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SOME DENSE BARRELLED SUBSPACES OF BARRELLED SPACES

WITH DECOMPOSITION PROPERTIES

Jurgen ELSTRODT-Welter  ROELCKE

1. INTRODUCTION. There are many results on the barrelledness

of subspaces of a barrelled topologica1 vector space X. For example,

by M.Valdivia  [14],  Theorem 3. and independently by S.A.Saxon

a n d  M.Levin Cl11  9 every subspace of countable codimension in X

is barrelled.

Recalling that locally convex Baire spaces are always barrelled,

it is an interesting fact that every infinite dimensiona1 Banach

space c o n t a i n s  a  d e n s e  b a r r e l l e d  subspace w h i c h  i s  n o t  Baire,

by S.A.Saxon [lo]. From the point of view of constructing dense

barrelled subspaces’ L of a barrelled space X the smaller subspaces

L are the more interesting ones by the simple fact that if  L is

dense and barrelled SO  are al1 subspaces M between L and X. For

barrelled sequence spaces X some known constructions of dense

barrelled subspaces use “thinness conditions” on the spacing of

the non-zero terms xn in the sequences (x~)~~NEX. Section 3 of

this article contains a unification and generalization of these

constructions. which we describe  now in the special case of sequence

spaces.

Let X be a sequence space over the field M of rea1  or complex

numbers.For every x=(x,,)~~NFX and kelN:=(1,2,3,...) let g,(x) denote

the number of indices  ne (1,2,....k} such that x,.,*0. Clearly the

“thinness condition”
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(0)
g,(x)

l i m  k = 0
k-tm

on the sequence of non-zero components of x defines a  I i n e a r sub-

space L of X. If X is the Bannch space 11, then L is a proper  dense

b a r r e l l e d  subspace o f  X b y  G.K6the. [7] ,[8], 52’7.1, w h e r e  t h i s

fact  is  deduced essentially from the following simple lemma.

1.1. LEMMA. A subspace  Y of a (locally  convex  Hausdorff)  barrelled

space X is dense and barrelled if and only if in the topologica1

due1 X' of X every o(X',Y)-bounded  seguente  (or, eguivalently,

set) is o(X',X)-bounded.

Lateron, thinness condition (0) and variants thereof were used

for similar purposes by J.H.Webb [16]  in his Lemma D.(l) on perfect

sequence spaces and by M.Valdivia [13], Theorem 1 and by M.Valdivia

and P.P.Carreras  [15],  ‘Example 1. Webb’s Lemma D(l)reads  as follows.

LEMMA D.(l).rf X is a perfect sequence space which is barrelled

under the Mackey  topoloqy r(X,XX)  , where Xx denotes  the a-dual

of X in the sense of G.tithe  [7],[8],530,  then the subspace  L

of X defined by (0) is barrelled under the topoloqy T(L.XX).

We shall deduce this result from our Corollary 3.4, which says

(roughly speaking): Suppose that X is a projection invariant bar-

relled sequance space such that x = n$lxnen  for al1 x=(~,)~~eX,

where en = (* nk)keIN  ’ Then the corresponding subspace L and even

a certain smaller dense subspace M of L are barrelled. This result

i s  a  s p e c i a l  c a s e  o f  our g e n e r a l  main T h e o r e m  3 . 1  i n  w h i c h  w e

assume a kind of decomposition, called pseudodecomposition which

is more general than a Schauder decomposition.
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The notion  of pseudodecomposition is introduced  and discussed

in Section 2. A pseudodecomposition of an 1.~. (locally convex

Hausdorff topologica1 vector) space X is a pair ((Xn)naW’D)  where

t h e  Xn (ne.lN)  a r e  ( n o t  n e c e s s a r i l y  closed) subsptices o f  X  a n d

D  c  nhXn  i s  a  subspace  s u c h  t h a t nElxn converges  i n  X  f o r  al1

(Xn)neNeD  and such that every xeX has an expansion x = nil ‘n f o r

some (~~)~e~eJfD. (This expansion need n o t  b e  u n i q u e . )  O b v i o u s l y

every Schauder decomposition of X .gives  rise to an associated

pseudodecomposition. The pseudodecomposition ((Xn)nflN’D)  is  called

projection invariant if (E~x~)~&N  D f o r  al1 (x~)~~ e D and

(Enlna e (O.l)lN. Projection invariance is characterized in Lemma

2.4 -by, a summability property, and its relation with the equiconti-

n u i t y  o f  a n  a s s o c i a t e d  s e t  o f  p r o j e c t o r s is described in Lemma

2.5 for Schauder decompositions (Xn)na.

Large parts of Section 2 are devoted to demonstrating in a

s e r i e s  o f  e x a m p l e s  t h e  v e r y  b r o a d  g e n e r a l i t y  o f  t h e  concept  o f

pseudodecomposition. The Main Example 2.8 proves that there  even

e x i s t  B a n a c h  sequence  spaces  X  t h a t  have a  p r o j e c t i o n  i n v a r i a n t

pseudodecomposition ((lKen)n*,D) with n& Men c D and with unique

expansions but such that (lKen)nm i s  n o t  a  d e c o m p o s i t i o n  o f  X

in the usual sense.

T h e  main result o f  S e c t i o n  3  i s  T h e o r e m  3 . 1  s t a t i n g  t h a t  i f

X is a barrelled (1.c.) space with a projection invariant pseudode-

composition ( (Xn),,*,D),then also the dense subspace  L of X defined
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by thinness condition (8) and even a certain smaller dense subspace

M c L are barrelled. The scope of Theorem 3.1 and Corollaries

3.3.3.4 is analyzed in Sections 4 and 5 by means of some classes

of examples on classica1 Banach or Fréchet  spaces. In particular.

we shall show:

(a) The hypothesis o f  p r o j e c t i o n invariance cannot be dropped

in Theorem 3.1. and the hypothesis on the equicontinuity of the

set of projectors qJ (J c IN finite) cannot be omitted in Corollary

3.3.

( b )  There e x i s t  s p e c i a l  B a n a c h  s p a c e s  w i t h  S c h a u d e r  b a s i s  f o r

which L and even a smaller subspace  are barrelled although projec-

tion invariance does not hold.

( c )  There a r e other thinness c o n d i t i o n s  m o r e  restrittive  t h a n

(8) which yield dense barrelled subspaces for some special Banach

or Fréchet spaces with Schauder decomposition but not for others.

( d )  T h i n n e s s  c o n d i t i o n  (8) i s  i n  s o m e  s e n s e  b e s t  p o s s i b l e  ( c f .

Theorem 5.6).
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2. PROJECTION INVARIANT PSEUDODECOMPOSITIONS.

We define  pseudodecompositions of an 1.~. (locally c o n v e x  Hausdorff

topologica1 vector) space X by weakening the familiar defining

conditions on Schauder decompositions.

2.1. DEFINITION. A pseudodecomposition of an 1.~. space X is

a pair ((Xn)naN’D)  where the Xn are (not necessarily closed) SII!)-

sp.lcesof  X  rnd D  is ‘i subspace  o f

(2.1) E : = {(Xn&,J~ n&xn  : convergesl

such that, f o r  al1 xeX there  i s  a sequence  (x~)~~ F D with
Co
C xn=x. H e r e ,  (x~)~~ w i l l  b e  called a n  expansion  o f  x ( i n  D ) .

n=l
The set of al1 expansions of x in D is denoted by Dx.

Our concept of pseudodecomposition goes over into that of 1. Singer

[=] 9 p.538. Definition 15.21, by considering only Banach spaces

f n r  X , c l o s e d  s u b s p a c e s  f o r  Xn, a n d  D = E .  We w i l l  discuss  t h i s
m

rather general concept in some detail. For al1 mdN  let prm:nl&Xn+Xm,

Prm((xnlna) :=xm9 denote  the m-th canonica1 projection. A given

pseudodecomposition U((Xn)naN’D)  may always be “reduced”  to the

pseudodecomposition ((prn(D))nelN,D). Definition 2.1 does not require

that n$N prn(D)  l i e s  i n  D . - Consider now the canonica1 linear

s u r j e c t i o n  f  :  D  +X, f((xn)nelN):=nIlxn. I f  ,,sprn(D) l i e s  i n  D ,

then its image under f is dense in X. The set DD of al1 expansinns

of 0 in D is the kernel of f. Every element xeX has a unique expan
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rion  (x~)~~ i n  D  i f  a n d  only  i f  D O = ( O ) .  I f  ((Xn)na,D) i s  a pseudo

decomposition with unique expansions, one h a s  t h e  associated  projec

tors

(2.2) qn : x -f x, q,(x) : = xn (n e IN), and

qJ : = $J 9, f o r  f i n i t e JclN.

D = E and uniqueness of the expansions together mean that (Xn)na

1s n decomposition of X in the sense of J. Marti [9], Chapter

VII;  a n d  i f ,  i n  a d d i t i o n ,  t h e  p r o j e c t o r s  q, a r e  c o n t i n u o u s  one

obtains  exactly the Schauder Secomposit ions (Xn)nfw  of X (with

‘n = {OI admitted). The (Schauder) decompositions of X can in

this way be considered as special pseudodecnmpositions. Applying

the abnve to X endowed with the weak topology 0(X,X’) one nbtains

weak pseudodecompositions and w e a k  ( S c h a u d e r )  decnmpnsitinns.

Patently, every pseudodecomposition is a weak pseudodecomposition,

and it is easy to see that every Schauder decompnsition is a weak

Schauder decomposition. Conversely, for a barrelled space X, every

weak Schauder decomposition is  a Schauder decompositinn (cf. J.

