Affine distributions on a four-dimensional extension of the semi-Euclidean group

Dennis I. Barrett
Department of Mathematics (Pure and Applied), Rhodes University, PO Box 94, 6140 Grahamstown, South Africa
dbarrett6@gmail.com
Rory Biggs
Department of Mathematics (Pure and Applied), Rhodes University, PO Box 94, 6140 Grahamstown, South Africa
rorybiggs@gmail.com
Claudiu C. Remsing
Department of Mathematics (Pure and Applied), Rhodes University, PO Box 94, 6140 Grahamstown, South Africa
c.c.remsing@ru.ac.za

Received: 19.11.2014; accepted: 8.5.2015.

Abstract

The invariant affine distributions on a four-dimensional central extension of the semi-Euclidean group are classified (up to group automorphism). This classification is briefly discussed in the context of invariant control theory and sub-Riemannian geometry.

Keywords: affine distribution, Lie algebra, invariant control system, sub-Riemannian structure.

MSC 2010 classification: 58A30, 22E60, 22E15, 93B27, 53C17.

1 Introduction

In the last few decades affine distributions (and their equivalence) have been considered by several authors. These developments have primarily been inspired and motivated by geometric control theory. Elkin [9, 10] studied equivalence of affine distributions on low-dimensional manifolds and obtained normal forms for the associated control systems. More recently, Clelland et al. [8] investigated the geometry of so-called point-affine distributions and computed (local) invariants for a class of such distributions (using Cartan's method of equivalence). Invariant affine distributions on low-dimensional Lie groups (or rather their associated control systems) have attracted particular attention (see, e.g., $[1,3,11,12,13,15,16])$.

[^0]Among the four-dimensional Lie algebras, only four can be described as nontrivial central extensions of three-dimensional Lie algebras [6]. These are (in Mubarakzyanov's notation [14]):
(1) the Engel algebra $\mathfrak{g}_{4.1}$, a central extension of the Heisenberg algebra \mathfrak{h}_{3};
(2) the algebra $\mathfrak{g}_{4.3}$, a central extension of $\mathfrak{a f f}(\mathbb{R}) \oplus \mathbb{R}$;
(3) the algebra $\mathfrak{g}_{4.8}^{-1}$, a central extension of the semi-Euclidean algebra $\mathfrak{s e}(1,1)$;
(4) the oscillator algebra $\mathfrak{g}_{4.9}^{0}$, a central extension of the Euclidean algebra $\mathfrak{s e}(2)$.

Moreover, the only indecomposable four-dimensional Lie algebras admitting an invariant scalar product are $\mathfrak{g}_{4.9}^{0}$ and $\mathfrak{g}_{4.8}^{-1}$. The oscillator algebra $\mathfrak{g}_{4.9}^{0}$ and its associated groups were studied in [4].

In this paper we consider the algebra $\mathfrak{g}_{4.8}^{-1}$ (which we denote $\mathfrak{e}_{1,1}^{\infty}$) and its associated simply connected Lie group $\mathrm{E}_{1,1}^{\infty}$. More specifically, we are interested in the equivalence of left-invariant affine distributions on $E_{1,1}^{\infty}$. We regard two distributions as being equivalent if they are related by a group automorphism. In section 2 , a characterization of this equivalence relation in terms of Lie algebra automorphisms is provided. In section 3, the group $E_{1,1}^{\infty}$ and its Lie algebra $\mathfrak{e}_{1,1}^{\infty}$ are introduced and the vector subspaces of $\mathfrak{e}_{1,1}^{\infty}$ are classified. (As corollaries, we obtain an exhaustive list of the subalgebras as well as the ideals.) In section 4, the invariant affine distributions on $E_{1,1}^{\infty}$ are classified. Finally, in section 5, two extensive examples interpreting this classification in the context of control theory and sub-Riemannian geometry are presented.

2 Invariant affine distributions

An affine distribution on a (real, finite-dimensional) connected Lie group G is a (smooth) map \mathcal{D} that assigns to every point $g \in \mathrm{G}$ an affine subspace \mathcal{D}_{g} of $T_{g} \mathrm{G} . \mathcal{D}$ is said to be left-invariant if $\left(L_{g}\right)_{*} \mathcal{D}=\mathcal{D}$, i.e., $T_{h} L_{g} \cdot \mathcal{D}_{h}=\mathcal{D}_{g h}$. (Here $T_{h} L_{g}: T_{h} \mathrm{G} \rightarrow T_{g h} \mathrm{G}$ is the tangent map of the left translation $L_{g}: h \mapsto g h$.) A left-invariant affine distribution \mathcal{D} is determined by its associated affine subspace $\mathcal{D}_{1} \subseteq \mathfrak{g}$, where \mathfrak{g} is the Lie algebra of G. (If $\mathcal{D}_{\mathbf{1}}$ is a vector subspace, then \mathcal{D} is a left-invariant vector distribution on G.) We say that \mathcal{D} is bracket generating if \mathcal{D}_{1} is bracket generating, i.e., the subalgebra $\operatorname{Lie}\left(\mathcal{D}_{1}\right)$ generated by \mathcal{D}_{1} is \mathfrak{g}.

Two left-invariant affine distributions \mathcal{D} and \mathcal{D}^{\prime} on G are called \mathfrak{L}-equivalent if there exists a Lie group automorphism $\phi: \mathrm{G} \rightarrow \mathrm{G}$ such that $\phi_{*} \mathcal{D}=\mathcal{D}^{\prime}$.

Proposition 1. \mathcal{D} is \mathfrak{L}-equivalent to \mathcal{D}^{\prime} if and only if there exists a Lie group automorphism $\phi: \mathrm{G} \rightarrow \mathrm{G}$ such that $T_{\mathbf{1}} \phi \cdot \mathcal{D}_{\mathbf{1}}=\mathcal{D}_{\mathbf{1}}^{\prime}$.

Proof. If $\phi: \mathrm{G} \rightarrow \mathrm{G}$ is an automorphism such that $\phi_{*} \mathcal{D}=\mathcal{D}^{\prime}$, then clearly $T_{\mathbf{1}} \phi \cdot \mathcal{D}_{\mathbf{1}}=\mathcal{D}_{1}^{\prime}$. Conversely, suppose there exists an automorphism $\phi: \mathrm{G} \rightarrow \mathrm{G}$ such that $T_{\mathbf{1}} \phi \cdot \mathcal{D}_{\mathbf{1}}=\mathcal{D}_{1}^{\prime}$. We have $\phi=L_{\phi(g)} \circ \phi \circ L_{g^{-1}}$ for $g \in \mathrm{G}$. By left invariance, we get $T_{g} \phi \cdot \mathcal{D}_{g}=\mathcal{D}_{\phi(g)}^{\prime}$.

QED
Corollary 1. When G is simply connected, \mathcal{D} is \mathfrak{L}-equivalent to \mathcal{D}^{\prime} if and only if there exists a Lie algebra automorphism $\psi: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\psi \cdot \mathcal{D}_{\mathbf{1}}=\mathcal{D}_{\mathbf{1}}^{\prime}$.

Accordingly, the classification of left-invariant affine distributions on a simply connected Lie group reduces to a classification of affine subspaces of its Lie algebra. By a slight abuse of terminology, we say that two affine subspaces $\Gamma=\mathcal{D}_{1}$ and $\Gamma^{\prime}=\mathcal{D}_{1}^{\prime}$ are \mathfrak{L}-equivalent if there exists a Lie algebra automorphism $\psi: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\psi \cdot \Gamma=\Gamma^{\prime}$. We shall write $\Gamma=A+\Gamma^{0}=A+\left\langle B_{1}, \ldots, B_{\ell}\right\rangle$, where $A, B_{1}, \ldots, B_{\ell} \in \mathfrak{g}$ and B_{1}, \ldots, B_{ℓ} are linearly independent.

