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DESIGNS EMBEDDABLE IN A PLANE CUBIC CURVE

(Part 2 of Planar Projective Configurations)
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To Donald Coxeter on his eightieth birthday

INTRODUCTION.A configuration or a design K is a system of p
points and m lines such that each point lies on 7 of the lines
and each line contains u of the points. It is usually denoted
by the symbol [pﬂ,muj, with pm = mp. A configuration K = {p“,m“)
is said to have a geometric representation if we can draw it in
the given geometry meaning that the points and lines of K correspond
to points and lines in the geometry such that a point is incident
with a line in K iff the same is true in the corresponding geometry.
In this paper, we consider the problem of representing such combi-
natorial designs in the geometry of non-singular cubic curves
over the complex projective plane. i.e. we study the problem of
embedding them 1into a non-singular cubic curve in the complex
projective plane in such a way that (ijk) is an element of the
combinatorial design iff the points corresponding to 1i,j and k
in the cubic curve are collinear. Since a line and a cubic has
exactly three common points (counting multiplicity, of course),

all our configurations have ¥ = 3 and hence pn = 3m. The most
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classically well-known result of this sort is the design (94,123)

corresponding to the affine plane 23123 which is realized as the
nine inflexion points on a non-singular complex cubic (Cf.[1],[4],
|10|). In the process of proving such general embedding theorems

we witness an enjoyable interplay among several tools of mathematics:

1 1 . : . . d -
arithmetic notions such as solving equations in the complex torus S™xS

number theoretic notions such as primitive roots and quadratic residues
universal algebraic notions such as identities,implications and term conditions
topological notions such as projective varieties being complete

analytic and geometric notions of tangential relations,inflexions etc.

use of electronic computers in solving equations over large fields.

In terms of universal algebra, a configuration is simply a partial
non-associative algebra and our techniques may be construed as
embedding this partial algebra into the full incidence algebra
<C;*> of a non-singular cubic curve C in the complex projective
plane. Using the properties of primitive roots in the Galois fields,
we prove that given a prime number p > 11, there exists a natural
number r > 3 such that the combinatorial difference set design
{0,1,r); mod(p-1)} can be embedded into a4 non-singular cubic

curve in the complex projective plane. For several prime numbers

p,. r=3 already works.

In the first section, we give the definitions and collect all
the necessary algebro-geometric and universal algebraic results
needed in the sequel. In Section 2, we prove certain non-embeddabi-
lity theorems of elementary nature to give the reader a taste

of the geometric properties of cubics which allow or deny the
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inscribing of certain configurations in a cubic curve. In spite
of striking similarities between the Pappus and Desargnes configur-
ations, 1t turns out that the latter 1is not so embeddable. In
spirit, this is comparable to the classical result that the Fano
configuration is not drawable in the real or complex projective
plane - which, in fact, is derived as a consequence. In Section
3, we prove a general embedding theorem which generate infinitely
many examples of difference set designs drawable on complex cubics.
In the final action 4, we include a partial list of difference
set designs obtained using this equational process and include
an algorithm of finding arbitrary large difference set designs
{(0,1,3); mod N} which can be embedded as sub-partial algebras
of a full incidence algebra <«C:;*> of a non-singular cubic curve

in the complex projective plane.

§1. TOOLS AND TECHNICAL LEMMAS.

An irreducible non-singular cubic curve C in the projective
plane over the complex field (or, any algebraically closed field,
for that matter) is the simplest non-trivial example of the so-
called complete algebraic varieties admitting, a binary law of

composition * which has several nice properties:

(i) *:CxC » C is defined by the familiar geometrically defined
chord-tangent construction i.e. P*Q=R where R 1is the unique
third point where the chord PQ meets the curve C again. (if

Q=P, then replace the word 'chord' by 'tangent'; see Figure

1)

(ii) The mapping * is regular (i.e. it is a rational function
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over the field in question)

(11i) The full incidence algebra <C:;*> is a symmetric Steiner
quasigroup i.e. the binary morphism * satisfies the two identi-

ties (SSQ) : {x*y=y*x, x*(y*x) = y} (Fig.1).

(iv) Given a complex point E on C, the mapping * induces a
regular group law, say tgs» on C with E as the identity element

of the group; simply define x+y=(x*y)*E (Fig.1l)

For all the basic concepts connected with projective varieties,
complete varieties, rational mappings and regular functions, we
refer to the relevant sections of [.R.Shafarevich [20]. For a
complete discussion on the chord-tangent construction on cubic
curves, see the relevant sections in [9],[13],]15],[16],|18],|20],
[21] and [25]. We need the following fundamental lemma (the so-
called Rigidity Principle) which serves as a tool for the equational
logic of the first order theory of regular functions in a projective
curve or a complete variety C (see the Lemma on page 152 of LZG}

or Lemma 7.1.3 of [22] or Section 2 of [17],[18]).

