)c', a'r(a)=c'r(c), r(a)a'=r(c)c' and a''r(a)=c''r(c). Then for each $eeEL^*(a)=EL^*(b)=EL^*(c)$ we have

$$r(a)ea^* = r(a)(ea'r(a))a^* = (r(a)ea')(r(a)a^*)$$

$$= (r(a)ea')(r(b)b^*) = (r(b)eb')(r(b)b^*)$$

$$= r(b)(eb'r(b))b^* = r(b)eb^* = r(c)ec^*,$$

and for each $f \in ER^*(a) = ER^*(r(a)a') = ER^*(b) = ER^*(r(b)b') = ER^*(c)$, we have

$$a*fr(a) = a*(r(a)a'f)r(a) = (a*r(a))(a'fr(a))$$

$$= (b*r(b))(b'fr(b)) = b*(r(b)b'f)r(b)$$

$$= b*fr(b) = c*fr(c).$$

Hence, $(a,c) \in \mu$, and so μ is transitive.

Since $\mu \mathbf{c} \mathcal{H}^*, \mu$ is an r-semiprime idempotent-separating equivalence.

Let ρ be an r-semiprime idempotent-separating congruence on S, and let $(a,b)\epsilon\rho$. Then $(a,b)\epsilon \mathscr{H}^*$ and so there are $a'\epsilon V(r(a))$ and $b'\epsilon V(r(b))$ such that r(a)a'=r(b)b' and a'r(a)=b'r(b). Let $e\epsilon EL^*(a)=EL^*(r(a))=EL^*(b)=EL^*(r(b))=EL^*(b'r(b))$. Then ea'r(a)=e=eb'r(b) and

$$(r(a)ea')(r(a)ea') = r(a)(ea'r(a)ea' = r(a)eea'$$

$$= r(a)ea' \in E(S),$$

and similarly r(b)eb'eE(S). Since ρ is an r-semiprime congruence we have (r(a),r(b))e, so

$$b' = b'r(b)b' = b'r(a)a'pb'r(b)a' = a'r(a)a' = a',$$

i.e. $(a',b')\in\rho$, and hence $(r(a)ea', r(b)eb')\in\rho$. Since r(a)ea', r(b)eb'eE(S), this implies that r(a)ea' = r(b)eb'. Similarly, a'fr(a) = b'fr(b) for each feER*(a) = ER*(b), and so $(a,b)\in\mu$. Hence, $\rho\subset\mu$.

The proof that $\mu^b = \{(a,b) \in SxS : (\forall x,y \in S^1)(xay,xby) \in \mu\}$ is the maximum idempotent-separating congruence on S is analogous to corresponding part of Theorem 3.1.

DEFINITION 3.2. [14]. A \P -regular semigroup is an r-semigroup if

$$(\forall a,b \in S)(r(ab) = r(a)r(b)).$$

LEMMA 3.2 [14]. Let S be an r-semigroup. Then RegS is a subsemigroup of S and the mapping $r: S \rightarrow Reg S$ is a homomorphism.

The following corollary generalizes a known result of Meakin [11].

COROLLARY 3.1. Let S be an r-semigroup, then the relation defined by (1) is the maximum idempotent-separating congruence on S.

Proof. By Theorem 3.2 μ is an r-semiprime idempotent-separating equivalence on S. Let us prove that this equivalence is compatible. Since RegS is subsemigroup of S, we have that $\bar{\mu} = \mu_{|\text{RegS}|}$ is the maximum idempotent-separating congruence on RegS (Theorem 3.1 [11]). Let aµb, cµd, then r(a) $\bar{\mu}$ r(b), r(c) $\bar{\mu}$ r(d). Hence,

$$r(a)r(b)\bar{\mu}r(c)r(d) \implies r(ab)\mu r(cd) \iff ab\mu cd$$

and so μ is a congruence on S. By Theorem 3.2 μ is the maximum (r-semiprime) idempotent-separating congruence on S.

LEMMA 3.3. Let S be an r-semigroup, then the equivalence \mathscr{Z}^* (\mathscr{R}^*) is right (left) congruence.

