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ON FINITE GEOMETRIES OF TYPE CS WITH THICK LINES

Antonio PASINI

Summary. Several facts suggest the conjecture that every finite
geometry of type C3 with thick 1lines 1is either a building or
flat (see [4],[5],[8]) and [9]). That conjecture plays a central
role in the problem of classifying finite thick geometries of

type Cn and F, (see [4],[7] and [8]). In this paper we find very

4
simple conditions that hold in a finite geometry of type C3 with
thick lines if and only if the geometry is either a building or
flat. Then the previous conjecture can be restated so: prove that

the conditions discussed in this paper are theorems 1in the case

of finite geometries with thick lines.

1. DEFINITIONS AND STATEMENTS OF THE THEOREMS.

In this paper T will always be a connected geometry of type
C3. We observe that T is residually connected, because it is con-

nected and it has rank 3. Then it is strongly connected, by [3].

We mark types as below

The elements of type 0 are said to be points, those of type 1
lines and those of type 2 planes. If a point b is incident with
a line x we say that b lies on x and that x passes through b.

Similarly for incident point-plane and line-plane pairs. For every
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i=0,1,2 the symbol Si denotes the set of elements of T of type
i and, for every element x of ', we denote the i-shadow of x

by the symbol Ui(x).

We use the symbol =« to denote the incidence relation, as in
[15]. A line in thin if it has exactly two points. Otherwise it
is thick. The geometry T is flat if we have UO(U) = S0 for every

plane u of T (equivalently, nz(b) = 52 for every point b of T).

If a,b are distinct points, we say that they are colinear if there
is a line incident with both them. If a and b are colinear, we
write axzb. Given a point x, we define x° ={y|ysx or y=x} and given
a set of points X we define X = £;KK" The radical of I' is the set
S, -

If the geometry T is flat, then we have SB = SU‘ I do not know

whether the converse 1is true or not.At any rate, let us say thatT

L

is almost flat if SD = S

{}l
Given two distinct planes u and v, we say that they are cocolinear
if there is a line incident with both them. If two planes u and

v are cocolinear, then we write urv,
We have proved in !9] (Proposition 3) that the following property

holds in T if an” if T is either a building or flat:

(BF) (BUILDING-FLAT PROPERTY). Given a point b and a plane u

if there are two distinct planes both incident with b and

cocolinear with vy, then b lies on y

We have consicered also the following two properties in [9]:
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(PS) Given a line x and a plane u , if fh{x)fﬁfh(u] contains at
least two points, then we have Eh(x) c Ch[u) (that is, planes

are 'subspaces').

(PS*) (dual of PS). Given a line x and a point b, if Uz(x}rﬁ Uz(b)

contains at least two planes, then we have Gz(x) c Ué(b].

The property PS holds in buildings and flat geometries of type
CS' Then it 1is a consequence of BF. Nevertheless, it holds in
every geometry of type C3 in which all lines are thin. But there
are a lot of such geometries that are neither buildings nor flat (see
(11]; see also [9]). Then the property PS is weaker than BF. The
property PS* 1is a specialization of BF. We get it from BF if,
in the statement of BF, we assume that the two planes,incident
with b and cocolinear with u, and the plane u itself pass through
the same line. We observe that PS*¥ is actually weaker than BF.
Indeed it holds in T if every line of T lies on exactly two planes.
But there are a lot of such geometries that are neither buildings

nor flat (see [1Z]).

Nevertheless, the properties PS and PS* together are equivalent
to BF. Indeed we have proved in [9] (Theorem 2) that T is either
a building or flat if and only if both the properties PS and PS*

hold in it. In this paper we shall prove the following theorem.

THEOREM 1. Let I be finite and let us assume that all lines
of I' are thick and that the property PS holds in I' . Then T 1is

either a building or flat.

We shall prove this theorem in Section 3. As to PS*, things
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look a little more difficult. We have

PROPOSITION 1. Let I be finite and let it admit parameters

o——q—D where r « S
r r S

The geometry I 1is either a building or flat if the property

PS* holds in it.

We shall prove this proposition in Section 4. We shall consider
also another property, suggested by the axion system given 1n

[2] for the system of points and lines of a polar space.

(BS) (BUEKENHOUT-SHULT PROPERTY). Given a point b and a line

X , 1if Uo(x)rﬂb* contains at least two points, then ﬁﬂ(x) E.bl.

We observe that we always have Uﬁ(x)ﬁ b' # @ (see Lemma 1 of
Section 2 of this paper). The property BS holds in buildings and
flat geometries of type C3. Then the property BF implies BS. But
the converse is false. Indeed the property BS holds in all finite
geometries with thin lines (see [11]). But there are a lot of
such geometries that are neither buildings nor flat. Then BF is

not a consequence of BS. At any rate, we have the following results:

PROPOSITION 2. Let T be finite and let us assume that all lines
of ' are thick and that the property BS holds in T . Then T is

either a building or almost flat.

PROPOSITION 3. ret I be finite and 1let it admit parameters.
The geometry I is either a building or flat if both the properties

PS* and BS hold in it.

Proposition 2 will be proved in Section 5 and Proposition 3
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will be proved in Section 4.