Let x = (X{.X,,c00uXx )y ¥y = (YqsYpseeeny )y b = (by,b

).

n 11 21--c,hnj

and z = (21,32,...,zm

LEMMA 1.1. Let f be a regular function on m+n variables of
some projective (or more generally, a complete) variety. Then

we have

4b 4¢ ¥x(f,x,b) = ¢ == V¥xV¥y¥z ((x,y) = f(z,y).
To express it in plaih English, this lemma asserts that if

the value of f(x,b) does not depend upon the variables X for
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some b in C then the function f is already independent of the
variables X 5 for all i. In other words, f(x,y) = f(z,y) 1is an
identity in C. This, therefore, can be viewed as a powerful technique
for deriving stronger identities from apparently weaker ones.
This equational aspect of the first order theory of morphisms
of projective varieties was first stated formally in [17] though
its use in the literature 1is very common. Thus the most direct
proof of the fact that every complete group variety must be commu-
tative as a group stems from this observation (see e.g. Theorem
7.1.4. of [22]). Also, this property 1is very close to the so-
called Term condition - another equational tool ((GS5) of Theorem
1) - found to be very useful in generalizing the notion of commu-
tators to Universal algebra (for brief history, survey and applica-

tions to congruence varieties, see |[5],[19] and references there).

We now demonstrate the power of the lemma by deriving a few
equations which we need in our sequel. Let 3% , I’ be a sets of
equations or implications in, say one binary operation *. Following

the notation in [13], we say that

z == L

if whenever a non-singular plane cubic curve C over the field
of complex numbers satisfies the conditions f for some binary

morphism * then C must satisfy the conditions ' as well. This

relation ”|==C is, conceptually, very similar to Taylor's notion

of "obeying in homotopy'" (see [25]). For example, the above result

on group laws in projective varieties may now be stated as



118 N.5.Mendelsohn-R.Padmanabhan-B.Wolk

m is a group law F==r m(x,y) = m(y,x)

LEMMA 1.2. {Xx#vy=y*X,Xx*(yxx)=y} =:C{((((K*y)*xjﬁt}*y)ﬁx}*t=x}

Proog. Consider the derived 5-ary composite morphism f(x,vy,z)

defined by

Elx,y,z,t) = (((x*y)*z)*t)*y)*z)*t

f(x,b,z,b) = x by two applications of the hypothesis x*y = y¥*x,
x*(y*x) = y and hence, by the Lemma 1, we conclude that the

composite morphism f 1is independent of the variable z. So we get

f(x,y,z,t) = t(x,y,u,t) for all x,y.,.z,t,u
= f(x,y,y,t) substituting u =y

X

which 1s the desired conclusion. See Figure 2 for the configuration

theorem corresponding to the above identity drawn on a cubic curve.

LEMMA 1.3. The algebra <C;*> satisfies the following conditions:
(G1) (CC(x*y)*z)*t)*y)*z)*t = X
(GZ2) (((x*y)*z)*t (C(x*t)*z)*y)

(G3) (x*y)*(z*t) = (x¥*z)*(y*t)

I

(G4) f(x,y)*(u*f(x,z)) is independent of x for all binary words
f(x,y) in the algerba <C;* >
(G5 The Term Condition: f(a,b) = f{f(a,c) = f(x,b)=f(x,c)

for all x.

Proog. (Gl1) was obtained in Lemma 1.2. Post-multiplying both

sides of (Gl1) by t,z and y successively and employing (x*y)*x=y
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each time, we get the identity (G2). Substituting t=x*u and y=x*v
in (G2) and using (x*y)*x = y twice we get the median law (G3).
We prove the implication (G4) by induction on the length of polyno-
mial f (in the sense of [4]). It is obvious if the word f is of
length 1 because of the 1dentity x*(u*x)=u which 1is free from

Xx. Let now f(x,y) = fl(x,y}*fz{x.y). Then

f*¥(u * f) = {fl * fz) * (u *{f] * fz})

= (fy *u) * (f, * (f; * f,) by (G3)

= (f, * u) * f

1 1
which is now free from the variable x by the induction hypothesis.

Finally, we prove the Term Condition by a simple application of

(G4). Let f(a,b) = f(a,c) for some binary word f and for some a,b,c
in the algebra < Ci*>
We have
f(x,b)*(u*f(x,c) = (a,b)* (u*f(a,c) by (G4)
= u by (SQ)
= f(x,c)*(u*f(x,c)) by (5Q)
and hence, by right cancellation, we get f(x,b) = f(x,c) for all
x in C.

Thus we have proved the following
THEOREM 1.1. {SQ} |==U = {(G1),(G2),(G3),(G4),(GS)}.

Historical Remark: The identity (Gl1) was first noticed by Yu.
[.Manin while studying the various quasigroup structures arising

on cubic hypersurfaces (see page 14, [13]). The identity (G3)
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for plane cubics was first proved by E.M.S. Etherington [3] using
the classical Bezout Theorem (see [17] and also [23]). In fact,
modulo the two-variable laws {SQ} of Lemma 2, the three identities
{(G1), (G2), (G3)} are equivalent. Naturally, the configuration
theorems corresponding to these laws must all be the same and
is, 1in fact, equivalent to the associativity of the group law
defined on cubics (see Figure 2). In what follows, we will use
all the five rules without further comment. We need just two more
facts connecting geometry and algebra on the plane cubic curves

before proving the embedding theorems.