Proof. Let a,b, ϵ S and a2*b \iff Sr(a) = Sr(b). Then

$$Sr(ac) = Sr(a)r(c) = Sr(b)r(c) = Sr(bc) \iff ac2*bc$$

and so \mathcal{Z}^* is a right congruence. Similarly, \mathcal{R}^* is a left congruence.

If ρ is an congruence on semigroup S, then

$$ker \rho = \{aeS : (\exists eeE(S))a\rho e\}$$
.

THEOREM 3.3. Let S be an r-semigroup. If τ is the relation given by

$$\tau = \{(a,b) \in SxS : (\exists a' \in V(r(a)))(\exists b' \in V(r(b))) \\ r(a)a' = r(b)b', a'r(a) = b'r(b), r(a)b' \in kem\},$$

then $\tau = \mu$.

Proof. Let $a\tau b$, then r(a)a' = r(b)b' and a'r(a)=b'r(b) imply $a \mathcal{H}^*b$ and $a'\mathcal{H}^*b'$. By Lemma 3.3 $a'\mathcal{H}^*b'$ gives $r(a)a'\mathcal{H}^*r(a)b'$ and $a\mathcal{H}^*b \iff r(a)\mathcal{H}^*r(b)$ gives $r(a)b' \mathcal{H}^*r(b)b'$. Hence, $r(a)b'\mathcal{H}^*r(b)b'$. Since r(a)b' eker μ , then there exists eeE(S) such that $r(a)b'\mu e$. From μ \underline{c} \mathcal{H}^* it follows that r(a)b' \mathcal{H}^*e . Now r(b)b'=e, since each \mathcal{H}^* -class contains at most one idempotent. Hence, $r(a)b'\mu r(b)b'$, so

$$a\mu = r(a)\mu = r(a)\mu(a'r(a))\mu = r(a)\mu(b'r(b))\mu$$

= $(r(a)b')\mu r(b)\mu = (r(b)b')\mu r(b)\mu = r(b)\mu = b\mu$.

Conversely, if a μ b, then there are a'eV(r(a)) and b'eV(r(b)) such that r(a)a' = r(b)b' and a'r(a) = b'r(b) (by the proof of Theorem 3.2). By Corollary 3.1, a μ b \iff r(a) μ r(b) gives r(a)b' μ r(b)b'. Hence, r(a)b'eker μ and μ = τ .

Let S be an r-semigroup. Then RegS is a subsemigroup of S and the relation

$$\bar{\mu} = \mu_{|RegS} = \{(a,b) \in RegSxRegS : (\exists a' \in V(a))(\exists b' \in V(b))\}$$

$$|(VeeEL*(a) \cup EL*(b)) = beb' \quad and$$

$$(VfeER*(a) \cup ER*(b) = b'fb|\}$$

is the maximum idempotent-separating congruence on RegS (Meakin [11], Theorem 3.1). By [6] of it follows that

$$\ker \tilde{\mu} = \{a \in RegS : (\exists a' \in V(a)) \ (Ve \in EL^*(a)) \mid a \in a' \in a' \mid a \in a$$

THEOREM 3.4. Let S be an r-semigroup, then

 $ker\mu = \{x \in S : r(x) \in ker\bar{\mu}\}$

= $\{x \in S: (\exists x' \in V(r(x))(\forall e \in EL^*(x))r(x) \in x' \in A^*\}$

= x'r(x)e and $(\forall feER*(x))$ fx'fr(x)=fr(x)x'.

Proof. Let $A = \{xeS : r(x)eker\bar{\mu}\}$, then aeA implies $r(a)eker\bar{\mu}$. Now there exists eeE(S) such that $r(a)\bar{\mu}e$. Since μ is an r-semiprime congruence, we have $a\mu r(a)\mu e$. Hence, $aeker\mu$. Conversely, $aeker\mu$ implies $a\mu e$ for some aeE(S). Now $a\mu r(a)\mu e$ implies $r(a)\bar{\mu}e$ and it follows that $r(a)eker\bar{\mu}$, so aeA. Hence, $ker\mu=A$.