Marti  [9], p.128, Theorem 5).

If ( (xn)n,gq. D) is  a pseudodecomposition of X with n$l,l,IXn c D,

with unique expansions and cnntinuous projectors q, (cf. (2.211,

then it is a Schauder decomposition. (TO prove D = E, let (y,),&eE.

Put x : = n=l y,c a n d  consider  i t s  e x p a n s i o n  (x~)~~ E D x .  T h e n ,

f o r  al1 n,r eIN a n d  r -2 n ,  t h e  sequence  (y,,...,y,,O,O,...)

is in D, a n d  t h e  continuity o f  q, implies  Yn’qn(i~lYi)=qn(i~lYi)=
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=  q,(x) =  xn, hence (yn)nm e D . )

2.2.EXAMPLE. There  exists a Banach  sequence space X with pseudo-

decomposition (Men)na,D) with en:=(6nm)m~,n~l  Me,, c D and with

unique  expansions, but such that (Ken),& is not a decomposition

of X , i.e. such that D + E.

(a) Let Z be an 1.~. space with a topnlogical basis (bn)na.  That

is , f o r  v e r y  zeZ  there  e x i s t s e x a c t l y  one s e q u e n c e  (  Xn)nelN i n

IK such that z = nilXnbne ( I f ,  i n a d d i t i o n ,  z* 1n is continuous

f o r  al1 n  e N ,  t h e n  (bn)na is called a Schauder basis.) Let NC  Z

b e  a  closed subspace  s u c h  t h a t  N+{Ol a n d  Nnspanfbh  nelN)= IO). L e t

Y  b e  a  complement~~ry  subspace  o f  N  i n  Z  c o n t a i n i n g  s p a n  Ibn: neIN).

Thus Y is a proper  dense subspace  of Z. Transferring the Hausdorff

quotient topologyfrom Z/N to Y by medns of the cdnonic.+l  isomorphism

Y = ZfN one o b t a i n s  a n  1.~. space X with the sdme underlying vector

space as Y. T h e  t o p o l o g y  o f  X  i s  s t r i c t l y  c o a r s e r  t h a n  t h a t  o f

Y, since for aeN,  a+O  and a = n!lxnbn in Z, the series nil ‘nbn

is not convergent in Y, but it is convergent in X with sum 0.

Consider now the decomposition (Mbn) na of Y as a pseudodecomposi

tion (‘Kb,)nay 0) of Y, where

D : = {(x~)~~~ e .il IKbn : c xn converges  in Y) .n=l

This is at the same time a pseudodecomposition of X with unique

expansions in D. (Uniqueness holds since for (yn),~eD the sum

72
n = l  yn in X agrees with the sum in Y, and ( M b  )n neN i s  a  decomposi-
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tion  of Y.) However. it  is not H decomposition of X: The space E

from (2.1.) for this pseudodecomposition is strictly larger than D

since  E contains the subspace

F : =  { (z~)~~  F nz\ IKb, :. nIl zn c o n v e r g e s  i n  Z  ).

If we use fnr Z a barrelled space then X is also barrelled; and

i f  w e  choose  Z  a s  a  B a n a c h  sequence space with Schauder basis

(bnlna  =  (enlnaN’  then X a n d (KenlnaN’ D) have t h e  r e q u i r e d

p r o p e r t i e s .  I f  Z  =  12, t h e n  a  H i l b e r t  s p a c e  strutture i s  induced

on X by that of 12/N.

R e t u r n i n g  to t h e  c a s e  o f  a n  1.~. s p a c e  Z ,  w e  n o t e  t h a t  t h e

p r o j e c t o r s  qn (see  ( 2 . 2 ) )  f o r  our p s e u d o d e c o m p o s i t i o n  o f  X  a r e

not al1 continuous by the remark  before 2.2. (This also becomes

o b v i o u s  i f  one t a k e s  aeN. a+O, a= cn = l  an i n  Z  w i t h  ane IKb, (neIN),

c h o o s e s  meIN  s u c h  t h a t  a,jO  a n d  n o t e s  t h a t nElan=O i n  X . but

E
qm(n=l a,) = a, for al1 r 1 m.)

(b) We now compare the spaces  E and F of the above construction

more closely. Clearly we have the interna1 algebraic direct sums

E=D $-Eo  and F=D -+&-G  where

Eo : = ((x~)~~  e nil Mbn : ni1 xn = 0 in X) 9

G:=~(x,),~ F nEl IKb, : _n-Ixn converges in Z, with sum in N),

and c l e a r l y  Gc Eo. Therefore F = E holds if nnd only if G = Eo.

We assume now that (bn)nm  is a Schauder basis of Z, and we claim:
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I f  d i m  N  i s  f i n i t e ,  t h e n  F=E. i.e.. G=EO; :rnd  if  dim N is infinite

and Z=lp with 1 < p cm, one m a y  have F+E.

1. L e t  d i m  N  b e  f i n i t e  a n d  (x~)~~~EO.  T o  p r o v e  (x~)~~N”G w e

may assume that (x~)~~ )O. Let C be the compact unit sphere for

some norm on N, and let e,(Z) denote  the filterof al1  neighbourhoods

of 0 in Z. For every Ue@O(Z)  we choose  a natura1 number rU such

that, f o r  al1 rlrU. there  exist some elements zu r eC  and> +J,reIk

such that

(2.3) cn = l  ‘n - A U,r ‘U.r e lJ’

The  set  T : = {(U,r) E eo x IN : r > ru) is directed by

iU,r)  2 (U’, r’) i f  a n d  o n l y  i f UXJ’ and r<r’. The net (zU.r)(U,r)eT

in C has a subnet (zUs,rs)seS converging to some point ceC. Applying

now to (2.3) the continuous projectors qn for the Schauder decompo-

sition (IKb,)r.,eIW o f  Z , one sees that the subnet (Au r )seS o f
s’ s

(XU,r)(U,r)eT converges  t o  s o m e  XeJK  a n d  t h a t  xn=Xqn(c) f o r  al1

neIN,  i.e., Hn=lxn= Ac i n  Z .  Hence (x~)~~~G.and this proves our

first assertion G=EO.

2. L e t  Z=lp w i t h  llp<m a n d  b,=e, (neIN). W e  define  a  closed

subspace  N of Z such that E#F  as follows: Let (Ik)keIW  be a partition

o f  2lN i n t o  i n f i n i t e  subsets  I k  a n d  l e t  dk:=,iI 2-“en (ke.lN). W e
k

define  N  t o  b e  t h e  c l o s u r e  o f  s p a n  (an:neIN) i n  Z .  w h e r e  al:=el-dl
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and an:=eznSl  + d,-l-d, f o r  n>2. T h e  s p a c e  N  consists o f  al1

elements of the form n&Xnan with (Anln~elP, and CAnIna+  ,,ELXnan

is a topologica1 isomorphism of lp onto N, whence (an)nfl is a

S c h a u d e r  b a s i s  o f  N .  O b v i o u s l y  N  fl span(en:ntzIN}  =  101  since  t h e

‘k are infinite and disjoint. Choose a complementary subspace

Y of N in lp which contains span 1 en : na3 and def ine X as in part

c(a). Then we see from el+e3+...+e2n-l=al+a2+...+an+dn that k=le2k-l

converges in X with sum 0. Hence t h e  sequence  (+(l-(-l)n)en)na

belongs to Eo but not to F. This proves nur secnnd assertion under

(b).

We shall imprnve Example 2.2 in nur Main Example 2.8 by making

the pseudndecnmpnsitinn in addit.inn  , prnjectinn i n v a r i a n t  ( c f .

Definition 2.3). Mnst pseudndecnmpnsitin,ns  ((Xn)n.,N,D)  tn be needed

later will be invariant under the canonica1 prnjectnrs

PJ  : n&Nxn  + n51NXn (J c NI,

(2.4)
P~((x~)~~) : = (Y~)~~ , where y, = xn fnr n E J and

yn = 0 f n r  n&J.

2.3. DEFINITION. A pseudndecnmpnsitinn ((Xn)nd,D) of an 1.~.

space X is called projection invariant if D is prnjectinn invariant,

i.e., if pJ(D) c D fnr al1 J C IN. ((Xn)na, 0) is c a l l e d  unconditional
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i f  al1 s e r i e s with (xnlnmeD  are unconditionally convergent.

A  p r o j e c t i o n invariant pseudodecomposition contains always

t h e  p r o j e c t i o n  i n v a r i a n t  subspace  .& Pr,(D)  a n d  one m a y  r e d u c e

it by replacing the spaces  Xn by prn(D).

If ((xn)n+-.JgN. D) i s  a  p r o j e c t i o n invariant pseudodecomposition

of X with unique expansions x » (x~)~~, there  exist the projectors

(2.5) qJ : x + x, q,(x) = nilYn w i t h  y, from (2.4) .for ~11  JclN,

extending (2.2). If X is an 1.~. space with a projection invariant

pseudodecomposition ((Xn)na,D).  then for al1 (x~),,~~D, the series

nilxn is subseries convergent. By M.M. Day [l] ,  p. 78, this is

e q u i v a l e n t  t o  s a y i n g  t h a t  t h e  sequence  (x~),.~ a n d  al1 i t s  subse-

quences are summable, or equivalently, that nElxn a n d  al1  i t s

subseries are unconditionally convergent. By a form of the Dunford-

Pettis Theorem (cf. H.Jarchow CS]. p.308, Theorem 4) , these  statements

about convergente  and summability are equivalent to the corresponding

ones with respect to the weak topology of X. Thus the nntinns

o f  p r n j e c t i n n invariant pseudndecnmpnsitinn and of prnjectinn

invariant weak pseudndecnmpnsitinn are equivalent. A l s n  b y  t h e

abnve, every prnjectinn invariant pseudndecompnsitinn is uncnndi-

tinnal.