LEMMA 1.4. For a point P on C the following statements are

equivalent:
(i) P is an inflexion point of the cubic curve C
(ii) P*P = P in the full incidence algebra <C;*>

(iii) Three points X,Y,Z form a complete linear cycle on C

iff X + Y + Z = P
P P

Proog. By the definition of the chord-tangent construction,
it is obvious that (i) and (ii) are equivalent. Let P be an idempo-
tent element of the groupoid * and consider the induced group

operation + Now, X,Y and Z will be collinear iff X*Y = 7. Writing

p
+ for *p

X + Y + Z X +Y + X*Y

= (((XFY)*P)*(X*Y))*P

P*p

= P.
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Conversely, 1if X+Y+Z = P, then (((X*Y)*P)Y*Z)*P=P or ((X*Y)*P)*7Z=p
or ((X*Y)*P = Z*P or simply, X*Y = Z, i.e. the three points X,Y
and 72 are collinear. Thus (ii) + (iii). Finally, applying (iii)

to the complete linear cycle {P,P,P*P}, we get that
(((P*PY*P)Y*(P*P))*P = P, or simply, P*P = P

which is (ii). It 1s because of the ease and importance of this
celebrated connection (iii) between the algebra and geometry (see
Theorem 7.33 in [15] or Theorem 19.4 in [16]), one always chooses
an inflexion point P for defining the group law th. We do this

without further comment. Note, in particular, that a point Q is

an inflexion point of the cubic C iff 3Q=P, the zero of the group.

Associativity of this group operation +_. is simply a restatement

E
of - and is equivalent to - the equational identities of Lemma
1.5 (see Fig. 2). As a topological group, it is known that C 1is
a connected compact complex Lie group of complex dimension 1 and
so 1s 1somorphic to the product of two circles i.e. it 1s a torus
stxs! (cr. p.347 in [20], p.15 in [23], or §6 in [24]). From this
information, we can readily extract several first order sentences
valid for the incidence algebra <C;*> of a non-singular complex
cubic curve C. For example, let us derive the well-known geometric

property mentioned above that C has precisely nine points of

inflexion. As we saw before, P is a flex iff P*P=P or P+FP+1P:H,

%
- |

i.e. 3P = 0 in the group SIxS]. Treating the elements of S]RS]

as, say unimodular complex numbers, we see right away that the
equation 3x=0 has exactly 3x3=9 solutions in the group. Similarly,

there are exactly four solutions to the equation 2x=0 and so on.
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More generally, there are precisely n2 points of order n. For future

use, we record this as

LEMMA 1.5 (Cf. p.329 in [9]; see also p.18 in [23]). Given
any natural number n, there are precisely 112 points of order n

in the group <C;+,E>.

This last Lemma will be very useful in both constructing an
actual representation for a given combinatorial design as a confi-
guration on a complex cubic curve as well to prove the impossibility

of such an embedding in certain other designs.

§2. CERTAIN NON-EMBEDDABILITY THEOREMS.

Let C be the set of all points on a complex cubic curve. A
subset K of C is said to be closed if its points satisfy the fol-

lowing two closure conditions:

(1) If P and Q are members of K then the line PQ meets the
cubic only in points of K
(2) It P is a member of K then the tangent at P to the curve

meets C only in points of K.

In other words, a closed set K is simply a subalgebra of the full
incidence algebra <C;*> where * is the chord-tangent construction
defined in the introduction. If M is a subset of C, then we define
the closure of M to be the smallest closed set containing M. If
a closed set is finite then we call it the point set of a cubdic

cfusten and if it has n points, then we call it the point set
of an n-cluster. The n-clustern itself consists of its point set

together with all lines joining points of its set and the set
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of tangents at the points of its set.

Let a,b «n be such that the six elments {a,-a,b,-b,a-b,b-a}

are pairwise different mod n. Then we define

((0,a,b)imod n} = {(i,a+i,b+i)|i=0,1,...,n-1} ¢ 2]

and call it a cyclic difference set design. Such a design can
also be viewed as a partial binary algebra satisfying the laws
SQ where a*b = ¢ iff the triple (a,b,c) belongs to the design.
Sometimes, it can be drawn geometrically in the real plane RxR
in such a-way that (a,b,c) belongs to the design iff the points
corresponding to a,b and ¢ are collinear in the geometric configur-
ation (see [1],[5],[10] and [14]). Here we show that the Desargues
configuration (103,103] cannot be inscribed in a cubic cluster
of any non-singular complex cubic curve. This may be compared
with the related Pappus configuration (93,93}; this can be extended
to a (94,123) configuration, the affine plane over the field 33:
this latter design cannot be drawn on the plane RxR but, however,
it can be realized as the 9 inflexion points on a complex cubic

(see e.g. [1],[4],[10],[23] and also Theorem 3.1 below).

Let (o,a,b,csp,q,r,u,v,w) denote the statement that the ten
points lie on a non-singular complex cubic curve and also form
the configuration (103,103) which 1is isomorphic to the classical
Desargues configuration with the two triangles {a,b,c} and {p,q,r}

being centrally persepective through o (see Figure 5). Because
the complex projective plane satisfies the Desargues Theorem,

the two triangles are axially perspective, with {u,v,w} being
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the axis of perspectivity. Since a straingh line and a cubic can

have atmost three points in common, we have the equalities
b*c = q*r = u, a*c = p*r = v,a, a*b = p*q = u*v = w,
We now show that these equations are incompatible with the laws
valid on a plane cubic curve. More precisely, we prove that
LEMMA 5. 3(osa,b,cip,q,r,u,v,w) cm l{o,a,b,c,p,q,r,u,v,w}| < 4.
Prood .
0*0 = (p *a) * (q*b)

(p * q) * (a * b)

w ¥ w

I

and so, by symmetry, o*o=u*u=v*v=w*w,.