Given two colinear points b and ¢, let n(b,c) be the number
of lines incident with both b and c¢c. We observe that, if T 1is

finite and admits parameters

0——a—D

r r s
then n(b,c) < 1l+rs and we have n(b,c) = 1l+rs iff crz(b) = UZ(C)
(see [13]). Then T is flat iff n(b,c) = l+rs for every colinear

pair (b,c) and it is a building iff n(b,c)=1 for every colinear
pair (b,c) (see Proposition 9 of [15]). Then, if T is a building
or flat, the number n(b,c) does not depend on the choice of the
colinear pair (b,c). This is still true if all 1lines of T are
thin, even if T does not admit parameters or if it is not a building
nor flat (see [11]). But it need not be true if T has some thin

and some thick lines (see Section 6 of [11]).

Given a point b, we say that b is homogeneous if the number
n(b,c) does not depend on the choice of the point ¢ colinear with
b. We have observed above that, if I is finite, admits parameters
and is either a building or flat, then all points of T are homoge-

neous.
We have the following result:

THEOREM 2. Let T be finite and let us assume that all lines
of I' are thick. The geometry I is either a building or flat if

there is some homogeneous point in T .

This theorem will be proved in Section 3.
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As a conclusion, we have found two properties, besides BF,
which, in the case of finite geometries with thick lines, are equiva
lent to the property of being either a building or flat: the property

PS and the property of admitting some homogeneous points.

2. LEMMAS.

LEMMA 1. Given a plane y and a point b , there is a plane through
b cocolinear with yu.

(see Lemma 1 of [7]).

LEMMA 2. Given any two distinct planes, there is at most one

line incident with both them.

The proof is easy. It is left to the reader.

Let 6 be the mapping from the set of point-plane pairs (b,u)
to the set of integers {0,1} that takes the value 1 precisely
when b +u. Given a point-plane pair (b,u), let a¢(b,u) be the number
vf planes v through b, cocolinear with u and such that the line
incident with u and v (uniquely determined by Lemma 2) does not
pass through b, The number ¢(b,u)- §b,u)+1 does not depend on
the choice of the pair (b,u) (see [9], Theorem 1). We warn that,

if a(b,u) is infinite, then we have a(b,u)+l = a(b,u) = a(b,u)-1.

Let us write a« instead of a(a,u)-é8(a,u)+1. We say that a is

the ott-Liebler number of T, as in [9].

We have a« = 0 if and only if I is a building (see [9], Proposi-

tion 1).

Moreover, if T is finite and admits parameters
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then we have @ = r’s iff T is flat (see [4] and [5]: see also

[9], Corollary 2).

The following lemma is implicit in Proposition 3.9 of [4]:

LEMMA 3. Let T be finite and let it admit parameters

Let d be the jreatest common divisor of r and s . The number rd
divides a , the number l+a divides both (1+r25)(1+r+r2} and
(1+5)(l+rs){l+r25) and there are exactly {1+r+r2}[1+r25]/'[1+a) points and

(1+s)(l+rs)(1+r%s)/(1+a) planes in T .

Let m be the multiplicity of the reflection representation

of the Hecke algebra of T . By Proposition 3.9 of [4] we have

(1+r+rzlgl+rs)(r25—uj
r(r+s)(l+a)

m =

Then rd divides a .

The number of planes of T is (1+5)[1+r5)(1+r25)f(1+u). by Propo-
sition 3.9 of [4] (see also [9], Section 4). Then 1l+a divides
(1+5)(1+r5)(1+r25) and there are exactly (1+r+r2)(1+r25);(1+u )
points in I'. Then 1l+a divides also {1+r+r2)(1+r25).

Q.E.D.

Let us state the following conventions. We have denoted the

number of lines incident with two colinear points b and ¢ by the
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symbol n(b,c). We can define n(b,c) also if b = ¢ or b # ¢ and
b £ ¢c. If b=c then n(b,c) is the number of lines incidend with

b. If b#c and bfic, then n(b,c)=0.

Given a point b and a line x, let n2(b.x) be the number of
planes incident with both b and x and let nﬁ(b,x} be the number
of points belonging to ﬁﬁ(xjsﬁtf . Given a point b and a plane
u, let L(b,u) be the set of lines x incident with u and such that
there is a plane v incident with both b and x. Let nl(b,u) be
the number of lines in L(b,u). Finally, we denote by nD(b,u) the

number of points in UU(u)rﬁb*.

Let §' be the mapping from the set of point-line pairs (b,x)
to the set of integers {0,1} that takes the value 1 precisely

when b % x.

The following Lemma could be stated in general. But we prefer
to limit ourselves to the case of finite geometries admitting

parameters.
LEMMA 4.Let T be finite and let it admit parameters

oO——D
r r S

Let (b,x) be a point-line pair. We have

)} n(b,c) =a + 1 + r-nz(h.x) + r(rs+l) - §'(b,x) .
CEUU(x)

We must distinguish three cases.