The next lemma shows that under a mild cnmpleteness assumptinn

on X, the prnjectinn invariance of a pseudndecnmpnsitinn

( UnIn&. E) with E frnm (2.1) may be characterized by the summability



166 J.Elstrodt-W.Roelcke

o f  t h e  s e q u e n c e s  (x~)~~NEE. W e  cali  a  s e r i e s  $lyn w i t h  yneX (nelN)

a Cauchy series if i t s  partial sums f o r m  a C a u c h y  sequence.  A

pseudodecomposition ((Xn)nflW’ D) with D=E is called complete  if

( 2 . 6 )  e v e r y  Caurhy s e r i e s with xn e Xn (neIN) converges

(x-rd hence (x )n neNFE)- Th is cond it ion i s  trivi,illy sitisfied if

X is sequentially complete. For Schauder decompositions it has

b e e n  introduced  b y  N.Kalton  [6], p . 3 5 .

2.4.LEMMA.  A complete pseudodecomposition ((Xn)naN’D)  with D=E

(Cf.(Z.l))  o f  en 1-c. space X is projection invariant if and only

if al1 sequences (x~)~~~E are summable, i.e., i f  and only if

it is unconditional.

Proaf . T h e  c o n d i t i o n  i s  necessary  a s  r e m a r k e d  a f t e r  ( 2 . 5 ) .

N o w  l e t  i t  b e  f u l f i l l e d .  L e t  (x~)~~~E. J  C IN a n d (Ynln&  : =

= PJ((Xn)n&  * For every neighbourhood LJ of 0 in X there  is R

f i n i t e  s e t  1 c I N  s u c h  t h a t  f o r  al1 f i n i t e  s e t s  K  C IN w i t h  KflI=@

one h a s nEK  ‘n ’ ” It follows that also nC,K yneU f o r  these  K .

SO the series nZIYn is Cauchy and by (2.6) converges, i.e.,

(Y&.,~ e E.

Consequently. i f  a t o p o l o g i c a 1  b a s i s  (bn)na  o f  a n  1.~. s p a c e

X yields a complete (pseudo-) decomposition (Mbn)nelN,E)  o f  X ,

one can say that this (pseudo-) decomposition is projection invariant

i f  a n d  o n l y  i f  (bn)na is an unconditional basis.
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In the next lemma we give a relationship between projection

invariance of a Schauder decomposition (Xn)na of an 1.~. space

X and equicontinuity of the set

(2.7) P : = iqJ : J c IN finite ]

of continuous projectors qJ from (2.2). We reca11 that by D.G.H.

G a r l i n g  [3], p.1001.  T h e o r e m  2 . P is equicontinuous if and only

if X has a base 1 of neighbourhoods of 0 such that q(U) C U for

al1 q e P and U EB.

~.S.LEMMA. ut X be an 1-c.  space with Schauder decomposition

(Xn)na.  If X 'is barrelled and (Xn)na is projection invariant,

then.the set P from (2.7) is equicontinuous, or, equivalently.

{qJ:J  c IN} (cf.(2.5)) is equicontinuous. If P is equicontinuous

and (Xn)na  is complete (cf. (2.6)). then (Xn)na  is projection

invariant.

Proof. To prove the first statement, suppose that P is nnt

equicnntinunus. Then. as X is barrelled, P is nnt pnintwise bnunded.

Sn  there  e x i s t s o m e  xeX w i t h  e x p a n s i n n  (x~),.,~, a n d  ueX’ such

that{u(qJ(x)):3cN finite) is unbounded.Since (u(qJ(x)):Jc(1,2,...,m))

is bounded fnr each m e IN. nne nbtains inductively a sequence

(Jk)ka  o f  f i n i t e  s e t s  J k  c H. Jk # @, such that max Jk<  min Jk+l

and
bhJk(X))  1 = Ine, “&)i  >  k (kW  -

k

This means that the subseries of corresponding to J :=kl&Jk
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is not a C a u c h y  s e r i e s ,  w h e n c e  ~J((x~)~~)&E, contrary t o  t h e

assumption.

T O  p r o v e  t h e  second  s t a t e m e n t ,  l e t  (x~)~~N”E a n d  JcN. T O  s h o w

t h a t  (yn)n~:=pJ((~n)nfl)eE, l e t  U b e  a n e i g h b o u r h o o d Of 0 in

X. There exists a neighbourhood V of 0 in X such that qK(V)c U for

al1 finite K C N. T h e n  there  e x i s t s  s o m e  melN s u c h  t h a t ; x eV
n=r n

f o r  m<r<s.- - Applying the map qjr ~103 one obtains gye” f o r9 . . . * n=r n
mcr<s.- - This means that T y, is  a Cauchy series and hence converges

n=l
since  (Xn)na is complete.

A theorem of N.Kalton [6], p. 35 implies that a barrelled space

with a complete Schauder decomposition (Xn)nlN is complete (resp.

quasicomplete, resp. sequentially complete) i f  a n d  o n l y i f  t h e

spaces Xn (neIN) have these  properties, respectively.

In Example 4 .l we show that the classica1 Banach space bvo has

a Schauder basis (bn)na such that the associated  Schauder decompo-

sition (Mbn)na is not projection invariant.

2.6. EXAMPLE. In every separable metrizable and complete 1.~.

space X+ (0)  one has the projection invariant pseudodecompositions

((XnlnEW.Dl.  where (Xnlna i s  a n y  sequence  o f  one-dimensiona1  sub-

spaces of X with u Xn dense in X and
n=l

D:= ((x,.,),,~ E ; Xn:(~n)na is subsequence summable).
n=l

C e r t a i n l y  D  i s  a p r o j e c t i o n  i n v a r i a n t  subspace  o f nilxn’ Let d

b e  a t r a n s l a t i o n i n v a r i a n t  metric  f o r  X . Then, f o r  e v e r y  xeX.
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one f i n d s  i n d u c t i v e l y  a  s t r i c t l y  i n c r e a s i n g  sequence  (nj)jeJE i n

IN a n d  xn, e Xn, s u c h  t h a t
3 J

d(x (k EIN).

Then d(x nk+l,O) < 21Wk  a n d  hence (xnj)jdrl i s  s u b s e q u e n c e  summa-

ble with sum x. Putting xn.-‘-0 f o r  al1 neN\(nj:jeJN)  one h a s  (x~),.,~~D

a n d  x=,,~~x~, a s  d e s i r e d .  - P l a i n l y . the expansions in D are not

unique.

Familiar examples o f  1.c.spaces with projection invariant

Schauder decompositions are the products and the locally convex

direct sums of 1.~. spaces and the lP-sums of normed spaces (l~p<=).

J . M a r t i  [SI,  p . 9 1 , Corollary 3 gives an example of a projection

invariant decomposition of the Banach space lm which is not a

Schauder decomposition. A similar construction works for many

separable’  metrizable spaces X:

2.7. EXAMPLE. Let X be a separable metrizable 1.~. space which

has a closed subspace  Y with a projection invariant Schauder decom-

position (Yn)na such that Y,)cO)  (n e IN) .Then (Y2n)na i s  a  projec

tion invariant Schauder decomposition of Z:=span nk!lN  Y2n* Since

X is metrizable and separable and Z has infinite codimension,

Z possesses a dense complementsry subspace  X1 $ X. Letting Xn:=Y2n-2

for n 2 2, it is easily seen that (Xn)neJE is a projection invariant

decomposition of X, but not a Srhsuder decomposition.
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The following Main Example 2 . 8  s h o w s  t h a t  t h e  concept  o f  a

projection invariant pseudodecomposition ((Xn)na,D) is strictly

more general than that of a projection invariant decomposition,

even for Banach sequence spaces X and even under the additional

restriction that the expansions in D are unique and the subspaces

Xn a r e  one-dimensional.

2.8.MAIN  EXAMPLE. There exist 1.~. sequence spaces and even

Banach sequence spaces X which have  a projection invariant pseudo-

decomposition ((JKen)na.D)  (where en=(6nk)ka' with n%IMenCD
and with unique expansions but such thdt (Ken)na is not a decompg

sition  of X.

In order to exhibit such spaces we return  to the construction

in Example 2.2. W e  s t a r t  w i t h  a n  1.~. sequence space Z which has

(en)nelN as a topologica1 basis such that o:=spanie,:nelN)+Z.

A s  i n  E x a m p l e  2 . 2 .  ( a )  w e  c h o o s e  a  closed subspace  N/ (0) of z

with N Il <p= (0)and  a complementary  subspace  Y of N in Z containing

cp .  Reca11 that, by carrying over the quotient topology from Z/N

to Y by means of the canonica1 isomorphism Z/N = Y, Y gives rise

to an 1.~. space X with the pseudodecomposition ( (lKen)nfl,D)

where

D:={(x,),& e nEl xn converges  i n  Y),

and that the expansions in D are unique. To make D projection invar-

iant we choose Y invariant under the projectors pJ.#+ IP (JCTNiCf.

