ON DUALS OF $L^{1}(\mu)$

Giorgio METAFUNE

Abstract. In questa rota si dà una rappresentazione del duale di uno spazio $L^1(\mu)$ quando la misura "\mu" non è σ -finita e il carattere di densità dello spazio è il continuo.

The aim of this note is to give an isomorphic representation of the duals of some spaces $L^1(\,\mu\,)$ when the measure $\mu\,$ is not $\sigma\text{-finite.}$

Of course, $L^1(\mu)$ stands for the classical Banach space $L^1(X,\Sigma,\mu)$ where (X,Σ,μ) is a measure space with positive measure μ . We also abbreviate $L^\infty(X,\Sigma,\mu)=L^1(X,\Sigma,\mu)$ ' to $L^\infty(\mu)$. When μ is the counting measure on X, $L^1(\mu)$ and $L^\infty(\mu)$ will be denoted by ℓ^1_d and ℓ^∞_d respectively, where d=|X|= the cardinaly of X (dropping the d, of course, when $d=X_0$). The algebra Σ is said to be an m-algebra, where m is a cardinal number $\geq \chi_0$, if the union of m members of Σ also belongs to Σ . The measure μ is called m-finite if X is the disjoint union of m members of Σ each having a finite μ -measure. For a Banach space E, we denote by X(E) the density character of E, i.e. the smallest cardinality of a dense subset of E. Also we recall that, for any μ , $L^\infty(\mu)$ is complemented in every Banach space containing it. Finally we shall use the notation E=F and E<F to indicate that E is isomorphic to F or to a complemented subspace of F, respectively.

To avoid trivialities, we always assume that if A c X is

114 G.Metafune

such that $\mu(A) = \infty$, then there exists B c A for which $0 < \mu(B) < \infty$. We also assume that $L^1(\mu)$ is not separable and that μ is not σ -finite, since otherwise the following results hold.

- (a) If $E=L^1(\mu)$ is separable, then $E=l^1$ or $E=L^1(0,1)$ (Lebesgue measure) and hence $E'=l^\infty$ (cf. [1])
- (b) If μ is σ -finite, then $L^{\infty}(\mu) = L^{\infty}(\nu)$ if and only if $\chi[L^{1}(\mu)] = \chi[L^{1}(\nu)]$, (cf. [3], Th. 3.5 p.221).

We need the following

LEMMA.Let $m \ge \chi_0$ and let $E = L^1(X, \Sigma, \mu)$ where Σ is an m-algebra and μ is not m-finite. Then E contains a complemented subspace F isometric to $\ell^1_{2^m}$ with a norm-one projection.

Proof. Let $\mathscr P$ be the collection of all families $L=\{A_i\}$, with $A_i\in\Sigma$, $0<\mu(A_i)<\infty$ and $A_i\cap A_j=\emptyset$ (i\(i\) j), ordered by inclusion. By Zorn's Lemma $\mathscr P$ has a maximal element $M=\{A_i:i\in I\}$. Put d=|I| and suppose that $d\le m$. Then $A=\cup\{A_i:i\in I\}\in\Sigma$, since Σ is an m-algebra and $\mu(X\setminus A)=\infty$ because μ is not mfinite. If $B\subset X\setminus A$ and $0<\mu(B)<\infty$, then $M\cup\{B\}\in\mathscr P$ and we have reached a contradiction. Therefore, $d\ge 2^m$. It is easy to see that the closed linear span of the characteristic functions X_A of the sets A_i is isometric to A_d^1 . Now let A_i of the sets A_i is isometric to A_d^1 . Now let A_i of the sets A_i is definite to A_i of the set of indices. It follows that

$$\sum_{i \in I} \left| \int_{X} f X_{A} d\mu \right| \leq \sum_{i \in I} \int_{A_{i}} |f| d\mu \leq \int_{X} |f| d\mu ,$$

showing that $P:L^1(\mu)\to \ell^1_d$, defined by $Pf=(\int_X f\chi_A \ d\mu)$, is a norm-one projection of $L^1(\mu)$ onto ℓ^1_d from which the lemma follows.

We now have the

THEOREM. Under the hypotheses of the lemma, if $\chi(E)=2^{m}$ then $E'=\ell_{2^{m}}^{\infty}.$

Proof. $\ell_{2^m}^{\infty} < E'$, since $\ell_{2^m}^1 < E$ by the lemma. But also $E' < \ell_{2^m}^{\infty}$, because $E' = L^{\infty}(\mu)$ and E is a quotient of $\ell_{2^m}^1$, since $\chi(E) = 2^m$. The desired isomorphism $E' = \ell_{2^m}^{\infty}$ then follows by noting that $\ell_{2^m}^{\infty} = (\ell_{2^m}^{\infty} \oplus \ell_{2^m}^{\infty} \oplus \ldots)_{\ell_{2^m}^{\infty}}$ and applying Pełczynski's decomposition method (cf. [2]).

COROLLARY. Let $E = L^1(\mu)$ with $\chi(E) = c$ and μ not σ -finite. Then $E' = \ell_c^\infty$.

Remark. If $E = L^1(\mu)$ and $\chi(E) = c$, then the situation is as follows:

- (i) if μ is σ -finite, then $E' = L^{\infty}(\left[0,1\right]^{C}, \nu)$ where ν is the Haar measure on $\left[0,1\right]^{C}$ (cf. $\left[3\right]$, Th.3.5 p.221);
 - (ii) if μ is not σ -finite, then $E' = \ell_C^{\infty}$.

It is interesting to note that l_c^{∞} and $L^{\infty}([0,1]^C,v)$ are not isomorphic: indeed, $X(l_c^{\infty}) = 2^C$, while $X\{L^{\infty}([0,1]^C,v)\} = c$ (cf. [3], p.222).

116 G.Metafune

REFERENCES

- [1] J.LINDENSTRAUSS, L.TZAFRIRI, Classical Banach Spaces, Lecture Notes Math. Berlin-Heidelberg-New York: Springer 1973
- [2] A.PEZCZYNSKI, Projections in certain Banach Spaces, Studia Math. 19, 1960, 209-228.
- [3] H.P.ROSENTHAL, On injective Banach Spaces and the Spaces $L^{\infty}(\mu)$ for finite measures μ , Acta Math. 124, 1970, 205-248.

Ricevuto il 26/10/1985

Piazza S.Domenico, 5 73048 NARDO' (LE) - ITALY