A result of Strichartz on a generalization of Wiener's characterization of continuous measures revisited

Bérenger Akon KPATA

Laboratoire de Mathématiques et Informatique, UFR des Sciences Fondamentales et Appliquées, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire kpata_akon@yahoo.fr

Received: 19.8.2014; accepted: 18.5.2015.

Abstract. We give the reasons for which the continuous part of a measure that belongs to the Wiener amalgam space M^2 does not contribute to the Bohr mean of its Fourier transform.

Keywords: Fourier transform, Radon measure, Wiener amalgam space

MSC 2010 classification: primary 42B10, secondary 42B35

1 Introduction

In this paper, for 1 , we denote by <math>p' the real number satisfying $\frac{1}{p} + \frac{1}{p'} = 1$. A Radon measure μ on \mathbb{R}^d belongs to the Wiener amalgam space M^p , $(1 \le p < \infty)$ if $_1 \|\mu\|_p < \infty$ with

$$_{r}\|\mu\|_{p} = \left(\sum_{k\in\mathbb{Z}^{d}}|\mu|(I_{k}^{r})^{p}\right)^{\frac{1}{p}}, \quad r>0$$

where $I_k^r = \prod_{i=1}^d [k_i r, (k_i + 1)r)$ for $k = (k_1, \ldots, k_d) \in \mathbb{Z}^d$ and $|\mu|$ denotes the total variation of μ .

The Fourier transform on amalgam spaces has been studied by various authors including F. Holland ([8], [9]), J. Stewart [11], J. P. Bertrandias and C. Dupuis [2], J. J. F. Fournier ([6], [7]) and I. Fofana [5].

In [8], the Fourier transform $f \mapsto \hat{f}$ defined on the usual Lebesgue space L^1 by

$$\widehat{f}(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} f(y) e^{-ixy} dy, \qquad x \in \mathbb{R}^d$$

http://siba-ese.unisalento.it/ © 2015 Università del Salento

B. A. Kpata

has been extended by F. Holland to the spaces (L^q, l^p) defined for $1 \le q, p \le \infty$ as follows:

$$(L^{q}, l^{p}) = \left\{ f \in L^{0} \mid {}_{1} ||f||_{q, p} < \infty \right\}$$

where L^0 stands for the space of (equivalence classes modulo the equality Lebesgue almost everywhere of) all complex-valued functions defined on \mathbb{R}^d and for r > 0,

$${}_{r} \left\| f \right\|_{q, p} = \begin{cases} \left(\sum_{k \in \mathbb{Z}^{d}} \left(\left\| f \chi_{I_{k}^{r}} \right\|_{q} \right)^{p} \right)^{\frac{1}{p}} & \text{if } 1 \leq p < \infty, \\ \sup_{x \in \mathbb{R}^{d}} \left\| f \chi_{J_{x}^{r}} \right\|_{q} & \text{if } p = \infty, \end{cases}$$

where $J_x^r = \prod_i^d (x_i - \frac{r}{2}, x_i + \frac{r}{2})$ for $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, $\chi_{I_k^r}$ denotes the characteristic function of I_k^r and $\|\cdot\|_q$ is the usual Lebesgue norm. In the same paper, he extended to the spaces M^p $(1 the Fourier transform <math>\mu \mapsto \hat{\mu}$ defined on the space M^1 of finite Radon measures on \mathbb{R}^d by

$$\widehat{\mu}(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{-ixy} d\mu(y), \qquad x \in \mathbb{R}^d.$$

In fact, he proved that if μ belongs to M^p (1 , then there exists a $unique element <math>\hat{\mu} \in (L^{p'}, l^{\infty})$ such that for any sequence $(r_n)_{n\geq 1}$ of positive real numbers increasing to ∞ , the sequence $(\widehat{\mu \lfloor J_0^{r_n}})_{n\geq 1}$ converges in $(L^{p'}, l^{\infty})$ to $\hat{\mu}$, where $\mu \lfloor J_0^{r_n}$ is the measure defined by $(\mu \lfloor J_0^{r_n})(N) = \mu (J_0^{r_n} \cap N)$ for any Borel subset N of \mathbb{R}^d . In addition,

$$\int_{\mathbb{R}^{d}} g\left(x\right) \widehat{\mu}\left(x\right) \ dx = \int_{\mathbb{R}^{d}} \widehat{g}(x) \ d\mu\left(x\right), \quad g \in \left(L^{p}, \ l^{1}\right).$$

