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1 Introduction

In the last few decades affine distributions (and their equivalence) have been
considered by several authors. These developments have primarily been inspired
and motivated by geometric control theory. Elkin [9, 10] studied equivalence of
affine distributions on low-dimensional manifolds and obtained normal forms
for the associated control systems. More recently, Clelland et al. [8] investi-
gated the geometry of so-called point-affine distributions and computed (local)
invariants for a class of such distributions (using Cartan’s method of equiva-
lence). Invariant affine distributions on low-dimensional Lie groups (or rather
their associated control systems) have attracted particular attention (see, e.g.,
[1, 3, 11, 12, 13, 15, 16]).
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Among the four-dimensional Lie algebras, only four can be described as
nontrivial central extensions of three-dimensional Lie algebras [6]. These are (in
Mubarakzyanov’s notation [14]):

(1) the Engel algebra g4.1, a central extension of the Heisenberg algebra h3;

(2) the algebra g4.3, a central extension of aff(R)⊕ R;

(3) the algebra g−1
4.8, a central extension of the semi-Euclidean algebra se(1, 1);

(4) the oscillator algebra g0
4.9, a central extension of the Euclidean algebra

se(2).

Moreover, the only indecomposable four-dimensional Lie algebras admitting an
invariant scalar product are g0

4.9 and g−1
4.8. The oscillator algebra g0

4.9 and its
associated groups were studied in [4].

In this paper we consider the algebra g−1
4.8 (which we denote eon1,1) and its

associated simply connected Lie group Eon1,1. More specifically, we are interested

in the equivalence of left-invariant affine distributions on Eon1,1. We regard two
distributions as being equivalent if they are related by a group automorphism. In
section 2, a characterization of this equivalence relation in terms of Lie algebra
automorphisms is provided. In section 3, the group Eon1,1 and its Lie algebra eon1,1
are introduced and the vector subspaces of eon1,1 are classified. (As corollaries, we
obtain an exhaustive list of the subalgebras as well as the ideals.) In section 4,
the invariant affine distributions on Eon1,1 are classified. Finally, in section 5,
two extensive examples interpreting this classification in the context of control
theory and sub-Riemannian geometry are presented.

2 Invariant affine distributions

An affine distribution on a (real, finite-dimensional) connected Lie group G
is a (smooth) map D that assigns to every point g ∈ G an affine subspace Dg of
TgG. D is said to be left-invariant if (Lg)∗D = D, i.e., ThLg · Dh = Dgh. (Here
ThLg : ThG → TghG is the tangent map of the left translation Lg : h 7→ gh.) A
left-invariant affine distribution D is determined by its associated affine subspace
D1 ⊆ g, where g is the Lie algebra of G. (If D1 is a vector subspace, then D is
a left-invariant vector distribution on G.) We say that D is bracket generating
if D1 is bracket generating, i.e., the subalgebra Lie(D1) generated by D1 is g.

Two left-invariant affine distributions D and D′ on G are called L-equivalent
if there exists a Lie group automorphism φ : G→ G such that φ∗D = D′.

Proposition 1. D is L-equivalent to D′ if and only if there exists a Lie
group automorphism φ : G→ G such that T1φ · D1 = D′1.
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Proof. If φ : G → G is an automorphism such that φ∗D = D′, then clearly
T1φ · D1 = D′1. Conversely, suppose there exists an automorphism φ : G → G
such that T1φ · D1 = D′1. We have φ = Lφ(g) ◦ φ ◦ Lg−1 for g ∈ G. By left
invariance, we get Tgφ · Dg = D′φ(g).

QED

Corollary 1. When G is simply connected, D is L-equivalent to D′ if and
only if there exists a Lie algebra automorphism ψ : g→ g such that ψ ·D1 = D′1.

Accordingly, the classification of left-invariant affine distributions on a sim-
ply connected Lie group reduces to a classification of affine subspaces of its
Lie algebra. By a slight abuse of terminology, we say that two affine subspaces
Γ = D1 and Γ′ = D′1 are L-equivalent if there exists a Lie algebra automorphism
ψ : g→ g such that ψ · Γ = Γ′. We shall write Γ = A+ Γ0 = A+ 〈B1, . . . , B`〉,
where A,B1, . . . , B` ∈ g and B1, . . . , B` are linearly independent.