Case 1. We have b xx. Let u be a plane through x. Let us compute

the number N of quadruples (c¢,y,z,v) where c¢c is a point on x dif-

ferent from b, y is a line through b and ¢ different from x, v
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is a plane through y and z is a line through ¢ incident with both
u and v. We can compute N in two ways. We can take any point c
on x different from b, then any line y through ¢ and b different
from x., The line y does not lie on u. Then there is exactly one
incident line-plane pair (z,v) in the residue IE of ¢ such that

yxv and z+«u. So we get

N= 2 (n(b,c)-1)
Cx X

c#b

But we can also take any plane v cocolinear with u and such that
the line z incident with both u and v does not pass through b
(the line z 1is uniquely determined by Lemma 2). In Fu there is
exactly one point ¢ incident with both z and x. In r, there is
exactly one line y incident with both b and c¢c. We have y#z because
z does not pass through b. Then x#y by Lemma 2. So we get N=a.
Then

Z (n(b,c)-1)
C*X

C#b

=
i

Then we have

Z n(b,c)= a+r+(rs+l)(r+l)=a+l+r(s+l)+r(rs+l1) =
C*X

= u+1+r.n2(b,x)+ §'(b,x)s1(rs+l).

Case 2. We have b¢ UU(K) but there is a plane u incident with
b and x. Let us compute the number N of all quadruples (c,vy,z,v)

where ¢ is a point on x, y is a line through b and c¢ not incident
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with u, (z,v) 1is an incident line-plane pair in 11: and yxv and
zxu, We can compute N in two ways. We can take any point ¢ on

X then any line y through b and ¢ not incident with u and we find

exactly one incident line plane pair (z,z) in I‘C such that y=xv

aAnd zxw. So we have

N= I (n(b,c)-1).
C % X

But we can also take any plane v cocolinear with u, incident with
b and such that the line z incident with both u and v (uniquely
determined by Lemma 2) does not pass through b. If z#x, then there
is just one point ¢ incident with both x and z in T and just
one line y incident with both b and c¢ in Pv and y does not lie
on u. If z=x, then we can take any point ¢ on x and the line vy
through b and ¢ in Pv' The line y does not lie on u. Otherwise
we have x=y by Lemma 2 and bxx, whereas b¢ch(x). Then we get

N = (a- (nz(b,x)—l}) + {nz(b,x)wl)(r+1). Then we have

r (n(b,c)-1 =g+ 1 + r-nz(b,x} - (r+1).
C*X

Then

z n(b,c)
C*X

a + 1 + r-nz(b,x) =

a + 1 + r-nz(b,x) + r{(rs+1)+. 8§'(b,x).

Case 3. There is no plane incident with both x and b. Let u
be a plane incident with x. Let us compute the number N of quadruples

(c,y,z,v) where ¢ is a point in Uﬂ(x)f“lf‘.y is a line through
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b and ¢, (z,v) 1is an incident line-plane pair in I and y *xv
and z xu. We can compute N in two ways. We can take any point ¢

in gg(x}rﬁbﬂ Any line y through b and ¢ and in . there is exastly
one incident line-plane pair (z,v) such that yxz and zxu. So we
have

N = % n(b,c) ¥ n(b,c).

C*X C%X
c+ib

But we can also take any plane v through b cocolinear with

u. Let z be the line incident with u and v (the line z is uniquely
determined by Lemma 2). We have z#x because x¢L(b,u). Then there
is just one point ¢ incident with both x and z. We find ¢ in

' . The line y through b and ¢ 1in I, is uniquely determined.

u

So we have N = a+1. Then

¥ n(b,c) = a+l1l = a+l1 + r-nz(b,x) + T(rs+1).-6'(b,x).
C*X Q.E.D.

LEMMA 5. Let (a,u) be an incident point-plane pair and let
b be a point not incident with . We have
n(a,b) = Z n,(b,x)

X*d
XU

Let us compute the number N of triplets (y,v,x) where x 1is
A4 line on u through a, v is a plane through x incident with b
aAnd y 1s a4 line on v through a and b. We can compute N in two
ways. We can take any line y through a and b. Then we find just
one incident line-plane pair (x,v) in PH such that yxz and x=xu.
So we have N= n(a,b). But we can also take any line x through

A on u and any plane v through x incident with b. The line y through
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a and b in Fv is uniquely determined. So we have

N = nz(b,x)
X %A
X% U Q.E.D.
LEMMA 6. Let b and ¢ be colinear points, let x be a line through
them and let | be a plane through x. We have
n(b,c)-1 = = (n,(b,y)-1)

Y C
y*U

y#Xx

Let us compute the number N of triplets (z,v,y) where z 1is
a4 line through b and ¢ different from x and (y,v) is an incident
line-plane pair 1in I'C such that z+v and y=+u. We can compute N
in two ways. We can take any line y on u through ¢ different from
X and any plane v through y incident with b and different from
u, 1if there 1is such a plane. In I‘1er we take the line z through
b and c. We have z#x, otherwise we get the contradiction y=x by

Lemma 2.

Then we have:

N= I (n,(b,y-1)
y*C
y*xU

y#X
But we can also take any line z through b and ¢ different frnm
X. The line z does not lie on u. Then there is (just one) incident
line-plane pair (y,v) in rc such that zxv and yxu. Then we have
N = n(b,c)-1.
Q.E.D.
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COROLLARY 1. Let T be finite and let it admit parameters

Then we have g ¢ rzs.

Trivial, by Lemma 4 and by the fact that n(b,c) < rs+1 for

every colinear pair (b,c).

