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Introduction

The first axiomatization of the universal geometry of the Euclidean opera-
tions of point-reflection and midpoint (to be referred to in the sequel as V) was
provided in [12]. There, Vakarelov presented two variants of an axiom system
expressed in a language with one sort of individual variables, to be interpreted
as points, and two binary operation symbols, σ, with σ(ab) standing for ‘the
reflection of b in a’ and µ, with µ(ab) standing for ‘the midpoint of segment ab’.
One consists of {A1-A4} and the other of {A1-A3, A5, A6}, where the axioms
A1, . . . , A6 are:

A 1. σ(aa) = a

A 2. σ(xa) = σ(ya)→ x = y
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A 3. σ(µ(ab)a) = b

A 4. σ(dσ(cσ(ba))) = σ(bσ(cσ(da)))

A 5. σ(aσ(ax)) = x

A 6. σ(σ(dc)σ(ba)) = σ(σ(db)σ(ca))

If M is a model of {A1-A4} (or {A1-A3, A5, A6}), then, for points a,b, c,d
in M, the pair (a,b) is said to be equivalent to the pair (c,d) (in symbols
(a,b) ∼ (c,d)), if there exists a point x such that σ(xa) = d and σ(xb) = c.
The relation ∼ is an equivalence relation, and an addition can be defined on the
set S := M/ ∼ of equivalence classes, turning S into an abelian group in which,
for all a ∈ S, the equation x+ x = a has a unique solution x. Fixing a point o
in M, and writing [a,b] for the equivalence class under ∼ of (a,b), we obtain
that [o, σ(ba)] = 2[o,b] − [o,a], and [o, µ(ab] = 1

2([o,a] + [o,b]). To simplify
the notation, we may think of [o,a] as the affix of point a, and write instead
of [o,a] simply a. Our formulas for the operations of reflection in a point and
midpoint thus become the familiar ones σ(ba) = 2b− a and µ(ab) = a+b

2 .
Notice that A4 states that the square of the composition of three point-

reflections (namely the reflections in b, c, and d) is the identity.
The subject received a new, more absolute treatment in [8], where the start-

ing point is the axiom system {A1-A3, A5} (the theory it defines will be referred
to as A), which contains no axiom that would be valid only in an affine setting.
Notice that the class of models of A is a variety, since it is an equational theory.
To see this, notice that, if one replaces A2 with

A 7. µ(aσ(ba)) = b

then one can prove A2. For, suppose σ(xa) = σ(ya). Then, by A7, x =
µ(aσ(xa)) = µ(aσ(ya)) = y.

On the other hand, by A3, we have σ(µ(aσ(ba))a) = σ(ba), thus, by A2,
µ(aσ(ba)) = b, which shows that A7 can be derived from A2 and A3.

Thus {A1, A3, A5, A7} is another axiom system for A.
To these, one can add a ternary relation L, with L(abc) to be read as ‘points

a, b, and c are collinear’, and the axioms

A 8. a 6= b ∧ L(abc) ∧ L(abd)→ L(acd)

A 9. L(abc)→ L(bac)

A 10. L(abσ(ab))

A 11. L(abc)→ L(σ(xa)σ(xb)σ(xc))
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to get an even richer absolute axiom system for point-reflection, midpoint,
and collinearity (the theory axiomatized by {A1-A3, A5, A8-A11} will be de-
noted by A′, and the one in which A4 is added to the above list by V ′).

A significantly more complicated — in its variant expressed in terms of σ and
µ very far from universal — axiom system for point-reflections and midpoint,
which is also absolute in nature, was proposed in [7], in group-theoretical terms.
It reads as follows:

Let Γ be a group, let D be a subset of Γ consisting entirely of involutory
elements (i. e. of elements g with g 6= 1 and g2 = 1; we write ι(g) to denote the
fact that g is involutory) For (Γ,D), the authors consider the following three
axioms

S 1. If a, b, x, y, z ∈ D are such that a 6= b and ι(abx), ι(aby), ι(abz), then
xyz ∈ D.