(2.4)). Such Z,N.Y e x i s t  i n  a b u n d a n c e  RS s u b s p a c e s  o f  lp
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with 1 < p < m (and of al1 other Banach sequence spaces that have

(en)nelN as a Schauder basis): Begin with any proper  projection

invariant subspace Y of lp with cp c Y (such as Y:=cp itself)

a n d  choose  a n y  closed subspace N+ 10) of lp w i t h  YnN= (01 .Then

the subspace  Z:=Y+N of lp, together with N,Y, is RS  des ired. (Z

need n o t  b e  p r o j e c t i o n  i n v a r i a n t . )  - T h e  m o r e  d i f f i c u l t  t a s k  i s

to make X a Banach space. This is done by starting with a projection

invariant Banach sequence space Z with (en)na  as Schauder basis

and showing that Z always has projection invariant hyperplanes

Y containing <p ; N  m a y  t h e n  b e  a n y  complementary  subspace  o f

Y in Z (and X and (Men)neINN’ D) are then nbtained  as abnve). The

existence of such hyperplanes Y is guaranteed by the fnllnwing

algebraic lemma that cnvers more general cases  as  well. (Alterna-

tively, the last part of Lemma 2.10 cnuld be invnked.)

2.9. LEMMA. Let (X,),eI  be a family of vector spaces  over

a field K and let  L be a projection invariant subspace  of &X, (cf.

(2.4)).Then every  proper  projection invariant subspace  M CL is

the intersection of al1 projection invariant hyperplanes H c L

with M c H. In particular,  if ,E1 X,sL  ,there  exists a projection

invariant hyperplane of L containing lEIXl -

Proof. Fnr A c 1, x e ,EIX, and T c ,&I X1 l e t  xA:=pA(x)  a n d

TA:=pA(T) ,  w i t h  pA analngnus tn (2.4).  Let M be rls in Lemmd  2.9 .+nd

deL\M. T h e  s e t  o f  ~11 p r o j e c t i o n  invdridnt  subspdces  UCL s u c h  th.+t

MCU dnd deu cnntciins  rl mdxim.+l e l e m e n t  H  b y  Z o r n ’ s  Lemm.-ì.  If

we show that H is a hyperplane the prnnf will be finished. Suppose

that H is nnt a hyperplane. C h n n s e  a  subspace  T  C L w i t h  H$T
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If (G$Jn~* D) is a pseudodecomposition of an 1 .c. space X

a n d  C  i s  a  c o m p l e m e n t a r y  subspace  o f  D o  (see  2 . 1 )  i n  D ,  t h e n

UXn)*&J’ C) is a pseudodecomposition of X with un ique representations.

However if ((Xn)na, D) is projection invariant, ((Xn)navC) need

not be projection invariant. That C may be chosen projection invariant

under additional algebraic conditions is contained  in the following

lemma, to be applied with lN,D,Do n$lINXn instead of I,L,N.M.

2.10.LEMMA.  Let (X,),eI b e  a  f a m i l y  o f K-vector  spaces  and

L a orojection  invariant subspace  of ,& X1* A
subspace  N o f

L  h a s  a  p r o j e c t i o n  i n v a r i a n t  c o m p l e m e n t a r y  subspace  S i n  L i f

one of the following conditions is satisfied.

a n d  d&T. A s  H  i s  maximal, T is not projection invariant. Choose

zeT  and A c 1 with zA&T. Let A ‘:=I\ A. Then also zA,  =z-zA&T.  Plainly.

S:=span {z, :B c A.}  i s  projection invariant. so also H+S is projection

invariant. A s  zAeS\H we have H+H+S. Because H is maximal. we deduce

that d e H + S, whence dA, eHA’ .c H. .The same argument applied to

A’ inste:id  of A gives dAeH. SO d=dA+dA,eH,  a contradiction.

(a) dim N is finite.

(b) The codimension m of N in L is finite, and for al1 subsets

J C 1 of at most m elements  one has

PJ(,&  X,)nN = IOI.

(c) The set of al1 sets I := {ieI:x,SO) with x~(x,)~~IeN\{o} has
X

the finite intersection property.

If Ca> is satisfied and McL is a projection invariant subspace
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with MI-IN = {O}. S may be chosen  such that M C S.

Proof. 1. Let (a) hold and let M c L be a projection invariant

subspace  with MflN  = {OI. We argue by inductinn on n:=dim  N. The

case n=O is trivial. Tn pass frnm n-l tn n, chnnse aeN.ajO.  By

Lemma 2.9 there  is a prnjectinn invariant hyperplane H in L with

M c H and a&H. Hence we have  the interna1 direct sum N=(HflN)+Ka.

By inductinn hypnthesis. HIlN has a prnjectinn invariant cnmplemen-

tary subspace  S in H with M c S. By adding Ka tn H=S&HnN)  nne

nbtains L = S +N.

2. Let (b) hnld. There  are m linearly independent elements

dl,...d,  in L. Then there  exists a subset  J c 1 with at most m

elements such that pJ(dl),...,pJ(dm)  are linearly independent.

Sn there are kl,...,k,e  (l....,m)  and 11,...,i,eJ  such that

p(,l) (dkl),..,p  (i,) (dkm) are linearly independent. These  vectnrs

span an m-dimensiona1 prnjectinn invariant subspace  S of pJ(,gIX,),

and SllN = 10) by assumptinn. Hence S is as desired.

3. If (c) is satisfied, there  is an ultrafilter 3 on 1 such

that IxeS fnr al1 xeN\IO).  The subspace  T:=IxeL:pA(x)=O  for some

Ae'%)  has intersectinn (0)  with N. Chnnse a cnmplementary subspace

S of N in L with T c S. The prnnf will be finished  if we show

that S is prnjectinn invariant. Let xeS .and  ACI. If A':=I\A FY *

nne has pA,(pA(x))=O  and hence  pA(x)eTcS. If A'&Y,  then Ae9,s.n.

by the last argument, pA,(x)eS,  and again  nne has pA(x)=x-pA,(x)eS.

The hypnthesis pJ(,$X,)nN = 10)  is nnt superflunus in 2.10,

(b) as is nbvinus frnm the example I:=lN, X,:=K  (nelN), L:=t?I,  and
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N a hyperplane containing n$NK. Case (b) is not interesting for

the above appl ication to pseudodecompositions since  from X = D/Do=

= L/N and (b) one obtains dim X = m.

The first part of Lemma 2.9 and the part of Lemma 2.10 pertaining

to c o n d i t i o n  ( a )  g e n e r a l i z e  t o  a r b i t r a r y  v e c t o r  spaces  L  ( n o t

necessarily embedded in a prnduct) f n r  w h i c h  there  i s  g i v e n  a

Boolean algebra of prnjectnrs ueEnd(L) with zero element OeEnd(L),

unit element idL. and the usual prnperties u*v=u ov=vo u. u *v =

= u+v-uov  and cnmplement u’=idL-u.

3. THINNBSS CONDITIONS AND DENSE BARRELLED SUBSPACES.

Let X be an 1,~. space and ((Xn)nfl. D) a pseudndecnmpnsitinn

of X. Similarly as in the Intrnductinn we define gk((x,),,)  fnr

(Xn)nelN eD  a n d  k  e  IN a s  t h e  n u m b e r  o f  indices neil.....kl s u c h

that x,~O.  Then the thinness condition

( 0) ;Fm + gk((Xn)n&J)  = 0

determines a subspace  D(e) of D whnse image under the canonica1

map f : D -f X, (x~)~~-,,il xn i s  t h e  subspace

(3.1) L : =  ( xeX: there  e x i s t s  (xn)nelNeDx  w h i c h  s a t i s f i e s  (0))

of X. Of cnurse  L need nnt be a prnper subspace, but in many cases

n b v i n u s l y  i t  i s . (If dim X 2 2 in Example 2.6, the subspace  L

is nnt prnper as can be easily checked. T h e  same a p p l i e s  tn t h e

subspace  M  tn be defined presently.) Besides L we cnnsider a smaller
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SUbSQXC?  M: = SP?,,, Mo, where Moc  X is defined by :i thinnes rond it ion

m o r e  restrittive  t h a n  (0). depending on an arbitrary preassigned

sequence (bj)ja in IN as follows.

L e t  J  b e  t h e  s e t  o f  al1 subsets  J  C  IN w h i c h  a r e  e i t h e r  f i n i t e

o r . i f  J  ={nj: jeIN} w i t h  n.<n., ,+l (jefN).  s a t i s f y

(J-1)  nj+ j+l-“j 5 “j+Z-“j+l (jdN),  and lim (n
j-b.23

.,-nj)==  ,

(5.2) the sequence
n .+1-n.

( J bj ‘)jelN is unbounded.

Cancelling  t h e  f i r s t  c o n d i t i o n  u n d e r  ( J . l )  l e a d s  t o  a l a r g e r

class  J^, w h i c h  f o r  i n c r e a s i n g  (bj)ja c o n t a i n s  al1 subsets  o f

sets J e 3. - If (b.)J ja is bounded. (J.l) implies (5.2).

Nnw we define

( 3 . 2 )  Mn:={xeX : there  is  (x~)~~ e D such that

Inm : xn + 01  C J for some J e J).

MC-3 need not be a subspace  of X as can be seen from the spaces

Jf? or 1Q (l<Q-’  ) with their Schauder decompositions (IKen)nm.

Because of (J.l) nne has Mn  C L, hence alsn

(3.3) M : = span Mn

is cnntained in L. This inclusion may be prnper  even if nne disregards
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1 Co k
( 5 . 2 ) .  ( F o r  X:=1 and Xn: Men the element kzl ji1 2

-k
e

Zk+j
1 ies

in L but not in M.)