COROLLARY 2. Let T be finite and let it admit parameters

O—C———_—0

r I S

Let (b,u) be a point-plane pair. Then we have

X n(b,c) = (r+1)(a+1)+r(r+1)(s+1). 8(b,u).
CEUﬂ(u)

(Trivial, by Lemma 4 and 5).
Given a point-line pair (b,x), let us set

n*(b,x) = Max(n(b,c) | c € Uﬂ(x], c # b)

and

n,(b,x) Min(n(b,c) | ¢ € 0,(x) nb*).
COROLLARY 3. Let I be finite and let it admit parameters

Q—-a D
r I S

Let (b,x) be a point-line pair. Then

(1) If bxx, we have n,(b,x) <1 + a/x < n*(b,x)
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(ii) I£f b ¢ UU(K) but Gz(x)rﬁﬂz(b} # (), we have:

ﬂ+1+r-n2(b,x)
neg(b,x) < < n*(b,x)
r+1

(iii) If ﬁz(b}ﬁmz(x} = @) then we have n, (b,x) < {fu+1)/n0(b,x) <

< n*(b,x).

This corollary easily follows from Lemma 4.

We observe that nﬂ(b.x) # 0 for every point-line pair (b,x).

This fact follows from Lemma 4. But it can be easily got also

by Lemma 1.

COROLLARY 4. rLet T be finite and let it admit parameters. Let

(b,u) be a non incident point-plane pair. We have

a+ 1 = I nz(b,x)
xEUl(u)

Indeed by Lemma 5 we have

r! n(b,c) = I L nz(b,x) = I r nz(h.x) = (r+1)( % nz(b,x]}
C*1U Cx 11 X*C X*%U C*X X*U
X%U

where r+1 1is the number of points on a line. By Corollary 2 we

have ¥ n(b,c) = (r+l1)(a+l).
C*U -

The conclusion follows.

Q.E.D.

LEMMA 7. Let (b,u) be a non incident point-plane pair. We have

nU(u)rﬁbL = U(GU)|xEL(b.u)).
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The proof is trivial. It is left to the reader.

LEMMA 8. Let I' be finite and let it admit parameters. Let

b be a point and let u,v be planes not incident with Db . we have

a,(u) "b* = o (v)nbt ifg(u) Nb 2 o (v) b,

Indeed, if r+l1 is the number of points on a line, we have

y n(a,b) = (a+1)(r+1) y n(c,b)
a*u C*V

Let us set U = (o4(u)-0y(v)) ~Ab" and V = (05(v)-0,(u)) nb* . By

the previous equality we get r¢r n(a,b) = % n{c,b). Then U=@
ael ceV

if V.= 0.

Q.E.D.

COROLLARY 5. Let T be finite and let it admit parameters

Let (b,u) be a non 1incident point-plane pair. We have either
ng(b,u) = r+l or ny(b,u) > 2r+l.we have n,(b,u) = r+l precisely

when nl(b,u) = 1,

The corollary trivially follows from lemmas 8 and 1.

LEMMA 9, Let | be finite and let it admit parameters

O———D
r r S

If nl(b,u) = 1 for some non incident point-plane pair, then a< S.

Indeed, if nl(b,u) =1 for a4 non incident point-plane pair (b,u),
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then L(b,u) contains just one line x and every plane through b
cocolinear with u passes through x. Then ¢+ 1 < s,

S

Q.E.D.

COROLLARY 6. Let I' be finite and let it admit .parameters

oO——@—D Wwhere S < I,
r r S

The geometry I is a building if there is a non incident point-

plane pair (b,u) such that nl(b,u] = 1.

Indeed, if such a point-plane pair exists, we have g < s by
Lemma 9. Then a = 0 by Lemma 3, because r divides « and r > s.

Then T is a building.
Q.E.D.

COROLLARY 7. Let T be finite and let us assume that its lines
are thick. The geometry ' is a building if there 1is some polint
b such that Uz(b)#SZ and nl(b,u)=1 for every plane y not incident

with b.

Let b be a point such that nl(b;u) = 1 for every plane u not

incident with b and o,(b) # SZ'
The geometry I admits parameters

0—@C—D

r r S
because it has thick lines. We have o < s by Lemma 9. Then for
every line x not incident with b, there is some point u through
x that 1is not incident with b. Otherwise we have o > s . Given

a line x not incident with b, let u be a plane through x not inci-
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dent with b. If nz(b,x) # 0 then x is the unique in L(b,u), because
nl(b,u) = 1., Then every plane through b cocolinear with u passes
through x. Then nz(b,xj = a + 1. Let us take a plane v through
b and a point ¢ on v different from b. Let y be the line on v

through b and c¢. For every line x on v through ¢ different from

li

y, we have nz(h,x) @ + 1. Then we have

@ n(d,c) = % z n(d,b) + ¢ n(d,b) =
dxv X*C d=*X dxy
Xxu d#c
X#Y

r(r+l)(a+l)-r-n(c,b)+a +1+r(s+1)+r(rs+1),

by Lemma 4. But we have also

r n(d,c) = (r+1)(a+1) + r(r+l1)(s+1)
dxv

by Corollary 2. Then r(r+l)(a+l)-r-n(c,b)+ a+l+r(s+l)+r(rs+l)

I

= (r+1)(a+l1l) + r(r+l1)(s+1l). So we get l+ra = n(b,c). Then n(b,c)
does not depend on the choice of ¢ in (b*)-{b}. Then n(b,c) =
= l+a/r, by Corollary 3. Then 1l+ra = 1l+a/r. Then either r=1 or
@ = 0. But r#l1 because the lines of ' are thick. Then a= 0. The
geometry I is a building.