Also a*a

i

(b * w) * (c ™ v)

(b * ¢c) * (w * v)

I
=
*
-
I
-
%
o

and hence

X * x =y *y =E for all x,y ¢ {o,a,b,c,p,q,r,u,v,w}

where E is a fixed point on the cubic.

Moreover, E*E (a *a) = (b * b)

1

(a *b) * (a*Db)

w * w

E

and hence E is a point of inflexion of the cubic curve.

Since x * x = E for all xe{o,a,b,c,p,r,u,v,w} , we have ten

points on the cubic from which we can draw tangents to meet the
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cubic curve again at E. This is clearly impossible because, choosing
this E as the origin for the group law, we have -2x=0 for all
X in the configuration. But, by Lemma 3, the underlying group
Slel cannot accommodate more than four points of order 2. Thus

we have completed the proof of the

THEOREM 2.1. No Desargues confdguration contadining moxre ZLhan
four poinis can be inscanibed in any cubic cluster 04 a non-singulan

cubic curve over the complex fLield.

COROLLARY 2.1. The Fano configuration D,=(7 ,?3):ﬁ(1,2,4);mﬂd 7}

7 3
cannot be 1inscribed in any cubic cluster of a non-singular cubic

curve over the complex field.

Proogf. Let, if possible, {a,b,c,p.q,r,o0} =~ [?3,?3) be drawable
somewhere on a non-singular Complex cubic curve. These seven points
do contain the closed Desargues configuration 3{o:a,b,c;p,q,r;r,p,q}
as can easily be checked from Figure 6. This is a contradiction

to our Theorem 4, since 7>4.
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From this we can derive a classically known result (see e.g.
p.100 1n [?]) that the Fanﬂ configuration is not drawable anywhere
in the complex plane. This 1is because of the simple fact that
given seven complex points such that no four of them collinear
one can find a doubly infinite family of plane cubic curves passing
through all of them (see e.g. p.110) in [6]) and hence once again
we have the situation as in the hypothesis of the last corollary.
Of course, this is like killing a fly with an armada. The usual
prootf of this fact is that the presence of this 73 configuration
anywhere in the projective plane over a field will imply the exist-
ence of elements of order 2 in that field and of course, the complex
field has no such elements. On the contrary, the complex torus
Slel does contain elements of order 2 but not sufficient enough
to label all the elements of the Fano configuration. We mention
this just to show the inter-relations among the various realizations
of designs thus demonstrating the unity of mathematics! We conclude

this section by giving two more examples of results of impossibility.

THEOREM 2.2, The two cyctic difperence set designs {(1,2,4);:mod 14}

cannot be embedded in any non-singular complex cubic cunve.

Procf. Recall the Jefinition of the respective designs as sets

of triples:

1,2,4 1,2,4
2,3.5 2,3.,5
3,4,6 5,4,6 !
4,5,0 4,5,7
210 2298
0,1.3 7.8.10 |
§,90,11
{(0,1,3); mod 7}
0.1.53

{(1,3): mod 14}



Designs Embeddable in a Plane Cubic Curve 127

Now, if an incidence algebra <C;*> contains the cyclic design
Dyy = {(1,2,4) mod 14} for some complex cubic C then it must con-
tain a subalgebra B? of seven points isomorphic to the anti Fano
configuration as shown in Figure 3(b) above. Let us prove, say,

one of those collinearity relations:
(1*8)*(3*10) = (1*3)*(8*10) = 14%*7

and thus the three points 1*8,3*10 and 14*7 must be collinear on
C. However, we have alreadyestablised that the design D? cannot
be a subalgebra of the incidence algebra <C;*>. This proves that

the design qu cannot be embedded either,

THEOREM 2.3. The cyclic difference set design {(0,1,4); mod 13}

cannot be embedded 4imn any complex cubic curve.

Proof. In fact, what we really prove 1is Lhat-ﬁﬂJq{ﬁmm113}F%{j*kd Vil
which simply demonstrates the inconsistency of the the defining
conditions of the 14-point geometric configuration {(0,1,4); mod 13}
with the laws on a complex cubic. By Lemma 1.4, i¥*i=i iff the
point corresponding to i is an inflexion point on the curve but,
by Lemma 1.5, a cubic curve cannot have more than 9 inflexion points.
Let us now compute to derive the desired contradiction:

0%0=(1%4)%x0=(11%10)%4)%«0=((0%10)%x4)*11=(G%x4)%x11=(1248)%4)%11=(11%8)*4)x12=0.

Since adding 'l1' is an automorphism for all cyclic designs, we
really have proved that i*i=i for all i. It will rather be illumi-
nating to give a quick proof of Theorem 2.1 using the parametric
representation of the doubly periodic elliptic functions of

Welestrass.
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§3. EMBEDDING CYCLIC DIFFERENCE SETS INTO CUBIC CLUSTERS.

Let I be the set of all inflexion points of a non-singular complex
cubic C. We already know that I is closed for the binary operation
* of chord-tangent construction. The structure of 1 is completely

well-known: it is precisely the classical 9-point configuration

of Pappus-Pascal Theorem (se e.g. [1],[4],]10] and {17|) and, to
quote from Hilbert and Cohn-Vossen (see p.132 in {[10]), it is

completely well-known: it 1is precisely the classical 9-point con-
figuration of Pappus-Pascal Theorem (se e.g. [1],[4],{10] and |17])
and, to quote from Hilbert and Cohn-Vossen (see p.132 in [10]),
it is perhaps the single most important configuration in the whole

of geometry. In the Theorem below we demonstrate its embeddability

into a cubic curve by our equational approach.