In [5], I. Fofana has proved the following Hausdorff-Young inequality :

$$r^{-\frac{d}{p'}} {}_{r} \|\widehat{\mu}\|_{p',\infty} \le C {}_{\frac{1}{r}} \|\mu\|_{p}, \quad r > 0$$
(1.1)

where the real constant C does not depend on μ and r.

The relation between the properties of a Radon measure and the asymptotic behavior of its Fourier transform is an important topic in Harmonic Analysis. A well-known theorem of Wiener [14] states that if $\mu \in M^1$, then

$$\lim_{r \to \infty} r^{-d} \int_{J_0^r} |\widehat{\mu}(y)|^2 \, dy = \sum_{a \in D} |\mu\left(\{a\}\right)|^2, \tag{1.2}$$

where $D = \{ a \in \mathbb{R}^d \mid \mu(\{a\}) \neq 0 \}$ is a countable set.

The left-hand side of (1.2) is the so-called Bohr mean of $\hat{\mu}$. Wiener's result has found many applications in various areas of mathematics, including ergodic theory and optimal control theory. Since then, Wiener-type characterizations of continuous measures are extensively investigated (see for example [1], [3], [4], [12] and [13, Section 12.5]). Strichartz has established that equality (1.2) continues to hold if the measure μ belongs to M^2 (see Theorem 4.4 in [12]).

The aim of this note is to give, by a new proof, the reasons for which the continuous part of a measure belonging to M^2 does not contribute to formula (1.2). To this end, we prove in Section 2 the following result: if μ is a continuous measure that belongs to M^p , then

$$\lim_{r \to 0} \ _r \|\mu\|_p = 0.$$

In Section 3, we show that if μ is a discrete measure that belongs to M^p , then

$$\lim_{r \to 0} {}_{r} \|\mu\|_{p} = \left(\sum_{a \in D} |\mu(\{a\})|^{p}\right)^{\frac{1}{p}}.$$

Since any Radon measure on \mathbb{R}^d has a decomposition into discrete and continuous parts, we combine these above results with inequality (1.1) to establish, in Section 4, the generalization of Wiener's theorem obtained by Strichartz.

2 M^p -estimate of a continuous measure

Let us recall the definition of a continuous Radon measure.

Definition 1. A Radon measure μ on \mathbb{R}^d is continuous if for any $x \in \mathbb{R}^d$ we have $\mu(\{x\}) = 0$.

Notice that for any Radon measure μ on \mathbb{R}^d and any $x \in \mathbb{R}^d$, we have $|\mu(\{x\})| = |\mu|(\{x\})$. Therefore, a Radon measure on \mathbb{R}^d is continuous if and only if its total variation is continuous.

The following proposition will be useful in the proof of the main result of this section.

Proposition 1. [10]. Let $1 \le p < \infty$. If $\mu \in M^p$ and $0 < r < s < \infty$, then (i) $s \|\mu\|_p \le \left(Int\left(\frac{s}{r}\right) + 2\right)^{\frac{d}{p'}} 2^{\frac{d}{p}} \|r\|_p$, where $Int\left(\frac{s}{r}\right)$ denotes the greatest integer not exceeding $\frac{s}{r}$;

(*ii*)
$$_{r} \|\mu\|_{p} \leq 3^{\frac{d}{p'}} 2^{\frac{d}{p}} {}_{s} \|\mu\|_{p}.$$

We can now prove the following result.