Q.E.D.

Given a line-plane pair (x,u), let nﬂ(x.u] be the number of

points in UO(K)FWGU(U).

LEMMA 10. Given a point-plane pair (b,u) ., we have

T n(b,c) = T nU(x,u].
ceﬂo[u] KEUl(b)
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The proof is trivial. It is left to the reader.

3. PROOF OF THEOREMS 1 AND 2.
In this section T©' is finite and its lines are thick. Then it

admits parameters

o——a_—D (where r > 1)

It is convenient to prove Theorem 2 for the first.

3.1. PROOF OF THEOREM 2. Let b be a4 homogeneous point of T.

If ﬂz(b) = 82 then there are exactly (rs+1)(s+1) planes in
I' . Then Uz(c} = 52 for every point ¢ and T is flat.

Let us assume that T is not flat. Then there is some plane
u not incident with b.

Let us set n = n(b,c), where ¢ is any point of T. By Corollary

2 we have

(1) nO[b.u) = (r+l1)(a+1) /n.
By (i) of Corollary 3 we have
(2) n =1+ a/r,

Then nD(b.u) = (r+1)(ae+1)/(l+a/r) by (1) and (2). So it 1is
easily seen that nU(h.u) <1+r+r2. Then L(b.u)#al(u) and UU(U) g b*.

Let x be a line in Ul(uJ—L(h.u). By (iii) of Corollary 3 we have

(3) n = (a+1)/ny(b,x).
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Moreover, we have L(b,u) # @ by Lemma 1. Let y be a 1line in L(b,u).

By (ii) of Corollary 3 we have

(4) n = (ﬂ+1+r-n2(b.y))f(r+l).

By (2) and (4) we easily get that @« =0 (mod.r%). By (2) and
(3) we easily get that no(b,x] =1 (mod.r) because a= 0 (mud.rz).
Then either ng(b.x) = 1 or no(b,x) = r+l, because no(b,x}_ﬁhr.

If nD(b.x] = r+l, then nn(b,u) = 1+r+r2 because nﬂ[b,x) = (a+l)/n

does not depend on the choice of x in Ul(u]-L[b.u). But we have

already proved that no[b,u)<1+r+r2. Then nU(b.x) = 1. Then

1+ a/r = 1l+a by (2) and (3). Then a= 0 because r>1, Then T is
building.
Q.E.D.

3.2. PROOF OF THEOREM 1.
Let the property PS hold in T .

Let x,y be distinct lines such that UU(K) # uo(y) and let
us assume that there are distinct points b and ¢ incident with

both x and vy.

All planes incident with both b and ¢ have the same 0O-shadow.
Indeed let u,v be planes through x and y respectively. We have
nﬂ(y) c cro(u) and ﬁn(x] c UU(V) by PS. Then UD[U) 2 UU(V) by PS,
because ﬂn(u) contains the O-shadow of the line y of v and a point
d on v not incident with y. We find d in UO()()—UO(Y] because

ﬂo(x) # ﬂﬁ(y] and Uo(x) c ﬂﬂ(v). Similarly, UU(V) p Uﬂ(u). Then

Op(u) = 9,(v). Now let w be any other plane incident with both
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b and c. Let z be the line on w through b and c. We have either
”g(z) # uo(x) or Uﬂ[z) # UU(}') because Uo(x)#uﬂ(}r}. Then we have
either Go(w) = ﬂﬂ(u) or Uﬂ(w) = Uo(v), by the previous argument.
Then Go(w) = Uo(u) = UOLVJ in both cases, because we have already

proved that UO(u} =ﬁ0(v). Then all, planes incident with both b

and ¢ have the same (0-shadow.

Moreover, the points b and ¢ have the same 2-shadow. Indeed,
let w be a plane through c. If xxw or yxw, then we have b=xw. Let
us assume that w ¢ Uz(x)ﬁﬁz[}r). In I‘C there are incident line-
plane pairs (v,z) and, (v',z') such that x=*v, z*w, y*v' and z'=xw.

We have UD(V) D no(z') because ﬂﬂ[v) = EFD(‘U"]. if z#z', then

Un(v) contains the 0-shadows of two distinct lines of w. Then
ﬂﬂ(v) = UU(W] by PS. Then b xw because bxv. Let us assume that
Z = z'. We have assumed that all lines of TI are thick. Then we
find a line z" on v through ¢ distinct from both x and z. Let
u be any plane through z" different from v. We have bxu by the

previous argument (we observe that v#v' because x#y and Uﬂ(x)ﬂﬂo(y

contains both b and c). Let x' be the line on u through b and
c and let u be the plane through x' cocolinear with w in r..
If D‘U[K') # uo(x]. then we can substitute v' with u and y with
x' in the previous argument and we get bxw. If UD{K') "-cro(x].

then oy(x') # oy(y). Then we can substitute v with u and x with

X' in the previous argument and we get baxw.