3 Eon1,1 and its Lie algebra

The connected, simply connected four-dimensional matrix Lie group

Eon1,1 =


1 y x

0 eθ z
0 0 1

 : x, y, z, θ ∈ R


is a (nontrivial) central extension of the semi-Euclidean group SE(1, 1). Indeed,
the mapping φ : Eon1,1 → SE(1, 1),1 y x

0 eθ z
0 0 1

 7−→
 1 0 0

1
2

(
ye−θ + z

)
cosh θ − sinh θ

1
2

(
ye−θ − z

)
− sinh θ cosh θ


is a Lie group epimorphism with kerφ = Z(Eon1,1). Moreover, Eon1,1 decomposes as
the semi-direct product H3 o SO(1, 1)0 of the Heisenberg subgroup

H3 =


1 y x

0 1 z
0 0 1

 : x, y, z ∈ R


and the pseudo-orthogonal subgroup

SO(1, 1)0 =


1 0 0

0 eθ 0
0 0 1

 : θ ∈ R

 .
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(That is, Eon1,1 = H3 SO(1, 1)0, H3 ∩ SO(1, 1)0 = {1} and H3 is normal in Eon1,1.)

The Lie algebra of Eon1,1

eon1,1 =


0 y x

0 θ z
0 0 0

 = xE1 + yE2 + zE3 + θE4 : x, y, z, θ ∈ R


is unimodular and completely solvable. Its (nonzero) commutator relations are

[E2, E3] = E1, [E2, E4] = E2, [E3, E4] = −E3.

Proposition 2 (cf. [7]). The automorphism group Aut(eon1,1) is given by

xy wx vy u
0 x 0 v
0 0 y w
0 0 0 1

 ,

−xy −vx −wy u

0 0 y v
0 x 0 w
0 0 0 −1

 : u, v, w, x, y ∈ R, xy 6= 0

 .

The group of inner automorphisms Int(eon1,1) = {Adg : g ∈ Eon1,1} takes the form

Int(eon1,1) =




1 −ze−θ y −yze−θ
0 e−θ 0 ye−θ

0 0 eθ −z
0 0 0 1

 : y, z, θ ∈ R

 .

(In each case, the automorphisms are identified with their matrices with respect
to (E1, E2, E3, E4).)

Remark 1. The group of automorphisms Aut(eon1,1) decomposes as the semi-

direct product of the normal subgroup Int(eon1,1) and

σr2 0 0 u
0 σr 0 0
0 0 r 0
0 0 0 1

 ,

−σr2 0 0 u

0 0 σr 0
0 r 0 0
0 0 0 −1

 : u ∈ R, r 6= 0, σ ∈ {−1, 1}

 .

There exists an invariant scalar product on eon1,1, i.e., a nondegenerate bilinear

form 〈〈·, ·〉〉 such that 〈〈[A,B], C〉〉 = 〈〈A, [B,C]〉〉 for every A,B,C ∈ eon1,1.

Proposition 3. The Lie algebra eon1,1 admits exactly one family (ωα)α∈R of
invariant scalar products. In coordinates (with respect to (E1, E2, E3, E4)),

ωα =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 α

 .
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The orthogonal complement of a subspace Γ (with respect to the symmetric
invariant scalar product 〈〈·, ·〉〉 = ω0) is the subspace

Γ⊥ = {A ∈ eon1,1 : 〈〈A,B〉〉 = 0 for every B ∈ Γ}.

Lemma 1. Let Γ1 and Γ2 be vector subspaces of eon1,1 and ϕ ∈ Int(eon1,1). If

ϕ · Γ⊥1 = Γ⊥2 , then ϕ · Γ1 = Γ2.

Vector subspaces of eon1,1

We classify the vector subspaces of eon1,1 under L-equivalence. As corollaries,
we obtain enumerations of the subalgebras and the ideals. The following simple
lemmas prove useful in distinguishing between equivalence classes. Let ψ : eon1,1 →
eon1,1 be an automorphism and let Γ be a subspace of eon1,1. (Below E4 denotes the
corresponding element of the dual basis.)

Lemma 2. E4(Γ) = {0} if and only if E4(ψ · Γ) = {0}.
Lemma 3. Z(eon1,1) ⊆ Γ if and only if Z(eon1,1) ⊆ ψ · Γ.

Proposition 4. Any proper vector subspace of eon1,1 is L-equivalent to exactly
one of the following subspaces:

〈E1〉, 〈E2〉, 〈E2 + E3〉, 〈E4〉,
〈E1, E2〉, 〈E2, E3〉, 〈E1, E4〉, 〈E2, E4〉,

〈E1, E2 + E3〉, 〈E1 + E2, E4〉, 〈E2 + E3, E4〉,
〈E1, E2, E3〉, 〈E1, E2, E4〉, 〈E2, E3, E4〉, 〈E1, E2 + E3, E4〉.