DEFINITION 3.3 [14]. Let S be a ¶-regular semigroup. If A is a subset of S, then regA = {aeA : aeRegS} = A \cap RegS. A subset A of S is self-conjugate if a'(regA)a \underline{c} regA for every aeRegS and a'eV(a).

DEFINITION 3.4. A semigroup S is \P -conventional if S is \P -regular and the set E(S) of all idempotents of S is self-conjugate.

THEOREM 3.5. Let S be a \P -conventional semigroup and define the relation on S by

(2)
$$\mu = \{(a,b) \in SxS : (\exists a' \in V(r(a)))(\exists b' \in V(r(b)))(\forall e \in E(S))\}$$

$$r(a)ea' = r(b)eb' \text{ and } a'er(a) = b'er(b)\}.$$

Then relation μ_1 is an r-semiprime idempotent-separating equivalence relation containing every r-semiprime idempotent-separating congruence on S. The maximum idempotent-separating congruence on S is given by:

$$\mu_1^b = \{(a,b) \in SxS : (\forall x,y \in S^1)(xay,xby) \in \mu_1^{\}}.$$

Proof. It is evident that μ_1 is reflexive, symmetric and remiprime relation. To show that μ_1 is transitive, we first show that μ_1 is contained in equivalence \mathscr{H}^* . Let $a\mu_1b$ and let a',b' be the inverses of r(a) and r(b), respectively, as in the definition (2) of μ_1 . Since S is ¶-conventional semigroup, we have that $r(a)a'r(b)b'r(a)a'\in E(S)$. By definition (2) it follows that

$$a'(r(a)a'r(b)b'r(a)a')r(a) = b'(r(a)a'r(b)b'r(a)a')r(b)$$
.

Hence, since b'r(a)a'r(b)eE(S) we have

(3)
$$a'r(b)b'r(a) = (b'r(a)a'r(b))(b'r(a)a'r(b)) = b'r(a)a'r(b)$$
.
But $r(b)b' \in E(S)$, so

$$a'(r(b)b')r(a) = b'(r(b)b')r(b) = b'r(b)$$

and similarly b'(r(a)a')r(b) = a'r(a). From (3) we have a'r(a) = b'r(b). It is not difficult to see that r(a)a' = r(b)b' also holds. From these two results and by Proposition 2.1 we deduce that $\mu_1 \subseteq \mathcal{H}^*$. We now proced to the proof of the transitivity of μ_1 .

Suppose that $a\mu_1b$ and $b\mu_1c$. Then there are $a'\in V(r(a))$, $b',b'\in V(b)$ and $c'\in V(r(c))$ such that

$$a'er(a) = b'er(b), r(a)ea' = r(b)eb', b*er(b) = c*er(c)$$
and $r(b)eb* = r(c)ec*$

for all $e \in E(S)$. In particular, we have seen that this implies that r(a)a' = r(b)b', a'r(a) = b'r(b), r(b)b* = r(c)c*, b*r(b)

= c*r(c), and hence that a,b and c are \mathscr{H}^* equivalent elements of S. By Proposition 2.1 there are a*eV(r(a)) and c'eV(r(c)) such that

$$r(a)a' = r(b)b' = r(c)c', a'r(a) = b'r(b) = c'r(c)$$

and

$$r(a)a^* = r(b)b^* = r(c)c^*, a^*r(a) = b^*r(b) = c^*r(c).$$

Now, a*r(a)a'eV(r(a)) and c*r(c)c'eV(r(c)), and for all eeE(S)

$$(a*r(a)a')er(a) = (a*r(a))(a'er(a)) = (b*r(b))(b'er(b))$$

=
$$(b*r(b))(b'er(b)b'r(b))$$
 = $b*(r(b)b'er(b)b')r(b)$

=
$$c*(r(c)c'er(c)c')r(c) = (c*r(c)c')er(c)$$
,

and

$$r(a)e(a*r(a)a') = r(a)(a*r(a)ea*r(a))a'=r(b)(b*r(b)eb*r(b))b'$$

= $(r(b)eb*)(r(b)b')=(r(c)ec*)(r(c)c')=r(c)e(c*r(c)c').$

Hence $(a,c) \in \mu_1$ and μ_1 is transitive. That μ_1 separates idempotents is obvious since we have already proved that μ_1 $\underline{c}\mathscr{H}^*$