So we have proved that Uz(c) c Uz(b). Similarly, Uz(b) c Uz(c).
Then Uz(b] = crz[c).
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3 v

Let us assume that T is not flat. Then there is some plane w
not incident with b. Let z be a line in L(b,w) and let u be a plane
in Uz(z)ﬁﬂz(b]. We have c*u because r:rz(b]= gz(c). Let z' be the
line on u through b and c¢c. We have z'#z because bﬁ!nﬂ(w). Let d
be the intersection point of z and z' in l“u. We have weuz(d)-ﬂz(h).
Then all lines through b and d have the same O0-shadow. Then all
lines through b and d are incident with ¢, because z' is a line
through b and d and it passes through c¢. But every plane through
b passes through d. Indeed it passes through ¢, then it has the
same (O0-shadow as u, then it passes through d because u passes through
d. Then there are exactly rs+l lines through b and d and they are
incident with the same points because b¢ GB(W) and d+*w. Then each
of these lines passes through ¢, because z' passes through c. Then
there are rs+l1 pairwise distinct lines through b and c¢c with the
same O-shadow. But we have assumed that there are lines x,y through
b and ¢ such that Uﬂ(x)# cb(}']. Then there are at least rs+2 lines

through b and ¢. They are too many. We have a contradiction.

Therefore, given two colinear points b and ¢, all lines through

both b and ¢ have the same O-shadow.

Now let (b,x) be an incident point-line pair. For every point
c on x different from b and for every line y through b and c, we
have Uﬂ(x) = UO(}']. Then, for every choice of the points c,d on
x different from b, we have ul(c)ﬁnl(b) = r:.rl(cl) r‘nul(b]. That is,
the set of lines qiﬂihﬁﬂl(c) does not depend on the choice of c
in g (x) - {b}. Thus n(b,c) does not depend on the choice of c
in o,(x) - {b}. So we have n(b,c)=1+a/r, by Corollary 3. Then

n{(b,c) does not depend even on the choice of x. Thus b is homo-
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geneous. Therefore I' is 4 building by Theorem 2 (indeed we have as-

sumed that it is notflat).So, T is a building if it is not flat.
Q.E.D.

REMARK. It is possible to give also a proof of Theorem 1 that
does not depend on Theorem 2. It is similar to that given here,
but a little different in the final part. In particular, the rela-
tion o =0 (mod. rz), that is the crucial point in the proof of
Theorem 2, can be established, under the assumption that PS holds,
by an argument more geometric than that used in the proof of Theorem

2.

4. ON THE PROPERTY PS*

In this section I' is finite, admits parameters

o—Q D
I r S

and the property PS* holds in it.

If r=1, then, by the classification of finite geometries of
type C, with thin lines given in (11], we easily get that T is

either a building or ftlat.

Let us assume that r#l.

LEMMA 11. Given a point-line pair (b,x), we have either n,(b,x)=0,

or nz(b.x) = 1 or nz(b.x) = s+1,
(Trivial. This lemma is nothing but a restatement of PS*).

LEMMA 12. The least common multiple of r and s divides q.
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The statement is trivial if a = 0., Let us assume that a # 0. Let
(b,u) be an incident point-plane pair. By the property PS* we
have cb(x) c Uz[b] for every line X on u not incident with b and
such that 02(1) rwuz(b) contains a plane different from u. Then

s divides @ , by Lemma 2. Then the least common multiple of r

and s divides a, by Lemma 3.
Q.E.D.

LEMMA 13. Given two colinear points b and ¢ , we have n(b,c) = 1
(mod. s).

(Trivial, by Lemmas 6 and 11).

Lemma 13 allows us to establish the following convention. Given

two colinear points b and c, we set kbc = (n(b,c)-1)/s.

LEMMA 14, Let (b,x) be a point-line pair. Then:

(i) If bxx we have

g
C*X bc

c#b

(ii)li’h¢00(x) but ﬁz(x) ¢ UE(bJ' then we have:

a + rs = % k

S
bc
C*X

(iii) If b ¢ Uo(x) and Uz(xi_E ﬂz(b} but Uz(xjrwuz[b) £ (), then

(iv) If Uz(b]rﬁuz(x) = (), then we have
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- = I
a+1 ng(b,x) ciy kbcs
c b

(Trivial, by Lemma 4 and 11).

LEMMA 15. Let (b,u) be a point-plane pair. Then:

(i) If bw«u then we have

a(r+l1) = & k
C+*U

c#b

(ii) If béﬂﬂ(u) then we have

(@+1)(r+1)-ngy(b,u) = % Kk
C*U

ceb

bc®

and

@+ 1 = ny(b,u)

(Trivial, by Corollary 2 and Lemma 11).»

LEMMA 16. Let (b,u) be a non incident point-plane pair. Let

C be a point in Uﬂ(ujfﬁbf Then 1+kbc5 is equal to the number

of lines in Gl[c)fﬁL(b,u).
(Trivial, by Lemmas 5 and 11).

LEMMA 17, Let (b,u) be an incident point-plane pair and let
Cc be a point on u different from b . Then 1+kbc is equal to the

number of lines X through C on uy such that Uz(x) E_Uz(b).

(Trivial, by Lemmas 6 and 11).

COROLLARY 8. Let (b,u) be a point-plane pair. Then:
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(1) If b+u we have

X (kbcs)2 = u2+r5u
C+U
C#b

(ii)z1f béUD(u) we have

2 .
L ((kh{fs) + kbfs) = a + a

C*LU
ceb

Let us assume that bxu. For every point ¢ on u different from
b, let )(C be the set of lines x on u, incident with ¢ but not
with b and such that Uz(x) c Uz(b) and let us set
— |
X = | XC.