If ( c$Jnep..p D) is assumed t o  b e  p r o j e c t i o n invariant, then

Mo and hence M and L are dense in’ X since  they contain  the sums

of the sequences (x~)~~ e n!#,Nprn(D).

Now we come tn the main result of this sectinn.

3.1. THEOREM. If X .is  a barrelled space with a projection

invariant pseudodecomposition ((Xn)nfl,D),  then al.50 the dense

subspacesMand  L from(3.3) and(3.1) are .&arrelled.

REMARK.  The fact that M and L are barrelled in their relative

tnpnlogies  i m p l i e s  t h a t  alsn ( M ,  ?(M,X’)) a n d  (L,r(L,X’)) a r e  bar-

relled, ’ fnr a barrelled space carries the Mackey topology, and

T(M,M’) =  r(M,X’) a n d r(L,L’) = r(L.X’) hnld always true.

Decause of M C L and in view of Lemma 1.1, Thenrem 3.1 is an

immediate cnnsequence of the follnwing proposition abnut not neces-

sarily barrelled 1.~. spaces  X.

3.2. PROPOSITION. If X is an 1.~. space with a projection

invariant pseudodecomposition ((Xn)ntiW'D) then every  0(X’ .M)  -

-bounded  subset  of X' is o(X',X)-bounded.

(b) More sharply, let X be any 1.~. space, let (u )r Ro be a seguente

in X'and let xeX be such that (u~(x))~~  is unbounded. suppose
ao

that there  is a seguente (xn)nem  in X such that x = z xn=l n

and that this series is subseries convergent. Then there exists

a J  e J  (see  ( J . l )  a n d  ( 5 . 2 ) )  suoh  that (ur(nEJxn>)relNis  unbounded.
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Proof. Clearly (a) follows from (b). If now under the hypotheses

of (b) there  is a finite set .HN  such that the sequence (u~$.,$Jx~))~~

is unbnunded, then J belnngs tn J and is as desired. We assume

nnw that

(3.4) (Ur(n&xn)>r~ is bnunded fnr every finite set ICN.

The desired set J e J will be nbtained by a sliding h*lmp argument

in the fnrm J = { ni:ieIN  ) with ni< n.1+1 (id). The rnnstructinn

of the ni invnlves the induttive cnnstructinn of fnur sequences

(ak)k&, (pk)kflN’  (rk)ka, (mk)k&  i n  IN. I t  i s  c n n v e n i e n t  tn p u t

( 3 . 5 )  sn:=O a n d  ~k:=~il(p~  ai-l+(mi-l)ai)  f n r  k  e  N.

Fnrming fnr every k E IN the finite arithmetic progression

(3.6) ‘k-1 +  ‘kak-l +  + (u =  O,l,...,mk-1) ,

(whnse last term sk i s  s t r i c t l y  s m a l l e r  t h a n  t h e  f i r s t  t e r m

‘k + ‘k+l ak of the next progression) and putting these  prngressinns

nne after annther. the resulting sequence (ni)ia will be as desired.

We set nnw cn :=0 and note that

k mi-l

(3.7)  Ck '="P  'r(iil  *iO
relN

's
i - l + P.1 ai-l +ua. 1 e IR fnr al1 k e IN.

1

T h e  s e q u e n c e s  (ak)kaN’  (  pk)kmN’  (rk)k&IW’ (mk)km shall  satisfy

c o n d i t i o n s  (uk)-(ck) f n r  al1 k  eN:
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(ek)  ak = 2 bm +...+m1
k-l+l ak-1.  w i t h  ao:=l;

L(Yk)  $(,,=O xs kml+Pk ak-l+uak
):r E IN} is unbounded;

c6k) lur ( ! xk p-0 Sk-l+Pk ak-l +uak )I > k+ck-l;

$1 b, (,$IXn) 1
k

< 1 for al1 1 C (n e IN : n>sk}.

T h e  sequence  (ak)ka is defined uniquely b; (e,). Since(ur(n&xn))rfl

is unbounded by assumption and since c
n=lxn is the sum of its

subseries c
p=o ’ paot ual

(  P =  l,...,al/ao),  there  i s  s o m e  Pl

such that ( Bl) and ( yl) hold. Hence there  is r-1 EN such that

(6 1) holds. Since ,,ilxn is subseries convergent  the subsequences

Of (Xn)nelN are summable (see  the remarks  after Definition 2.3).

SO there  is  mI e IN, ml  2 2 SO  large that sl becomes SO  large that

(~1) h o l d s  f o r  al1 f i n i t e  a n d  hence.  b y  continuity, f o r  al1

I c(n e IN: n>sl}. Similarly, if now k e IN and if oi, ri, mi .e IN

(1 ( i < k) are already determined in accordante  with the above

conditions we define P~+~, rk+l, mk+l a s  f o l l o w s .  S i n c e

CO

‘k = ‘k-1 +  pk ak-1 +  (mk-l)ak,  t h e  s e r i e s c
P=l ‘sk+ uak may be

regarded as a section of the series in (Y k). Hence (Y k) and (3.4)

imply that (ur( c x
Co

p=l sk+uak
> : r e IN) is unbounded. Since u=CIXsk+uak
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is the sum of its subseries c
u=Oxsk+  oak+vak+l ( P=l,....ak+l/ak)

i t  follnws  t h a t  there  i s  s o m e  ~k+l  e IN s u c h  t h a t (Bk+I)  and

(yk+l) h n l d .  Hence there  i s  s o m e  rk+l  e N s u c h  t h a t  ( 6  k+l)  h n l d s ,

a n d  w e  c a n  c h n n s e  mk+l  e IN. mk+l  1 2 .  sn  l a r g e  t h a t  (~k+l)  h n l d s

as well. This ends the cnnstructinn of the sequences

N n w  w e  b u i l d  u p  t h e  sequence  (ni)ifl as described after (3.5).

Tn p r o v e  (J-1) n o t e  t h a t  t h e  differente o f  t h e  l a s t  t e r m  sk o f

the progression (3.6) and the first term in the next progression

is ‘k+l ak which lies between ak a n d  ak+l b y  (Bk). A s  ak+  m

b y  (a,), ( J . l )  i s  n n w  clear.

P u t t i n g  n n w  lk:=ml+...+mk, t h e  d e f i n i t i o n  o f  t h e  ni(ielN)  y i e l d s

“lk+2 -nlk+l = ak+l =  2blk+lak  w h e n c e  ( 5 . 2 )  fnllnws, a s  a  +=(k+=).k

Thus J : = (ni : i EH) e J.

Tn finish the prnnf we will nnw deduce frnm (CS,)  and (ck)  that

(3.8) Iu ( C x )I > k-lrk neJ n ( k  eIN).

Fnr k e H the set K:=(n  e J : n > ~~-1)  is cnntained in the set

{sk-l+pk ak-1 +  uak :  p =  O.l,...) b y  c n n s t r u c t i n n .  a n d  t h e  differ-

ente 1  o f  these  s e t s  c n n s i s t s  o f  e l e m e n t s  g r e a t e r  t h a n  sk sn

that (ck) applies. whereas
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by (3.7). Therefore ( gk) yields (3.8). (The sliding hump was over

the subset  {n E J : skSl <n 5 sk) of J.)

By Lemma 2.5 one has the following immediate consequence of

Thenrem 3.1.

3.3. COROLLARY. If X is a sequentially  complete barrelled space

with Schauder decomposition (Xn)na whose projectors qJ:X +X (JcN

finite; cf. (2.5)) form an equicontinuous family, then also  the

corresponding dense subspacesM and L are barrelled.

We apply nnw Thenrem 3.1 tn sequence spaces.  The fnllnwing

is immediate.

3.4. COROLLARY. Let X c Il? b e a sequence space which contains

nF!lN Ken and is invsriant  under the canonica1 projectors pJ (JcN)

of II? Let X be endowed with a barrelled topology such that

x  = nzl  xn en far al1 x=(x,),.&X.  Thus ((Ken)nuN,D) with

D:= ((xnen)ne,N : (x~)~~  e X1 is a projection invariant  pseudodecom

position with unique  expansions. Then also  the corresponding dense

subspaces M and L are barrelled.

Note that in Cnrnllary 3.4 the pseudndecnmpnsitinn need  nnt

be a decnmpnsitinn by nur Main Example 2.8. - Obvinusly Kothe’s

example cited  in the Intrnductinn is a special case of Cnrnllary

3.4.
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T h e  s p a c e s  lp ( 1  < p  <CO),  CO,  Ik?with their Schauder decnmpnsition

OK en)nelN also satisfy the hypotheses of Cornllary 3.4, and hence

the cnrrespnnding spaces L and M are barrelled fnr these  spaces.

We show now that alsn Webb’s Lemma (D) .l qunted in the Intrn-

ductinn is cnntained in Cnrollary 3.4. Since  X is perfect it cnntains

<p : = span(en  : n e N) and is norma1 by G.Knthe [73, [8],§30,1.(3)

and hence is prnjectinn invariant. The Mackey topnlngy T(X,XX)

i s  b a r r e l l e d  b y  a s s u m p t i n n .  F n r  e v e r y  x  =  (x~)~~ e X  n n e  h a s

;x = n=lxnen  with respect tn r(X,X”) b y  G.Knthe [7], [8] .§30.5.(10).

Sn  C n r n l l a r y  3 . 4  y i e l d s  t h a t  t h e  r e l a t i v e  tnpnlngy T(X,XX ) IL

i s  a l s n  b a r r e l l e d .  Hence, b y  t h e  Remark a f t e r  T h e n r e m  3 . 1 ,  dlsn

r(L,XX)  i s  b a r r e l l e d .