Proof. Throughout the proof, ς denotes the automorphism
−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 .
Let Γ = 〈

∑
aiEi〉 be a one-dimensional subspace. If a4 6= 0 (i.e., E4(Γ) 6=

{0}), then

ψ =


1 −a3

a4
−a2
a4

2a2a3−a1a4
a24

0 1 0 −a2
a4

0 0 1 −a3
a4

0 0 0 1
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is an automorphism such that ψ · Γ = 〈E4〉. If a4 = 0 and a2, a3 6= 0, then

ψ =


a2a3 0 −a1a2 0

0 a3 0 −a1

0 0 a2 0
0 0 0 1


is an automorphism such that ψ · Γ = 〈E2 +E3〉. If a2, a4 = 0 and a3 6= 0, then

ψ =


−1 0 a1

a3
0

0 0 1
a3

0

0 a3 0 −a1

0 0 0 −1


is an automorphism such that ψ · Γ = 〈E2〉. Likewise, if a2 6= 0 and a3, a4 = 0,
then Γ is L-equivalent to 〈E2〉. Lastly, if a2, a3, a4 = 0, then Γ = 〈E1〉.

Let Γ = 〈
∑
aiEi,

∑
biEi〉 be a two-dimensional subspace. Suppose E4(Γ) 6=

{0}. We may assume a4 = 0 and b4 = 1. Then

ψ1 =


1 −b3 −b2 2b2b3 − b1
0 1 0 −b2
0 0 1 −b3
0 0 0 1


is an automorphism such that ψ1 · Γ = 〈a′1E1 + a2E2 + a3E3, E4〉. If a2, a3 6= 0,
then

ψ2 =


a2a3 −a′1a3

2 −a′1a2
2 0

0 a3 0 −a′1
2

0 0 a2 −a′1
2

0 0 0 1


is an automorphism such that ψ2 ·ψ1 ·Γ = 〈E2+E3, E4〉. If a2 = 0 and a′1, a3 6= 0,
then

ψ2 =


1
a′1

0 0 0

0 0 1
a3

0

0 −a3
a′1

0 0

0 0 0 −1


is an automorphism such that ψ2 · ψ1 · Γ = 〈E1 + E2, E4〉. On the other hand,
if a′1, a2 = 0 and a3 6= 0, then ς · ψ1 · Γ = 〈E2, E4〉. Similarly Γ is L-equivalent
to 〈E1 + E2, E4〉 (if a′1, a2 6= 0, a3 = 0) or 〈E2, E4〉 (if a2 6= 0, a′1, a3 = 0). If
a2, a3 = 0, then ψ1 · Γ = 〈E1, E4〉.
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Suppose E4(Γ) = {0} and b2, b3 6= 0. Then

ψ1 =


b2b3 − b1b3

2 − b1b2
2 0

0 b3 0 − b1
2

0 0 b2 − b1
2

0 0 0 1


is an automorphism such that ψ1 · Γ = 〈a′1E1 + a′2E2, E2 + E3〉. If a′2 6= 0, then
we have an automorphism

ψ2 =


1 −a′1

a′2

a′1
a′2

0

0 1 0
a′1
a′2

0 0 1 −a′1
a′2

0 0 0 1


such that ψ2 · ψ1 · Γ = 〈E2, E3〉. If a′2 = 0, then ψ1 · Γ = 〈E1, E2 + E3〉.

Suppose E4(Γ) = {0}, b2 = 0 and b3 6= 0. We may assume a3 = 0 and b3 = 1.
If a2 6= 0, then

ψ =


1
a2
−a1
a22
− b1
a2

0

0 1
a2

0 − b1
a2

0 0 1 −a1
a2

0 0 0 1


is an automorphism such that ψ · Γ = 〈E2, E3〉. If a2 = 0, then ς · Γ = 〈E1, E2〉.
Likewise, if E4(Γ) = {0}, b2 6= 0 and b3 = 0, then Γ is L-equivalent to 〈E2, E3〉
or 〈E1, E2〉.

Suppose E4(Γ) = {0} and b2, b3 = 0. We may assume a1 = 0 and b1 = 1. If
a2, a3 6= 0, then ψ = diag(a2a3, a3, a2, 1) is an automorphism such that ψ · Γ =
〈E2 +E3, E4〉. If a2 = 0 and a3 6= 0, then ς · Γ = 〈E1, E2〉. If a2 6= 0 and a3 = 0,
then clearly Γ = 〈E1, E2〉.

Let Γ be a three-dimensional subspace with orthogonal complement Γ⊥ =
〈
∑
aiEi〉. If E4(Γ⊥) = {0} and a2, a3 = 0, then Γ = 〈E2, E3, E4〉. Suppose

E4(Γ⊥) = {0} and a2, a3 6= 0. We may assume a3 = 1. Then

ϕ =


1 0 −a1 0
0 1 0 −a1

0 0 1 0
0 0 0 1


is an inner automorphism such that ϕ ·Γ⊥ = 〈a2E2 +E3〉. Consequently, ϕ ·Γ =
〈E1,−a2E2 +E3, E4〉; hence ψ = diag

(
− 1
a2
,− 1

a2
, 1, 1

)
is an automorphism such

that ψ · ϕ · Γ = 〈E1, E2 + E3, E4〉.
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Suppose E4(Γ⊥) = {0}, a2 = 0 and a3 6= 0. We may assume a3 = 1. Then

ϕ =


1 0 −a1 0
0 1 0 −a1

0 0 1 0
0 0 0 1


is an inner automorphism such that ϕ ·Γ⊥ = 〈E3〉. Hence ς ·ϕ ·Γ = 〈E1, E2, E4〉.
Likewise, if E4(Γ⊥) = {0}, a2 6= 0 and a3 = 0, then Γ is L-equivalent to
〈E1, E2, E4〉.