C*U
c#b

The set KC contains kbc lines, by lemma 17. The set X contains

¢/s lines, by Lemma 11, Then we have

2
¥ ki s = I Y ky, s = I ¥ k.. s =
C*U be C*U XEKC be XxeX C*xX bc
c#b c#b

= (a+rs)a/s. Then (i) follows.

Let us assume that béﬂﬂ(u). By Lemma 16, by the second relation

of (ii) of Lemma 15 and by (iii) of Lemma 14 we have:

7 (kg _s+l1l)k, s = T z k., s = I r ky . s =
C* U be be C*U X#*C be xeL(b,u) c=%x be
cib ctb xeL(b,u)
= (a+l)a .,

And (ii) follows.
Q.E.D.
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COROLLARY 9. We have g < r-r if T is not flat.

If T is not flat, there 1is a non incident point-plane pair
(b,u). Given a line x in L(b,u) (we recall that L(b,u)#@ by Lemma
1) and given a point ¢ on x, we have:

2 2 L f
dfx (kdbs) > (u-kbcsj A s by (iii) of Lemma 14.

d#c

Given a line y on u not in L(b,u) and given a point ¢ on vy,
we have

2 2
T (kyns)” > (a-r-k, s)7/r
dax db bc

d:b
d#c

by (iv) of Lemma 14, because n,(b,y) < r+l.

Then, given a point ¢ on u, by (ii) of Corollary 8 we get:
2
(kbc5+1)( a —kbcs) fr+(r-kbcs)( u-r-kbcs)zfr+(kbcs+lj{ o —kbcs) +

+ (r_kbcs)(u_r_kbc5)+(kbc5)£+kb55 < u2 + a,

By this inequality we get, by easy computations, that

2

(u—kbcs) < rz(u—kbcs).

If a < ky.s, then a < r by Lemma 16. We are done.

Let us assume that a > kbcs‘ Then we have g < r2+kbcs. But

kKyeS < r by Lemma 16. Then either a = r2+r. or a = r% or a=r’-hr

for some positive integer h, because r divides a by Lemma 3.
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Let us A4dssume that @ = r +r. By Lemma 3 we know that, if d

is the gredatest common divisor of r and s, then rd divides «

So d divides r+l1 and hence d=1. Thus the least common multiple

of r and s is rs. Then s divides r+1 by Lemma 12. But we can have

So s divides

@ = r2+r only if khcs = r for every choice of ¢ on u.
also r. Then s=1 and T is a building by [12] and [1]. Then
a = 0. We have 4 contradiction, therefore a < r2_

a = r2. By Lemma 3 we have that 1+r2 divides

Let us assume that
(1+r25)(1+r+r2). Then 1+r® divides s-1. Then either s=1 or l+r <

s-1. But if s =1 then I' is a building and a« = 0. And we have

A contradiction. On the other hand, r2 > s by a well known restri-

ction on parameters of generalized quadrangles, becduse r#l (see

> s-1. We have a contradiction anyway. Then

[10]). Then 1+r%
a # rz. Then a < rz-r
- ) Q.E.D.

COROLLARY 10, Let T be not a building. Then we have ﬂﬂ(b,x} > 1

for every point-line pair (b,x).

Let (b,x) be a point-line pair. If 0,(b)No,(x) # @ then nD(h,x}:

= r+l and there 1is nothing to prove. Let us assume that

Uz(b) N Uz(x) = (. By (iv) of Lemma 14 and by Lemma 16 we have

nU(b,x} > (e+1)/(r+1). If T is not a building, then r < a because

r divides a« by Lemma 3.
Let wus assume that a = r. Then 1+r divides (1+r25)(1+r+r2)

by Lemma 3. So 1l+r divides 1+s and hence r < s, But s divides

r by Lemma 12 because a = r,so that r=s. Thus I is either abuilding

a # r. Then a>r and nﬂ(b,xj > (a+l)/(r+1) > 1.

or flat, by [5]. So,
Q.E.D.
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Now we give the proofs of Propositions 1 and 3.

PROOF OF PROPOSITION 1. Let T be not flat. Then there is a

H

non incident point-plane pair (b,u). If Kk 0 for every point

bc
c in ﬂﬂ(uﬁﬁbl, then ¢ = 0 by (iii) of Lemma 14, because L(b,u)#0Q
by Lemma 1. Then T is a building. Let us assume that T is not
A4 building. Then kbcsaé 0 for some point c 1in no(u) ﬁb*.B)r Lemma

16 we have ky s< r. Then s < r. But we have s # r by [15] because

we have assumed that T is neither a building nor flat. Then s«<r.
Q.E.D.

PROOF OF PROPOSITION 3. Let the property BS hold in T . Let
' be not a building. Then it is almost flat by Corollary 10 and

Property BS.

Let us assume that T is not flat. Then there is a non incident
point-plane pair (b,u). Let ¢ be a point on u. By (iii) and (iv)

of Lemma 14 and by the fact that I' is almost flat we get that

¥ ki 8 = a

for every line x on u through c. By (ii) of Lemma 15 we have

5k = q(r+l) - r2

S
dsu bd

becdause I is almost flat. But we have also

L ks =Kk

+ I I k
d*u bd

X*C d=xX
xxu d#c

beS bdS = kbc5+(r+1)(u—kbcs).

