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1 Introduction

Let X be a Banach space with origin o and A 6= ∅ be a bounded subset of
X. We denote by ∂A, clA, and δ(A) the boundary, closure, and diameter of A,
respectively. Moreover, we set

• γ(A, x) = sup{‖x− a‖ : a ∈ A}, ∀x ∈ X;

• γ(A,B) = inf{γ(A, x) : x ∈ B}, ∀B ⊆ X;

• γ′(A) = sup{inf{‖x− a‖ : x 6∈ A} : a ∈ A} (inner radius of A).

The numbers γ(A) := γ(A,X) and γ(A,A) are called the radius and the self
radius of A, respectively. Note that we always have

γ(A) ≤ γ(A,A) ≤ δ(A) ≤ 2γ(A) ≤ 2γ(A,A). (1.1)
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Also, for x ∈ X and γ ≥ 0, we denote by

B(x, γ) = {y ∈ X : ‖x− y‖ ≤ γ}

the ball centered at x having radius γ.

We shall denote by c0 and C([0, 1]) the usual classical Banach spaces.

In this paper we study some classes of sets; we study nested sequences of
sets in these classes and the convergence of sequences of sets in one of these
classes. We present some properties that are preserved under these operations,
considering in particular Kuratowski’s and Hausdorff convergence.

Among the older papers concerning monotone sequences of convex sets, we
recall the interesting one [6].

In Section 2 we consider nested sequences and Kuratowski’s convergence;
in Section 3, Hausdorff convergence; in Section 4, increasing sequences of sets.
Section 5 is devoted to sequences of balls. Finally, in Section 6, we collect some
less trivial examples.

For the sake of simplicity, we shall always assume that all sequences under
consideration consist of closed, bounded sets.

2 Nested sequences of sets and Kuratowski’s conver-
gence

We recall the definition of Kuratowski’s convergence. Given a sequence
{An}∞n=1 of (non-empty) sets, we say that it converges to A in the sense of

Kuratowski, K-converges to A for short, and we write An
K−−→ A, if

lim inf
n→∞

An = lim sup
n→∞

An = A,

where

lim inf
n→∞

An = {x ∈ X : there exists a sequence {xn}∞n=1,

xn ∈ An, ∀n ∈ N, such that lim
n→∞

xn = x}

and

lim sup
n→∞

An = {x ∈ X : there exist a subsequence {Ank}
∞
k=1 of {An}∞n=1,

and a sequence {xnk}
∞
k=1, xnk ∈ Ank , ∀k ∈ N,

such that lim
k→∞

xnk = x}.
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Proposition 1. If {An}∞n=1 is a sequence of convex sets and

lim inf
n→∞

An = A,

then also A is a convex set.

Proof. Let x and y be two points in A and λ be an arbitrary number in (0, 1).
Then there exist two sequences {xn}∞n=1 and {yn}∞n=1 such that

xn, yn ∈ An, ∀n ∈ N

and that
lim
n→∞

xn = x, lim
n→∞

yn = y.

Then

λx+ (1− λ)y = λ lim
n→∞

xn + (1− λ) lim
n→∞

yn

= lim
n→∞

(λxn + (1− λ)yn).

Since An is convex for each n ∈ N, we have λxn+(1−λ)yn ∈ An for each n ∈ N.
Therefore λx+ (1− λ)y ∈ A. Thus A is convex. QED

Corollary 1. If {An}∞n=1 is a sequence of convex sets and An
K−−→ A, then

also A is convex.

We recall that if {An} is a nested sequence of sets, i.e., if An+1 ⊆ An, ∀n ∈ N,
then

Ak
K−−→ A =

∞⋂
n=1

An

(the last set is possibly empty), see [2, §5].
As known, nonemptiness of nested sequences of closed, bounded, convex sets

is connected with the reflexivity of the underlying space.

Kuratowski’s convergence presents some defects. For example, none of the

following equalities is true in general when An
K−−→ A:

(1) lim
n→∞

γ(An) = γ(A);

(2) lim
n→∞

γ′(An) = γ′(A);

(3) lim
n→∞

δ(An) = δ(A);

(4) lim
n→∞

γ(An, An) = γ(A,A).
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Of course, for nested sequences we have

lim
n→∞

γ(An) ≥ γ(A), lim
n→∞

γ′(An) ≥ γ′(A), and lim
n→∞

δ(An) ≥ δ(A).