Suppose E4(Γ⊥) 6= {0}. We may assume a4 = 1. Then

ϕ =


1 −a3 −a2 a2a3

0 1 0 −a2

0 0 1 −a3

0 0 0 1


is an inner automorphism such that ϕ · Γ⊥ = 〈a′1E1 + E4〉. Hence ϕ · Γ =
〈E2, E3,−a′1E1 + E4〉 and so

ψ =


1 0 0 a′1
0 1 0 0
0 0 1 0
0 0 0 1


is an automorphism such that ψ · ϕ · Γ = 〈E2, E3, E4〉.

Finally, using a straightforward argument (together with the foregoing lem-
mas), one verifies that none of the representatives obtained are L-equivalent to
each other. QED

Corollary 2. Any proper subalgebra of eon1,1 is L-equivalent to exactly one
of the following subalgebras:

〈E1〉, 〈E2〉, 〈E2 + E3〉, 〈E4〉,
〈E1, E2〉, 〈E1, E4〉, 〈E2, E4〉, 〈E1, E2 + E3〉,

〈E1, E2, E3〉, 〈E1, E2, E4〉.

Among these subalgebras, only 〈E2, E4〉 ∼= aff(R), 〈E1, E2, E4〉 ∼= aff(R)⊕R and
〈E1, E2, E3〉 ∼= h3 are not Abelian.

Corollary 3. Any proper ideal of eon1,1 is L-equivalent to exactly one of the
following ideals:

Z(eon1,1) = 〈E1〉, 〈E1, E2〉, Z(eon1,1)⊥ = 〈E1, E2, E3〉.

The ideals 〈E1〉 and 〈E1, E2, E3〉 are fully characteristic (i.e., ψ · i = i for every
ψ ∈ Aut(eon1,1)).
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4 Classification

We classify the bracket-generating left-invariant affine (and vector) distribu-
tions on Eon1,1. This is accomplished by classifying the bracket-generating affine

(and vector) subspaces of eon1,1. Henceforth, all subspaces under consideration are
assumed to be bracket generating.

The following classification of vector subspaces follows from proposition 4.

Theorem 1. Any (bracket-generating) proper vector subspace Γ is L-equiva-
lent to exactly one of the following subspaces:

Γ(2,0) = 〈E2 + E3, E4〉

Γ
(3,0)
1 = 〈E2, E3, E4〉 Z(eon1,1) 6⊆ Γ

Γ
(3,0)
2 = 〈E1, E2 + E3, E4〉 Z(eon1,1) ⊆ Γ.

We now proceed to classify the affine subspaces of eon1,1. We provide details
for both the one- and two-dimensional case; the three-dimensional case is similar
and so the proof will be omitted. As before, we denote by ς the automorphism

−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 .
Theorem 2. Any (bracket-generating) one-dimensional strictly affine sub-

space Γ = A+Γ0 is L-equivalent to exactly one of the following affine subspaces:

Γ
(1,1)
1,β = βE1 + E2 + E3 + 〈E4〉 E4(Γ0) 6= {0}

Γ
(1,1)
2,α = αE4 + 〈E2 + E3〉 E4(Γ0) = {0}.

Here α > 0 and β ≥ 0 parametrize families of class representatives, each differ-
ent value corresponding to a distinct (non-equivalent) representative.

Proof. Since Γ0 is a one-dimensional vector subspace, it is L-equivalent to ex-
actly one of 〈E1〉, 〈E2〉, 〈E2 + E3〉 or 〈E4〉 (see proposition 4). However, no
subspace A+ 〈E1〉 or A+ 〈E2〉 is bracket generating (for any A ∈ eon1,1).