$3 \quad E_{1,1}^{\ltimes}$ and its Lie algebra

The connected, simply connected four-dimensional matrix Lie group

$$
\mathbf{E}_{1,1}^{\infty}=\left\{\left[\begin{array}{ccc}
1 & y & x \\
0 & e^{\theta} & z \\
0 & 0 & 1
\end{array}\right]: x, y, z, \theta \in \mathbb{R}\right\}
$$

is a (nontrivial) central extension of the semi-Euclidean group $\operatorname{SE}(1,1)$. Indeed, the mapping $\phi: \mathrm{E}_{1,1}^{\infty} \rightarrow \mathrm{SE}(1,1)$,

$$
\left[\begin{array}{ccc}
1 & y & x \\
0 & e^{\theta} & z \\
0 & 0 & 1
\end{array}\right] \longmapsto\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2}\left(y e^{-\theta}+z\right) & \cosh \theta & -\sinh \theta \\
\frac{1}{2}\left(y e^{-\theta}-z\right) & -\sinh \theta & \cosh \theta
\end{array}\right]
$$

is a Lie group epimorphism with $\operatorname{ker} \phi=\mathrm{Z}\left(\mathrm{E}_{1,1}^{\infty}\right)$. Moreover, $\mathrm{E}_{1,1}^{\infty}$ decomposes as the semi-direct product $\mathrm{H}_{3} \rtimes \mathrm{SO}(1,1)_{0}$ of the Heisenberg subgroup

$$
\mathrm{H}_{3}=\left\{\left[\begin{array}{lll}
1 & y & x \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right]: x, y, z \in \mathbb{R}\right\}
$$

and the pseudo-orthogonal subgroup

$$
\mathrm{SO}(1,1)_{0}=\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{\theta} & 0 \\
0 & 0 & 1
\end{array}\right]: \theta \in \mathbb{R}\right\} .
$$

(That is, $\mathrm{E}_{1,1}^{\infty}=\mathrm{H}_{3} \mathrm{SO}(1,1)_{0}, \mathrm{H}_{3} \cap \mathrm{SO}(1,1)_{0}=\{\mathbf{1}\}$ and H_{3} is normal in $\mathrm{E}_{1,1}^{\infty}$.) The Lie algebra of $\mathrm{E}_{1,1}^{\infty}$

$$
\mathfrak{e}_{1,1}^{\infty}=\left\{\left[\begin{array}{lll}
0 & y & x \\
0 & \theta & z \\
0 & 0 & 0
\end{array}\right]=x E_{1}+y E_{2}+z E_{3}+\theta E_{4}: x, y, z, \theta \in \mathbb{R}\right\}
$$

is unimodular and completely solvable. Its (nonzero) commutator relations are

$$
\left[E_{2}, E_{3}\right]=E_{1}, \quad\left[E_{2}, E_{4}\right]=E_{2}, \quad\left[E_{3}, E_{4}\right]=-E_{3} .
$$

Proposition 2 (cf. [7]). The automorphism group $\operatorname{Aut}\left(e_{1,1}^{\infty}\right)$ is given by

$$
\left\{\left[\begin{array}{cccc}
x y & w x & v y & u \\
0 & x & 0 & v \\
0 & 0 & y & w \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
-x y & -v x & -w y & u \\
0 & 0 & y & v \\
0 & x & 0 & w \\
0 & 0 & 0 & -1
\end{array}\right]: u, v, w, x, y \in \mathbb{R}, x y \neq 0\right\} .
$$

The group of inner automorphisms $\operatorname{Int}\left(\mathfrak{e}_{1,1}^{\infty}\right)=\left\{\operatorname{Ad}_{g}: g \in \mathrm{E}_{1,1}^{\infty}\right\}$ takes the form

$$
\operatorname{lnt}\left(\mathfrak{e}_{1,1}^{\infty}\right)=\left\{\left[\begin{array}{cccc}
1 & -z e^{-\theta} & y & -y z e^{-\theta} \\
0 & e^{-\theta} & 0 & y e^{-\theta} \\
0 & 0 & e^{\theta} & -z \\
0 & 0 & 0 & 1
\end{array}\right]: y, z, \theta \in \mathbb{R}\right\} .
$$

(In each case, the automorphisms are identified with their matrices with respect to ($E_{1}, E_{2}, E_{3}, E_{4}$).)

Remark 1. The group of automorphisms Aut $\left(\mathfrak{e}_{1,1}^{\infty}\right)$ decomposes as the semidirect product of the normal subgroup $\operatorname{Int}\left(\mathfrak{e}_{1,1}^{\infty}\right)$ and

$$
\left\{\left[\begin{array}{cccc}
\sigma r^{2} & 0 & 0 & u \\
0 & \sigma r & 0 & 0 \\
0 & 0 & r & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
-\sigma r^{2} & 0 & 0 & u \\
0 & 0 & \sigma r & 0 \\
0 & r & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]: u \in \mathbb{R}, r \neq 0, \sigma \in\{-1,1\}\right\} .
$$

There exists an invariant scalar product on $\mathfrak{e}_{1,1}^{\infty}$, i.e., a nondegenerate bilinear form $\langle\langle\cdot, \cdot\rangle\rangle$ such that $\langle\langle[A, B], C\rangle\rangle=\langle\langle A,[B, C]\rangle\rangle$ for every $A, B, C \in \mathfrak{e}_{1,1}^{\infty}$.

Proposition 3. The Lie algebra $\mathfrak{e}_{1,1}^{\infty}$ admits exactly one family $\left(\omega_{\alpha}\right)_{\alpha \in \mathbb{R}}$ of invariant scalar products. In coordinates (with respect to $\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$),

$$
\omega_{\alpha}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & \alpha
\end{array}\right] .
$$

The orthogonal complement of a subspace Γ (with respect to the symmetric invariant scalar product $\langle\cdot \cdot \cdot \cdot\rangle=\omega_{0}$) is the subspace

$$
\Gamma^{\perp}=\left\{A \in \mathfrak{e}_{1,1}^{\infty}:\langle\langle A, B\rangle\rangle=0 \text { for every } B \in \Gamma\right\} .
$$

Lemma 1. Let Γ_{1} and Γ_{2} be vector subspaces of $\mathfrak{e}_{1,1}^{\infty}$ and $\varphi \in \operatorname{Int}\left(\mathfrak{e}_{1,1}^{\infty}\right)$. If $\varphi \cdot \Gamma_{1}^{\perp}=\Gamma_{2}^{\perp}$, then $\varphi \cdot \Gamma_{1}=\Gamma_{2}$.

Vector subspaces of $\mathfrak{e}_{1,1}^{\infty}$

We classify the vector subspaces of $\mathfrak{e}_{1,1}^{\infty}$ under \mathfrak{L}-equivalence. As corollaries, we obtain enumerations of the subalgebras and the ideals. The following simple lemmas prove useful in distinguishing between equivalence classes. Let $\psi: \mathfrak{e}_{1,1}^{\infty} \rightarrow$ $\mathfrak{e}_{1,1}^{\infty}$ be an automorphism and let Γ be a subspace of $\mathfrak{e}_{1,1}^{\infty}$. (Below E^{4} denotes the corresponding element of the dual basis.)

Lemma 2. $E^{4}(\Gamma)=\{0\}$ if and only if $E^{4}(\psi \cdot \Gamma)=\{0\}$.
Lemma 3. $\mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq \Gamma$ if and only if $\mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq \psi \cdot \Gamma$.
Proposition 4. Any proper vector subspace of $\mathfrak{e}_{1,1}^{\infty}$ is $\mathfrak{\mathfrak { L } \text { -equivalent to exactly }}$ one of the following subspaces:

$$
\begin{gathered}
\left\langle E_{1}\right\rangle, \quad\left\langle E_{2}\right\rangle, \quad\left\langle E_{2}+E_{3}\right\rangle, \quad\left\langle E_{4}\right\rangle, \\
\left\langle E_{1}, E_{2}\right\rangle, \quad\left\langle E_{2}, E_{3}\right\rangle, \quad\left\langle E_{1}, E_{4}\right\rangle, \quad\left\langle E_{2}, E_{4}\right\rangle, \\
\left\langle E_{1}, E_{2}+E_{3}\right\rangle, \quad\left\langle E_{1}+E_{2}, E_{4}\right\rangle, \quad\left\langle E_{2}+E_{3}, E_{4}\right\rangle, \\
\left\langle E_{1}, E_{2}, E_{3}\right\rangle, \quad\left\langle E_{1}, E_{2}, E_{4}\right\rangle, \quad\left\langle E_{2}, E_{3}, E_{4}\right\rangle, \quad\left\langle E_{1}, E_{2}+E_{3}, E_{4}\right\rangle .
\end{gathered}
$$

