NORMAL SETS AND THEIR ORDER-AUTOMORPHISMS

Inessa LEVI

ABSTRACT.- For a finite set X and the prower set P_X of X, we define normal subsets of P_X . We then describe all order-automorphisms of a normal subset of P_X , and, in particular, characterize those normal subsets of P_X for which each order-automorphism is induced, i.e. determined by a permutation of X.

Let $X = \{1, 2, ..., n\}$, $K \in X$ and

$$A(K) = \{ A \subseteq X : |A| \in K \}.$$

Such a subset of the power set P_{χ} of X is termed normal. The present paper describes all order-autonorphisms of A(K), i.e. the permutations ϕ of A(K) such that

$$A \subseteq B$$
 if and only if $\phi(A) \subseteq \phi(B)$,

for all A,B ϵ A(K). Let 0-Aut A(K) denote the group of all orderautomorphisms of A(K), S_n be the symmetric group of degree n. Obviously, 0-Aut A(\emptyset) = { \emptyset }, and 0-Aut A(K) \simeq 0-Aut A(K\{n}) for all K. Therefore, we shall always assume that K $\neq \emptyset$ and n \notin K. It is said that ϕ ϵ 0-Aut A(K) is induced by an α ϵ S_n if ϕ (A) = α (A) (= { α (a) : a \in A}), for every A ϵ A(K). The next theorem is our main result.

THEOREM. Let $K \neq \emptyset$, $n \notin K$ and A(K) be the associated normal subset of P_X . Then

160

1. Every $\varphi \in 0\text{-Aut}A(K)$ is induced if and only if either of the following three conditions holds:

- (i) |K| > 1;
- (ii) $K = \{1\};$
- (iii) $K = \{n-1\}.$

In all these cases, 0-Aut $A(K) = S_n$.

2. If
$$K = \{k\}$$
, then 0-Aut $A(K) = S_{\binom{n}{k}}$.

While the second statement of the Theorem is trivial, the proof of the first statement is given in Lemmas 1-6 below with Lemma 1 proving the "only if" part.

LEMMA 1. If $K = \{k\}$ with 1 < k < n-1 then A(K) has non-induced order-automorphisms.

Proof. Since every permutation of such A(K) is an order-automorphism, the result follows from the observation that

$$|O-Aut A(K)| = |S_n| = (n_k)! = |S_n|,$$

for 1 < k < n-1.

For the "if" part of the first statement of the Theorem observe that when A(K) consists of all singletons in P_X or all co-singletons in P_X (that is $K = \{1\}$ or $\{n-1\}$), then any order-automorphism ϕ of A(K) determines a permutation α of X which induces ϕ . Hence in what follows we assume that |K| > 1, i.e., A(K) contains subsets of X of distinct orders. The next lemma readily follows from the definition of an order-automorphism ϕ .

LEMMA 2. For every $A \in A(K)$, $|A| = |\phi(A)|$.

Our aim now is to produce a permutation $_{\alpha}$ of X associated with $_{\varphi}$. Let m=max K.

LEMMA 3. Let $|A_1| = |A_2| = \dots = |A_\ell| = m$ with $|\bigcap\{A_i : i = 1, 2, \dots \}| \ge k$ for some $k \in K$. Then $|\bigcap\{A_i : i = 1, 2, \dots \ell\}| = |\bigcap\{\phi(A_i) : i = 1, 2, \dots \ell\}|$..., $\ell\}|$.

Proof. Let $C(A_1, A_2, ..., A_\ell) = \{C \in A(K) : |C| = k \text{ and } C \subseteq A_i, i = 1, 2, ... \ell \}$. Then $|C(A_1, A_2, ..., A_\ell)| = (|n\{A_i : i = 1, 2, ... \ell \}|)$, and in view of Lemma 2, $\phi(C(A_1, A_2, ..., A_\ell)) = C(\phi(A_1), \phi(A_2), ..., \phi(A_\ell))$. The result follows.