S 2. For all a, b ∈ D, there is exactly one m ∈ D such that b = mam.

S 3. If a, b, c ∈ D are such that acbcbca = bcacacb, then ι(abc).

These axioms are expressed inside the language of group theory, with one
binary operation. However, the theory axiomatized by them is synonymous with
one axiomatized in terms of σ and µ. To see this, given a pair (Γ,D) satisfying
S1-S3, we define, for every g ∈ D, a map σg : D → D, with σg(h) = ghg (that
ghg ∈ D follows from S1 with a = x = z = g, b = y = h). If we let σ(ab) be
defined as σa(b) and µ(ab) as the unique m from axiom S2, then, on D, these
two operations satisfy A1, A2, A3, A5, as well as the following axioms:

A 12. (∀abxyz)(∃u) a 6= b ∧ ι(abx) ∧ ι(aby) ∧ ι(abz)→ xyz = u

A 13. µ(ab)aµ(ab) = b

A 14. mam = nan→ m = n

A 15. acbcbca = bcacacb→ ι(abc)

where
∏n
i=1 gi =

∏m
j=1 hj stands for

(∀x)σ(g1(σ(g2 . . . (σ(gnx) . . .) = σ(h1(σ(h2 . . . (σ(hmx) . . .),

and thus A12-A15 are, when written in prenex form, ∀∃∀ sentences.
Let now M be a model of {A1-A3, A5, A12-A15}. If we define, for all a ∈M,

σa : M → M by σa(b) = σ(ab), and let D = {σa | a ∈ M}, and Γ be the group
generated by D, then (Γ,D) satisfies S1-S3. This means that we may consider
{A1-A3, A5, A12-A15} as an axiom system for the geometry axiomatized in [7],
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whose theory will be denoted by K. There is a logically equivalent theory, K′,
expressed in a one-sorted language, with variables to be interpreted as motions,
with an individual constant 1, a unary predicate symbol P , with P (a) to be
read as ‘a is a point-reflection’, two binary operations, ·, with a · b to be read as
‘the composition of a and b’, and ν, with ν(ab) to be read, in case a and b are
point-reflections, as ‘the point reflection for which (ν(ab) · a) · ν(ab) = b’. With
ι(x) standing for x · x = 1, its axioms are:

K 1. x · (y · z) = (x · y) · z

K 2. x · 1 = x ∧ 1 · x = x

K 3. P (x)→ (x 6= 1 ∧ ι(x))

K 4. P (a) ∧ P (b) ∧ a 6= b ∧
∧3
i=1 P (xi) ∧ ι(a · (b · xi))→ P (x1 · (x2 · x3))

K 5. P (a) ∧ P (b)→ ν(ab) · (a · ν(ab)) = b

K 6. P (a) ∧ P (m) ∧ P (n) ∧m · (a ·m) = n · (a · n)→ m = n

K 7. P (a)∧P (b)∧P (c)∧ (a · c) · ((b · c) · (b · (c · a))) = (b · c) · ((a · c) · (a · (c · b)))
→ ι(a · (b · c))

To get the affine version of the theory, one needs to add

K 8. P (a) ∧ P (b) ∧ P (c)→ P (a · (b · c))

In its presence, the axioms K4, K6, and K7 become redundant (to see that
this is the case for K6, notice that, if mam = nan, then nmam = an, and thus
— given that, by K8, we have nma = amn — amnm = an, so nm = mn,
leading, as in the proof of [7, (2.5)], to m = n).

The question whether K7 is independent of {K1-K6} was raised but could
not be answered in [7]. We do know that K6 is independent of K1–K5. The
independence model is given by (Γ,D) = (D4, {s, r2s}) (i. e. P (x) holds if and
only if x ∈ {s, r2s}), where D4 denote the dihedral group 〈r, s | r4 = 1, s2 =
1, srs = r3〉. That K6 does not hold can be seen by setting (a,m, n) = (s, s, r2s).