We shall give examples (in Section 6) showing that also for nested sequences
of convex sets, in general these are not equalities. Example 2 will show that
the second inequality (concerning γ′(·)) can be strict. Example 1 will show that
the first and the third inequality can be strict; in this example, we also have
lim
n→∞

γ(An, An) > γ(A,A). The sequence {γ(An, An)}∞n=1 does not necessarily

converge (see Example 7). As said before, when it converges, it does not neces-
sarily converge to γ(A,A). Example 7 shows that γ(A,A) can be larger than the
limit and a) in Example 5 will show that {γ(An, An)}∞n=1 can also be increasing.

It is known, and not difficult to prove (see, e.g., [5]), that the intersection of
a nested sequence of balls is a (nonempty) ball.

Note that milder assumptions, based on the ratio between γ′(An) and δ(An),
imply the nonemptiness of the intersection of a nested sequence {An}∞n=1 of sets
(see [3]).

3 Hausdorff convergence

Given two nonempty sets A and B, set

d(A,B) = inf{‖a− b‖ : a ∈ A, b ∈ B}.

For any number ε > 0, set

Aε = {x ∈ X : d(A, {x}) ≤ ε}.

Trivially,

A ⊆ B ⇒ Aε ⊆ Bε. (3.1)

We set

dH(A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}.

The number dH(A,B) is called the Hausdorff distance between A and B.

We say that a sequence {An}∞n=1 of nonempty sets converges to a (nonempty)

set A in the sense of Hausdorff, H-converges for short, and we write An
H−−→ A,

if lim
n→∞

dH(An, A) = 0. Hausdorff convergence is strictly stronger than Ku-

ratowski’s convergence (but they coincide when the underlying space is finite
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dimensional). For example, in general, a nested sequence {An}∞n=1 of sets such
that

∞⋂
n=1

An = A 6= ∅

does not H-converge to A even if all these sets are convex, see Example 2.

As known, in contrast to Kuratowski’s convergence, Hausdorff convergence
preserves several sets classes (see, e.g., Proposition 4.1 in [2]).

We also recall the following fact (see [7]): if A and B are convex, then

dH(A,B) = dH(∂A, ∂B). (3.2)

As it is easy to see, this fact is not true in general if A and B are not convex.
It was rediscovered recently, and discussed in details in [10].

The following simple result is known. We provide a proof for the sake of
completeness.

Proposition 2. Let {An}∞n=1 be a sequence of sets H-converging to A. Then

(1) lim
n→∞

δ(An) = δ(A);

(2) lim
n→∞

γ(An) = γ(A);

(3) lim
n→∞

γ(An, An) = γ(A,A).

Proof. (1). Almost trivial: see for example Proposition 4.1 in [8].

(2). Let γn = γ(An) and γ = γ(A). Given ε > 0, there exists nε ∈ N such
that An ⊆ Aε and A ⊆ (An)ε whenever n ∈ N is greater than nε.

Take i ∈ N. Then there exists ci ∈ X such that

A ⊆ B
(
ci, γ +

1

i

)
.

By (3.1), we have

Aε ⊆ B
(
ci, γ +

1

i

)ε
= B

(
ci, γ +

1

i
+ ε

)
.

Therefore,

γn = γ(An) ≤ γ(Aε) ≤ γ +
1

i
+ ε, ∀n > nε.

Since i is arbitrary,

γn ≤ γ + ε, ∀n > nε.
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Also, for each n ∈ N, there exists cni ∈ X such that

An ⊆ B
(
cni , γn +

1

i

)
.

Thus we have (by (3.1) again),

γ = γ(A) ≤ γ((An)ε) ≤ γn +
1

i
+ ε, ∀n > nε.

It follows that
γ ≤ γn + ε, ∀n > nε.

Thus,
|γ − γn| ≤ ε, ∀n > nε.

It follows that
lim
n→∞

γn = γ.

(3). Let ε > 0; take nε as in the proof of previous part (2). For each i ∈ N,
there exists a point ai ∈ A such that

A ⊆ B
(
ai, γ(A,A) +

1

i

)
.

From (3.1) it follows that

Aε ⊆ B
(
ai, γ(A,A) +

1

i
+ ε

)
.