LEMMA 4. Let |A| = |B| = m. Then $|A \setminus B| = 1$ iff $| \phi(A) \setminus \phi(B) | = 1$.

Proof. With the aid of Lemma 3 we observe that $|A\setminus B| = 1 \text{ iff } |A\cap B| = m-1 \text{ iff } |\phi(A)\cap\phi(B)| = m-1 \text{ iff } |\phi(A)\setminus\phi(B)| = 1.$

LEMMA 5. If |A| = |B| = |C| = |D| = m with $A \setminus B = C \setminus D = \{x\}$ for some $x \in X$, then there exists $y \in X$ such that $\phi(A) \setminus \phi(B) = \phi(C) \setminus \phi(D) = \{y\}$.

Proof. We start with the following observation. Given A_1,A_2,A_3 with $|A_1|=|A_2|=|A_3|=m$ and $|A_1\setminus A_2|=|A_2\setminus A_3|=|A_1\setminus A_3|=1$, we have

(1)
$$A_1 A_2 = A_1 A_3 \text{ iff } A_1 A_2 \neq A_3 A_2.$$

Indeed, if $A_1 \setminus A_2 = A_1 \setminus A_3 = \{x\}$, then $x \notin A_3$, so $A_1 \setminus A_2 = \{x\} \neq A_3 \setminus A_2$. Conversely, if $A_1 \setminus A_2 = \{x\} \neq A_3 \setminus A_2$, then $x \in A_1$ and $x \notin A_3$, so that $\{x\} = A_1 \setminus A_3$.

Now let A,B,C and D be as in the statement of the Lemma. We consider 3 cases.

162 I.Levi

Case 1. A = C, $B \neq D$.

Letting in (1) $A_1 = A$, $A_2 = B$ and $A_3 = D$, we have $A \setminus B = A \setminus D$ iff $A \setminus B \neq D \setminus B$.

Since $|A \cap B \cap D| = |A \cap D| - |(A \cap D) \cap B| = |A \cap D| - |(A \setminus B) \cap (D \setminus B)|$ = $m-1-|(A \setminus B) \cap (D \setminus B)|$, $A \setminus B \neq D \setminus B$ is requivalent to $|A \cap B \cap D| = m-1$.

Thus

(2) $A \setminus B = A \setminus D$ iff $|A \cap B \cap D| = m-1$ iff $|\phi(A) \cap \phi(B) \cap \phi(D)| = m-1$, by Lemma 3 iff $|\phi(A) \setminus \phi(B)| = |\phi(A) \setminus \phi(D)|$, by (3) and Lemma 4, replacing A by $\phi(A)$, B by $\phi(B)$ and D by $\phi(D)$.

Case 2. $A \neq C$, B = D.

Observe that (1) is equivalent to

(3) $A_1 A_2 = A_3 A_2$ iff $A_1 A_2 \neq A_1 A_3$.

In (3) let $A_1 = A$, $A_2 = B$, $A_3 = C$.

Then

$$A \setminus B = C \setminus B$$
 iff $A \setminus B \neq A \setminus C$,

and the result follows by applying the result of Case 1 to the last inequality.

Case 3. A,B,C and D are distinct.

We show that if $|A\setminus B| = |C\setminus D| = 1$ then $A\setminus B = C\setminus D$ iff there exists a finite sequence

 A_1 (=A), $A_2, \ldots, A_{2\ell-1}, A_{2\ell}$ (=C) of sets of order m such that (4)

 $A \setminus B = A_1 \setminus A_2 = A_{2i+1} \setminus A_{2i} = A_{2i+1} \setminus A_{2i+2} = C \setminus D$, for $i=1,...,\ell-1$.