In the non-Euclidean case, i. e., in case the composition of three point-
reflections is not always a point-reflection (and it is never the identity in K, as
shown in [7, (2.5)]), the incidence structure of the geometry can be defined in
terms of σ (or in terms of · and P ), and thus L becomes superfluous in that
case (as noted in [7, (7.2)], and spelled out in detail in the two-dimensional
case in [9]). In the Euclidean case however (i. e., when the composition of three
point-reflections is always a point-reflection), the incidence structure cannot be
read off from the σ- and µ-structure (or the ·-, ν-, and P -structure).
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σ 1 2 3 4 5 6 7

1 1 7 4 3 6 5 2
2 4 2 5 1 3 7 6
3 7 6 3 5 4 2 1
4 6 3 2 4 7 1 5
5 2 1 7 6 5 4 3
6 3 5 1 7 2 6 4
7 5 4 6 2 1 3 7

µ 1 2 3 4 5 6 7

1 1 5 6 2 7 4 3
2 5 2 4 7 6 3 1
3 6 4 3 1 2 7 5
4 2 7 1 4 3 5 6
5 7 6 2 3 5 1 4
6 4 3 7 5 1 6 2
7 3 1 5 6 4 2 7

Table 1: A model of A in which A16 fails when (o, a, b) = (1, 2, 1)

Our aim in this paper is two-fold:

(i) to put forward the conjecture that there is no axiom system in terms of
σ and µ for V all of whose axioms are prenex statements containing at most
three variables (both A4 and A6 require 4 variables; it is quite clear that the set
of all at most two-variable universal axioms in σ and µ that hold in V cannot
axiomatize V — nor can it entail A2)1;

(ii) to find out the relative strength of several axioms that determine the
Euclidean metric if added to the axiom system for metric planes (see [2]), but
that are weaker than A4 when added to A or to A′. We thus determine several
intermediate worlds between A and V as well as between A′ and V ′ that have
no counterpart in the metric plane setting.

All the finite independence models and the main steps of the proofs were
obtained by Tipi, an aggregate of several automatic theorem provers [1].

1 Universal theories between A and V

An absolute axiom that does not belong to A is the following axiom, that is
equivalent to A13 and K5:

A 16. µ(σ(oa)σ(ob)) = σ(oµ(ab)))

That it does not belong to A can be seen from the following 7-element model,
with universe {1, 2, 3, 4, 5, 6, 7}, and with σ and µ given as in Table 1:

A1 can be derived from A3 and A16

1Notice that the logically equivalent theory stated in the language of K, axiomatized by
{K1-K3, K5, K8} is axiomatized by universal statements with at most three variables.
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Proof. The desired result follows from the following equations:

(1) µ(σ(µ(uv)w)σ(µ(uv)u)) = σ(µ(uv)µ(wu)) [by setting o← µ(uv),
a← w, and b← u in A16]

(2) µ(σ(µ(uv)w)v) = σ(µ(uv)µ(wu)) [by (1) and A3 with a← u and b← v]

(3) µ(σ(µ(yx)y)x) = σ(µ(yx)µ(yy)) [by (2) with u← y, v ← x, and w ← y]

(4) µ(xx) = σ(µ(yx)µ(yy)) [by (3) and A3 with a← y and b← x]

(5) µ(σ(µ(yx)µ(yy))x) = σ(µ(yx)µ(µ(yy)y)) [by (2) with u← y, v ← x, and
w ← µ(yy)]

(6) µ(µ(xx)x) = σ(µ(yx)µ(µ(yy)y)) [by (5) and (4)]

(7) σ(µ(vσ(ou))µ(vv)) = µ(σ(µ(vσ(ou))v)σ(µ(vσ(ou))v)) [by A16 with
o← µ(vσ(ou)), a← v, and b← v]