Proof. Throughout the proof, ς denotes the automorphism

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] .
$$

Let $\Gamma=\left\langle\sum a_{i} E_{i}\right\rangle$ be a one-dimensional subspace. If $a_{4} \neq 0$ (i.e., $E^{4}(\Gamma) \neq$ $\{0\}$), then

$$
\psi=\left[\begin{array}{cccc}
1 & -\frac{a_{3}}{a_{4}} & -\frac{a_{2}}{a_{4}} & \frac{2 a_{2} a_{3}-a_{1} a_{4}}{a_{2}^{2}} \\
0 & 1 & 0 & -\frac{a_{2}}{a_{4}} \\
0 & 0 & 1 & -\frac{a_{3}}{a_{4}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma=\left\langle E_{4}\right\rangle$. If $a_{4}=0$ and $a_{2}, a_{3} \neq 0$, then

$$
\psi=\left[\begin{array}{cccc}
a_{2} a_{3} & 0 & -a_{1} a_{2} & 0 \\
0 & a_{3} & 0 & -a_{1} \\
0 & 0 & a_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma=\left\langle E_{2}+E_{3}\right\rangle$. If $a_{2}, a_{4}=0$ and $a_{3} \neq 0$, then

$$
\psi=\left[\begin{array}{cccc}
-1 & 0 & \frac{a_{1}}{a_{3}} & 0 \\
0 & 0 & \frac{1}{a_{3}} & 0 \\
0 & a_{3} & 0 & -a_{1} \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma=\left\langle E_{2}\right\rangle$. Likewise, if $a_{2} \neq 0$ and $a_{3}, a_{4}=0$, then Γ is \mathfrak{L}-equivalent to $\left\langle E_{2}\right\rangle$. Lastly, if $a_{2}, a_{3}, a_{4}=0$, then $\Gamma=\left\langle E_{1}\right\rangle$.

Let $\Gamma=\left\langle\sum a_{i} E_{i}, \sum b_{i} E_{i}\right\rangle$ be a two-dimensional subspace. Suppose $E^{4}(\Gamma) \neq$ $\{0\}$. We may assume $a_{4}=0$ and $b_{4}=1$. Then

$$
\psi_{1}=\left[\begin{array}{cccc}
1 & -b_{3} & -b_{2} & 2 b_{2} b_{3}-b_{1} \\
0 & 1 & 0 & -b_{2} \\
0 & 0 & 1 & -b_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi_{1} \cdot \Gamma=\left\langle a_{1}^{\prime} E_{1}+a_{2} E_{2}+a_{3} E_{3}, E_{4}\right\rangle$. If $a_{2}, a_{3} \neq 0$, then

$$
\psi_{2}=\left[\begin{array}{cccc}
a_{2} a_{3} & -\frac{a_{1}^{\prime} a_{3}}{2} & -\frac{a_{1}^{\prime} a_{2}}{2} & 0 \\
0 & a_{3} & 0 & -\frac{a_{1}^{\prime}}{2} \\
0 & 0 & a_{2} & -\frac{a_{1}^{\prime}}{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=\left\langle E_{2}+E_{3}, E_{4}\right\rangle$. If $a_{2}=0$ and $a_{1}^{\prime}, a_{3} \neq 0$, then

$$
\psi_{2}=\left[\begin{array}{cccc}
\frac{1}{a_{1}^{\prime}} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{a_{3}} & 0 \\
0 & -\frac{a_{3}}{a_{1}^{\prime}} & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is an automorphism such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=\left\langle E_{1}+E_{2}, E_{4}\right\rangle$. On the other hand, if $a_{1}^{\prime}, a_{2}=0$ and $a_{3} \neq 0$, then $\varsigma \cdot \psi_{1} \cdot \Gamma=\left\langle E_{2}, E_{4}\right\rangle$. Similarly Γ is \mathfrak{L}-equivalent to $\left\langle E_{1}+E_{2}, E_{4}\right\rangle$ (if $a_{1}^{\prime}, a_{2} \neq 0, a_{3}=0$) or $\left\langle E_{2}, E_{4}\right\rangle$ (if $a_{2} \neq 0, a_{1}^{\prime}, a_{3}=0$). If $a_{2}, a_{3}=0$, then $\psi_{1} \cdot \Gamma=\left\langle E_{1}, E_{4}\right\rangle$.

Suppose $E^{4}(\Gamma)=\{0\}$ and $b_{2}, b_{3} \neq 0$. Then

$$
\psi_{1}=\left[\begin{array}{cccc}
b_{2} b_{3} & -\frac{b_{1} b_{3}}{2} & -\frac{b_{1} b_{2}}{2} & 0 \\
0 & b_{3} & 0 & -\frac{b_{1}}{2} \\
0 & 0 & b_{2} & -\frac{b_{1}}{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi_{1} \cdot \Gamma=\left\langle a_{1}^{\prime} E_{1}+a_{2}^{\prime} E_{2}, E_{2}+E_{3}\right\rangle$. If $a_{2}^{\prime} \neq 0$, then we have an automorphism

$$
\psi_{2}=\left[\begin{array}{cccc}
1 & -\frac{a_{1}^{\prime}}{a_{2}^{\prime}} & \frac{a_{1}^{\prime}}{a_{2}^{\prime}} & 0 \\
0 & 1 & 0 & \frac{a_{1}^{\prime}}{a_{2}^{\prime}} \\
0 & 0 & 1 & -\frac{a_{1}^{\prime}}{a_{2}^{\prime}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=\left\langle E_{2}, E_{3}\right\rangle$. If $a_{2}^{\prime}=0$, then $\psi_{1} \cdot \Gamma=\left\langle E_{1}, E_{2}+E_{3}\right\rangle$.
Suppose $E^{4}(\Gamma)=\{0\}, b_{2}=0$ and $b_{3} \neq 0$. We may assume $a_{3}=0$ and $b_{3}=1$. If $a_{2} \neq 0$, then

$$
\psi=\left[\begin{array}{cccc}
\frac{1}{a_{2}} & -\frac{a_{1}}{a_{2}} & -\frac{b_{1}}{a_{2}} & 0 \\
0 & \frac{1}{a_{2}} & 0 & -\frac{b_{1}}{a_{2}} \\
0 & 0 & 1 & -\frac{a_{1}}{a_{2}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma=\left\langle E_{2}, E_{3}\right\rangle$. If $a_{2}=0$, then $\varsigma \cdot \Gamma=\left\langle E_{1}, E_{2}\right\rangle$. Likewise, if $E^{4}(\Gamma)=\{0\}, b_{2} \neq 0$ and $b_{3}=0$, then Γ is \mathfrak{L}-equivalent to $\left\langle E_{2}, E_{3}\right\rangle$ or $\left\langle E_{1}, E_{2}\right\rangle$.

Suppose $E^{4}(\Gamma)=\{0\}$ and $b_{2}, b_{3}=0$. We may assume $a_{1}=0$ and $b_{1}=1$. If $a_{2}, a_{3} \neq 0$, then $\psi=\operatorname{diag}\left(a_{2} a_{3}, a_{3}, a_{2}, 1\right)$ is an automorphism such that $\psi \cdot \Gamma=$ $\left\langle E_{2}+E_{3}, E_{4}\right\rangle$. If $a_{2}=0$ and $a_{3} \neq 0$, then $\varsigma \cdot \Gamma=\left\langle E_{1}, E_{2}\right\rangle$. If $a_{2} \neq 0$ and $a_{3}=0$, then clearly $\Gamma=\left\langle E_{1}, E_{2}\right\rangle$.

Let Γ be a three-dimensional subspace with orthogonal complement $\Gamma^{\perp}=$ $\left\langle\sum a_{i} E_{i}\right\rangle$. If $E^{4}\left(\Gamma^{\perp}\right)=\{0\}$ and $a_{2}, a_{3}=0$, then $\Gamma=\left\langle E_{2}, E_{3}, E_{4}\right\rangle$. Suppose $E^{4}\left(\Gamma^{\perp}\right)=\{0\}$ and $a_{2}, a_{3} \neq 0$. We may assume $a_{3}=1$. Then

$$
\varphi=\left[\begin{array}{cccc}
1 & 0 & -a_{1} & 0 \\
0 & 1 & 0 & -a_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an inner automorphism such that $\varphi \cdot \Gamma^{\perp}=\left\langle a_{2} E_{2}+E_{3}\right\rangle$. Consequently, $\varphi \cdot \Gamma=$ $\left\langle E_{1},-a_{2} E_{2}+E_{3}, E_{4}\right\rangle$; hence $\psi=\operatorname{diag}\left(-\frac{1}{a_{2}},-\frac{1}{a_{2}}, 1,1\right)$ is an automorphism such that $\psi \cdot \varphi \cdot \Gamma=\left\langle E_{1}, E_{2}+E_{3}, E_{4}\right\rangle$.