Now let ρ be an r-semiprime idempotent-separating congruence on S. Then if $(a,b)\in\rho$, we have that $(a,b)\in\mathscr{H}^*$, and hence there are $a'\in V(r(a))$ and $b'\in V(r(b))$ such that r(a)a'=r(b)b' and a'r(a)=b'r(b). Then, since $a\rho b\iff r(a)\rho r(b)$, we have $r(b)b'=r(a)a'\rho r(b)a'$ an hence

$$b' = b'r(b)b'\rho b'r(b)a' = a'r(a)a' = a',$$

i.e. $(b',a') \in \rho$. Hence, for all $e \in E(S)$ we have $r(a) e a' \rho r(b) e b'$, and so r(a) e a' = r(b) e b', since both r(a) e a' and r(b) e b' are idempotents, and ρ separates idempotents. Also (b' e r(b)), $a' e r(a)) e \rho$, and so a' e r(a) = b' e r(b). From this it follows that $(a,b) \in \mu_1$, and consequently that $\rho \subseteq \mu_1$.

The proof that $\mu_1^b = \{(a,b) \in SxS : (\forall x,y \in S^1)(xay,xby) \in \mu_1^{-1}\}$ is the maximum idempotent-separating congruence on S is analogous to corresponding part of Theorem 3.1.

PROPOSITION 3.1. If S is a ¶-conventional semigroup and $(x,y) \in \mathbb{P}_1$, and if x* is an arbitrary inverse of r(x), then there exists an inverse y* of r(y) such that r(x)ex*=r(y)ey* and x*er(x)=y*er(y) for all eeE(S).

Proof. If $(x,y) \in \mu_1$ and x^* is an arbitrary inverse of r(x), then there are $x' \in V(r(x))$ and $y' \in V(r(y))$ such that $r(x) \in x' = r(y) \in y'$ and $x' \in r(x) = y' \in r(y)$ for all $e \in E(S)$. Also, since $(x,y) \in \mathscr{H}^*$, there is an inverse $y^* \in V(r(y))$ such that $r(x)x^* = r(y)y^*$ and $x^* r(x) = y^* r(y)$. Thus, for all $e \in E(S)$

$$r(x)ex^* = r(x)(x^*r(x)ex^*r(x)x'r(x)x^*$$

 $= r(x)(x^*r(x)ex^*r(x))x'(r(x)x^*)$
 $= r(y)(x^*r(x)ex^*r(x))y'(r(y)y^*)$
 $= r(y)(y^*r(y)ey^*r(y))y'(r(y)y^*) = r(y)ey^*,$

and dually, x*er(x) = y*er(y).

The following theorem generalizes a result of Meakin [10].

THEOREM 3.6. Let S be a \P -orthodox r-semigroup, then relation

 μ_1 defined by (2) is the maximum idempotent-separating congruence on S.

Proof. We shall prove that $\mu_1 = \mu$, where by Corollary 3.1 μ is the maximum idempotent-separating congruence on S.

Obviously μ₁ <u>c</u> μ.

Conversely, let $(a,b)e\ \mu$. By the proof of the Theorem 3.2 we have r(a)a' = r(b)b' and a'r(a) = b'r(b) where are a'eV(r(a)) and b'eV(r(b)) as in the definition of μ . Also $EL^*(a)=EL^*(r(a))=EL^*(a'r(a))$. If heE(S) then $Sha'r(a) \subseteq Sr(a) \iff L^*_{ha'r(a)} \subseteq L^*_{r(a)}$ and so $ha'r(a)eEL^*(a)$ (ha'r(a)eE(S) since S is \P -orthodox). Now