Proposition 2. Suppose that $1 \leq p < \infty$ and μ is a continuous measure that belongs to M^p . Then we have

- (i) $\lim_{r\to 0} \sup_{k\in\mathbb{Z}^d} |\mu|(I_k^r) = 0,$
- (*ii*) $p > 1 \Longrightarrow \lim_{r \to 0} ||\mu||_p = 0.$

Proof. For each non-negative integer n, set

$$s_n = \sup_{k \in \mathbb{Z}^d} |\mu| (I_k^{2^{-n}}).$$

(i) Notice that $(s_n)_n$ is a decreasing sequence of positive real numbers. Suppose that $\lim_{n\to\infty} s_n = s > 0$. For each non-negative integer n, let

$$K_n = \left\{ k \in \mathbb{Z}^d \mid |\mu|(I_k^{2^{-n}}) > \frac{s}{2} \right\}.$$

Let us notice that for each positive integer n,

$$0 < card K_n \le \left(\frac{2}{s} \ _{2^{-n}} \|\mu\|_p\right)^p \le \left(\frac{2}{s} \ _1 \|\mu\|_p\right)^p < \infty$$

and

$$k \in K_{n+1} \Longrightarrow \exists l \in K_n : I_k^{2^{-(n+1)}} \subset I_l^{2^{-n}},$$

where card K_n denotes the cardinality of K_n . So there exists a sequence $(k_n)_n$ of elements of \mathbb{Z}^d such that for each non-negative integer n we have

$$k_n \in K_n$$
 and $I_{k_{n+1}}^{2^{-(n+1)}} \subset I_{k_n}^{2^{-n}}$.

It follows that $\bigcap_n I_{k_n}^{2^{-n}}$ is a one point set and $|\mu|(\bigcap_n I_{k_n}^{2^{-n}}) > 0$. This is in contradiction with the fact that μ is a continuous measure. So

$$\lim_{n \to \infty} s_n = 0$$

Now let us consider a real number $\varepsilon > 0$. There exists an integer n_0 such that $s_{n_0} < \frac{\varepsilon}{2^d}$. Let us notice that for each element (r, k) of $(0, 2^{-n_0}) \times \mathbb{Z}^d$, the set I_k^r intersects at most 2^d elements of $\{I_l^{2^{-n_0}} \mid l \in \mathbb{Z}^d\}$. So

$$|\mu|(I_k^r) \le 2^d s_{n_0}, \quad (r, k) \in (0, 2^{-n_0}) \times \mathbb{Z}^d.$$

It follows that

$$\sup_{k \in \mathbb{Z}^d} |\mu|(I_k^r) < \varepsilon, \qquad r \in (0, 2^{-n_0}).$$

118

Therefore,

$$\lim_{r \to 0} \sup_{k \in \mathbb{Z}^d} |\mu|(I_k^r) = 0$$

(ii) Suppose p > 1. Let us consider a real number t > 0. There exists a finite subset L of \mathbb{Z}^d such that

$$\sum_{k \in \mathbb{Z}^d \backslash L} |\mu| (I_k^1)^p < t.$$

Let us set

$$E = \bigcup_{k \in L} I_k^1$$

and for each non-negative integer n,

$$L_n = \left\{ k \in \mathbb{Z}^d \mid I_k^{2^{-n}} \subset E \right\}, \ \alpha_n = \sum_{k \in L_n} |\mu| (I_k^{2^{-n}})^p \text{ and } t_n = \sum_{k \in \mathbb{Z}^d \setminus L_n} |\mu| (I_k^{2^{-n}})^p.$$

Then, for each non-negative integer n,

$$_{2^{-n}} \|\mu\|_p = (\alpha_n + t_n)^{\frac{1}{p}}, \ \alpha_n \le s_n^{p-1} |\mu|(E) \text{ and } t_n \le t.$$