Since A ⊆ (An)ε, ∀n > nε, there exists a point ani ∈ An such that

‖ai − ani ‖ ≤ ε.

Thus

An ⊆ Aε ⊆ B
(
ani , γ(A,A) +

1

i
+ ε

)
+ (ai − ani )

⊆ B
(
ani , γ(A,A) +

1

i
+ 2ε

)
, ∀n > nε.

It follows that
γ(An, An) ≤ γ(A,A) + 2ε, ∀n > nε.

By exchanging the role of A and An, we obtain

γ(A,A) ≤ γ(An, An) + 2ε, ∀n > nε.

Thus
lim
n→∞

γ(An, An) = γ(A,A). QED
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Remark 1. A similar result in general is not true for γ′(·), as Example 4
in the last section shows. But it is true for convex sets as we are going to show.

This lemma will be useful to prove the next proposition.

Lemma 1. Let A and B be two closed convex sets satisfying

γ′ = γ′(A) > 0 and δ = dH(A,B) <
γ′

2
.

Then
γ′(B) ≥ γ′ − δ > 0. (3.3)

Proof. Let ε be a number in (0, (γ′ − 2δ)/3). Then there exists a point c ∈ A
such that B(c, γ′ − ε) ⊆ A. Then d({x}, ∂A) > δ holds for each point x ∈
B(c, γ′ − 2ε− δ). Therefore (use formula (3))

B(c, γ′ − 2ε− δ) ∩ ∂B = ∅.

Since
γ′ − 2ε− δ > δ + ε and c ∈ A ⊂ (B)δ+ε,

we have
B(c, γ′ − 2ε− δ) ∩B 6= ∅.

Since B is convex, this implies that

B(c, γ′ − 2ε− δ) ⊆ B.

Therefore γ′(B) > γ′ − 2ε− δ. Since ε is arbitrary, (3.3) holds. QED

Proposition 3. If An
H−−→ A, where An is convex for each n, then

lim
n→∞

γ′(An) = γ′(A).

Proof. First we consider the case when γ′(A) = 0. Suppose the contrary that
{γ′(An)}∞n=1 does not converge to 0. Then one of its subsequence, say {γ′(Ank)}∞k=1,
converges to a number γ′0 > 0. Then there exists a sufficiently large integer k
such that

dH(Ank , A) <
γ′0
4

=
1

2
· γ
′
0

2
<

1

2
· γ′(Ank).

Then, by Lemma 1,
γ′(A) > 0,

a contradiction. In the following we assume that γ′ = γ(A) > 0. Set, for each
n ∈ N, γ′n = γ′(An).
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Then, for each number ε ∈ (0, γ′/3), there exists an integer nε such that
dH(An, A) < ε holds for each n > nε. Thus

dH(An, A) < ε <
1

3
γ′ <

1

2
γ′, ∀n > nε.

From Lemma 1 it follows that

γ′n ≥ γ′ − ε, ∀n > nε.

We also have

dH(A,An) < ε <
1

2
(γ′ − ε) ≤ 1

2
γ′n, ∀n > nε.

By Lemma 1 again, we have

γ′ ≥ γ′n − ε, ∀n > nε.

Hence
|γ′ − γ′n| ≤ ε, ∀n > nε.

It follows that
lim
n→∞

γ′n = γ′. QED

4 Increasing sequences of sets

Consider now increasing sequences of sets. Namely, sequences {An}∞n=1 with
the following property:

An ⊆ An+1, ∀n ∈ N.

Increasing, unbounded sequences of balls have been studied to characterize
some geometric properties of Banach spaces (see [1] and [4]).

Here we will instead discuss the convergence of An to A (as n → ∞) and
the preservation of several properties, for increasing sequences satysfying the
following condition:

the set A := cl

( ∞⋃
n=1

An

)
is bounded,

which is equivalent to the existence of a ball containing all members of the
sequence. In the following we say that a sequence of sets satisfying this condition
is uniformly bounded.
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We have (see [2], p. 146])

An
K−−→ cl

( ∞⋃
n=1

An

)
;

but, in general,

An 6
H−−→ cl

( ∞⋃
n=1

An

)
,

even if all the sets are convex (see Example 6).