We note that in norma1 sequence  spaces X cnntaining cp ,(en)na

always is  a  -r(X,X’) - Schauder basis.

If X is an 1.~. space with pseudndecnmpnsitinn ((XnlnavD)

with unique expansinns and if there  is an x e X\L such that

(2
-nt

xnlna e D fnr al1 rea1  t > 0, t h e n  codim L  i s  a t  l e a s t

the pnwer of the cnntinuum. Fnr it is straightfnrward tn show

that any linear combination k cj=l Aj n=l 2 -ntj xn w i t h  X1 ,..., A,eM

a n d  O;t <t1 2 <...<tr, w h i c h  l i e s  i n  L ,  i s  trivial.

This result can be applied tn a Fréchet space X with a decnmpn-

sitinn (Xn)na s u c h  t h a t  X,,S  IO) f n r  al1 n  e IN: Tn f i n d  a  s u i t a b l e
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x  e X\L choose  a b a s i s  (LJn)nd of neighbourhoods of 0 in X such thdt

U n  i s  c i r c l e d  a n d  s a t i s f i e s  Un+L  +  Un+L  c* U f o r  al1 n  e IN. C h o o s en

Co
X n e unnxn,  xn * 0  f o r  al1 n  e I N .  T h e n  x:=,,&xn converges, i.e.,

(x~)~~ E E, and x $ L. F n r  al1 t..  2 0  n n e  h a s  2-rrt’xneUn (neIN),

hence (2-“txn),.eN  E E .  a n d  x  i s  a s  d e s i r e d .  Hence codim L  i s  at.

least the pnwer of the continuum.

Finally  w e  n o t e  t h a t  i f ((Xn)na, D) i s  a p r n j e c t i n n  invariant

pseudndecnmpnsition and u: IN + IN is a permutation then alsn

((X a(n))nm.Du) with Da := 1(x0 (n))nm:(~n)naeD 1 is  a prnjectinn

invar iant pseudndecnmpositinn; but the cnrrespnnding analngues

Ma, Lu of the spaces M,L  will in general be different frnm M.L.

4. TWO EXAMPLES ON THE EQUICONTINUITY CONDITION.

In this sectinn and the fnllnwing one we ana

CI 1 ‘l’h~:r)rem 3 . 1  a n d  o f  Cornllary  3 . 4  b y  m e a n s

lyze  the sharpness

of some examples

invnlving the classica1 Banach spaces lp (1 cp<“), c,co,bv,bvn,bs,

CS, and the Fréchet space IP. Reca11 that c is the space of al1

cnnvergent sequencesin M equipped with the supremum-nnrm and cn

i s  t h e  subspace  o f  al1 s e q u e n c e s  c n n v e r g i n g  tn zero. The space

bv cnnsists of al1 sequences x = (x~)~~ in IK such that

Iix li,,,,  : = 1x11  +
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whereas bvo:=bvnco is equipped with the nnrm

(cf. Dunford-Schwart z [2], p.239). T h e  s p a c e  b s  cnnsists  o f  al1

sequences x = (~~)~e~  in M with

n
llxllbs:=sup~I  k$xkl :  n  F lNl < m.

and CS  is  the.subspace  of al1 sequences such that nElxn converges.

The space JKN  with the metr ic

d(x.y) : = n& 1x,- Y,I

2”(1+lxn-Ynl)

is a Fréchet space. - Let e,,:=(l,l,l,...) and let again en:=(Gnk)kfl

fnr n > 1. Then (JXen)neN is  a Schauder decnmposition of lp(l<p<m),

co.bv,.cs. and 9, w h e r e a s  (Men-l)neN is a Schauder decnmpnsitinn

o f  c <ind o f  b v .  These w i l l  b e  r e f e r r e d  to as t h e  standard Schauder

decompositions. I t  i s  t a c i t l y  a s s u m e d  i n  t h e  sequel  that  t h e  abnve

spdces are endowed with their standard Schauder decompositinns.

The following two examples throw light nn the hypnthesis on

prnjectinn invariance. Our first example shnws that. this hypothesis

cannnt be drnpped in Theorem 3.1 and alsn that the equicnntinuity

condition cannnt be nmitted in Cnrnllary 3.3. This proves assertion

(a) frnm the Intrnductinn.

4.1. EXAMPLE. Let X=bv,. Clearly the standard Schauder decomposi-

t ion  WenlneN is n o t  p r o j e c t  ion  i n v  Iri  tnt since  ~:=(i)~e~ F bv 0
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and

T h i s  also  p r n v e s  t h a t  t h e  s e t o f  p r o j e c t n r s  qJ ( J  c  JN  f i n i t e )

i s nnt equi cnnt  inunus whereas X meets al1 nther requirements of

Cnrnllary 3.3. L e t  again cp d e n n t e  t h e  subspace  o f  p s p a n n e d  b y

t h e  u n i t  v e c t n r s  e,(n e T N ) .  F n r  a n y  ~=(x~)~~g \ rp we dennte

by h,(x) (n e JN)  the index of the n-th non-zero term i n the se-

quence (Xk)kem’ T h e n  pI:iinly ( 0 )  i s  equivalent  t o

(0’) Xe cp or ln,& =  0 .

We  shall  prove that the dense subspace

L : = ( x e bvn : x F cp or

o f  bvn is non-barrelled. Fnr this end we take 0 c 6 < 1 and fnrm

Lg : = span{x  e bvn : x e cp or lii+ “,“p hnTx) < 0) .

T h e n  L6 IL>M.  we claim  t h a t  Lg (and hence  L and M) is non-

barrelled.

Proof ( c f . G r e i f e n e g g e r  [4], p.18-20). T h e  dual o f  bvn i s

nnrm-isnmorphic tn the space bs, the canonica1 bilinear form fnr

the dual  pajr <bvn,bs>  being
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m

<x,y> = r-121  ‘n yn f o r  x  =  (xn)neN  e b v o .  y  =  (yn)naebs.

Now f ix p e IN such that pE->q and define

,(n) : = k!le k e b s (n e IN).
P

Then

IlY(“)ll  bs  = n for al1 n e IN;

h e n c e  (y(“)),, is not equicontinuous and hence not a(bs.bvn)-

bnunded. Remembering Lemma 1.1 we prnceed tn show that (y (n>) ,,*

is o(bs,L&)-bnunded.  F i r s t l y ,  i f  x  e <p ,  t h e n  t h e  s e q u e n c e

(<X,Y(“)>),, is nbvinusly bnunded. Secnndly. assume that

x e bvn\ cp and’

We cnnsider the blncks of consecutive non-zero terms of the se-

quence x=(xv)veN. Define  the strictly increasing sequence (mk)ka

and (nk)ka  of natura1 numbers by the condition that xv $ 0  (w eJN)

if and nnly if mk <v<nk fnr. some k e IN. Let lk e [mk,nk[  ilIN b e

,arbitrary  ( k  e N ) .  T h e n

n -1

IXlkl  = IXlk - xnkl i i Ixn
n=m - ‘n+ll

k

and hence
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(4.1) E 1x1
k=l k

I 5 IIXllb”,  .

Now choose  r e IN such that

(4.2) 1+6
+yz for al1 m 2 pr.

Assume that mk 5 p" c p v+l <n k for some v 2 r and for some kalN.

Then there  would  be at least pv+1 - PV non-zero terms of the
v+l

sequence  (x~)~~ among the first p terms, and hence

v+l V v+l V

(4.3) (x) 2 pv+1
1+6>-

h 2
Pv+l -PV

by the choice of p. S'ince  v 2 r by assumption, we have  p
v+1 v

-P >Pr

and hence (4.3) contradicts (4.2). Thus. for al1 k E IN, at most

one of the numbers pv with v>r is contained  in the k-th block

[mk,nk[fIIN.  This yields for al1 n e IN

I<X.YWI = lv& x 1

PV

5 vHl lx
PV

I + v=;+l Ix
PV

I

P
VI + IIXIlbv

0

(cf. (4.1)) . This proves our assertion.
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We add a few further remarks  on Example 4.1. Although the space

L6 is defined by means of a thinness condition, it is easy to

see t h a t  Lg c o n t a i n s  p l e n t y  o f  “ n o n - t h i n ”  v e c t n r s  s i n c e  e . g .

11 c Lo. I n  particular. 1 1 i s  a  n o n - b a r r e l l e d  subspace  o f  bvn.

(This fact is nbvinus anyway.) We mentinn withnut prnnf that

Lo = Lj fnr al1 6 e JO,l[. -

Note that bv is
0

nnrm-isnmnrphic tn 1 ’ by the map f:bv +11,n
f((xn)nm):=(xn-xn+l),,&  f n r  (xn)nelNebvo.  T h e  i n v e r s e  m a p  f-l

transfers the Schauder basis (en)nlN  of l1 tn the Schauder basis

n
Ckflekjnm  of bvn.  The subspaces L and M for the Schauder decom

n
p o s i t i o n  (lXkClek)na  o f  bvo a r e  obviously b n r r e l l e d  s i n c e  t h e i r

corresponding images in 1 1 are bnrrelled by Corollary 3.4.fience far

one and the same Banach space X one choice of a Schauder basis

may produce dense barrelled subspaces L and M, whereas  another

choice of a Schauder basis can lead to dense non-barrelled spaces

L.M.