Let us notice that

$$|\mu|(E) \le card \ L_1 \|\mu\|_p < \infty$$

(where card L denotes the cardinality of L) and $(2^{-n} \|\mu\|_p)_n$ is a decreasing sequence. It follows that

$$\lim_{n \to \infty} {}_{2^{-n}} \|\mu\|_p \le t^{\frac{1}{p}}.$$

Since the above inequality holds for an arbitrary real number t > 0, we deduce that

$$\lim_{n \to \infty} \,_{2^{-n}} \|\mu\|_p = 0.$$

Further, for each non-negative integer n, it follows from Proposition 1 (ii) that

$$0 \le {}_{r} \|\mu\|_{p} \le 3^{\frac{d}{p'}} 2^{\frac{d}{p}} {}_{2^{-n}} \|\mu\|_{p}, \qquad r \in (0, 2^{-n}).$$

 So

$$\lim_{r \to 0} {}_r \|\mu\|_p = 0.$$

QED

B. A. Kpata

3 *M*^{*p*}-estimate of a discrete measure

This section is devoted to the proof of the following result.

Proposition 3. Suppose that $1 \le p < \infty$ and μ is a discrete measure that belongs to M^p . Then

$$\lim_{r \to 0} {}_r \|\mu\|_p = \left(\sum_{a \in D} |\mu(\{a\})|^p\right)^{\frac{1}{p}},$$

where $D = \{ a \in \mathbb{R}^d \mid \mu(\{a\}) \neq 0 \}.$

Proof. Let us consider a real number $\varepsilon > 0$. There exists a finite subset K of \mathbb{Z}^d such that

$$\left(\sum_{k\in\mathbb{Z}^d\setminus K} |\mu| \left(I_k^1\right)^p\right)^{\frac{1}{p}} < \frac{\varepsilon}{2^{\frac{d}{p}}}.$$

Set

$$E = \bigcup_{k \in K} I_k^1, \ D_n = \left\{ a \in D \mid |\mu(\{a\})| \ge \frac{1}{n} \right\} \text{ and } \mu_n(B) = \mu(B \cap D_n)$$

for any positive integer n and any Borel subset B of \mathbb{R}^d . Then, for each positive integer n and each element r of (0, 1), we have

$$r \|\mu\|_{p} \leq \left(\sum_{k \in \mathbb{Z}^{d}} |\mu| (I_{k}^{r} \cap E)^{p}\right)^{\frac{1}{p}} + \left(\sum_{k \in \mathbb{Z}^{d}} |\mu| (I_{k}^{r} \setminus E)^{p}\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{k \in \mathbb{Z}^{d}} |\mu| (I_{k}^{r} \cap E)^{p}\right)^{\frac{1}{p}} + \left(2^{d} \sum_{k \in \mathbb{Z}^{d} \setminus K} |\mu| (I_{k}^{1})^{p}\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{k \in \mathbb{Z}^{d}} |\mu| (I_{k}^{r} \cap E)^{p}\right)^{\frac{1}{p}} + \varepsilon$$

$$\leq \left(\sum_{k \in \mathbb{Z}^{d}} |\mu_{n}| (I_{k}^{r} \cap E)^{p}\right)^{\frac{1}{p}} + |\mu| (E \cap (D \setminus D_{n})) + \varepsilon$$

$$\leq \left(\sum_{k \in \mathbb{Z}^{d}} |\mu_{n}| (I_{k}^{r})^{p}\right)^{\frac{1}{p}} + |\mu| (E \cap (D \setminus D_{n})) + \varepsilon.$$

120

Since for each positive integer n the set D_n is finite, then there exists an element r_n of (0, 1) such that for all $a, b \in D_n$,

$$a \neq b \Longrightarrow \exists i \in \{1, \dots, d\} : |a_i - b_i| > r_n$$

and for each element r of $(0, r_n)$

$$\left(\sum_{k\in\mathbb{Z}^d} |\mu_n| (I_k^r)^p\right)^{\frac{1}{p}} = \left(\sum_{a\in D_n} |\mu(\{a\})|^p\right)^{\frac{1}{p}}$$
$$\leq \left(\sum_{a\in D} |\mu(\{a\})|^p\right)^{\frac{1}{p}}.$$

Therefore, for each element r of $(0, r_n)$ we have

$$_{r}\|\mu\|_{p} \leq \left(\sum_{a\in D} |\mu(\{a\})|^{p}\right)^{\frac{1}{p}} + |\mu|\left(E\cap\left(D\setminus D_{n}\right)\right) + \varepsilon.$$