(8) σ(µ(vσ(ou))µ(vv)) = µ(σ(ou)σ(ou)) [by (7) and A3 with a ← v and
b← σ(ou)]

(9) σ(µ(vσ(ou))µ(vv)) = σ(oµ(uu)) [by (8) and A16 with o← o, a← u, and
b← u]

(10) µ(xx) = σ(µ(xx)µ(xx)) [by (4) with x← x and y ← x]

(11) µ(xx) = σ(σ(µ(yx)µ(yy))µ(xx)) [by (4)]

(12) σ(µ(σ(µ(yx)µ(yy))x)σ(µ(yx)µ(yy))) = x [by A3 with a← σ(µ(yx)µ(yy))
and b← x]

(13) µ(σ(µ(yx)µ(yy))x) = σ(µ(yx)µ(µ(yy)y)) [by (2) with u← y, v ← x, and
w ← µ(yy)]

(14) σ(σ(µ(yx)µ(µ(yy)y)σ(µ(yx)µ(yy))) = x [by (12) and (13)]

(15) σ(σ(µ(yx)µ(µ(yy)y)µ(xx)) = x [by (14) and (4)]

(16) σ(σ(µ(yσ(ox))µ(yy))µ(σ(ox)σ(ox))) = µ(σ(ox)σ(ox)) [by (11) with
x← σ(ox) and y ← y]

(17) σ(µ(yσ(ox))µ(yy))) = σ(oµ(xx)) [by (9) with o← o, u← x, and v ← y]

(18) σ(σ(oµ(xx))µ(σ(ox)σ(ox))) = µ(σ(ox)σ(ox)) [by (16) and (17)]

(19) µ(σ(ox)σ(ox)) = σ(oµ(xx)) [by A16 with o← o, a← x, and b← x]
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(20) σ(σ(oµ(xx))σ(oµ(xx))) = σ(oµ(xx)) [by (18) and (19)]

(21) σ(σ(σ(µ(yx)µ(µ(yy)y))µ(xx))σ(σ(µ(yx)µ(µ(yy)y))µ(xx)))
= σ(σ(µ(yx)µ(µ(yy)y))µ(xx)) [by (20) with o ← σ(µ(yx)µ(µ(yy)y)) and
x← x]

(22) σ(xx) = x (by (21) and (15)]

QED

In light of this result, let A1 stand for the theory axiomatized by {A2, A3,
A5, A16} (which is the theory A+A16).

One of the statements that is equivalent, inside the theory of metric planes,
to the axiom of the Euclidean metric (‘There exists a rectangle’, Axiom R in
[2]) is the one stating that the midline is half as long as the basis, or, in the
language of µ,

A 17. µ(µ(ab)µ(cb)) = µ(bµ(ac)).

Lemma 1. From A3 and A17 we get that µ(xx) = x for all x.

Proof. We have the following equations:

(1) σ(µ(µ(vu)µ(wu))µ(vu)) = µ(wu) [by A3 with a← µ(vu) and
b← µ(wu)]

(2) µ(µ(vu)µ(wu)) = µ(uµ(vw)) [by A17]

(3) σ(µ(uµ(vw))µ(vu)) = µ(wu) [by (1) and (2)]

(4) µ(µ(uµ(vw))µ(µ(xw)µ(vw))) = µ(µ(vw)µ(uµ(xw))) [by A17 with
a← u, b← µ(vw), and c← µ(xw)]

(5) µ(µ(xw)µ(vw)) = µ(wµ(xv)) [by A17 with a← x, b← w, and c← v]

(6) µ(µ(uµ(vw))µ(wµ(xv))) = µ(µ(vw)µ(uµ(xw))) [by (4) and (5)]

(7) µ(µ(uu)µ(vµ(uu))) = µ(µ(vµ(uu))µ(uµ(uu))) [by (6) with v ← u,
w ← u, u← v, and x← u]