Suppose $E^{4}\left(\Gamma^{\perp}\right)=\{0\}, a_{2}=0$ and $a_{3} \neq 0$. We may assume $a_{3}=1$. Then

$$
\varphi=\left[\begin{array}{cccc}
1 & 0 & -a_{1} & 0 \\
0 & 1 & 0 & -a_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an inner automorphism such that $\varphi \cdot \Gamma^{\perp}=\left\langle E_{3}\right\rangle$. Hence $\varsigma \cdot \varphi \cdot \Gamma=\left\langle E_{1}, E_{2}, E_{4}\right\rangle$. Likewise, if $E^{4}\left(\Gamma^{\perp}\right)=\{0\}, a_{2} \neq 0$ and $a_{3}=0$, then Γ is \mathfrak{L}-equivalent to $\left\langle E_{1}, E_{2}, E_{4}\right\rangle$.

Suppose $E^{4}\left(\Gamma^{\perp}\right) \neq\{0\}$. We may assume $a_{4}=1$. Then

$$
\varphi=\left[\begin{array}{cccc}
1 & -a_{3} & -a_{2} & a_{2} a_{3} \\
0 & 1 & 0 & -a_{2} \\
0 & 0 & 1 & -a_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an inner automorphism such that $\varphi \cdot \Gamma^{\perp}=\left\langle a_{1}^{\prime} E_{1}+E_{4}\right\rangle$. Hence $\varphi \cdot \Gamma=$ $\left\langle E_{2}, E_{3},-a_{1}^{\prime} E_{1}+E_{4}\right\rangle$ and so

$$
\psi=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{1}^{\prime} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \varphi \cdot \Gamma=\left\langle E_{2}, E_{3}, E_{4}\right\rangle$.
Finally, using a straightforward argument (together with the foregoing lemmas), one verifies that none of the representatives obtained are \mathfrak{L}-equivalent to each other.

Corollary 2. Any proper subalgebra of $\mathfrak{e}_{1,1}^{\infty}$ is \mathfrak{L}-equivalent to exactly one of the following subalgebras:

$$
\begin{aligned}
& \left\langle E_{1}\right\rangle, \quad\left\langle E_{2}\right\rangle, \quad\left\langle E_{2}+E_{3}\right\rangle, \quad\left\langle E_{4}\right\rangle, \\
& \left\langle E_{1}, E_{2}\right\rangle, \quad\left\langle E_{1}, E_{4}\right\rangle, \quad\left\langle E_{2}, E_{4}\right\rangle, \quad\left\langle E_{1}, E_{2}+E_{3}\right\rangle, \\
& \left\langle E_{1}, E_{2}, E_{3}\right\rangle, \quad\left\langle E_{1}, E_{2}, E_{4}\right\rangle .
\end{aligned}
$$

Among these subalgebras, only $\left\langle E_{2}, E_{4}\right\rangle \cong \mathfrak{a f f}(\mathbb{R}),\left\langle E_{1}, E_{2}, E_{4}\right\rangle \cong \mathfrak{a f f}(\mathbb{R}) \oplus \mathbb{R}$ and $\left\langle E_{1}, E_{2}, E_{3}\right\rangle \cong \mathfrak{h}_{3}$ are not Abelian.

Corollary 3. Any proper ideal of $\mathfrak{e}_{1,1}^{\infty}$ is \mathfrak{L}-equivalent to exactly one of the following ideals:

$$
\mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right)=\left\langle E_{1}\right\rangle, \quad\left\langle E_{1}, E_{2}\right\rangle, \quad \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right)^{\perp}=\left\langle E_{1}, E_{2}, E_{3}\right\rangle .
$$

The ideals $\left\langle E_{1}\right\rangle$ and $\left\langle E_{1}, E_{2}, E_{3}\right\rangle$ are fully characteristic (i.e., $\psi \cdot \mathfrak{i}=\mathfrak{i}$ for every $\left.\psi \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)\right)$.

4 Classification

We classify the bracket-generating left-invariant affine (and vector) distributions on $E_{1,1}^{\infty}$. This is accomplished by classifying the bracket-generating affine (and vector) subspaces of $\mathfrak{e}_{1,1}^{\infty}$. Henceforth, all subspaces under consideration are assumed to be bracket generating.

The following classification of vector subspaces follows from proposition 4.
Theorem 1. Any (bracket-generating) proper vector subspace Γ is \mathfrak{L}-equivalent to exactly one of the following subspaces:

$$
\begin{aligned}
& \Gamma^{(2,0)}=\left\langle E_{2}+E_{3}, E_{4}\right\rangle \\
& \Gamma_{1}^{(3,0)}=\left\langle E_{2}, E_{3}, E_{4}\right\rangle \\
& \Gamma_{2}^{(3,0)}=\left\langle E_{1}, E_{2}+E_{3}, E_{4}\right\rangle
\end{aligned}
$$

$$
\Gamma_{1}^{(3,0)}=\left\langle E_{2}, E_{3}, E_{4}\right\rangle \quad \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq \Gamma
$$

$$
\mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq \Gamma .
$$

We now proceed to classify the affine subspaces of $\mathfrak{e}_{1,1}^{\infty}$. We provide details for both the one- and two-dimensional case; the three-dimensional case is similar and so the proof will be omitted. As before, we denote by ς the automorphism

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Theorem 2. Any (bracket-generating) one-dimensional strictly affine subspace $\Gamma=A+\Gamma^{0}$ is \mathfrak{L}-equivalent to exactly one of the following affine subspaces:

$$
\begin{array}{ll}
\Gamma_{1, \beta}^{(1,1)}=\beta E_{1}+E_{2}+E_{3}+\left\langle E_{4}\right\rangle & E^{4}\left(\Gamma^{0}\right) \neq\{0\} \\
\Gamma_{2, \alpha}^{(1,1)}=\alpha E_{4}+\left\langle E_{2}+E_{3}\right\rangle & E^{4}\left(\Gamma^{0}\right)=\{0\}
\end{array}
$$

Here $\alpha>0$ and $\beta \geq 0$ parametrize families of class representatives, each different value corresponding to a distinct (non-equivalent) representative.

Proof. Since Γ^{0} is a one-dimensional vector subspace, it is \mathfrak{L}-equivalent to exactly one of $\left\langle E_{1}\right\rangle,\left\langle E_{2}\right\rangle,\left\langle E_{2}+E_{3}\right\rangle$ or $\left\langle E_{4}\right\rangle$ (see proposition 4). However, no subspace $A+\left\langle E_{1}\right\rangle$ or $A+\left\langle E_{2}\right\rangle$ is bracket generating (for any $A \in \mathfrak{e}_{1,1}^{\infty}$).

Suppose $E^{4}\left(\Gamma^{0}\right) \neq\{0\}$. Then there exists $\psi_{1} \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)$ such that ψ_{1}. $\Gamma=a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}+\left\langle E_{4}\right\rangle$, where $a_{2}, a_{3} \neq 0$ (by the bracket-generating condition). Hence $\psi_{2}=\operatorname{diag}\left(\frac{1}{a_{2} a_{3}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, 1\right)$ is an automorphism such that ψ_{2}. $\psi_{1} \cdot \Gamma=a_{1}^{\prime} E_{1}+E_{2}+E_{3}+\left\langle E_{4}\right\rangle$. If $a_{1}^{\prime}<0$, then $\varsigma \cdot \psi_{2} \cdot \psi_{1} \cdot \Gamma=-a_{1}^{\prime} E_{1}+E_{2}+E_{3}+\left\langle E_{4}\right\rangle$. Therefore Γ is \mathfrak{L}-equivalent to $\Gamma_{1, \beta}^{(1,1)}$, where $\beta=\left|a_{1}^{\prime}\right| \geq 0$.