THEOREM 3.1.

(i) Algebrascally, the algebra <I1,*> s {somorphdic to the idem-

poteyt reduct of the abelian group QEE X Z.31%> where now X*y =

3
= 2x + 2y (mod 3).

(ii) Combanatorially, *the 4incidence structure I 445 4Ls0morphdic
to the darnect product of two copies of the undique Steinern triple

system on three efements.

(ii1) Gevmetracally, the congiguration system 1 4s the Pappus
conpiguration (94.123) and <t closes to a 9 -clusten by simply

add«ng the nine tangenits to C at the individual fLexes.

Preog. Since 1 contains 9 elements and any straight line can
meet C in atmost three points, we can find three elements of 1

which are not collinear in the complex projective plane. Let {a,b,d}
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be three such flexes of the the complex curve C. This simply means
that a*b # d; a*d # b; b*d # a. Already w2 know that any two flexes
must go through a third. We now claim that the nine flexes of the

cubic are precisely the following (see Figure 5):
{a,b,d,a*b,a*d,b*d,a*(b*d),b*(a*d),d*(a*b)}.

It is clear that all these points are flexes because they are all
idempotent, thanks to the median law. The only question 1s that
whether they are distinct. Since a,b and d are linearly independent,
it is clear that | {a,b,d,a*b,a*d,b*d} |=6. If a=a*(b*d) then we
have a*a = a*(b*d) and hence a = b*d, a contradiction to the choice
of a,b and d. And since a cubic cannot accommodate more than nine
flexes, the above set must be the set of all flexes. Still, it
is not clear why the collinearities 1indicated in the Pappus con-
figuration above must be valid at all! They are simple consequences
of the laws on the cubic we have already established. Let us prove

these additional collinearities now.

(b*d)Y*((a*h)*d) = (b*¥(a*b))*(d*d) = a*d

d*¥(a*(h*d)) = b*(a*(d*d)) = b*(a*d)
a1yl

(a*b)*(a*d) = (a*a)*(b*d) = a*(b*d)

Even though the above proofs are equational, they all are con-
cealed applications of the classical Bezout theorem (or "intersection
theorems') valid for projective plane curves (see pp. 124-125 in
6] and also ([3]). Also, for some universal algebraists, this
proof should be reminiscent of enumerating the set of all of essen-

tially ternary polynomials of a free algebra having the polynomial
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sequence (0,0,1,3,5,...), see Theorem 3 in |[8]. This completes
the proof of the remaining collinearities of the Pappus configuration.

Let us define
c = a*b, e = a*(b*d), f = b*(a*d), g = b*d, h = (a*b)*d and i=a*d.

Now the full incidence algebra <I1,*¥ > is given by the following

table:

h f e d ¢ b a i h g

i d f e a ¢ b h g i

The 1somorphisms mentioned in the theorem are 1illustrated in the

Figure 7.
We will now generalize the above construction to any thiee arbi-
trary points {a,b,d} of general position on the cubic curve. For

three non-collinear points a,b and d, let w(a,b,d) denote the spe-
cific statement that the subgoupoid {a,b,d,a*b,a*(b*d),d*(a*(b*d)),
b*d,(a*b)*d } is a Pappus configuration as shown 1in Figure 5. We
first prove a lemma establishing a connection between the two points
a and d, which 1is automatically satisfied when a and d happen

to be points of inflexions as in the case of Theorem 2,
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LEMMA 3.1. 1(a,b,d) k==C {a*(d*d) = (a*a)*d}.

Proog. Assume n(a,b,d). As in the proof of Theorem 2, define

¢ = a*b, e=a*(b*d), f=d*(a*(b*d)), g=b*d and h=(a*b)*d.

Now the assumption n(a,b,d) implies that a,b and f are collinear.

This means that
a*((a*b)*d) = d*¥(a*(b*d)).

But, by applying the second identity proved in Theorem 1 to both

sides of the above equality, we obtain
b*((a*a)*d = b*(a*(d*d))
and left-cancelling the common element b we get the desired result
m(a,b,d) ]==C.{a*{d*d) = (a*a)*d}.

Using the equational laws SSQ and the two identities of "Theorem

1, it is not hard to show that the nine points
{a,b,d,c,e,f,g,h and 1 = a*(d*d) = (a*a)*d}

do form a closed configuration (93,93} on the complex cubic which
is, obviously, isomorphic to the Pappus configuration (see Figure

5). Let us prove two of the three remaining collinearities:

c*e = (a*b)*(a*(b*d)) = (a*a)*(b*(b*d)) = (a*a)*d = i
and

g*h = (b*d)*((a*b)*d) = (b*(a*b))*(d*d) = a*(d*d) = i.

In fact, the groupoid generated by them is identical to that of
the table given in Theorem 2 but for the entries in the main diagonal.

Since these points need not be flexes, they need not be idempotent.
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Thus we have completed the proof of the following

THEOREM 3.2, The Pappus congiguration can be realized as a cubic

cluster of a non-singular cubic curve with two degrees of fxreedom.