Suppose E4(Γ0) 6= {0}. Then there exists ψ1 ∈ Aut(eon1,1) such that ψ1 ·
Γ = a1E1 + a2E2 + a3E3 + 〈E4〉, where a2, a3 6= 0 (by the bracket-generating
condition). Hence ψ2 = diag

(
1

a2a3
, 1
a2
, 1
a3
, 1
)

is an automorphism such that ψ2 ·
ψ1·Γ = a′1E1+E2+E3+〈E4〉. If a′1 < 0, then ς ·ψ2·ψ1·Γ = −a′1E1+E2+E3+〈E4〉.
Therefore Γ is L-equivalent to Γ

(1,1)
1,β , where β = |a′1| ≥ 0.
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Suppose E4(Γ0) = {0}. Then there exists ψ1 ∈ Aut(eon1,1) such that ψ1 · Γ =∑
aiEi + 〈E2 + E3〉. Since ψ1 · Γ is bracket generating, a4 6= 0 and so

ψ2 =


1 a2−a3

2a4
−a2−a3

2a4
− (a2−a3)2+2a1a4

2a24
0 1 0 −a2−a3

2a4
0 0 1 a2−a3

2a4
0 0 0 1


is an automorphism such that ψ2 · ψ1 · Γ = a4E4 + 〈E2 + E3〉. If a4 < 0, then

ς · ψ2 · ψ1 · Γ = −a4E4 + 〈E2 +E3〉. Therefore Γ is L-equivalent to Γ
(1,1)
2,α , where

α = |a4| > 0.
As 〈E4〉 and 〈E2 + E3〉 are not L-equivalent (proposition 4), it follows that

Γ
(1,1)
1,β is not L-equivalent to Γ

(1,1)
2,α . We claim that Γ

(1,1)
1,β is L-equivalent to Γ

(1,1)
1,β′

only if β = β′. Indeed, suppose

ψ =


xy wx vy u
0 x 0 v
0 0 y w
0 0 0 1


is an automorphism such that ψ ·Γ(1,1)

1,β = Γ
(1,1)
1,β′ . Then (wx+vy+βxy−β′)E1 +

(x− 1)E2 + (y − 1)E3 ∈ β′E1 + E2 + E3 + 〈E4〉 and uE1 + vE2 + wE3 ∈ 〈E4〉.
Thus u = v = w = 0, x = y = 1 and so β = β′. On the other hand, if

ψ =


−xy −vx −wy u

0 0 y v
0 x 0 w
0 0 0 −1


is an automorphism such that ψ · Γ(1,1)

1,β = Γ
(1,1)
1,β′ , then u = v = w = 0 and

x = y = 1; whence β = −β′. As β, β′ ≥ 0, this implies that β = β′ = 0.

Likewise, Γ
(1,1)
2,α is L-equivalent to Γ

(1,1)
2,α′ only if α = α′. QED

Theorem 3. Let Γ = A + Γ0 be a (bracket-generating) two-dimensional
strictly affine subspace.

(i) If E4(Γ0) 6= {0}, then Γ is L-equivalent to exactly one of the following
affine subspaces:

Γ
(2,1)
1 = E3 + 〈E2, E4〉 Lie(Γ0) 6= eon1,1, Z(eon1,1) 6⊆ 〈Γ〉

Γ
(2,1)
2,γ = γE3 + 〈E1 + E2, E4〉 Lie(Γ0) 6= eon1,1, Z(eon1,1) 6⊆ 〈Γ〉
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Γ
(2,1)
3 = E2 + E3 + 〈E1, E4〉 Lie(Γ0) 6= eon1,1, Z(eon1,1) ⊆ 〈Γ〉

Γ
(2,1)
4,β = βE1 + E3 + 〈E2 + E3, E4〉 Lie(Γ0) = eon1,1, Z(eon1,1) 6⊆ 〈Γ〉

Γ
(2,1)
5 = E1 + 〈E2 + E3, E4〉 Lie(Γ0) = eon1,1, Z(eon1,1) ⊆ 〈Γ〉.

(ii) If E4(Γ0) = {0}, then Γ is L-equivalent to exactly one of the following
affine subspaces:

Γ
(2,1)
6,α = αE4 + 〈E2, E3〉 Z(eon1,1) 6⊆ 〈Γ〉

Γ
(2,1)
7,α = αE4 + 〈E1, E2 + E3〉 Z(eon1,1) ⊆ 〈Γ〉.

Here α > 0, β ≥ 0 and γ 6= 0 parametrize families of class representatives, each
different value corresponding to a distinct (non-equivalent) representative.

Proof. Since Γ0 is a two-dimensional vector subspace, it is L-equivalent to ex-
actly one of 〈E1, E2〉, 〈E1, E4〉, 〈E2, E3〉, 〈E2, E4〉, 〈E1, E2+E3〉, 〈E1+E2, E4〉 or
〈E2 +E3, E4〉 (see proposition 4). However, no subspace A+ 〈E1, E2〉 is bracket
generating (for any A ∈ eon1,1).