(8) µ(µ(vµ(uu))µ(uµ(uu))) = µ(µ(uu)µ(vu)) [by A17 with a← v,
b← µ(uu), and c← u]

(9) µ(µ(uu)µ(vµ(uu))) = µ(µ(uu)µ(vu)) [by (7) and (8)]

(10) µ(µ(uu)µ(vu)) = µ(uµ(uv)) [by A17]
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(11) µ(µ(uu)µ(vµ(uu))) = µ(uµ(uv)) [by (9) and (10)]

(12) σ(µ(µ(uu)µ(vµ(uu))µ(uu)) = µ(vµ(uu)) [by A3 with a← µ(uu) and
b← µ(vµ(uu))]

(13) σ(µ(uµ(uv))µ(uu)) = µ(vµ(uu)) [by (12) and (11)]

(14) σ(µ(uµ(uv))µ(uu)) = µ(vu) [by (1) with u← u, v ← u, w ← v and A17]

(15) µ(vµ(uu)) = µ(vu) [by (13) and (14)]

(16) σ(µ(vµ(uu))v) = µ(uu) [by A3 with a← v and b← µ(uu)]

(17) σ(µ(vu)v) = µ(uu) [by (16) and (15)]

(18) σ(µ(vu)v) = u [by A3]

(19) µ(uu) = u [by (17) and (18)]

QED

A1 can now be derived from A3 and A17 (since σ(µ(aa)a) = a by A3, and
µ(aa) = a by Lemma 1).

Lemma 2. A3 and A17 prove that µ is symmetric: µ(xy) = µ(yx) for all x, y.

Proof. By A17, µ(bµ(aa)) = µ(µ(ab)µ(ab)). By Lemma 1, µ(µ(ab)µ(ab)) =
µ(ab), and so µ(bµ(aa)) = µ(ab). However, by Lemma 1, µ(aa) = a, so µ(ba) =
µ(ab). QED

Also, A5 can be derived from A2, A3 and A17. For, by Lemma 2, µ(xσ(ax)) =
µ(σ(ax)x), thus, by A3, x = σ(µ(σ(ax)x)σ(ax)) = σ(µ(xσ(ax))σ(ax)). How-
ever, by A7 (which holds, since A2 and A3 hold), we have µ(xσ(ax)) = a.
Plugging this in x = σ(µ(xσ(ax))σ(ax)), we get A5.

Notice that

A+ A17 ` A16 (1.1)

Proof. We have the following equations:

(1) σ(µ(µ(ba)µ(ca))µ(ba)) = µ(ca) [by A3 with a← µ(ba) and b← µ(ca)]

(2) µ(µ(ba)µ(ca)) = µ(aµ(bc)) [by A17]

(3) σ(µ(aµ(bc))µ(ba)) = µ(ca) [by (1) and (2)]
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(4) σ(µ(σ(ab)µ(bc))µ(bσ(ab))) = µ(cσ(ab)) [by (3) with a ← σ(ab), b ← b,
and c← c]

(5) σ(µ(σ(ab)µ(bc))a) = µ(cσ(ab)) [by (4) and µ(bσ(ab)) = a [by A3]]

(6) σ(µ(aµ(cσ(ab)))a) = µ(cσ(ab)) [by A3 with a← a and b← µ(cσ(ab))]

(7) µ(σ(ab)µ(bc)) = µ(aµ(cσ(ab))) [by (5), (6) and A3 with
a← a, x← µ(σ(ab)µ(bc)), and y ← µ(aµ(cσ(ab)))]

(8) σ(µ(aµ(cσ(bc)))µ(ca)) = µ(σ(bc)a) [by (3) with
a← a, b← c, and c← σ(bc)]

(9) σ(µ(ab)µ(ca)) = µ(σ(bc)a) [by (8), in which
µ(cσ(bc)) has been replaced by b (by A7)]