Since $|\mu|(E) < \infty$ and $(D \setminus D_n)_n$ is a decreasing sequence that converges to the empty set, we get

$$\limsup_{r \to 0} |\mu| \|_p \le \left(\sum_{a \in D} |\mu(\{a\})|^p \right)^{\frac{1}{p}} + \varepsilon.$$

As this inequality holds for an arbitrary real number $\varepsilon > 0$, we deduce that

$$\limsup_{r \to 0} ||\mu||_p \le \left(\sum_{a \in D} |\mu(\{a\})|^p\right)^{\frac{1}{p}}.$$

Further, for all real numbers r > 0, we have

$$\left(\sum_{a\in D} |\mu(\{a\})|^p\right)^{\frac{1}{p}} = \left[\sum_{k\in\mathbb{Z}^d} \left(\sum_{a\in D\cap I_k^r} |\mu(\{a\})|^p\right)\right]^{\frac{1}{p}} \le r \|\mu\|_p.$$

 So

$$\lim_{r \to 0} {}_r \|\mu\|_p = \left(\sum_{a \in D} |\mu(\{a\})|^p\right)^{\frac{1}{p}}.$$

QED

B. A. Kpata

4 Generalization of Wiener's theorem

Throughout this section, for $1 and <math>\mu \in M^p$, we set $D = \{ a \in \mathbb{R}^d \mid \mu(\{a\}) \neq 0 \}.$

Proposition 4. Let $1 . If <math>\mu \in M^p$ then

$$\lim_{r \to 0} r \|\mu\|_p = \left(\sum_{a \in D} |\mu(\{a\})|^p\right)^{\frac{1}{p}}.$$

Proof. Let us write $\mu = \mu_c + \mu_\delta$, where μ_c is a continuous measure and μ_δ is a discrete measure. For each real number r > 0, we have

$$_{r}\|\mu_{\delta}\|_{p} \leq _{r}\|\mu\|_{p} \leq _{r}\|\mu_{c}\|_{p} + _{r}\|\mu_{\delta}\|_{p}.$$

The desired result follows from Propositions 2 and 3.

As an immediate consequence of (1.1) and Proposition 4, we have the following result.

Corollary 1. Let 1 . There exists a real constant <math>C > 0 such that for any $\mu \in M^p$ we have

-

$$\limsup_{r \to \infty} r^{-\frac{d}{p'}} {}_r \|\widehat{\mu}\|_{p',\infty} \le C \left(\sum_{a \in D} |\mu(\{a\})|^p \right)^{\frac{1}{p}}$$

In the case p = 2, we obtain the following generalization of Wiener's theorem. **Proposition 5.** If $\mu \in M^2$ then

$$\lim_{r \to \infty} r^{-\frac{d}{2}} \left(\int_{J_0^r} |\widehat{\mu}(y)|^2 dy \right)^{\frac{1}{2}} = \left(\sum_{a \in D} |\mu(\{a\})|^2 \right)^{\frac{1}{2}}.$$

Proof. a) Let us write $\mu = \mu_c + \mu_\delta$, where μ_c is a continuous measure and μ_δ is a discrete measure. It follows from Propositions 2 and 3 that

$$\lim_{r \to \infty} \frac{1}{r} \|\mu_c\|_2 = 0 \quad \text{ and } \quad \lim_{r \to \infty} \frac{1}{r} \|\mu_\delta\|_2 = \left(\sum_{a \in D} |\mu(\{a\})|^2\right)^{\frac{1}{2}} < \infty.$$