Our secnnd example shows that there  exist Banach spaces with

Schauder decnmpnsitinn such that L and even a certain subspace

% c L are barrelled althnugh prnjectinn invariance dnes nnt hnld.

This will prove assertion (b) frnm the Intrnductinn.

4.2. EXAMPLE. The standard Schauder decnmpnsitinn of the Banach

space CS is n n t  p r n j e c t i n n  i n v a r i a n t  s i n c e  ((-l)n/n)nalN e  C S
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and

(Il c
k=l

lso  does not  satis unbounded. The space CS a isfy the equicontinuity

hypothesis of Corollary 3.3; CS is neither norma1 nor perfect.

Nevertheless. the space L defin& by (3.1) and even  a certain

dense subspace  f?CL are barrelled.

& e2k”cs)nuN

Proof. The map f : c + CS, f((xn)ne,N) : = (x~-x~-~)~& for

(Xn)nelN e c with xn :=O is H noi-m  isomorphism. The standard Schauder

decnmpnsitinn (lKen-l)ne,N of c satisfies the equicnntinuity cnndi-

tinn  n f  C n r n l l a r y  3 . 3 .  Tn p r o v e  t h i s ,  t a k e  a n y  x=(x,,),,~ e c  a n d

def ine 5 := (5 n-l)na b y  5n:=~.l~xn,  Sn:=xn  - 5, f n r  n  2 1 .

Emen x = n=O 5 en n’
and fnr every finite subset  J c lNtJfO)we  have

~qJ(x)Iic = ii,~J$,  eniic < 2~~x~~c  .

Hence t h e  s e t  o f  ,.!l p r n j e c t n r s  qJ ( J  c  IN U(O) f i n i t e )  i s  equicnn-

tinunus.

Applying Cnrnllary 3.3 tn the ‘standard Schauder decnmpnsitinn

of c we conclude that the subspace

of c with

M : = span Mn

Mn:=(x = n~oSnen  e c : (n E IN : 5,-, # 0) C J some JeJ)
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= Qxn)neW e c:{n e IN : xn-1 # l im xk}c J for some JeJ1
k+m

is barrelled. We claim that the subspace

M : = span Mo c L

of CS  with

f?o:={(xn)na e CS: CnelN : xn + 01 c J for some J E .! 1

is  barrelled as well. (Remember that j was defined after (J.Z).)

In order to prove this assertion it suffices to show that f(Mo)cM.

S u p p o s e  t h a t  x  =  (x~)~~ =  n~o&en  E M o .  I f  o n l y  f i n i t e l y  m a n y

o f  t h e  5, (VL  0 )  a r e  d i f f e r e n t  f r o m  z e r o .  t h e n  xn= (;D f o r  al1

but finitely many n e IN and hence f(x) e cp C “io. Assume now that

5 =  (5, -1)  velW s a t i s f  i e s %L,+o f or infinitely many v e IN. Then

$.,(S) : n e IN 1 with h,(c) from Example 4.1 i s  a  subset  o f  s o m e

set J e J. C h o o s e  m  e  H SO  l a r g e  t h a t  hv+,(S)-\ (5) 2 4  f o r  al1

v  1 m - l .  T h e n  w i t h  n=h,(S). p=h,+l(S), q =  hm+z(S),  r=hm+3(S),....

.  .  ..x.#5.* x,#S,. xq # 5,. Xr # En....the sequence x looks like

x=(* ,...,  *r  t&‘.&. q).Xn’E,.....S  .x
0 P .5n’....5 n>xq.50 ve.. 9SnJr.Sn....).

where the chains of terms 5
0 contain  at least three terms each.

Hence with a := xn - 5,. b :=x  - 5,. c := x _ [o, d :=xr  _ 5, ,...P q

the sequence f(x) has the form
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f(x) = (*,....*.O,O.a.-a,O,....O.b,-b.0 v.... o.c.-CZ.0 e.... O.d.-d.O,...).

We now write down the sequences

Y1: = (Fi,,c1......&-2,  a. 0. O.....O.-a,O,  O.....O.  c. 0. O.....O,-c,O.O....),

Y2: = (5,.E1.....5n-2,  O.-a.  O.....O,  a.0. O....,O.  O.-c. O.....O.  c.O.O....).

Y3: = ($,.51.....$,2.  -a. 0, O.....O.  b.0. O,...,O.-b.  0. O....,O,  d,O.O....).

Y4 : = (5n,CI,...,$,2, a. 0. O....,O.O.-b.  O.....O,  b, 0. O....,O,O.-d,O....).

where the dots between the zeros indicate chains of zeros with

the same lenght as the dotted chains of zeros in the vector

f(x). Then (hn(yj)-h,,(S),,  is bounded for j = 1,....4  and hence

Y1’...‘Y4  e Mo. By definition we have  y1+y2+y3+y4-f(x)ev  cEo

and hence f(x) e fi which proves our assertion.

5. DISCUSSION OF OTHER THINNESS CONDITIONS.

We analyze in the present section to what extent our thinness

conditions are best possible. First we introduce another thinness

condition which produces  barrelled subspaces in some cases  and

non-barrelled ones in others. This will corroborate assertion (c)

from the Introduction.

S.l.DEFINITION.  Suppose that X is an 1.~. space with decomposi-

tion (Xn)neINN. and for x e X\ span U Xn,
nf2lN

x = c xn with x,eX,  (nelN).
n=l

let hn(x)  denote  the index of the n-th non-zeroterm in the sequence

(xklkaN'  Let (dn)neN be a preassigned sequence of positive rea1
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numbers such that c dn diverges and put
n=l

Wo:={xeX:xespan  u Xn  o r
neIN

nfIdhn(x)< m 1, W:=span Wo.

An elementary c h e c k  s h o w s  t h a t  W. a l r e a d y  i s  a linear s p a c e

if (dnlna is monotonically decreasing. - In general, the thinness

condit  ion

m

n:l dhnW ’ OD

employed i n  t h e  d e f i n i t i o n  o f  W. i s  t o o  restrittive  t o  p r o d u c e

barrelled subspaces of barrelled spaces HS  the following theorem

shows.

S.L.THEOREM. Suppose tPat X is one of the Banach  spaces lp(l<p<a),

C o. c , bvo, bv, CS equipped with its standard Schauder decomposi-

tion. Then W (as in Definition 5.1) is a d,ense  non-barrelled sub-

space of x .

Proof. We argue by Lemma 1.1.

a) In the case x = lp (1 < p <ao) let q > 1 be defined by $ + i=l.

Put

,cn)  := i d;/q ek e lq ( n  E IN).
k=l

Then (y(“)),, is not bounded in lq, b u t  f o r  al1 xeW, t h e  sequence

(<x,Y(~)>),,~ i s  b o u n d e d :  F o r  xecp t h i s  i s  trivial  anyway,  a n d

f o r  x  =  (x~)~~ e Wo\cp a n d  al1 nelN w e  have b y  Holder  ‘s inequal-

ity
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I<x,y(“)>I  = 1 c lhll
v:h,(x)ln Xh,(x)dhvW

Z(“E  d“zl hv (x) Pqllxllp  c OD.

b) For X=co 1we identify X’ with 1 .

The sequence (y(“)),,& defined by

,cn)  : = t d  e
k=l  k k

(nf@J)

1is unbounded in 1 ; but for al1 xeW, the sequence (<x,y (*)  >) neN

is bounded: For xe cp t h i s  i s  again trivial, a n d -  f o r  xeWò<p and

f o r  al1 nelN w e  have

I<x.~(“)>l = l C  x\(X) d\ (x+
v:h,(x)in

c) The dual of X=c is norm-isomorphic to the space 10 of al1 sequences

y = (yv),,O in IK such that

Il Y Il
l1

= “;olY,l<  -.
0

The canonica1 bilinear form for the dual pair cr.10 > is

<x,y>  =  y o lim xn
n+m

+ E x* Y,
n=l
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for x = (xn)neW e c, y = (Y,)“,O e 10.

Defining now

,(n) : = (- “c d, , dl,. . . ,d,, 0,. . .) e 1: .
V=l

the argument is essentially the same as in case b).

d) For X = bvo.  we let y(n) be as in b). Then (y(“)),* is unbounded

in the dual bs of bvo. But the same estimate as in b) yields

t h a t  (<x,y(“)>&,N is bounded for every xeW. (Note that bvoc co.)

e) Let X = bv and x = (x~)~~ e X. Put 5, = lim x,,,  5, := xn-SO
n+m

f o r  nzl. T h e n  x  = FE en.
n=O n

T h e  e l e m e n t s  y(n) ( c f . b ) )  act  A S

continuous linear forms on bv according to

<X,y(“)> := ; 5, dn.
k=l

T h e  s e q u e n c e  (Y(“)),~ i s  u n b o u n d e d  i n  (bv)’ b y  d), b u t  f o r

al1 xeW  the sequence (cx.y(% In& is bounded because of d).

f) The case X=cs is settled as follows: It is easy to show by partial

summation that bvo is norm-isomorphic to a subspace  of X’, the

elements y=(yn)ne,Nebvo acting on CS  according to

m
<x.y>= ’ ‘n ynn=l

(x=(xnlna e CS).

Now the sequence (y(“)),& defined by
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,cn) : = i (-I)~ d e
k=l k k (n e W

is unbounded in bvo.But  the sequence (<x,y(n) >) nelN is bounded

f o r  dl1 xecp, and w e  h n v e  f o r  .-rll x=(x~)~&  Wo\‘p  And  ~111  nelN

I<LY(“) >) = 1 c
v:h,(x)ln

(-l)hv(x)dh  (x)xhv(x)l
V

<(Cd
VC1  hJ Cx)

)Ilxllm<  a,

For X=1’  and for X = ll? the following result on the barrelledness
of W holds:

5.3. PROPOSITION. Suppose that X=1’ or X = lk? with it.5 standard
.

Schauder  decomposition. Then W (as in Definition 5.1) is barrelled

if and only  if (dn)neIN converges  to zero.