$$r(a)ha' = r(a)h(a'r(a)a') = r(a)(ha'r(a))a'$$

$$= r(b)(ha'r(a))b' = r(b)(hb'r(b))b'$$

$$= r(b)h(b'r(b)b') = r(b)hb'.$$

Similarly, ER*(a) = ER*(r(a)) = ER*(r(a)a'),r(a)a'hS \underline{c} r(a)S \rightleftharpoons >R* $_{r(a)a'h} \leq R_a^*$ and so r(a)a'h \in ER*(a). Now

$$a'hr(a) = a'(r(a)a'h)r(a) = b'(r(a)a'h)r(b)$$

= $b'(r(b)b'h)r(b) = b'hr(b)$.

Hence, $\mu \subseteq \mu_1$ and so $\mu = \mu_1$.

Let S be a \P -orthodox r-semigroup. Then RegS is an orthodox subsemigroup of S and the relation

$$\bar{\mu}_{1} = \mu_{1|\text{RegS}} = \{(a,b) \in \text{RegSxRegS} : (\} \text{Ea'eV}(a))(\} b'eV(b)) \}$$
(VeeE(S)) $r(a)ea' = r(b)eb', a'er(a)=b'er(b)$ }

is the maximum idempotent-separating congruence on RegS (Meakin [10], Theorem 4.4). In [5] it is proved that

$$\ker \bar{\mu}_1 = \{a \in RegS : (\exists a' \in V(a))(\forall e \in E(S)) a' \in Aa' \in Aa'$$

THEOREM 3.7. Let S be a ¶-orthodox r-semigroup, then

$$\ker \mu_1 = \{x \in S : r(x) \in \ker \overline{\mu}_1\}$$

$$= \{x \in S : (\exists x' \in V(r(x))) (\forall e \in E(S)) x' \in r(x) \in F(x) \in F(x) : f(x) \in F(x) \in F(x) \in F(x) : f(x) \in F(x) \in F(x) : f(x) : f(x) \in F(x) : f($$

Proof. Analogously to proof of Theorem 3.4.

Let S be a strongly ¶-inverse semigroup and aeS, then unique inverse for r(a) we denote by $r(a)^{-1}$.

THEOREM 3.8. Let S be a strongly \P -inverse semigroup, then the relation

(4)
$$\mu_2 = \{ (a,b) \in SxS : (VeeE(S)) r(a)^{-1} er(a) = r(b)^{-1} er(b) \}$$

is an r-semiprime idempotent-separating equivalence relation containing every r-semiprime idempotent-separating congruence on S.

The maximum idempotent-separating congruence on S is given by:

$$\mu_2^b = \{(a,b)\in SxS : (\forall x,y\in S^1)(xay,xby)\in \mu_2\}$$
.

Proof. If is obvious that μ_2 is an r-semiprime equivalence relation. Since RegS is inverse semigroup and $\bar{\mu}_2 = \mu_2|_{\text{RegS}} = \{(a,b)\in \text{RegSxRegS}: (\text{VeeE}(S))a^{-1}ea = b^{-1}eb\}$ is the maximum idempotent-separating congruence on RegS (Howie [8], Theorem 2.4), we have that μ_2 is idempotent-separating. The proof that μ_2 contains each

r-semiprime idempotent-separating congruence on S is analogous to the proof of the corresponding part of Theorem 3.5. The proof that μ_2^b is the maximum idempotent-separating congruence on S is analogous to the corresponding part of Theorem 3.1.

The following corollary generalizes a result of Howie [8].

COROLLARY 3.2. Let S be a strongly ¶-inverse r-semigroup, then relation μ_2 defined by (4) is the maximum (r-semiprime) idempotent-separating congruence on S.

proof. Similarly to the proof of Corollary 3.1.

If S is a strongly \P -inverse semigroup, then by [5] we have that

$$\ker \bar{\mu}_2 = \{a \in RegS : (VeeE(S)) = ae\}.$$

THEOREM 3.9. Let S be a strongly ¶-inverse r-semigroup, then

$$\ker \mu_2 = \{x \in S : r(x) \in \ker \overline{\mu}_2\}$$

$$= \{x \in S : (\exists e \in E(S)) = r(a) = r(a)e\}.$$

Proof. Analogous to the proof of Theorem 3.4.