(i) Assume E4(Γ0) 6= {0}. First, suppose Lie(Γ0) 6= eon1,1 and Z(eon1,1) 6⊆ 〈Γ〉.
Then there exists ψ1 ∈ Aut(eon1,1) such that ψ1 · Γ = a1E1 + a3E3 + 〈E2, E4〉 or
ψ1 · Γ = a2E2 + a3E3 + 〈E1 +E2, E4〉, where a3 6= 0. If ψ1 · Γ = a1E1 + a3E3 +
〈E2, E4〉, then we have an automorphism

ψ2 =


1 0 −a1

a3
0

0 a3 0 −a1

0 0 1
a3

0

0 0 0 1


such that ψ2·ψ1·Γ = E3+〈E2, E4〉 = Γ

(2,1)
1 . If ψ1·Γ = a2E2+a3E3+〈E1+E2, E4〉,

then

ψ2 =


a3 0 a2 a2

0 a3 0 a2

0 0 1 0
0 0 0 1


is an automorphism such that ψ2 ·ψ1 ·Γ = a3E3 + 〈E1 +E2, E4〉 = Γ

(2,1)
2,γ , where

γ = a3 6= 0.

Suppose Lie(Γ0) 6= eon1,1 and Z(eon1,1) ⊆ 〈Γ〉. Then there exists ψ1 ∈ Aut(eon1,1)
such that ψ1 · Γ = a2E2 + a3E3 + 〈E1, E4〉 with a2, a3 6= 0. Hence ψ2 =
diag

(
1

a2a3
, 1
a2
, 1
a3
, 1
)

is an automorphism such that ψ2 · ψ1 · Γ = E2 + E3 +〈
E1, E4

〉
= Γ

(2,1)
3 .
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Suppose Lie(Γ0) = eon1,1 and Z(eon1,1) 6⊆ 〈Γ〉. Then there exists an automor-
phism ψ1 such that ψ1 · Γ = a1E1 + a3E3 + 〈E2 + E3, E4〉, where a3 6= 0.
Hence we have an automorphism ψ2 = diag

(
1
a23
, 1
a3
, 1
a3
, 1
)

such that ψ2 ·ψ1 ·Γ =

a′1E1 + E3 + 〈E2 + E3, E4〉. If a′1 < 0, then

ψ3 =


−1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1


is an automorphism such that ψ3 · ψ2 · ψ1 · Γ = −a1E1 + E3 + 〈E2 + E3, E4〉.
Hence Γ is L-equivalent to Γ

(2,1)
4,β , where β = |a1| ≥ 0.

Lastly, suppose Lie(Γ0) = eon1,1 and Z(eon1,1) ⊆ 〈Γ〉. Then there exists an auto-
morphism ψ1 such that ψ1 · Γ = a1E1 + 〈E2 +E3, E4〉. Hence we have an auto-
morphism ψ2 = diag

(
1
a1
, 1√

a1
, 1√

a1
, 1
)

such that ψ2 ·ψ1 ·Γ = E1+〈E2+E3, E4〉 =

Γ
(2,1)
5 .

(ii) Assume E4(Γ0) = {0}. First, suppose Z(eon1,1) 6⊆ 〈Γ〉. Then there exists
an automorphism ψ1 such that ψ1 · Γ = a1E1 + a4E4 + 〈E2, E3〉, where a4 6= 0.
Hence

ψ2 =


1 0 0 −a1

a4
0 1 0 0
0 0 1 0
0 0 0 1


is an automorphism such that ψ2 · ψ1 · Γ = a4E4 + 〈E2, E3〉. If a4 < 0, then

ς · ψ2 · ψ1 · Γ = −a4E4 + 〈E2, E3〉. Thus Γ is L-equivalent to Γ
(2,1)
6,α , where

α = |a4| > 0.
On the other hand, suppose Z(eon1,1) ⊆ 〈Γ〉. Then there exists an automor-

phism ψ1 such that ψ1 · Γ = a3E3 + a4E4 + 〈E1, E2 + E3〉 with a4 6= 0. Hence

ψ2 =


1 −a3

a4
0 0

0 1 0 0
0 0 1 −a3

a4
0 0 0 1


is an automorphism such that ψ2 ·ψ1 ·Γ = a4E4 + 〈E1, E2 +E3〉. If a4 < 0, then

ς · ψ2 · ψ1 · Γ = −a4E4 + 〈E1, E2 + E3〉. Therefore Γ is L-equivalent to Γ
(2,1)
7,α ,

where α = |a4| > 0.
Since the conditions E4(Γ0) = {0}, Lie(Γ0) = eon1,1 and Z(eon1,1) ⊆ 〈Γ〉 are

invariant under automorphisms, in most cases it follows that no two (families

of) representatives are L-equivalent. The only exception is Γ
(2,1)
1 and Γ

(2,1)
2,γ ,
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which are not L-equivalent as 〈E2, E4〉 is not L-equivalent to 〈E1 + E2, E4〉. It
remains to be shown that within each one-parameter family of affine subspaces,
different values of the parameter yield distinct representatives. We shall treat

only the family Γ
(2,1)
2,γ ; the remaining cases are very similar.