(10) µ(σ(bσ(ba))µ(σ(ba)c)) = µ(bµ(cσ(bσ(ba)))) [by (7) with a← b,
b← σ(ba), and c← c]

(11) µ(aµ(σ(ba)c)) = µ(bµ(ca)) [by substituting, given A5, a for σ(bσ(ba)) in
(10)]

(12) µ(aσ(σ(ba)c)) = µ(σ(σ(ba)c)a) [by Lemma 2]

(13) µ(σ(σ(ba)c)a) = σ(µ(aσ(ba))µ(ca)) [by (9) with a ← a, b ← σ(ba), and
c← c]

(14) µ(aσ(ba)) = b [by A7]

(15) µ(aσ(σ(ba)c)) = σ(bµ(ca)) [by (12), (13), and (14)]

(16) µ(ax) = µ(ay)→ x = y [since, by A3, σ(µ(ax)a) = x and
σ(µ(ay)a) = y]

(17) µ(aσ(µ(bµ(ca))a)) = µ(bµ(ca)) [by A7 with a← a and b← µ(bµ(ca))]

(18) µ(aσ(µ(bµ(ca))a)) = µ(aµ(σ(ba)c)) [by (17) and (11)]

(19) σ(µ(bµ(ca))a) = µ(σ(ba)c) [by applying (16) to (18)]

(20) µ(σ(oa)σ(ob)) = σ(µ(oµ(σ(ob)a))a) [by (19) with a ← a, b ← o, and
c← σ(ob)

(21) µ(oµ(σ(ob)a)) = µ(σ(ob)µ(ba)) [by (7) with a← o, b← b, and c← a and
Lemma 2]

(22) σ(µ(oµ(σ(ob)a))a) = σ(µ(σ(ob)µ(ba))a) [by (21)]
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(23) µ(σ(σ(ob)a)b)−σ(µ(σ(ob)µ(ba))a) [by (19) with a← a, b← σ(ob), c← b]

(24) µ(σ(σ(ob)a)b) = σ(oµ(ab)) [by (15) with a ← b, b ← o, and c ← a and
Lemma 2]

(25) µ(σ(oa)σ(ob)) = σ(oµ(ab)) [by (20), (21), (23), and (24)]

QED

In light of these two results, let A2 stand for the theory axiomatized by {A2,
A3, A17} (which is an axiom system for A+A17). It is obvious that A1 ( A2,
given that the point-reflection and midpoint operations of the hyperbolic plane
do satisfy A1, but not A2.

Another axiom that is quite likely to be equivalent to Axiom R inside the
theory of metric planes (it is known that it does not hold for any triangle in
the hyperbolic plane, as shown in [3]) is the statement that if two medians of a
triangle meet in a point, then that point divides each in the ratio 2 : 1 (vertex:
midpoint), or, in the language of σ and µ

A 18. σ(σ(oµ(σ(σ(oµ(bc))o)c))o) = b

It states that the medians from b to µ(ac) and from a to µ(bc) meet in the
point o, which divides aµ(bc) and bµ(ac) in the ratio 2 : 1 (vertex: midpoint).
Here a stands for σ(σ(oµ(bc))o). Of course, the picturesque geometric statement
we provided should be taken with a grain of salt, as there is no mention of the
fact that the vertices of our triangle are not collinear.

Thus, one question would be whether A2 is V? We believe the answer to be
negative, and, more generally, that

Open Problem . No set of prenex 3-variable statements in terms of σ and µ,
true in V, can imply A4.