Suppose $E^{4}\left(\Gamma^{0}\right)=\{0\}$. Then there exists $\psi_{1} \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)$ such that $\psi_{1} \cdot \Gamma=$ $\sum a_{i} E_{i}+\left\langle E_{2}+E_{3}\right\rangle$. Since $\psi_{1} \cdot \Gamma$ is bracket generating, $a_{4} \neq 0$ and so

$$
\psi_{2}=\left[\begin{array}{cccc}
1 & \frac{a_{2}-a_{3}}{2 a_{4}} & -\frac{a_{2}-a_{3}}{2 a_{4}} & -\frac{\left(a_{2}-a_{3}\right)^{2}+2 a_{1} a_{4}}{2 a_{4}^{2}} \\
0 & 1 & 0 & -\frac{a_{2}-a_{3}}{2 a_{4}} \\
0 & 0 & 1 & \frac{a_{2}-a_{3}}{2 a_{4}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=a_{4} E_{4}+\left\langle E_{2}+E_{3}\right\rangle$. If $a_{4}<0$, then $\varsigma \cdot \psi_{2} \cdot \psi_{1} \cdot \Gamma=-a_{4} E_{4}+\left\langle E_{2}+E_{3}\right\rangle$. Therefore Γ is \mathfrak{L}-equivalent to $\Gamma_{2, \alpha}^{(1,1)}$, where $\alpha=\left|a_{4}\right|>0$.

As $\left\langle E_{4}\right\rangle$ and $\left\langle E_{2}+E_{3}\right\rangle$ are not \mathfrak{L}-equivalent (proposition 4), it follows that $\Gamma_{1, \beta}^{(1,1)}$ is not \mathfrak{L}-equivalent to $\Gamma_{2, \alpha}^{(1,1)}$. We claim that $\Gamma_{1, \beta}^{(1,1)}$ is \mathfrak{L}-equivalent to $\Gamma_{1, \beta^{\prime}}^{(1,1)}$ only if $\beta=\beta^{\prime}$. Indeed, suppose

$$
\psi=\left[\begin{array}{cccc}
x y & w x & v y & u \\
0 & x & 0 & v \\
0 & 0 & y & w \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{1, \beta}^{(1,1)}=\Gamma_{1, \beta^{\prime}}^{(1,1)}$. Then $\left(w x+v y+\beta x y-\beta^{\prime}\right) E_{1}+$ $(x-1) E_{2}+(y-1) E_{3} \in \beta^{\prime} E_{1}+E_{2}+E_{3}+\left\langle E_{4}\right\rangle$ and $u E_{1}+v E_{2}+w E_{3} \in\left\langle E_{4}\right\rangle$. Thus $u=v=w=0, x=y=1$ and so $\beta=\beta^{\prime}$. On the other hand, if

$$
\psi=\left[\begin{array}{cccc}
-x y & -v x & -w y & u \\
0 & 0 & y & v \\
0 & x & 0 & w \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{1, \beta}^{(1,1)}=\Gamma_{1, \beta^{\prime}}^{(1,1)}$, then $u=v=w=0$ and $x=y=1$; whence $\beta=-\beta^{\prime}$. As $\beta, \beta^{\prime} \geq 0$, this implies that $\beta=\beta^{\prime}=0$. Likewise, $\Gamma_{2, \alpha}^{(1,1)}$ is \mathfrak{L}-equivalent to $\Gamma_{2, \alpha^{\prime}}^{(1,1)}$ only if $\alpha=\alpha^{\prime}$.

QED
Theorem 3. Let $\Gamma=A+\Gamma^{0}$ be a (bracket-generating) two-dimensional strictly affine subspace.
(i) If $E^{4}\left(\Gamma^{0}\right) \neq\{0\}$, then Γ is \mathfrak{L}-equivalent to exactly one of the following affine subspaces:

$$
\begin{array}{ll}
\Gamma_{1}^{(2,1)}=E_{3}+\left\langle E_{2}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right) \neq \mathfrak{e}_{1,1}^{\infty}, \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq\langle\Gamma\rangle \\
\Gamma_{2, \gamma}^{(2,1)}=\gamma E_{3}+\left\langle E_{1}+E_{2}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right) \neq \mathfrak{e}_{1,1}^{\infty}, \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq\langle\Gamma\rangle
\end{array}
$$

$$
\begin{array}{ll}
\Gamma_{3}^{(2,1)}=E_{2}+E_{3}+\left\langle E_{1}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right) \neq \mathfrak{e}_{1,1}^{\infty}, \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq\langle\Gamma\rangle \\
\Gamma_{4, \beta}^{(2,1)}=\beta E_{1}+E_{3}+\left\langle E_{2}+E_{3}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right)=\mathfrak{e}_{1,1}^{\infty}, \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq\langle\Gamma\rangle \\
\Gamma_{5}^{(2,1)}=E_{1}+\left\langle E_{2}+E_{3}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right)=\mathfrak{e}_{1,1}^{\infty}, \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq\langle\Gamma\rangle .
\end{array}
$$

(ii) If $E^{4}\left(\Gamma^{0}\right)=\{0\}$, then Γ is \mathfrak{L}-equivalent to exactly one of the following affine subspaces:

$$
\begin{array}{ll}
\Gamma_{6, \alpha}^{(2,1)}=\alpha E_{4}+\left\langle E_{2}, E_{3}\right\rangle & \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq\langle\Gamma\rangle \\
\Gamma_{7, \alpha}^{(2,)}=\alpha E_{4}+\left\langle E_{1}, E_{2}+E_{3}\right\rangle & \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq\langle\Gamma\rangle .
\end{array}
$$

Here $\alpha>0, \beta \geq 0$ and $\gamma \neq 0$ parametrize families of class representatives, each different value corresponding to a distinct (non-equivalent) representative.

Proof. Since Γ^{0} is a two-dimensional vector subspace, it is \mathfrak{L}-equivalent to exactly one of $\left\langle E_{1}, E_{2}\right\rangle,\left\langle E_{1}, E_{4}\right\rangle,\left\langle E_{2}, E_{3}\right\rangle,\left\langle E_{2}, E_{4}\right\rangle,\left\langle E_{1}, E_{2}+E_{3}\right\rangle,\left\langle E_{1}+E_{2}, E_{4}\right\rangle$ or $\left\langle E_{2}+E_{3}, E_{4}\right\rangle$ (see proposition 4). However, no subspace $A+\left\langle E_{1}, E_{2}\right\rangle$ is bracket generating (for any $A \in \mathfrak{e}_{1,1}^{\infty}$).
(i) Assume $E^{4}\left(\Gamma^{0}\right) \neq\{0\}$. First, suppose $\operatorname{Lie}\left(\Gamma^{0}\right) \neq \mathfrak{e}_{1,1}^{\infty}$ and $Z\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq\langle\Gamma\rangle$. Then there exists $\psi_{1} \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)$ such that $\psi_{1} \cdot \Gamma=a_{1} E_{1}+a_{3} E_{3}+\left\langle E_{2}, E_{4}\right\rangle$ or $\psi_{1} \cdot \Gamma=a_{2} E_{2}+a_{3} E_{3}+\left\langle E_{1}+E_{2}, E_{4}\right\rangle$, where $a_{3} \neq 0$. If $\psi_{1} \cdot \Gamma=a_{1} E_{1}+a_{3} E_{3}+$ $\left\langle E_{2}, E_{4}\right\rangle$, then we have an automorphism

$$
\psi_{2}=\left[\begin{array}{cccc}
1 & 0 & -\frac{a_{1}}{a_{3}} & 0 \\
0 & a_{3} & 0 & -a_{1} \\
0 & 0 & \frac{1}{a_{3}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=E_{3}+\left\langle E_{2}, E_{4}\right\rangle=\Gamma_{1}^{(2,1)}$. If $\psi_{1} \cdot \Gamma=a_{2} E_{2}+a_{3} E_{3}+\left\langle E_{1}+E_{2}, E_{4}\right\rangle$, then

$$
\psi_{2}=\left[\begin{array}{cccc}
a_{3} & 0 & a_{2} & a_{2} \\
0 & a_{3} & 0 & a_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=a_{3} E_{3}+\left\langle E_{1}+E_{2}, E_{4}\right\rangle=\Gamma_{2, \gamma}^{(2,1)}$, where $\gamma=a_{3} \neq 0$.

Suppose $\operatorname{Lie}\left(\Gamma^{0}\right) \neq \mathfrak{e}_{1,1}^{\infty}$ and $Z\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq\langle\Gamma\rangle$. Then there exists $\psi_{1} \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)$ such that $\psi_{1} \cdot \Gamma=a_{2} E_{2}+a_{3} E_{3}+\left\langle E_{1}, E_{4}\right\rangle$ with $a_{2}, a_{3} \neq 0$. Hence $\psi_{2}=$ $\operatorname{diag}\left(\frac{1}{a_{2} a_{3}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, 1\right)$ is an automorphism such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=E_{2}+E_{3}+$ $\left\langle E_{1}, E_{4}\right\rangle=\Gamma_{3}^{(2,1)}$.