We claim that Γ
(2,1)
2,γ is L-equivalent to Γ

(2,1)
2,γ′ only if γ = γ′. Indeed, suppose

ψ =


xy wx vy u
0 x 0 v
0 0 y w
0 0 0 1


is an automorphism such that ψ ·Γ(2,1)

2,γ = Γ
(2,1)
2,γ′ . Then (γvy)E1 +γyE3 ∈ γ′E3 +

〈E1 +E2, E4〉 and 〈x(w+ y)E1 + xE2, uE1 + vE2 +wE3 +E4〉 = 〈E1 +E2, E4〉.
Hence w = 0, y = 1 and so γ = γ′. On the other hand, if

ψ =


−xy −vx −wy u

0 0 y v
0 x 0 w
0 0 0 −1


is an automorphism such that ψ · Γ(2,1)

2,γ = Γ
(2,1)
2,γ′ , then w = 0 and γy = 0, a

contradiction. QED

Theorem 4. Let Γ = A + Γ0 be a (bracket-generating) three-dimensional
strictly affine subspace.

(i) If E4(Γ0) 6= {0}, then Γ is L-equivalent to exactly one of the following
affine subspaces:

Γ
(3,1)
1 = E3 + 〈E1, E2, E4〉 Lie(Γ0) 6= eon1,1

Γ
(3,1)
2 = E1 + 〈E2, E3, E4〉 Lie(Γ0) = eon1,1, Z(eon1,1) 6⊆ Γ0

Γ
(3,1)
3 = E3 + 〈E1, E2 + E3, E4〉 Lie(Γ0) = eon1,1, Z(eon1,1) ⊆ Γ0.

(ii) If E4(Γ0) = {0}, then Γ is L-equivalent to exactly one of the following
affine subspaces:

Γ
(3,1)
4,α = αE4 + 〈E1, E2, E3〉.

Here α > 0 parametrizes a family of class representatives, each different value
corresponding to a distinct (non-equivalent) representative.
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5 Two demonstrative examples

Invariant control systems

To every invariant control affine system one can canonically associate an
invariant affine distribution (on the same state space). Two systems are (de-
tached feedback) equivalent if and only if their associated affine distributions
are L-equivalent. Accordingly, the classification of affine distributions on Eon1,1
may be interpreted as a classification of (invariant) control affine systems.

A left-invariant control affine system Σ on a (real, finite-dimensional) matrix
Lie group G may be regarded as a family (Ξu)u∈R` of left-invariant vector fields
on G affinely parametrized by controls, i.e.,

Ξu(g) = g(A+ u1B1 + · · ·+ u`B`), g ∈ G, u ∈ R`.

Here A,B1, . . . , B` are elements of the Lie algebra g of G and B1, . . . , B` are
linearly independent. It is assumed that A,B1, . . . , B` generate g. We write a
control affine system Σ in the abbreviated form Σ : A+ u1B1 + · · ·+ u`B`. An
admissible control is a piecewise continuous map u(·) : [0, T ]→ R`. A trajectory,
corresponding to an admissible control u(·), is an absolutely continuous curve
g(·) : [0, T ]→ G such that ġ(t) = Ξu(t)(g(t)) for almost every t ∈ [0, T ].

Two systems Σ and Σ′ on G are detached feedback equivalent if there exist
diffeomorphisms φ : G→ G and ϕ : R` → R` such that Tgφ ·Ξu(g) = Ξ′ϕ(u)(φ(g))

for every g ∈ G and u ∈ R`. The map φ establishes a one-to-one correspondence
between trajectories of equivalent systems. We associate to each system Σ a
(bracket-generating) affine distribution D given by Dg = {Ξu(g) : u ∈ R`}. Σ is
detached feedback equivalent to Σ′ exactly when their associated distributions
D and D′ are L-equivalent (cf. [3, 5]).

Accordingly, we have the following classification of systems on Eon1,1.

Proposition 5. Every left-invariant control affine system is detached feed-
back equivalent to exactly one of the following systems:

Σ
(1,1)
1,β : βE1 + E2 + E3 + uE4 Σ

(1,1)
2,α : αE4 + u(E2 + E3)

Σ(2,0) : u1(E2 + E3) + u2E4 Σ
(2,1)
1 : E3 + u1E2 + u2E4

Σ
(2,1)
2,γ : γE3 + u1(E1 + E2) + u2E4 Σ

(2,1)
3 : E2 + E3 + u1E1 + u2E4

Σ
(2,1)
4,β : βE1 + E3 + u1(E2 + E3) + u2E4 Σ

(2,1)
5 : E1 + u1(E2 + E3) + u2E4

Σ
(2,1)
6,α : αE4 + u1E2 + u2E3 Σ

(2,1)
7,α : αE4 + u1E1 + u2(E2 + E3)

Σ
(3,0)
1 : u1E2 + u2E3 + u3E4 Σ

(3,0)
2 : u1E1 + u2(E2 + E3) + u3E4

Σ
(3,1)
1 : E3 + u1E1 + u2E2 + u3E4 Σ

(3,1)
2 : E1 + u1E2 + u2E3 + u3E4
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Σ
(3,1)
3 : E3 + u1E1 + u2(E2 + E3) + u3E4 Σ

(3,1)
4,α : αE4 + u1E1 + u2E2 + u3E3

Σ(4,0) : u1E1 + u2E2 + u3E3 + u4E4.