Tipi proved that

A2, A3, A17 ` A18 (1.2)

The proof Tipi found is too long to be reproduced here. On the other hand,
we have:

A+ A18 0 A17 (1.3)

and so adding A18 to A produces a theory A3 that is strictly included in A2,
but for which it is unknown whether it includes A1. That (1.3) holds can be
seen from the following 7-element model, whose universe is {1, 2, 3, 4, 5, 6, 7},
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σ 1 2 3 4 5 6 7

1 1 5 4 3 2 7 6
2 5 2 6 7 1 3 4
3 4 6 3 1 7 2 5
4 3 7 1 4 6 5 2
5 2 1 7 6 5 4 3
6 7 3 2 5 4 6 1
7 6 4 5 2 3 1 7

µ 1 2 3 4 5 6 7

1 1 5 4 3 2 7 6
2 5 2 6 7 1 3 4
3 4 6 3 1 7 2 5
4 3 7 1 4 6 5 2
5 2 1 7 6 5 4 3
6 7 3 2 5 4 6 1
7 6 4 5 2 3 1 7

Table 2: A model of A+ A18 in which A17 fails

and with σ and µ interpreted as in Table 2. A counterexample is obtained when
the varibles a, b, and c in A17 are interpreted, respectively, as (2, 3, 1).

Another axiom that is equivalent to A4 relative to A is the σ and µ form
of K8, a strengthening of A4, which states that the product of three reflections
(in points a, b, and c) is a point-reflection (in point µ(aσ(cσ(ba))).

A 19. σ(cσ(bσ(ax))) = σ(µ(aσ(cσ(ba)))x)

In other words, {A1-A3, A5, A19} is another axiom system for V.
To sum up, we have determined that
A ( A1 ( A2 ⊂ V and A ( A3 ( A2.

2 Universal theories between A′ and V ′

There is an easy way to get from A′ and V ′ without an axiom that would be
equivalent to A4. Its only drawback is that it is, from the point of view of first-
order logic, a ‘hand-waving’ way to do so. It is presented in [6]. Just add an axiom
stating that there are four points that do not lie on the same plane, and one
stating that all planes are exchange planes. Unfortunately, such simple sounding
concepts as ‘at least three-dimensional’ cannot be expressed in first-order logic.
Given three non-collinear points a, b, and c, one cannot express the fact that x
does not lie in the plane spanned by a, b, and c. The points spanned by these
appear in stages, first as points in U1 := {x |L(abx) ∨ L(bcx) ∨ L(cax)}, then
as points in U2 := {x |L(uvx), with u, v ∈ U1, u 6= v}, and so on recursively,
Un+1 := {x |L(uvx), with u, v ∈ Un, u 6= v} so the points in the plane spanned
by a, b, and c lie in U = ∪i≥1Ui. Unless there is an n with Un = Un+1, one
cannot express the fact that x 6∈ U by a first-order logic formula.

First, let us note that, just as in the case of A, not all universal sentences
true in absolute geometry can be found in A′. And it is not just that A16 is
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missing. There is more. First, in all metric planes, A19 holds if the three points
a, b, and c are collinear, i. e.

A 20. L(abc)→ σ(cσ(bσ(ax))) = σ(µ(aσ(cσ(ba)))x)

is an absolute axiom that quite likely cannot be derived from A′+A16, which
is why we list it as an additional axiom.

Also true in all metric planes, as shown in [2], is the fact that if two medians
of a triangle meet, then the three medians are concurrent, i. e.

A 21. L(aoµ(bc)) ∧ L(boµ(ac))→ L(coµ(ab))

Let A′+ denote the theory obtained by adding A16, A20, and A21 to A′.
A′+ is the richest absolute L, σ, and µ-based universal theory we consider.

An axiom that can be stated using L and µ, and which is easily seen to
follow from {A8-A10, A17} (first considered in [4], and shown to be equivalent
to Axiom R inside the theory of metric planes in [10]) states that the vertex
a, the midpoint of the opposite side µ(bc), and the midpoint of the midline
µ(ab)µ(ac) are collinear, i. e.

A 22. L(aµ(bc)µ(µ(ab)µ(ac)))

First, it is clear that A22 is not in A′+, given that the the hyperbolic plane
with the usual point-reflection, midpoint, and collinearity notions is a model of
A′+, but A22 holds only for isosceles triangles (i. e., only when ab is congruent
to ac).