REMARK. As mentioned in the introduction, this result is not
new. Feld geve a proof of this fact in 1936 (see [4}] using the
complex elliptic function of Weierstass. See Berman [1] for a nice

generalization, again using the doubly periodic meromorphic functions.

THEOREM 3.3. The cyclic different set design based {(0,1,3);mod
10}can be embedded in a cubic cluster. The closure of the points

of the design gorm a 11-cluster.,

Proog. If the design

OV~ & b
il il L L] W L -
b = OO 00 1O B A

{(0,1,3): mod 10}

is embeddable into a cubic cluster, then the above partial algebra
must satisfy all the cubic laws T . As before, using these, we
derive further incidence relations among these points, in particular,

the tangency relations.
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0*0

(1*3)*0

I

((9*8)*3)*0
(9*0)*3)*8 ......... by G2

1l

"

(2%3)*8
5%8

H

6

and 1 + i+k is an automorphism of the design, we see that i*i=i+6
(mod 10) for all 1i. Geometrically, this means that the tangent
at the point corresponding to i must pass through the point corre-
- sponding to 146 on the cubic curve (see Figure 4).

Also,

0*35

|

(9%2)*(7*4)

(9*7)*(2*4) .... by G3

6*1
and similarly,
i*(i+5) = j¥(j+5) = -~o , say.
Now
(+o)*(-w) = (0%5)*(0%5)
= (0*0)*(5*5)
6%1

0*5
(-=).

i

and so the point corresponding to - « must be an inflexion point
on the cubic. Choosing this inflexion point as the identity element

we define the group law on the cubic as
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Xy = (X * y)R(-w)

where now the binary morphism '*' stands for the classical chord-
tangent construction described in the Section 1. We need to derive
one more relation among the points in the design before we achieve
our actual embedding of it as a cubic cluster. Writing i2 for
i*i,

. AN2242\2

(DD D% = ((((1+6) )52

123222 (((1+2)H) 5 2= ((1+8) D) 2= (1+4) =1

In other words, the point P corrsponding to any i must satisfy
the equation -32P = P or 33P = -o , This will be case if we choose
P to be a point of order 11 (3 is no good because then P will
itself be an inflexion point but O is not idempotent: O0*0=6#0).
From Lemma 4 we know that there are 121 points of order 11 on
a non-singular cubic curve in the complex plane. Choose any such

point P and define
o(i) = 2'P
where 21 is calculated (mod 11), of course.

We also know that three points P,Q and R on the cubic will
be collinear iff P+Q+R=0 under the group law. Let us now verify

the preservation of collinearities under this embedding:
(01j) iff P+2P+2jP=-m iff [1+2+21)=0 (mod 11) iff 23-8 (mod 11) iff j=3

and thus we have embedded our initial design {(0,1,3):mod 10}

into a cubic cluster.

Now 2 is a primitive root of the prime number 11 and moreover

it is a root of the equation
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xS + x + 1 = 0

in the field Z[11]. A primitive root of a prime p satisfying the
above cubic equation 1is the real essence of our embedding the
partial algebraic structure obtained from the design based on
(013) as a full incidence algebra on a complex cubic curve. See
the Appendices 1 and II for more examples of embeddings using
primitive roots. It is this interplay between geometry, combinatorics,
arithmetic and algebra that we would like to capture in a most
general set up in our next section where we show that for every

prime p > 11, there 1s a p-cluster which is the closure of a

(p—l)3 design.

§4. A GENERAL REPRESENTATION THEOREM.

LEMMA 4.1. Let p > 11 be a prime number. Then there are numbers

k and a such that

(1) k is a primitive root of the field GF(p);

(ii) 1+k+k®=0 (mod p) and

(iii) (0,1,a) is a difference set mod (p-1).

Proof. Choose a primitive root k such that 2k+1#0 (mod p) and
k+2#0 (mod p). This is certainly possible because p > 11 and there

are ¢(p-1) primitive roots for the prime number p. The non-zero

elements of the field are
(1,k.k%,k>,....kP" 1

The element -1-k#0 since otherwise k=-1 and k2:1 (mod p) impos-

sible since p>3. Hence -1-k=kZ for some number a < p -1 and so
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1 + k + k% = 0 (mod D) teeineen (1).

If (0,1,a) 1is not a difference set over mod(p-1) then the six

elements

{+1, +a, +(a-1)}

are not pairwise distinct (mod (p-1)). We will arrive at a contra-

diction from each one of the possible equalities.

If 1=a mod(p-1) then a=p itself and 1+k+1=0 (mod p) which contra-

dicts the choice of k.

If 1=-a mod(p-1) then (1) becomes 1+k+kP %=0 or 1+k+k 1=0 or k°=

--k-1=k"! or simply k>=1 which is impossible since k is a primitive
root of p and p>4.

If a=-a mod(p-1) then a=0 mod(p-1) or else a=(p-1)/Z(modp-1).
If a=0 (mod p-1) then a=p-1 and hence k%=1, so the equation (1)
becomes 2+k=0 which contradicts the choice of Kk.

If a=(p-1)/2 then k%=-1 (mod p) and hence, by the equation (1),
l1+k+(-1)=0 (mod p) or k = 0,
which is plainly impossible.