Here α > 0, β ≥ 0 and γ 6= 0 parametrize families of class representatives, each
different value corresponding to a distinct (non-equivalent) representative.

Invariant sub-Riemannian structures

A left-invariant sub-Riemannian structure on a (real, finite-dimensional)
connected Lie group G consists of a nonintegrable left-invariant distribution D
and a left-invariant Riemannian metric G on D. It is assumed that D is bracket
generating.

Two sub-Riemannian structures (D,G) and (D′,G′) on G are isometric if
there exists a diffeomorphism φ : G → G such that φ∗D = D′ and G = φ∗G′.
If, in addition, φ is a group automorphism, then we shall say that they are L-
isometric. If G is simply connected, then (D,G) is L-isometric to (D′,G′) if and
only if there exists a Lie algebra automorphism ψ such that ψ · D1 = D′1 and
G1(X,Y ) = G′1(ψ ·X,ψ · Y ) for every X,Y ∈ D1 (cf. [17, 2]).

Accordingly, one need only normalize the metric in order to obtain a classi-
fication of sub-Riemannian structures on Eon1,1.

Proposition 6. Let (D,G) be a left-invariant sub-Riemannian structure on
Eon1,1.

(i) If rankD = 2, then (D,G) is L-isometric to exactly one of the following
structures:

D1 = 〈E2 + E3, E4〉, G1 = λ

[
1 β
β 1

]
β < 1.

(G1 is identified with its matrix with respect to (E2 + E3, E4).)

(ii) If rankD = 3 and E4(D⊥1 ) 6= {0}, then (D,G) is L-isometric to exactly
one of the following structures:

D1 = 〈E2, E3, E4〉, G1 = λ

α1 γ 1
γ α2 1
1 1 1

 α1α2 − γ2 > 0,
det[G1] > 0

D1 = 〈E2, E3, E4〉, G1 = λ

α β 1
β 1 0
1 0 1

 α− β2 > 1

D1 = 〈E2, E3, E4〉, G1 = λ

1 β 0
β 1 0
0 0 1

 β < 1.
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(G1 is identified with its matrix with respect to (E2, E3, E4).)

(iii) If rankD = 3 and E4(D⊥1 ) = {0}, then (D,G) is L-isometric up to scale
with exactly one of the following structures:

D1 = 〈E1, E2 + E3, E4〉, G1 = λ

α 0 0
0 1 β
0 β 1

 β < 1.

(G1 is identified with its matrix with respect to (E1, E2 + E3, E4).)

Here λ, α > 0, α1 ≥ α2 > 0, β ≥ 0 and γ ∈ R (with additional constraints given
adjacent to each representative) parametrize families of class representatives,
with different values corresponding to distinct (non-equivalent) representatives.

Proof. We treat only the case when D has rank two. (The rank-three case is
similar.) Let (D,G) be a left-invariant sub-Riemannian structure on Eon1,1, where

D is a rank-two distribution. By theorem 1, there exists ψ1 ∈ Aut(eon1,1) such
that ψ1 ·D1 = 〈E2 +E3, E4〉. Hence (D,G) is L-isometric to a structure (D′,G′),
where D′1 = 〈E2+E3, E4〉. The subgroup of automorphisms leaving D′1 invariant
is given by

Aut(eon1,1)
∣∣∣
D′1

=

{[
x 0
0 1

]
,

[
x 0
0 −1

]
: x 6= 0

}
.

(The elements of Aut(eon1,1)
∣∣∣
D′1

are written with respect to (E2 + E3, E4).) Let

G′1 =

[
a1 b
b a2

]
. We have ψ2 = diag

(√
a2
a1
, 1
)
∈ Aut(eon1,1)

∣∣∣
D′1

such that

ψ>2 G′1ψ2 = a2

[
1 b′

b′ 1

]
.

If b′ < 0, then ψ3 = diag(1,−1) ∈ Aut(eon1,1)
∣∣∣
D′1

and

ψ>3 ψ
>
2 G′1ψ2ψ3 = a2

[
1 −b′
−b′ 1

]
.

Therefore (D,G) is L-isometric to (D′,G′′), where G′′1 = λ

[
1 β
β 1

]
with λ > 0

and β ≥ 0. As G′′1 is positive definite, we have β < 1. It is easy to verify that
two representatives are L-isometric only if their parameters are equal. QED
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