It is clear that the sequences {δ(An)}∞n=1, {γ(An)}∞n=1, and {γ′(An)}∞n=1 are
non-decreasing. Example 6 shows that in general this is not true for {γ(An, An)}∞n=1.
More precisely, {γ(An, An)}∞n=1 not always has a limit: it can be not monotone,
or also be strictly decreasing, see also Example 5 b).

Proposition 4. For a uniformly bounded increasing sequence {An}∞n=1, set

A = cl

( ∞⋃
n=1

An

)
.

We always have

(1) δ(A) = lim
n→∞

δ(An);

(2) γ(A,A) ≥ lim sup
n→∞

γ(An, An) (and equality not always holds);

(3) γ(A) ≥ lim
n→∞

γ(An) (and equality not always holds);

(4) γ′(A) ≥ lim
n→∞

γ′(An) (and equality not always holds).

Moreover, we can have strict inequality in the last three statements also for
sequences of convex sets.

Proof. (1). Let δ = lim
n→∞

δ(An). It is clear that δ ≤ δ(A). We prove the converse.

For two arbitrary points x, y ∈
∞⋃
n=1

An, x, y ∈ An for sufficiently large n.

Thus

δ(A) = δ

(
cl

( ∞⋃
n=1

An

))
≤ lim

n→∞
δ(An) = δ.

(2). Given ε > 0, there exists a point x ∈ A such that

γ(A, x) < γ(A,A) + ε.
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Since x ∈ A, there exists a sufficiently large nε ∈ N such that there exists a
point xn ∈ An, ∀n > nε, satisfying

‖x− xn‖ ≤ ε.

Then, ∀n > nε, we have

γ(An, An) ≤ γ(A,An) ≤ γ(A, xn) ≤ γ(A, x) + ε ≤ γ(A,A) + 2ε.

It follows that

lim sup
n→∞

γ(An, An) ≤ γ(A,A) + 2ε.

Therefore

lim sup
n→∞

γ(An, An) ≤ γ(A,A).

(3) and (4). Clearly, since An ⊆ A, ∀n ∈ N, we have

γ(A) ≥ γ(An) and γ′(A) ≥ γ′(An).

Thus the conclusion.

Now we will show that, even for increasing sequences of convex sets, inequal-
ities in the last three cases are possible.

Consider in c0 the sets

An = {(α1, α2, · · · ) ∈ c0 : αi ∈ [0, 1], ∀i ≤ n; αi = 0, ∀i > n}, ∀n ∈ N.

Then A = cl

( ∞⋃
n=1

An

)
contains all sequences with components in [0, 1]. So

γ(A) = γ(A,A) = 1 and γ(An) = γ(An, An) =
1

2
, ∀n ∈ N.

This proves the results for (2) and (3).

Now consider, for n ∈ N, the convex sets

An = {(α1, α2, · · · ) ∈ c0 : αi ∈ [−1, 1], ∀i ≤ n; αi ∈ [−1/2, 1/2], ∀i > n}.

Then A = cl

( ∞⋃
n=1

An

)
is the set of sequences with components in [−1, 1].

Thus (see (4)):

γ′(An) = 1/2, ∀n ∈ N; γ′(A) = 1. QED
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Remark 2. lim
n→∞

γ(An, An) does not always exist. When it exists, it can

be different from γ(A,A) (see Example 6). Also, Example 5 a), will show that
{γ(An, An}∞n=1 can be also decreasing.

We conclude this section with a simple statement.

Proposition 5. If {An}∞n=1 is an increasing sequence of convex sets that is

uniformly bounded then A = cl

( ∞⋃
n=1

An

)
is also convex.

Proof. We only need to show that A′ =
∞⋃
n=1

An is convex. For arbitrary x, y ∈ A′

and arbitrary λ ∈ (0, 1), there exists a sufficiently large n such that x, y ∈ An.
Since An is convex,

λx+ (1− λ)y ∈ An ⊆ A′.

Thus A′ is convex. QED

5 Some facts concerning balls

We indicate a few more results concerning sequences of balls. Suppose that

{Bn}∞n=1 is a sequence of balls such that Bn
K−−→ B 6= ∅. In general B is not a

ball (see Example 3). We noticed (in the final part of Section 2) that if {Bn}∞n=1

is a nested sequence of balls, then

B =
∞⋂
n=1

Bn

is a (nonempty) ball. The usual proofs of this result also show that

Bn
H−−→ B and γ(B) = lim

n→∞
γ(Bn).