Suppose $\operatorname{Lie}\left(\Gamma^{0}\right)=\mathfrak{e}_{1,1}^{\infty}$ and $Z\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq\langle\Gamma\rangle$. Then there exists an automorphism ψ_{1} such that $\psi_{1} \cdot \Gamma=a_{1} E_{1}+a_{3} E_{3}+\left\langle E_{2}+E_{3}, E_{4}\right\rangle$, where $a_{3} \neq 0$. Hence we have an automorphism $\psi_{2}=\operatorname{diag}\left(\frac{1}{a_{3}^{2}}, \frac{1}{a_{3}}, \frac{1}{a_{3}}, 1\right)$ such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=$ $a_{1}^{\prime} E_{1}+E_{3}+\left\langle E_{2}+E_{3}, E_{4}\right\rangle$. If $a_{1}^{\prime}<0$, then

$$
\psi_{3}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is an automorphism such that $\psi_{3} \cdot \psi_{2} \cdot \psi_{1} \cdot \Gamma=-a_{1} E_{1}+E_{3}+\left\langle E_{2}+E_{3}, E_{4}\right\rangle$. Hence Γ is \mathfrak{L}-equivalent to $\Gamma_{4, \beta}^{(2,1)}$, where $\beta=\left|a_{1}\right| \geq 0$.

Lastly, suppose $\operatorname{Lie}\left(\Gamma^{0}\right)=\mathfrak{e}_{1,1}^{\infty}$ and $Z\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq\langle\Gamma\rangle$. Then there exists an automorphism ψ_{1} such that $\psi_{1} \cdot \Gamma=a_{1} E_{1}+\left\langle E_{2}+E_{3}, E_{4}\right\rangle$. Hence we have an auto$\operatorname{morphism} \psi_{2}=\operatorname{diag}\left(\frac{1}{a_{1}}, \frac{1}{\sqrt{a_{1}}}, \frac{1}{\sqrt{a_{1}}}, 1\right)$ such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=E_{1}+\left\langle E_{2}+E_{3}, E_{4}\right\rangle=$ $\Gamma_{5}^{(2,1)}$.
(ii) Assume $E^{4}\left(\Gamma^{0}\right)=\{0\}$. First, suppose $Z\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq\langle\Gamma\rangle$. Then there exists an automorphism ψ_{1} such that $\psi_{1} \cdot \Gamma=a_{1} E_{1}+a_{4} E_{4}+\left\langle E_{2}, E_{3}\right\rangle$, where $a_{4} \neq 0$. Hence

$$
\psi_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{a_{1}}{a_{4}} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=a_{4} E_{4}+\left\langle E_{2}, E_{3}\right\rangle$. If $a_{4}<0$, then $\varsigma \cdot \psi_{2} \cdot \psi_{1} \cdot \Gamma=-a_{4} E_{4}+\left\langle E_{2}, E_{3}\right\rangle$. Thus Γ is \mathfrak{L}-equivalent to $\Gamma_{6, \alpha}^{(2,1)}$, where $\alpha=\left|a_{4}\right|>0$.

On the other hand, suppose $Z\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq\langle\Gamma\rangle$. Then there exists an automorphism ψ_{1} such that $\psi_{1} \cdot \Gamma=a_{3} E_{3}+a_{4} E_{4}+\left\langle E_{1}, E_{2}+E_{3}\right\rangle$ with $a_{4} \neq 0$. Hence

$$
\psi_{2}=\left[\begin{array}{cccc}
1 & -\frac{a_{3}}{a_{4}} & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -\frac{a_{3}}{a_{4}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi_{2} \cdot \psi_{1} \cdot \Gamma=a_{4} E_{4}+\left\langle E_{1}, E_{2}+E_{3}\right\rangle$. If $a_{4}<0$, then $\varsigma \cdot \psi_{2} \cdot \psi_{1} \cdot \Gamma=-a_{4} E_{4}+\left\langle E_{1}, E_{2}+E_{3}\right\rangle$. Therefore Γ is \mathfrak{L}-equivalent to $\Gamma_{7, \alpha}^{(2,1)}$, where $\alpha=\left|a_{4}\right|>0$.

Since the conditions $E^{4}\left(\Gamma^{0}\right)=\{0\}, \operatorname{Lie}\left(\Gamma^{0}\right)=\mathfrak{e}_{1,1}^{\infty}$ and $Z\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq\langle\Gamma\rangle$ are invariant under automorphisms, in most cases it follows that no two (families of) representatives are \mathfrak{L}-equivalent. The only exception is $\Gamma_{1}^{(2,1)}$ and $\Gamma_{2, \gamma}^{(2,1)}$,
which are not \mathfrak{L}-equivalent as $\left\langle E_{2}, E_{4}\right\rangle$ is not \mathfrak{L}-equivalent to $\left\langle E_{1}+E_{2}, E_{4}\right\rangle$. It remains to be shown that within each one-parameter family of affine subspaces, different values of the parameter yield distinct representatives. We shall treat only the family $\Gamma_{2, \gamma}^{(2,1)}$; the remaining cases are very similar.

We claim that $\Gamma_{2, \gamma}^{(2,1)}$ is \mathfrak{L}-equivalent to $\Gamma_{2, \gamma^{\prime}}^{(2,1)}$ only if $\gamma=\gamma^{\prime}$. Indeed, suppose

$$
\psi=\left[\begin{array}{cccc}
x y & w x & v y & u \\
0 & x & 0 & v \\
0 & 0 & y & w \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{2, \gamma}^{(2,1)}=\Gamma_{2, \gamma^{\prime}}^{(2,1)}$. Then $(\gamma v y) E_{1}+\gamma y E_{3} \in \gamma^{\prime} E_{3}+$ $\left\langle E_{1}+E_{2}, E_{4}\right\rangle$ and $\left\langle x(w+y) E_{1}+x E_{2}, u E_{1}+v E_{2}+w E_{3}+E_{4}\right\rangle=\left\langle E_{1}+E_{2}, E_{4}\right\rangle$. Hence $w=0, y=1$ and so $\gamma=\gamma^{\prime}$. On the other hand, if

$$
\psi=\left[\begin{array}{cccc}
-x y & -v x & -w y & u \\
0 & 0 & y & v \\
0 & x & 0 & w \\
0 & 0 & 0 & -1
\end{array}\right]
$$

is an automorphism such that $\psi \cdot \Gamma_{2, \gamma}^{(2,1)}=\Gamma_{2, \gamma^{\prime}}^{(2,1)}$, then $w=0$ and $\gamma y=0$, a contradiction.

Theorem 4. Let $\Gamma=A+\Gamma^{0}$ be a (bracket-generating) three-dimensional strictly affine subspace.
(i) If $E^{4}\left(\Gamma^{0}\right) \neq\{0\}$, then Γ is \mathfrak{L}-equivalent to exactly one of the following affine subspaces:

$$
\begin{array}{lr}
\Gamma_{1}^{(3,1)}=E_{3}+\left\langle E_{1}, E_{2}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right) \neq \mathfrak{e}_{1,1}^{\infty} \\
\Gamma_{2}^{(3,1)}=E_{1}+\left\langle E_{2}, E_{3}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right)=\mathfrak{e}_{1,1}^{\infty}, \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \nsubseteq \Gamma^{0} \\
\Gamma_{3}^{(3,1)}=E_{3}+\left\langle E_{1}, E_{2}+E_{3}, E_{4}\right\rangle & \operatorname{Lie}\left(\Gamma^{0}\right)=\mathfrak{e}_{1,1}^{\infty}, \mathrm{Z}\left(\mathfrak{e}_{1,1}^{\infty}\right) \subseteq \Gamma^{0} .
\end{array}
$$

(ii) If $E^{4}\left(\Gamma^{0}\right)=\{0\}$, then Γ is \mathfrak{L}-equivalent to exactly one of the following affine subspaces:

$$
\Gamma_{4, \alpha}^{(3,1)}=\alpha E_{4}+\left\langle E_{1}, E_{2}, E_{3}\right\rangle .
$$

Here $\alpha>0$ parametrizes a family of class representatives, each different value corresponding to a distinct (non-equivalent) representative.

5 Two demonstrative examples

Invariant control systems

To every invariant control affine system one can canonically associate an invariant affine distribution (on the same state space). Two systems are (detached feedback) equivalent if and only if their associated affine distributions are \mathfrak{L}-equivalent. Accordingly, the classification of affine distributions on $\mathrm{E}_{1,1}^{\infty}$ may be interpreted as a classification of (invariant) control affine systems.