We also have that

A′ + A22 0 A18 (2.1)

which can be seen from the following 7-element model in Table 3.
The counterexample is obtained by reading the variables o, b, and c of A18

as, respectively, 2, 2, and 1.
We expect that (2.1) holds with A′+ instead of A′, but Tipi has not found

an independence model for that.
What’s more,

A′ + A22 +A18 0 A4 (2.2)

which can be seen from the following 7-element model (Table 4).
A counterexample is given by reading for the variables a, b, c, and d in A4

the values 2, 3, 1, and 2, respectively.
We expect that (2.2) also holds with A′+ instead of A′, but Tipi has not

found a model of independence.
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σ 1 2 3 4 5 6 7

1 1 6 4 3 7 2 5
2 5 2 6 7 1 3 4
3 4 5 3 1 2 7 6
4 2 1 7 4 6 5 3
5 3 7 1 6 5 4 2
6 7 3 2 5 4 6 1
7 6 4 5 2 3 1 7

µ 1 2 3 4 5 6 7

1 1 4 5 3 2 7 6
2 4 2 6 7 3 1 5
3 5 6 3 1 7 2 4
4 3 7 1 4 6 5 2
5 2 3 7 6 5 4 1
6 7 1 2 5 4 6 3
7 6 5 4 2 1 3 7

Table 3: A model of A′ + A22 in which A18 fails. The predicate L holds of all
triples of points.

σ 1 2 3 4 5 6 7

1 1 5 4 3 2 7 6
2 5 2 7 6 1 4 3
3 4 7 3 1 6 5 2
4 3 6 1 4 7 2 5
5 2 1 6 7 5 3 4
6 7 4 5 2 3 6 1
7 6 3 2 5 4 1 7

µ 1 2 3 4 5 6 7

1 1 5 4 3 2 7 6
2 5 2 7 6 1 4 3
3 4 7 3 1 6 5 2
4 3 6 1 4 7 2 5
5 2 1 6 7 5 3 4
6 7 4 5 2 3 6 1
7 6 3 2 5 4 1 7

Table 4: A model of A′ + A22 + A18 in which A4 fails. The predicate L holds
of all triples of points.



24 J.Alama, V. Pambuccian

If we denote by A′1 and A′2 the theories axiomatized by the axioms of A′
together with A22 respectively by the axioms of A′ together with A22 and A18,
then we have
A′ ( A′1 ( A′2 ( V ′.

References

[1] J. Alama.: Tipi: A TPTP-based theory development environment emphasizing proof anal-
ysis, arXiv preprint arXiv:1204.0901, 2012.

[2] F. Bachmann: Aufbau der Geometrie aus dem Spiegelungsbegriff. 2. Auflage, Springer-
Verlag, Berlin 1973.

[3] O. Bottema: On the medians of a triangle in hyperbolic geometry, Canad. J. Math., 10
502–506 (1958).

[4] M. T. Calapso: Su un teorema di Hjelmslev e sulla geometria assoluta, Rev. Roum.
Math. Pures et Appl., 16, 327–332 (1971).

[5] H. Hotje, M. Marchi, S. Pianta: On a class of point-reflection geometries, Discrete
Math. 129, 139–147 (1994).

[6] H. Karzel, M. Marchi, S. Pianta: On commutativity in point-reflection geometries, J.
Geom. 44, 102–106 (1992).

[7] H. Karzel, A. Konrad: Reflection groups and K-loops, J. Geom. 52, 120–129 (1995).

[8] C. F. Manara, M. Marchi: On a class of reflection geometries, Istit. Lombardo Accad.
Sci. Lett. Rend. A, 125, 203–217 (1991).

[9] V. Pambuccian: Point-reflections in metric plane. Beiträge Algebra Geom., 48, 59–67
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