QED

Note that for each element (r, x) of $(0, \infty) \times \mathbb{R}^d$, we have

$$\int_{J_x^r} |\widehat{\mu}(y)|^2 \, dy = \int_{J_x^r} |\widehat{\mu_\delta}(y)|^2 \, dy + 2Re \int_{J_x^r} \widehat{\mu_\delta}(y) \, \overline{\widehat{\mu_c}(y)} \, dy \, + \int_{J_x^r} |\widehat{\mu_c}(y)|^2 \, dy,$$

where $Re \int_{J_x^r} \widehat{\mu_{\delta}}(y) \ \overline{\widehat{\mu_c}(y)} \ dy$ denotes the real part of $\int_{J_x^r} \widehat{\mu_{\delta}}(y) \ \overline{\widehat{\mu_c}(y)} \ dy$. By the Hölder's inequality and (1.1), we have

$$\begin{aligned} \left| \int_{J_x^r} \widehat{\mu_{\delta}}(y) \overline{\widehat{\mu_c}(y)} \, dy \right| &\leq \left(\int_{J_x^r} |\widehat{\mu_{\delta}}(y)|^2 \, dy \right)^{\frac{1}{2}} \left(\int_{J_x^r} |\widehat{\mu_c}(y)|^2 \, dy \right)^{\frac{1}{2}} \\ &\leq r \|\widehat{\mu_{\delta}}\|_{2, +\infty} r \|\widehat{\mu_c}\|_{2, +\infty} \\ &\leq C^2 \frac{1}{r} \| \mu_{\delta} \|_{2} \frac{1}{r} \| \mu_c \|_{2} r^d \end{aligned}$$

and

$$\int_{J_x^r} |\widehat{\mu_c}(y)|^2 \, dy \le \ _r \|\widehat{\mu_c}\|_{2, +\infty}^2 \le C^2 \ _{\frac{1}{r}} \|\mu_c\|_2^2 \ r^d.$$

It follows that

$$\limsup_{r \to \infty} r^{-\frac{d}{2}} r \|\widehat{\mu}\|_{2,\infty} = \limsup_{r \to \infty} r^{-\frac{d}{2}} r \|\widehat{\mu\delta}\|_{2,\infty}$$

and

$$\liminf_{r \to \infty} r^{-\frac{d}{2}} {}_r \|\widehat{\mu}\|_{2,\infty} = \liminf_{r \to \infty} r^{-\frac{d}{2}} {}_r \|\widehat{\mu_{\delta}}\|_{2,\infty}.$$

Therefore, it suffices to consider the case where μ is a discrete measure to prove the desired result.

b) Suppose now that μ is a discrete measure.

Let us consider an element ε of $\left(0, \frac{1}{3}\left(\sum_{a \in D} |\mu(\{a\})|^2\right)^{\frac{1}{2}}\right)$. For each positive integer n and each Borel subset B of \mathbb{R}^d , set

$$D_n = \left\{ a \in D \mid |\mu(\{a\})| \ge \frac{1}{n} \right\}$$
 and $\mu_n(B) = \mu(B \cap D_n).$

There exists a positive integer N such that

$$\left(\sum_{a\in D\setminus D_N} |\mu(\{a\})|^2\right)^{\frac{1}{2}} < \frac{\varepsilon}{3(C+1)},\tag{4.1}$$

where C is a real constant as in Corollary 1. So

$$\limsup_{r \to +\infty} r^{-\frac{d}{2}} {}_r \|\widehat{\mu} - \widehat{\mu_N}\|_{2,\infty} \le C \left(\sum_{a \in D \setminus D_N} |\mu(\{a\})|^2 \right)^{\frac{1}{2}} < \frac{\varepsilon}{3}.$$

Thus, there exists a real number $R_1 > 0$ such that for any $r \geq R_1$ and any $x \in \mathbb{R}^d$,

$$\left| r^{-\frac{d}{2}} \left(\int_{J_x^r} |\widehat{\mu}(y)|^2 \, dy \right)^{\frac{1}{2}} - r^{-\frac{d}{2}} \left(\int_{J_x^r} |\widehat{\mu_N}(y)|^2 \, dy \right)^{\frac{1}{2}} \right| < \frac{\varepsilon}{3}. \tag{4.2}$$