A left-invariant control affine system Σ on a (real, finite-dimensional) matrix Lie group G may be regarded as a family $\left(\Xi_{u}\right)_{u \in \mathbb{R}^{\ell}}$ of left-invariant vector fields on G affinely parametrized by controls, i.e.,

$$
\Xi_{u}(g)=g\left(A+u_{1} B_{1}+\cdots+u_{\ell} B_{\ell}\right), \quad g \in \mathrm{G}, u \in \mathbb{R}^{\ell} .
$$

Here $A, B_{1}, \ldots, B_{\ell}$ are elements of the Lie algebra \mathfrak{g} of G and B_{1}, \ldots, B_{ℓ} are linearly independent. It is assumed that $A, B_{1}, \ldots, B_{\ell}$ generate \mathfrak{g}. We write a control affine system Σ in the abbreviated form $\Sigma: A+u_{1} B_{1}+\cdots+u_{\ell} B_{\ell}$. An admissible control is a piecewise continuous map $u(\cdot):[0, T] \rightarrow \mathbb{R}^{\ell}$. A trajectory, corresponding to an admissible control $u(\cdot)$, is an absolutely continuous curve $g(\cdot):[0, T] \rightarrow \mathrm{G}$ such that $\dot{g}(t)=\Xi_{u(t)}(g(t))$ for almost every $t \in[0, T]$.

Two systems Σ and Σ^{\prime} on G are detached feedback equivalent if there exist diffeomorphisms $\phi: \mathrm{G} \rightarrow \mathrm{G}$ and $\varphi: \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{\ell}$ such that $T_{g} \phi \cdot \Xi_{u}(g)=\Xi_{\varphi(u)}^{\prime}(\phi(g))$ for every $g \in \mathrm{G}$ and $u \in \mathbb{R}^{\ell}$. The map ϕ establishes a one-to-one correspondence between trajectories of equivalent systems. We associate to each system Σ a (bracket-generating) affine distribution \mathcal{D} given by $\mathcal{D}_{g}=\left\{\Xi_{u}(g): u \in \mathbb{R}^{\ell}\right\}$. Σ is detached feedback equivalent to Σ^{\prime} exactly when their associated distributions \mathcal{D} and \mathcal{D}^{\prime} are \mathfrak{L}-equivalent (cf. [3, 5]).

Accordingly, we have the following classification of systems on $E_{1,1}^{\infty}$.
Proposition 5. Every left-invariant control affine system is detached feedback equivalent to exactly one of the following systems:

$$
\begin{array}{ll}
\Sigma_{1, \beta}^{(1,1)}: \beta E_{1}+E_{2}+E_{3}+u E_{4} & \Sigma_{2, \alpha}^{(1,1)}: \alpha E_{4}+u\left(E_{2}+E_{3}\right) \\
\Sigma^{(2,0)}: u_{1}\left(E_{2}+E_{3}\right)+u_{2} E_{4} & \Sigma_{1}^{(2,1)}: E_{3}+u_{1} E_{2}+u_{2} E_{4} \\
\Sigma_{2, \gamma}^{(2,1)}: \gamma E_{3}+u_{1}\left(E_{1}+E_{2}\right)+u_{2} E_{4} & \Sigma_{3}^{(2,1)}: E_{2}+E_{3}+u_{1} E_{1}+u_{2} E_{4} \\
\Sigma_{4, \beta}^{(2,1)}: \beta E_{1}+E_{3}+u_{1}\left(E_{2}+E_{3}\right)+u_{2} E_{4} & \Sigma_{5}^{(2,1)}: E_{1}+u_{1}\left(E_{2}+E_{3}\right)+u_{2} E_{4} \\
\Sigma_{6, \alpha}^{(2,1)}: \alpha E_{4}+u_{1} E_{2}+u_{2} E_{3} & \Sigma_{7, \alpha}^{(2,1)}: \alpha E_{4}+u_{1} E_{1}+u_{2}\left(E_{2}+E_{3}\right) \\
\Sigma_{1}^{(3,0)}: u_{1} E_{2}+u_{2} E_{3}+u_{3} E_{4} & \Sigma_{2}^{(3,0)}: u_{1} E_{1}+u_{2}\left(E_{2}+E_{3}\right)+u_{3} E_{4} \\
\Sigma_{1}^{(3,1)}: E_{3}+u_{1} E_{1}+u_{2} E_{2}+u_{3} E_{4} & \Sigma_{2}^{(3,1)}: E_{1}+u_{1} E_{2}+u_{2} E_{3}+u_{3} E_{4}
\end{array}
$$

$\Sigma_{3}^{(3,1)}: E_{3}+u_{1} E_{1}+u_{2}\left(E_{2}+E_{3}\right)+u_{3} E_{4} \quad \Sigma_{4, \alpha}^{(3,1)}: \alpha E_{4}+u_{1} E_{1}+u_{2} E_{2}+u_{3} E_{3}$ $\Sigma^{(4,0)}: u_{1} E_{1}+u_{2} E_{2}+u_{3} E_{3}+u_{4} E_{4}$.

Here $\alpha>0, \beta \geq 0$ and $\gamma \neq 0$ parametrize families of class representatives, each different value corresponding to a distinct (non-equivalent) representative.

Invariant sub-Riemannian structures

A left-invariant sub-Riemannian structure on a (real, finite-dimensional) connected Lie group G consists of a nonintegrable left-invariant distribution \mathcal{D} and a left-invariant Riemannian metric \mathcal{G} on \mathcal{D}. It is assumed that \mathcal{D} is bracket generating.

Two sub-Riemannian structures $(\mathcal{D}, \mathcal{G})$ and $\left(\mathcal{D}^{\prime}, \mathcal{G}^{\prime}\right)$ on G are isometric if there exists a diffeomorphism $\phi: G \rightarrow G$ such that $\phi_{*} \mathcal{D}=\mathcal{D}^{\prime}$ and $\mathcal{G}=\phi^{*} \mathcal{G}^{\prime}$. If, in addition, ϕ is a group automorphism, then we shall say that they are \mathfrak{L} isometric. If G is simply connected, then $(\mathcal{D}, \mathcal{G})$ is \mathfrak{L}-isometric to $\left(\mathcal{D}^{\prime}, \mathcal{G}^{\prime}\right)$ if and only if there exists a Lie algebra automorphism ψ such that $\psi \cdot \mathcal{D}_{\mathbf{1}}=\mathcal{D}_{1}^{\prime}$ and $\mathcal{G}_{\mathbf{1}}(X, Y)=\mathcal{G}_{\mathbf{1}}^{\prime}(\psi \cdot X, \psi \cdot Y)$ for every $X, Y \in \mathcal{D}_{\mathbf{1}}$ (cf. [17, 2]).

Accordingly, one need only normalize the metric in order to obtain a classification of sub-Riemannian structures on $E_{1,1}^{\infty}$.

Proposition 6. Let $(\mathcal{D}, \mathcal{G})$ be a left-invariant sub-Riemannian structure on $E_{1,1}^{\infty}$.
(i) If $\operatorname{rank} \mathcal{D}=2$, then $(\mathcal{D}, \mathcal{G})$ is \mathfrak{L}-isometric to exactly one of the following structures:

$$
\mathcal{D}_{1}=\left\langle E_{2}+E_{3}, E_{4}\right\rangle, \quad \mathcal{G}_{1}=\lambda\left[\begin{array}{ll}
1 & \beta \\
\beta & 1
\end{array}\right] \quad \beta<1 .
$$

(\mathcal{G}_{1} is identified with its matrix with respect to $\left(E_{2}+E_{3}, E_{4}\right)$).
(ii) If $\operatorname{rank} \mathcal{D}=3$ and $E^{4}\left(\mathcal{D}_{1}^{\perp}\right) \neq\{0\}$, then $(\mathcal{D}, \mathcal{G})$ is \mathfrak{L}-isometric to exactly one of the following structures:

$$
\begin{array}{lll}
\mathcal{D}_{\mathbf{1}}=\left\langle E_{2}, E_{3}, E_{4}\right\rangle, & \mathcal{G}_{\mathbf{1}}=\lambda\left[\begin{array}{ccc}
\alpha_{1} & \gamma & 1 \\
\gamma & \alpha_{2} & 1 \\
1 & 1 & 1
\end{array}\right] & \begin{array}{c}
\alpha_{1} \alpha_{2}-\gamma^{2}>0, \\
\operatorname{det}\left[\mathcal{G}_{\mathbf{1}}\right]>0
\end{array} \\
\mathcal{D}_{\mathbf{1}}=\left\langle E_{2}, E_{3}, E_{4}\right\rangle, & \mathcal{G}_{\mathbf{1}}=\lambda\left[\begin{array}{lll}
\alpha & \beta & 1 \\
\beta & 1 & 0 \\
1 & 0 & 1
\end{array}\right] & \alpha-\beta^{2}>1 \\
\mathcal{D}_{\mathbf{1}}=\left\langle E_{2}, E_{3}, E_{4}\right\rangle, & \mathcal{G}_{\mathbf{1}}=\lambda\left[\begin{array}{lll}
1 & \beta & 0 \\
\beta & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & \beta<1 .
\end{array}
$$