THEOREM 3.10. Let S be a ¶-regular semigroup, then the relation

$$v = \{(a,b) \in SxS : r(a) = r(b)\}$$

is an r-semiprime idempotent-separating equivalence relation which is contained in each r-semiprime equivalence relation on S. The congruence

$$v^b = \{(a,b) \in SxS : (\forall x,y \in S^1)(xay,xby) \in v\}$$

is an idempotent-separating congruence on S.

Proof. It is obvious that ν is an r-semiprime equivalence. let $e, f \in E(S)$, then $e \nu f \iff e = f$ and so ν is idempotent-separating. Further, suppose that ρ is an r-semiprime equivalence on S and

$$avb \iff r(a)vr(b) \iff r(a) = r(b)$$
.

Then $r(a) \rho r(b)$ and since ρ is a r-semiprime equivalence we have apb, so $v c \rho$.

COROLLARY 3.3. Let S be an r-semigroup. Then ν is the minimum r-semiprime idempotent-separating congruence on S.

Proof. Let a,b,c,deS, then

avb, cvd
$$\iff$$
 r(a) = r(b), r(c) = r(d)
 \implies r(ac) = r(a)r(c) = r(b)r(d) = r(bd)
 \iff acvbd.

THEOREM 3.11. Let S be an r-semigroup, then

$$kerv = \{xeS : r(x) \in E(S)\}.$$

Proof. Let $A = \{xeS : r(x)eE(S)\}$, then aeA implies r(a)eE(S) and since avr(a) we have aekerv. Conversely, if aekerv then there exists eeE(S) such that ave and so r(a) = e and aeA. Hence, kerv = A.

If S is a regular semigroup, then the relation ν is the equality relation.

REFERENCES

- [1] S.BOGDANOVIĆ: Semigroups with a system of subsemigroups, Novi Sad, 1985.
- [2] S.BOGDANOVIĆ: Power regular semigroups, Zbornik Radova PMF Novi Sad, 12(1982) 417-428.
- [3] S.BOGDANOVIĆ: Right ¶-inverse semigroup I, Zbornik Radova PMF Novi Sad, (to appear).
- [4] P.M.EDWARDS: Eventually regular semigroups, Bull.Austral.Math. soc. 28(1983) 23-38.
- [5] R.FIEGENBAUM: Kernels of orthodox semigroup homomorphism, J.Austral. Math. Soc. 22(Series A)(1976) 234-245.
- [6] R.FIEGENBAUM: Kernels of regular semigroup homomorphism. Doctoral dissertation, University of South Carolina, 1975.
- [7] J.L.GALBIATI-M.L.VERONESI: Sui semigruppi quasi regolari, Istituto Lombrado (Rend.Sc). A 116(1982).
- [8] J.HOWIE: The maximum idempotent-separating congruence on an inverse semigroup, Proc. Edinburgh Math. Soc. 14(1964) 71-79.
- [9] J.HOWIE: An introduction to semigroup theory, Academic Press 1976.
- [10] J.MEAKIN: Congruences on orthodox semigroup, J. Austral. Math. Soc: 12(1971) 323-341.
- [11] J.MEAKIN: The maximum idempotent-separating congruence on a regular semigroup, *Proc. Edinourg Math. Soc.* 18(1972-73) 159-163.

- [12] F.MASAT: Congruences on conventional semigroups, Czechoslovak Math. J., 31(106)(1981) 199-205.
- [13] M.PETRICH: Introduction to semigroups, Merill, Columbus, 1973.
- [14] P.PROTIĆ-S.BODGANOVIĆ: Some congruences on a strongly ¶-in-verse r-semigroup, Zbornik Radcva PMF Novi Sad (to appear).

Petar Protić Gradevinski fakultat Beogradska 14 18000 Nis YOUGOSLAVIA

Stojan Bogdanović Institut za matematiku Dr Ilije Duricica 4 21000 Novi Sad YOUGOSLAVIA