Since μ_N is a finite measure, it follows from (1.2) that

$$\lim_{r \to \infty} r^{-\frac{d}{2}} \left(\int_{J_0^r} |\widehat{\mu_N}(y)|^2 \, dy \right)^{\frac{1}{2}} = \left(\sum_{a \in D_N} |\mu(\{a\})|^2 \right)^{\frac{1}{2}}.$$

Thus, there exists a real number $R_2 > 0$ such that for any $r \ge R_2$,

$$\left| r^{-\frac{d}{2}} \left(\int_{J_0^r} |\widehat{\mu_N}(y)|^2 dy \right)^{\frac{1}{2}} - \left(\sum_{a \in D_N} |\mu(\{a\})|^2 \right)^{\frac{1}{2}} \right| < \frac{\varepsilon}{3}.$$
(4.3)

Let $R = \max\{R_1, R_2\}$. From inequalities (4.1), (4.2) and (4.3), we obtain

$$\left| r^{-\frac{d}{2}} \left(\int_{J_0^r} |\widehat{\mu}(y)|^2 \, dy \right)^{\frac{1}{2}} - \left(\sum_{a \in D} |\mu(\{a\})|^2 \right)^{\frac{1}{2}} \right| < \varepsilon, \qquad r \ge R.$$

Hence

$$\lim_{r \to +\infty} r^{-\frac{d}{2}} \left(\int_{J_0^r} |\widehat{\mu}(y)|^2 \, dy \right)^{\frac{1}{2}} = \left(\sum_{a \in D} |\mu(\{a\})|^2 \right)^{\frac{1}{2}}.$$

As an immediate consequence of Proposition 5 and Definition 1, we have the following criterion.

Corollary 2. Let $\mu \in M^2$. Then μ is continuous if and only if

$$\lim_{r \to \infty} r^{-d} \int_{J_0^r} |\widehat{\mu}(y)|^2 dy = 0.$$

Characterization of continuous measures

Acknowledgements. The author would like to thank Professor I. Fofana for his help and guidance in the preparation of this paper.

References

- M. ANOUSSIS AND A. BISBAS, Continuous measures on compact Lie groups, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 4, 1277-1296.
- [2] J. P. BERTRANDIAS ET C. DUPUIS, Transformation de Fourier sur les espaces $l^p(L^{p'})$, Ann. Inst. Fourier (Grenoble) **29** (1979), no. 1, 189-206.
- [3] A. BISBAS AND C. KARANIKAS, On the continuity of measures, Appl. Anal. 48 (1993), 23-35.
- [4] M. BJÖRKLUND AND A. FISH, Continuous measures on homogenous spaces, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2169-2174.
- [5] I. FOFANA, Transformation de Fourier dans $(L^q, l^p)^{\alpha}$ et $M^{p, \alpha}$, Afrika Mat. (3) 5 (1995), 53-76.
- [6] J. J. F. FOURNIER, On the Hausdorff-Young theorem for amalgams, Monatsh. Math. 95 (1983), 117-135.
- [7] J. J. F. FOURNIER AND J. STEWART, Amalgams of L^p and l^q, Bull. Amer. Math. Soc. 13 (1985), 1-21.
- [8] F. HOLLAND, Harmonic Analysis on amalgams of L^p and l^q , J. London Math. Soc. (2) **10** (1975), 295-305.
- F. HOLLAND, On the representation of functions as Fourier transforms of unbounded measures, Proc. London Math. Soc (3) 30 (1975), 347-365.
- [10] B. A. KPATA, I. FOFANA AND K. KOUA, On Fourier asymptotics of a generalized Cantor measure, Colloq. Math. 119 (2010), no 1, 109-122.
- [11] J. STEWART, Fourier transforms of unbounded measures, Canad. J. Math. 31 (1979), 1281-1292.
- [12] R. S. STRICHARTZ, Fourier asymptotics of fractal measures, J. Funct. Anal. 89 (1990), 154-187.
- [13] M. E. TAYLOR, Pseudodifferential Operators, Princeton Univ. Press, Princeton, NJ, 1981.
- [14] N. WIENER, The Fourier Integral and Certain of its Applications, Dover, New York, 1933.