Then by applying alternatively the results of Case 1 and 2 to the last chain of equalities we produce the desired result. To show the validity of (4) let $A \setminus C = \{x_1, \ldots, x_\ell\}$, $C \setminus A = \{y_1, \ldots, y_\ell\}$, and define the required sets as follows:

$$A_1 = A$$
, and for $i = 1, ..., \ell-1$,

 $A_{2i} = (A \cap C \{x\}) \dot{U} \{x_i, ..., x_\ell\} \dot{U} \{y_1, ..., y_i\}$,

 $A_{2i+1} = (A \cap C) \dot{U} \{x_{i+1}, ..., x_\ell\} \dot{U} \{y_1, ..., y_i\}$,

 $A_{2\ell} = C$.

Clearly, for each $i=1,\ldots,\ell-1$, $|A_{2i}|=|A_{2i+1}|=m$. Also it is easy to check that for each i

$$A_1 A_2 = A_{2i+1} A_{2i} = A_{2i+1} A_{2i+2} = \{x\},$$

so that $A_1, A_2, \dots, A_{2\ell}$ is the sequence required in (4).

Now we are in a position to define a mapping $\alpha: X \to X$ via $\alpha(x) = y$ iff $\{y\} = \phi(A) \setminus \phi(B)$, for some $A, B \in A(K)$ with |A| = |B| = m and $A \setminus B = \{x\}$.

Lemma 5 ensures that α is well-defined. Also in view of Lemma 5 we define a mapping $\beta: X \to X$ associated with ϕ^{-1} by $\beta(x) = \phi^{-1}(A) \setminus \phi^{-1}(B)$, for some $A, B \in A(K)$ with |A| = |B| = m and $A \setminus B = \{x\}$. A straightforward computation shows that β is the inverse of α and so α is a permutation of X.

LEMMA 6. ϕ is induced by α .

164 I.Levi

Proof. Our aim is to show that for any $A \in A(K)$, $\phi(A) = \alpha(A)$. The result is clear if |A| = m. If $|A| \neq m$, then |A| < m = m and

$$\Phi(A) = \Pi\{\Phi(B) : \Phi(A) \subseteq \Phi(B), |\Phi(B)| = m\} = \Pi\{\alpha(B) : \alpha(A) \subseteq \alpha(B), |\alpha(B)| = m\}$$

$$= \alpha(\Pi\{B : A \subseteq B, |B| = m\}) = \alpha(A).$$

This, and the observation that if each $\phi \in O$ -Aut A(K) is induced by an $\alpha \in S_n$ then O-Aut $A(K) = S_n$, completes our proof of the Theorem.

REMARK 7. If X is an infinite set, a subset A of P_X is said to be normal if whenever B \underline{c} X such that for some $A \in A$, |B| = |A| and $|X \setminus B| = |X \setminus A|$ then $B \in A$. This definition of a normal set is equivalent to the one stated at the beginning of the paper (note that if X is finite and A, B \underline{c} X with |A| = |B| then $|X \setminus A| = |X \setminus B|$ automatically).

In [1] we gave a complete description of all order-automorphisms of an arbitrary normal subset A of the power set of an infinite set X. We showed that all order-automorphisms of A are induced precisely when one of the following holds.

- (a) (A, c) is non-trivial, i.e., there are $A, B \in A$ with $A \subset B$;
- (b) A consists of singletons;
- (c) A consists of co-singletons, i.e. $A = \{A \subset X : |X\setminus A| = 1\}$.

If A satisfies either of the above conditions then 0-Aut A \simeq S_X, the symmetric group on X. If A satisfies none of the above conditions then there is an n \in N, n > 1 such that either A = {A \subseteq X: |A| = n} or A = {A \subseteq X: |X-A|=n}. In this case every permuta-

tion of A is an order-automorphism, hence O-Aut A = S_A , the symmetric group on A.

166 I.Levi

REFERENCES

[1] I.LEVI: Order-automorphisms of Normal Families of Sets, Discrete Mathematics, 66(1987), 139-155.

Ricevuto il 26-6-1987

Department of Mathematics University of Louisville Louisville, KY 40292