Then (r+1)u-rkbcs = (r+l)ca -r2. Then kbcs:: r. Then a = r2+r by

(iii) or (iv) of Lemma 14. But we have a < r-r by Corollary 9.
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We have the contradiction.
Q.E.D.

REMARK. There are not many chances to improve the inequality
of Corollary 9 working only with relations (i) - (iv)
of Lemma 14 and (i) and (ii) of Corollary 8. For instance, we
can try to maximize the sum of (ii) of Corollary 8, rather than
minimize it 4s we have done in the proof of Corollary 9. We can

substitute in that sum kg s with r (by Lemma 16). We get the inequa

lity (r2+r)2 + (r2+r) > ﬂz+ﬂ , that again leads to the inequality

a < r2+r that can be improved up to g < rz-r. We can try to use

tricks more refined than the mere substitution of kb::S with r,

of course. But we do not make any real progress. Things are even

worse with (i) of Corollary 8.

5.0N THE PROPERTY BS.

In this section T is finite, the property BS holds in it and

all lines of ' are thick.

The geometry T admits parameters

because it has thick lines.

LEMMA 18. Let (b,u) be a pcint-plane pair such that nl(b*u) = 1.

Then we have nl(b,v) = ] for every plane vy not 1incident with b,

Let us assume that nl(b.v) # 1 for some plane v not incident
with b, by contradiction. Then we have ng(b.v) = 1+r+r2 by Lemma

7, Corollary 5 and by the property BS.
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The geometry T is strongly connected. Then we find a sequence

(Vﬂ'vl““‘vn) of planes and a sequence (xl.xz.....xn) of lines

such that v = VO*Xq*Xq¥*, .o kX kV S UL Let v, _4 be the last plane

in the sequence {vO,vl....vn] that does not 'pﬁss through b and

such that rujbuvi_l)#l. If'ui does not pass through b, then we

have Uﬂ(xi) = ::rﬂ(v.l} ~b* by Lemma 7 because nl(b,vi}sl. Then we
e | 1 i 4 _ i
save Uﬂ(vi) N b c UU{vi_l) nb” . Then UU(Vi) ~b = UU[vi_l) ™ b
by Lemma 8. We have the contradiction 9,(v,_ ;) Nnb" = 0,(x,).

Then v, passes through b. Let vj be the first plane in the sequence
[vi+1,vi+2,...vn) that does not pass through b. Then all planes

Vi+l‘vi+2““uj—1 pass through b and we have nltb,vj)=l by the

previous choice of v, We have to distinguish two cases.

i-1°
Case 1. We have j=i+l. Let ¢ be the intersection point 1in

T of X 4 and Xi,1- In ' we find two lines Y1+Y9 and a plane

. C
v 1

w such that y, lies on both v, ; and w, y, lies on both v, 4 and

w, and yz#xi+l.

Let us assume that bxw. We have Uﬂ(xi+l) ¢ b* because b*vi.

Then Uo(xi+1) = Ug[vi+1)rﬂf because nl(b,vi+1) = 1. But we have
also no(yzj ¢ b because bxw. Then we have the contradiction Yo¥Xi4q
because no(b.vi+1) = r+l1. Then béﬂo(w). Now we have a contradiction
again, as in the case when V4 did not pass through b, discussed’
above. Indeed, 1if nn(b,w) = 1, then w plays the role of Vi in
that argument. If nD(b,w) = 1+r+r2. then w plays the role of

Vi_q and Vil palys the role of v, in that argument. The contradi-

ction is got anyway. Then we are led to the second case.
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Case 2. We have j>i+l. Let ¢ be the intersection point of xj

and x. in T .
-1 Vi-1

In I}: there are lines Y1+Y5 and a plane w such that Y1 lies

on both w and Vj-z* Y, lies on both w and Vj and yzaij. We have
Uo(xj) c b because X %V q and b*vj-l' Then UD(xj) = Gﬂ[vj'}r“xb"'

because nﬂ(b,vj)=r+l. Then be,‘ﬂo(w). Otherwise we have ‘JU(yz) c b*

and we get the contradiction y)=X We have nl(b,w)--l. Otherwise

i
we get a contradiction as in the case when Vi did not pass through
b, putting w into the role of Vi and Vj into the role of v,
in that argument.

Then we can substitute Xi_1 with vy,, Vi-1 with w and W with

Yy, in the sequence of planes and lines
(Vnmxlj-:-Vi_lixiivi!ii-V.]'_Zixj_livj_lixj fvj‘**'xn"vn)'

Now w plays the role that was played by vj. Iterating this argument
we finally get the situation of Case 1. And we have the contradi-

ction.

Q.E.D.

The proof of Proposition 2 is quite trivial now.

PROOF OF PROPOSITION 2. If there is some point-plane pair (b,u)
such that nl(b.u) = 1, then nl(b,v) = 1 for every plane v not
incident with b, by Lemma 18. The geometry T is a building by
"Corollary 7.

2

Otherwise we have nﬂ(h,u]=l+r+r for every point-plane pair

(b,u). Then T is almost flat.
Q.E.D.
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