If a=1-a {(mod p-1) then 2a=1 (mod p-1) or a=(1/2) mod (p-1) so
that, by equation (1),
0 = l+k+k%

1+k+k (2)+P1

- 1+k+k (P12

1+k+(-1)

k, which is impossible.
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Finally, if a-1-1-a mod (p-1) then 2a=p+l and hence (-1-k)%=k?%2-

=kp+1=k2 or 2k=-1 (mod p) which is one of the two values we already

precluded. Since ¢(p-1) > 3 for all primes p > 11, there is always
a primitive root k in the fiﬁld_.Z[p] satisfying the conditions

of the Lemma.

THEOREM 4.1. For aff primes p > 11 there exdsts a difference
set design on {0,1,2,...,p-1} which can be embedded as a cubdc

cluster which 44, 4n gact, a p-cluster.

Proof. By the Lemma 4.1, there exists a primitive root k in

Zlp| and a number a < p - 1 such that

(i) 1+k+k?=0 (mod p)

(ii) (0,1,a) is a difference set over mod (p-1).

Choose the difference set to be {(0,1,a); mod (p-1)}. Let now
C be a non-singular «cubic curve in the complex projective plane.
By Lemma 1.5 we know that C has p2 points of order p. Let P be
one such point. As in the proof of Theorem 3.1, define the map

6: {0,1,2,...,p-1} > C by the rule &¢(i)=k'P.
Clearly the map ¢ is one-to-one. Indeed, if ¢(i)=¢(j) for some
i#j in z[p]., then (k'-kJ)P=0 under the group law, and since P

is of order p, this forces that ki=kj (mod p). But k being a pri-
mitive root in the field Z|[p], we get that i=j. Moreover,
1+1 i+a

B(1)+ d(i+1)+6 (i+a) = kip+kitlpiki*ap

k1r1+k+k®)P

= 0
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by the choice of the primitive root k and the index a and hence
the three points corresponding to the three elements i,i+1 and
i+a in the difference set design will be collinear in the cubic
curve C. Thus we have represented the cyclic difference set

{(0,1,a); mod(p-1)} as a cubic cluster,

The technique of the above process of embedding is applicable
to designs N where n+l1 is not necessarily a prime number. If
n+l 1s not prime, then one looks for the least prime number p
of the form jq+1 where q is a prime factor of n and embed the

original n - design in the resulting p-cluster using the above

technique of finding k and a satisfying the equation 1+k+k?=0 (mod p).

Let us conclude this section by giving one example of this last

kind:

THEOREM 4.,2. The cyclic difference design {(0,1,9);mod 13} can

be embedded in a cubic clusien.

Proog. Here 53

13 x 4 + 1 is the least prime of the form
13j+1. Now the <collinearity of the three points corresponding

to 0,1 and 9 'translates algebraically' to the polynomial equation

l+x+x> = 0 (mod 53)

and 16 happens to be a root of this equation in the field Z[13].
Moreover, the element 16 is of order 13 in the multiplicative
group Z*[13] and hence we can realize the original design

{(0,1,9); mod 13} as a subalgebra of the 53-cluster in the cubic

curve. Here is the actual mapping:
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1 16 44 15 28 24 13 49 42 56 46 47 10

In other words, choose an arbitrary point P of order 53 in the cubic

curve and let Q = f(P) be the point on the curve defined by
P(P)=(((PxP)*x (PxP))*x ((PxP)*(P*P)))* (((P*P)x (P*P))* ((P*P)x(PxP)))

where * now stands for the binary morphism of chord-tangent con-
struction. Notice that @(P) = 16P under the group law. Now simply
follow the above map and send the element 1 to the point P, 2
to 16P, 3 to the point 44P etc. The three points @(1),¢(2),9(10)

on the cubic will be collinear because
(1) + ¢9(2) + @(10) = P+16P+36P=53P=0

under the group law since P was chosen to be a point of order
53. This represents the cyclic difference set design {(0,1,9);
mod 13} as a subalgebra of a cubic cluster with 53 points. In
the Appendix II below, we give a partial list of difference set
designs of type (0,1,3) and (0,1,4) based on primes as well as
non-primes and the corresponding mappings which realize the given
designs as sub-configurations of cubic clusters in the complex

projective plane.

The theme connecting the arithmetic, equational logic, algebra
and geometry which is merely touched upon in these Theorems as
well as in the several examples given in the Appendix II will

be studied in detail in our forthcoming publications on this topic.
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APPENDIX 1

A method of embedding difference set designs {(0O,m,n):;mod 14}

in cubic clusters.

14+1

|

15 is not a prime but 2x14+1=29 is prime. The least primi-

tive root of 29 is 2.

{21 (i,28)=1)

Hence all primitive roots of 29

- {2,8,3,19,18,14,27,21,26,10,11,15 }

Now the elements of order 14 in the multiplication group Z*[29]

are precisely the squares of the primitive roots, viz
{4,6,9,13,5,22 }.
The element 4 is a root of the equation
1+x+x? = 0

in the field Z[29] and hence the cubic cluster Cl generated by
point a P of order 29 in the underlying group of a complex cubic
must contain a geometric sub-configuration isomorphic to the cyclic
difference set design {(0,1,4):mod 14} and the actual embedding

is achieved by the mapping

o : {(0,1,4):mod 14 } -~ Cl where q(i)=4iP and 41 is calculated modulo 29.