As known, balls are characterized by the following equivalent properties (see
[9, Section 3]): a non-empty closed set D is a ball if and only if

γ′(D) =
δ(D)

2
⇔ γ(D) = γ′(D)⇔ γ(D,D) = γ′(D). (5.1)

We have

Proposition 6. If {An}∞n=1 is a sequence of balls H-converging to A, then
A is a ball.
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Proof. Using Proposition 2, Proposition 3, and (5.1) we obtain

δ(A) = lim
n→∞

δ(An) = 2 lim
n→∞

γ′(An) = 2γ′(A).

Therefore A is a ball. QED

Proposition 7. Let {Bn}∞n=1 be a uniformly bounded increasing sequence

of balls. Then B = cl

( ∞⋃
n=1

Bn

)
is a ball and {Bn}∞n=1 H-converges to B.

Proof. By Proposition 4 and (5.1) we have

δ(B) = δ

( ∞⋃
n=1

Bn

)
= lim

n→∞
δ(Bn) = lim

n→∞
2γ′(Bn) ≤ 2γ′(B),

which implies that δ(B) = 2γ′(B) (we used the trivial fact that 2γ′(B) ≤ δ(B)).
Thus B is a ball. Moreover,

δ(B) = 2γ(B) ≥ 2 lim
n→∞

γ(Bn) = lim
n→∞

δ(Bn) = δ(B).

So
γ(B) = lim

n→∞
γ(Bn). (5.2)

Let ε be a positive number. Then

Bn ⊆ B ⊆ Bε, ∀n ∈ N.

Since B is a ball, there exists a point x ∈ X such that B = B(x, γ(B)). By
(5.2), for sufficiently large n ∈ N, we have

γ(Bn) > γ(B)− ε

2
.

Denote by xn the center of Bn. Then

x− xn ∈ B(o, γ(B)− γ(Bn))

and

B = B(x, γ(B)) = B(xn, γ(B)) + x− xn
⊆ B(xn, 2γ(B)− γ(Bn))

⊆ (B(xn, γ(Bn)))ε = (Bn)ε.

Thus Bn H-converges to B. QED
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6 Examples

Example 1. Consider in c0 the convex sets

An = {(α1, α2, · · · ) : αi = 0, ∀i < n; |αi| ≤ 1, ∀i ≥ n}, ∀n ∈ N.

They form a nested sequence such that

∞⋂
n=1

An = {o} =: A.

Then

lim
n→∞

δ(An) 6= δ(A), lim
n→∞

γ(An) 6= γ(A), lim
n→∞

γ(An, An) 6= γ(A,A).

In fact,
δ(An) = 2 and γ(An) = γ(An, An) = 1, ∀n ∈ N.

Example 2. Consider in c0 the following sets. For each n ∈ N, put

An = {(α1, α2, · · · ) ∈ B(o, 2) : αi ∈ [0, 2], ∀i ≤ n}.

Then {An}∞n=1 is a nested sequence of convex sets, and

∞⋂
n=1

An =: A = {(α1, α2, · · · ) ∈ c0 : αi ∈ [0, 2], ∀i ∈ N} .

We have
lim
n→∞

γ′(An) > 0 = γ′(A).

Note that by Proposition 3,

An 6
H−−→ A.

Example 3. Consider in c0 the balls

Bn = B

(
n∑
i=1

ei, 1

)
.

Clearly,
δ(Bn)

2
= γ(Bn) = γ′(Bn) = γ(Bn, Bn) = 1, ∀n ∈ N,

and Bn
K−−→ A, where

A = {(α1, α2, · · · ) ∈ c0 : αi ∈ [0, 2], ∀i ∈ N} 6= ∅,

which is not a ball. Moreover

γ(A) = γ(A,A) = 2 = δ(A) and γ′(A) = 0 6= lim
n→∞

γ′(Bn).
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Example 4. (See Remark 1). Consider, in the Euclidean plane, the increas-
ing sequence

An = B(o, 1)\
{

(α, β) : 0 < α <
1

n+ 1

}
.

We have

An
H−−→ A = B(o, 1), γ′(An) =

1

2
, ∀n ∈ N,

and
γ′(A) 6= lim

n→∞
γ′(An).