$\left(\mathcal{G}_{1}\right.$ is identified with its matrix with respect to $\left.\left(E_{2}, E_{3}, E_{4}\right).\right)$
(iii) If $\operatorname{rank} \mathcal{D}=3$ and $E^{4}\left(\mathcal{D}_{\mathbf{1}}^{\perp}\right)=\{0\}$, then $(\mathcal{D}, \mathcal{G})$ is \mathfrak{L}-isometric up to scale with exactly one of the following structures:

$$
\mathcal{D}_{\mathbf{1}}=\left\langle E_{1}, E_{2}+E_{3}, E_{4}\right\rangle, \quad \mathcal{G}_{\mathbf{1}}=\lambda\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & 1 & \beta \\
0 & \beta & 1
\end{array}\right] \quad \beta<1
$$

(\mathcal{G}_{1} is identified with its matrix with respect to $\left(E_{1}, E_{2}+E_{3}, E_{4}\right)$.)
Here $\lambda, \alpha>0, \alpha_{1} \geq \alpha_{2}>0, \beta \geq 0$ and $\gamma \in \mathbb{R}$ (with additional constraints given adjacent to each representative) parametrize families of class representatives, with different values corresponding to distinct (non-equivalent) representatives.

Proof. We treat only the case when \mathcal{D} has rank two. (The rank-three case is similar.) Let $(\mathcal{D}, \mathcal{G})$ be a left-invariant sub-Riemannian structure on $E_{1,1}^{\infty}$, where \mathcal{D} is a rank-two distribution. By theorem 1 , there exists $\psi_{1} \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)$ such that $\psi_{1} \cdot \mathcal{D}_{1}=\left\langle E_{2}+E_{3}, E_{4}\right\rangle$. Hence $(\mathcal{D}, \mathcal{G})$ is \mathfrak{L}-isometric to a structure $\left(\mathcal{D}^{\prime}, \mathcal{G}^{\prime}\right)$, where $\mathcal{D}_{1}^{\prime}=\left\langle E_{2}+E_{3}, E_{4}\right\rangle$. The subgroup of automorphisms leaving \mathcal{D}_{1}^{\prime} invariant is given by

$$
\left.\operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)\right|_{\mathcal{D}_{1}^{\prime}}=\left\{\left[\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
x & 0 \\
0 & -1
\end{array}\right]: x \neq 0\right\}
$$

(The elements of $\left.\operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)\right|_{\mathcal{D}_{1}^{\prime}}$ are written with respect to $\left(E_{2}+E_{3}, E_{4}\right)$.) Let $\mathcal{G}_{\mathbf{1}}^{\prime}=\left[\begin{array}{cc}a_{1} & b \\ b & a_{2}\end{array}\right]$. We have $\psi_{2}=\left.\operatorname{diag}\left(\sqrt{\frac{a_{2}}{a_{1}}}, 1\right) \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)\right|_{\mathcal{D}_{\mathbf{1}}^{\prime}}$ such that

$$
\psi_{2}^{\top} \mathcal{G}_{1}^{\prime} \psi_{2}=a_{2}\left[\begin{array}{cc}
1 & b^{\prime} \\
b^{\prime} & 1
\end{array}\right]
$$

If $b^{\prime}<0$, then $\psi_{3}=\left.\operatorname{diag}(1,-1) \in \operatorname{Aut}\left(\mathfrak{e}_{1,1}^{\infty}\right)\right|_{\mathcal{D}_{\mathbf{1}}^{\prime}}$ and

$$
\psi_{3}^{\top} \psi_{2}^{\top} \mathcal{G}_{\mathbf{1}}^{\prime} \psi_{2} \psi_{3}=a_{2}\left[\begin{array}{cc}
1 & -b^{\prime} \\
-b^{\prime} & 1
\end{array}\right]
$$

Therefore $(\mathcal{D}, \mathcal{G})$ is \mathfrak{L}-isometric to $\left(\mathcal{D}^{\prime}, \mathcal{G}^{\prime \prime}\right)$, where $\mathcal{G}_{1}^{\prime \prime}=\lambda\left[\begin{array}{ll}1 & \beta \\ \beta & 1\end{array}\right]$ with $\lambda>0$ and $\beta \geq 0$. As $\mathcal{G}_{1}^{\prime \prime}$ is positive definite, we have $\beta<1$. It is easy to verify that two representatives are \mathfrak{L}-isometric only if their parameters are equal. QED

Acknowledgements. This research was supported in part by the European Union's Seventh Framework Programme (FP7/2007-2013, grant no. 317721). The first two authors would also like to acknowledge the financial support of the National Research Foundation (DAAD-NRF) and Rhodes University towards this research.

References

[1] A.A. Agrachev, Y.L. Sachkov: Control Theory from the Geometric Viewpoint, Springer, Berlin, 2004.
[2] R. Biggs, P.T. Nagy: A classification of sub-Riemannian structures on the Heisenberg groups, Acta Polytech. Hungar., 10(2013), 41-52.
[3] R. Biggs, C.C. Remsing: Control systems on three-dimensional Lie groups: equivalence and controllability, J. Dyn. Control Syst., 20(2014), 307-339.
[4] R. Biggs, C.C. Remsing: Some remarks on the oscillator group, Differential Geom. Appl., 35(2014), 199-209.
[5] R. Biggs, C.C. Remsing: On the equivalence of control systems on Lie groups, Commun. Math. 23(2015), 119-129.
[6] R. Biggs, C.C. Remsing: Subspaces of the real four-dimensional Lie algebras: a classification of subalgebras, ideals and full-rank subspaces, Extracta Math. 31(2015), 41-93.
[7] T. Christodoulakis, G.O. Papadopoulos, A. Dimakis: Automorphisms of real fourdimensional Lie algebras and the invariant characterization of homogeneous 4-spaces, J. Phys. A, 36(2003), 427-441.
[8] J.n. Clelland, C.G. Moseley, G.R. Wilkens: Geometry of control-affine systems, SIGMA, 5(2009), Paper 095, 28pp.
[9] V.I. Elkin: Affine control systems: their equivalence, classification, quotient systems, and subsystems, J. Math. Sci., 88(1998), 675-721.
[10] V.I. Elkin: Reduction of Nonlinear Control Systems. A Differential Geometric Approach, Kluwer, Dordrecht, 1999.
[11] B. Jakubczyk: Equivalence and invariants of nonlinear control systems, in Nonlinear Controllability and Optimal Control (H.J. Sussmann, ed.), Marcel Dekker, New York, 1990, 177-218.
[12] V. Jurdjevic: Geometric Control Theory, Cambridge University Press, Cambridge, 1997.
[13] V Jurdjevic, H.J. Sussmann: Control systems on Lie groups, J. Diff. Equations, 12(1972), 313-329.
[14] G.M. Mubarakzyanov: On solvable Lie algebras (in Russian), Izv. Vyssh. Uchebn. Zaved., 32(1963), 114-123.
[15] W. Respondek, I.A. Tall: Feedback equivalence of nonlinear control systems, in Chaos in Automatic Control, Control Eng. (Taylor \& Francis), CRC Press, Boca Raton, FL, 2006, 137-262.
[16] Y.L. Sachkov: Control theory on Lie groups, J. Math. Sci., 156(2009), 381-439.
[17] A.M. Vershik, V.Y. Gershkovich: Nonholonomic dynamical systems, geometry of distributions and variational problems, in Dynamical Systems VII (V.I. Arnold, S.P. Novikov, eds.), Springer, Berlin, 1994, 1-81.

[^0]: http://siba-ese.unisalento.it/ © 2015 Università del Salento