Now the triples of the configuration {(0,1,4); mod 14} automati-

cally become collinear points under this mapping: {4m+4m+1+4m+4)P

= 4m(1+4+4d)P = 0 and hence the three points e(m), o@(m+l) and

p(m+4) are indeed collinear in the cubic curve.

This gives a proof of the second half of line 6 in the Appendix
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Il claiming the embeddability of {(1,2,5); mod 14}. Continue si-
milarly with other generators of order 14 to find the corresponding
difference set designs they determine. The following table gives
all such designs embeddable in Z[29]. In fact, these apparently
different designs are all isomorphic to one another. We will now
describe the isomorphism from {(0,1,4):mod 14} to say, {(0,1,9); mod 14} .
It is clear that 0 and 7 are fixed points. To find the image of
1, notice that 1 goes to 4 in (0,1,4) and 4 is the image of 5
in the mapping to (0,1,9) and hence send 1 to 5 and similarly
2 to 10 etc. Thus the required isomorphism is simply the permuta-
tion given by the four cycles (0),(7),(1,5,11,13,9,3) and
(2,10,8,12,4,6).

Points 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (0,m,n)

Generators
4 1 416 6 24 9 7 28 25 13 23 5 20 22 (0,1,4)
6 1 6 7 13 20 4 24 28 23 22 16 9 25 5 (0,1,9)
9 1 923 4 7 5 16 28 20 6 25 22 24 13 (0,2,5)
13 1 13 24 22 25 6 20 28 16 5 7 4 23 9 (0,3,5)
5 1 525 9 16 22 23 28 24 4 20 13 7 6 (0,1,6)

22 1 22 20 5 23 13 25 28 7 9 24 6 16 4 (0,3,4)
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APPENDIX 11
A partial list of designs embeddable as cubic clusters: @(x)=k*(mod p)
{(124); mod n} {(125); mod n}
n Kk p n Kk P
9 T Zi 9 22 7
10 2 11 10 7 11
10 13 33 11 18 3
11 4 3 1 64 €9
12 7 13 12 13 45
13 36 53 14 4 29
15 14 3] 16 3 17
15 76 93 16 37 51
16 11 17 16 88 255
16 28 51 17 o3 103
18 25 37 18 2 19
19 16 457 18 40 57
20 37 61 19 30 191
21 38 43 20 13 25
s 58 67 20 18 55
23 25 47 20 WK 165
3 kY 47 21 50 127
26 51 131 2 19 23
77 61 8l 24 7 e
28 26 29 26 51 79
28 55 £7 Z7 49 Bl
30 3 31 7 73 109
30 34 93 28 21 29
30 79 o9 28 33 145
33 142 200 28 79 g7
35 7 351 30 40 o9
35 3 3 32 42 193
37 67 149 3 34 307
39 11 79 3s 5 631
39 142 477 35 10 71
40 47 241 35 35 T
42 124 379 36 78 95
43 136 173 37 63 149
46 35 47 39 76 79
46 82 141 42 4 261
48 79 153 42 28 43
49 133 197 44 18 115
56 20 617 44 g8 115
57 16 4113 46 10 47
60 46 143 46 39 41
€0 908 793 48 48 193
65 5 131 49 54 197
65 75 131 53 27 107
65 136 393 53 50 1697
66 13 67 53 o2 107
66 63 67 57 75 229
65 80 67 60 13 225
65 130 201 60 35 61
69 25 423 &3 13 127
69 34 423 68 93 515
75 121 151 70 62 319
£0 79 187 79 43 317
582 35 £3 80 83 425
82 118 249 82 18 83
84 124 559 g3 100 167
84 142 261 84 28 215
86 47 431 84 50 3683
87 12 1741 88 15 £9
g7 114 523 BB 21 353
87 141 567 88 3] 89
B8 14 89 00 40 209
88 103 89 94 33 8179
00 34 837 06 g7 97
2 37 vexi 08 25 197
0% 142 621 100 88 125
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Q=P{QP)

PQ=QP P+Q

RR R

Figure 1
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Fquivalence of identitics G1, G2, G3 anc he associativity of the group law,

{(xy)z)t = ((xt)z)y

({xy)z)t

({{xy)z)t)y

({{(xy)z)ltly)z

Configuration representing the Jaw G2

-.___.__-___._..__,__..'._.---..d_--_.q.-———.-———————
-

Configuration representing the law G1

a

N
(xy) (zt)
= (xz) (yt)
y X
:={:-:+].r]z

Configuration representing the law G3 Associativity of the classical group law

o o o . O PR R am o A A e

Figure 2.
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1,24
2,35
5 5*12 3.4.6
1,24
457
23,5
5,6,8
34,6
457 6,79
Siﬁl ?lﬂllﬂ
L] I1
713 — 9,10,12
Ay 10,11,13
((124); mod 7) 11,12,14
12,13,1
13,04,2
12 4 1+8 2+9 g4e1p L1413
The classic anti-Fano configuration A subalgebra in any algebra (T*) {(124); mod 14)
realized as a {(124); mod 7} design satisfying the laws on a cubic curve
and generaled by the cyclic design
{(124); mod 14).
Figure 3(a) Figure 3(b)

The Complete Configuration {(124); mod 10}

(the tangents at the various points are not shown)

Figure 4
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P+Q+R = 0inZ3xZ; iff P,Q and R are collinear.

4
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