Example 5. a) This example shows that for a strictly decreasing sequence
{An}∞n=1, the sequence {γ(An, An)}∞n=1 can also be increasing.

Consider in X = C([0, 1]) the following sets:

An =

{
f ∈ X : f(α) ∈ [0, 1], ∀α ∈ [0, 1]; f

(
1

2

)
≤ 1

n+ 1

}
, ∀n ∈ N.

Put

A =
∞⋂
n=1

An.

Then
γ(An, An) =

n

n+ 1
,

which shows that {γ(An, An)}∞n=1 is increasing, and

lim
n→∞

γ(An, An) = 1 = γ(A,A).

b) This example shows that for a strictly increasing sequence {An}∞n=1, the
sequence {γ(An, An)}∞n=1 can also be decreasing.

Consider in X = C([0, 1]) the following sets:

An =

{
f ∈ X : f(α) ∈ [0, 1], ∀α ∈ [0, 1]; f

(
1

2

)
≤ n

2n+ 1

}
, ∀n ∈ N.

Put

A = cl (
∞⋃
n=1

An).

Then

γ(An, An) =
n+ 1

2n+ 1
,

which shows that {γ(An, An)}∞n=1 is decreasing, and

lim
n→∞

γ(An, An) =
1

2
= γ(A,A).
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Example 6. This example clarifies the behaviour of γ(An, An) for an in-
creasing sequence of sets (see point (2) in Proposition 4).

Let X = C([0, 1]). Consider in (0, 1] an increasing sequence {αn}∞n=1 con-
verging to 1. For each n ∈ N, denote by A2n the set of functions f ∈ X satisfying:

(1) f(α) ∈ [0, 1], ∀α ∈ [0, αn);

(2) f(α) ∈ [0, 1
2 ], ∀α ∈ [αn, αn+1);

(3) f(α) = 0, ∀α ∈ [αn+1, 1].

And, by A2n−1 the set of functions f ∈ A2n so that f(αn) = 0. Then the
sequence {An}∞n=1 is increasing,

γ(A2n, A2n) =
1

2
, γ(A2n−1, A2n−1) = 1 and δ(An) = 1, ∀n ∈ N.

Therefore,

lim inf
n→∞

γ(An, An) =
1

2
< lim sup

n→∞
γ(An, An) = 1.

A function f ∈
∞⋃
n=1

An must be 0 in some interval [α0, 1] for some number

α0 < 1. Moreover, f ∈ A = cl

( ∞⋃
n=1

An

)
if

f(1) = 0 and f(α) ∈ [0, 1] , ∀α ∈ [0, 1).

Therefore

δ(A) = 1 = γ(A,A).

From Proposition 2, it follows that An 6
H−−→ A.

Example 7. Next example is somehow similar to the previous one.
Let X = C([0, 1]). Consider a strictly decreasing sequence {αn}∞n=1 con-

tained in (1
2 , 1], converging to 1

2 . For each n ∈ N, let A2n−1 be the set of functions
f ∈ X such that:

(1) f(α) ∈ [0, 1], ∀α ∈ [0, αn+1),

(2) f(α) ∈ [0, 1
2 ], ∀α ∈ [αn+1, αn),

(3) f(α) = 0, ∀α ∈ [αn, 1].

Also, let A2n be the set of functions f ∈ A2n−1 such that f(αn+1) = 0.
Let A be the set of functions f ∈ X such that:
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(1) f(α) ∈ [0, 1], ∀α ∈ [0, 1
2);

(2) f(α) = 0, ∀α ∈ [1
2 , 1].

Then {An}∞n=1 is a nested sequence, and therefore

An
K−−→

∞⋂
n=1

An = A.

Moreover, for each n ∈ N, we have

γ(A2n−1, A2n−1) =
1

2
; γ(A2n, A2n) = 1 = γ(A,A).

References

[1] P. Bandyopadhyay and B.-L. Lin: Some properties related to nested sequences of balls
in Banach spaces, Taiwanese J. Math., 5 (2001), no. 1, 19–34.

[2] M. Baronti and P.L. Papini: Convergence of sequence of sets, Methods of functional
analysis in approximation theory (Bombay, 1985), 135–155, Internat. Schriftenreihe Nu-
mer. Math., 76 Birkhäuser, Basel, 1986.
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