-Proof. Let X = l1 a n d  .assume  f i r s t  th.at (dn)na c o n v e r g e s  t o

zero. Let  (Y (“)lna be an unbounded sequence in lm = X'. We have

to show: There e x i s t s  a n  xeW  s u c h  t h a t (<x.y (n) >) nm is unbounded.

TO prove this we may assume that there  is no xecp with this property,

since  cp c  W .

L e t  y(n)  =  (Y{~))~~ ( n  e lN). T h e n  f o r  e v e r y  pelN t h e  s e t

{Yh”) :nelN. 11 k 2 PI

is bounded. Since  (lly(n)ll,)nelR  is unbounded. there  exist two strictly

increasing sequences (nj)jelR  and (kj)jelN of natura1 numbers  such

that
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IYp I >j f o r  al1 j FIN
J

and

Focusing attention to the spaces  l1 a n d  lm o v e r  t h e  subsequence.

(kj)j~* our assertion now becomes obvious. The sequence (kj)jEW

and hence the sequence (hj(x))je,N can even be made albitrarily

thin. The same idea of proof works in the case X = & X’ = ‘p .

TO prove the converse, assume that x =  11 and suppose that

lim sup d > 0 . Choose
n+ OD n c > 0 and a strictly increasing sequence

Cmj)j*
of natura1 numbers such that

dm, > c for al1 j EIN.
3

D e f  ine y(n) =  (yk”)),,, e  lm b y

(n) :
yk = j for k = mj, k < n, j eJN,

(n): =
yk 0 otherwise.

Then (Y(“)),~ is an unbounded sequence in lw . Now let xeWo. Then

xm. + O only for finitely many j e IN. Hence (<x.y (n)>)
J neIN is bounded

f o r  al1 xeWoand hence also for al1 xeW. Thus W is not barrelled.

The same idea of proof works for X=lF.
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Another class of barrelled subspaces of l1 was constructed by

Saxon  [lo], p .  1 5 5 - 1 5 7 .

Suppose now that dn = ; ( n f IN). Then Theorem 5.2 says that

for X = lp (1 < p < 0~  ), cg, bvo.cs the subspace  W of X containing

al1 vectors x e X satisfying the thinness condition

(8”) x e<p  or jl +sT <cn

is non-barrelled. Now remember that for every monotonically decreas
Co

ing sequence (c~)~~ of positive rea1 numbers with cr cn< -
n=l

one has lim n c, = 0. This means that (0”)  implies (0’) from Exam-
n+m

ple 4.1 whence W C L, and L is barrelled. On the other hand. for

X = l1 or fl, W is barrelled by Proposition 5.3. This yields asser-

tion  (c) from the Introduction. In addition, this observation also

lies in the direction of claim (d) from the Introduction. In order

to justify assertion (d) more precisely we modify thinness condition

(0’) and introduce another class of subspaces.

5 . 4 .  D E F I N I T I O N .  L e t  X ,  (Xn),,&, (hn(x))nfl  (xeX\spannll Xn)

be AS  in Definition 5.1. Let a = (an)na be an arbitrary preassigned

sequence of positive rea1 numbers and define

u. : = (xeX  : x e span U
nelN

Xn or limn~m  & = 0 1 1

u : = U(a) : = span U. .

V a l d i v i a  113-j  considers  a s l i g h t  v a r i a n t  o f  t h e  t h i n n e s s  condi-



Some dense barrelled subspaces . . . 197

tion employed in the definition of Uo.

5.5. REMARKS. (a) If 0. = (an)& is an arbitrary sequence of

positive rea1  numbers, there  e x i s t s  a s t r i c t l y  monotonicallyincre:i~

ing sequence b = (bn)na of positive rea1 numbers such that

(i) U(a) = U(b) and

a
(ii)  (J)

b
n nelN is bounded if and only if (+)na is bounded.

( b )  I f  a =  (an)na is a monotonically increasing sequence of Post-

tive rea1 n u m b e r s  s u c h  th.at (a2n/in)nell,l is bounded, then U iS0

a linear space, i.e. U = Uo.

(c) Suppose that X = l1 or X = Il? with its standard Schauder decom-

position. Then U(a) is barrelled (without any restriction on a).

We omit the elementary proofs of the r,emarks (a) and (b). The

proof of remark  (c) is similar to that of Proposition 5.3.

For an = n (n e IN). we have U = L, and this space is barrelled

under the hypothesis of Theorem 3.1 or Corollary 3.4. The next

theorem shows that for none of the Banach spaces  lp(l<p<m),co,c,cs

there  e x i s t s  a s e q u e n c e  (an)na of positive rea1 numbers tending

to infinity more rapidly than the sequence (n)na such that U is

barrelled.Hence thi.iness  condition (0) is best possible for the

construction of barrelled subspaces among  al1 the thinness conditions

introduced  in Definition 5.4. This justif  ies a s s e r t i o n  ( d )  f r o m

the Introduct ion.
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5.6. THEOREM.  Suppose that X is one of the Banach spaces

1p (l<P< m), C o ’  c ,  C S with its standard Schauder decomposition.

Then the space u(a) (as in Definition 5.4) is barrelled if and

only if ( is bounded.

Note that the Banach space CS  appearing in this theorem is not

projection invariant.

Proof. Assume first that (>)n,N is bounded. Then L c U. Now

L  i s  b a r r e l l e d  b y  C o r o l l a r y  3 . 4  ( f o r  X=lp (l<P<c") or X=c or0

X=c) and by Example 4.2 (for X=cs). Hence U is barrelled as well.

Assume now that (+)na is unbounded. We have to show that U

is non-barrelled. Referring to Remark 5.5, (a) we may assume without

loss of generality that (an)na is strictly monotonically increasing.

W e  c l a i m  t h a t  i t  i s  sufficient t o  p r o v e  t h e  f o l l o w i n g  a s s e r t i o n

(Al:

There exists a monotonically decreasing sequence (dn)na of

(A) positive rea1 numbers such that F d diverges and such that
n = l  nm

= dh converges  f o r  e v e r y  s e q u e n c e  (hn)nfl i n TN  w i t h
n=l n

lim > = 0.
n+m  n

Once we have proved assertion (A), it is obvious that the space

W from Definition 5.1 corresponding to the sequence (dn),.& contains

U. Since  W is non-barrelled by Theorem 5.2, we conclude that U

is non-barrelled as well. Hence we are left to prove (A).
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Since  (2)na is unbounded, there  e x i s t s  a s e q u e n c e  (c~),,~ o f

m 03 Ca,1
positive rea1  numbers such that z c,, converges  whereas c -c

n=l n=l” n
diverges. Def ine

‘kdn:= c k
k:ak2n

(n e IN).

Then (dnlnm is a monotonically decreasing sequence of positive

m

rea1 numbers. The series ,Z dn d i v e r g e s  since
n=l

m m
zdn= c ‘k = iakl

-c =o.
n=l n=l

c T’C
k:a >nk-

k=l k k

Now let (hn)nm be any sequence of natura1 numbers such that

a
l i m  n-
n-hm q -

0. Then there  exists some p e IN such that h n 2 a n f o r

al1 n 2 p. Using the strict monotonicity of (an)na  we thus obtain

‘k-d,=; ;. k
nip n n=p k : ak>hn

m
< c c ‘k
- n=p k:a >a k

k-  n

m a3
< z c ‘k
- n=l k=n k

= f cn<w.
n - l
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This yields (A) and the proof is complete.

Theorem 5.6 holds analogously with U replaced by V=span VO  with

V,,:= IxeX:x  e s p a n  u Me,  o r  (an/hn(x))ne,R  i s  b o u n d e d ) .
n

We remark  in conclusion that the methods of this work may be

adapted to produce dense barrelled or non-barrelled subspaces of

spaces of continuous functions and of the spaces Lp(lip<m ). As

a sample we mention the following results.

5.7. THEOREM. Suppose  that (X,d,u) is a u-finite measure space

OD
without atoms, and let X = U Ekbe a representation of X as a

k=l
countable disjoint union of measurable sets of positive finite

measure. men far 1'~ p < m the space

v : = (f e Lp : limk+m’-$--QU({t e Ek : f . ( t )  + oI)= 01

is a dense barrelled subspace  of LP.

5.8. PROPOSITION. Suppose that (X,&,~B.) is a a-finite m e a s u r e

space and that 1 cp < o . Then the space

w : = (f e Lp : u({t e X : f(t) 9 OI)<  -1

is barrelled if and only if p(X) is finite, i.e., if and only if

W=Lp.If  X is a o-finite m e a s u r e space without atoms and

p = 1, then W is barrelled.

PROBLEM. The trigonometrica1 system is a Schauder basis in
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Lp(  [0,2s])  f o r  1  < p  <m . It is known that the associated  Schauder

deromposition is not projection invariant for al1 ~92 (see  J.Marti

[9], p. 51-53, proof of Theorem 8).- _ W e  d o  n o t  k n o w  i f  t h e  spaces

L or M for this Schauder decomposition are barrelled for some ~92,

1  <p<m . We do not know either if the corresponding space W (cf.

Definition 5.1) is non-barrelled.
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