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Abstract. In this paper we consider envelopes of families of equidistant curves and horocy-
cles in the hyperbolic plane. As a special case, we consider a kind of evolutes as the envelope
of normal equidistant families of a curve. The hyperbolic evolute of a curve is a special case.
Moreover, a new notion of horocyclic evolutes of curves is induced. We investigate the sin-
gularities of such envelopes and introduce new invariants in the Lie algebra of the Lorentz
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1 Introduction

We consider the Poincaré disk model D of the hyperbolic plane which is
conformally equivalent to the Euclidean plane, so that a circle or a line in the
Poincaré disk is also a circle or a line in the Euclidean plane. A geodesic in the
Poincaré disk is a Euclidean circle or a line which is perpendicular to the ideal
boundary (i.e., the unit circle). If we adopt geodesics as lines in the Poincaré
disk, we have the model of the hyperbolic geometry. A horocycle is an Euclidean
circle which is tangent to the ideal boundary. If we adopt horocycles as lines,
we call this geometry a horocyclic geometry (a horospherical geometry for the
higher dimensional case) [4, 6, 7, 8, 9]. We also have another kind of curves
with the properties similar to those of Euclidean lines. A curve in the Poincaré
disk is called an equidistant curve if it is a Euclidean circle or a Euclidean line
whose intersection with the ideal boundary consists of two points. We define an
equidistant curve depends on ¢ € [0, 7/2] whose angles with the ideal boundary
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at the intersection points are ¢ (cf., [10]). A geodesic is the special case with
¢ = m/2 and a horocycle is the case with ¢ = 0. Therefore, a geodesic is called
a vertical pseudo-line and a horocycle a horizontal pseudo-line. For ¢ € (0, /2],
the corresponding pseudo-line is an equidistant curve, which we call a ¢-slant
pseudo-line. If we consider a ¢-slant pseudo-line as a line, we call this geometry
a slant geometry(ct., [1]).

In this paper we consider envelopes of families of ¢-slant pseudo-lines in the
general setting. We investigate the singularities of such envelopes. Throughout
the remainder of the paper, we adopt the Lorentz-Minkowski space model of
the hyperbolic plane. For a 3 x 3-matrix A, we say that A is a member of the
Lorentz group SOy(1,2) if det A > 0 and the induced linear mapping preserves
the Lorentz-Minkowski scalar product. The Lorentz group SOy(1,2) canonically
acts on the hyperbolic plane. It is well known that this action is transitive,
so that the hyperbolic space is canonically identified with the homogeneous
space SOg(1,2)/S0O(2). It follows that any point of the hyperbolic space can
be identified with a matrix A € SOy(1,2) (cf., §3). Therefore, a one parameter
family of ¢-slant pseudo-lines can be parametrized by using a curve in SOg(1,2)
(cf., §3 and 4). Then we apply the theory of unfoldings of function germs (cf.,
[2]) and obtain a classification of singularities of the envelopes of the families
of ¢-slant pseudo-lines (cf., Theorem 5.6). The singularities of the envelopes
are characterized by using invariants represented by the elements of Lie algebra
50(1,2) of SOy(1,2). In §6 we introduce the notion of ¢-slant evolutes of unit
speed curves in the hyperbolic plane. If ¢ = 7/2, then the ¢-slant evolute is a
hyperbolic evolutes defined in [5]. Moreover, if ¢ = 0, then the ¢-slant evolute
is called a horocyclic evolute. It means that the ¢-slant evolutes depending on ¢
connects the hyperbolic evolute and the horocyclic evolute of the curve in the
hyperbolic plane.

In [3] families of equal-angle envelopes in the Euclidean plane is investigated.

2 Basic concepts

We now present basic notions on Lorentz-Minkowski 3-space. Let R? =
{(zo, 1, 22)|x; € R, i = 0,1,2} be a 3-dimensional vector space. For any vec-
tors € = (20,71,72),y¥ = (Y0,y1,y2) € R3, the pseudo scalar product (or, the
Lorentz-Minkoski scalar product) of  and y is defined by (x,y) = —zoyo +
T1y1 + T2y2. The space (R3,(,)) is called Lorentz-Minkowski 3-space which is
denoted by R}. We assume that R is time-oriented and choose ey = (1,0,0) as
the future timelike vector.

We say that a non-zero vector x in R} is spacelike, lightlike or timelike if
(x,x) > 0,= 0 or < 0 respectively. The norm of the vector z € R} is defined
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by ||| = v/|(x,x)|. Given a non-zero vector n € R} and a real number ¢, the
plane with pseudo normal n is given by

P(n,c) = {x € R}|(x,n) = c}.

We say that P(n,c) is spacelike , timelike or lightlike if m is timelike, spacelike
or lightlike respectively.

For any vectors & = (79,71,72) , ¥ = (Y0,y1,y2) € R}, pseudo exterior
product of x and vy is defined to be

—€y) €1 €9
rANy=|xzo z1 x2|=(—(21Y2 — T2y1),T2Yo — ToY2, ToY1 — T1Y0),
Yo Y1 Y2

where {eg, e1, es} is the canonical basis of ]R:{’ . We also define Hyperbolic plane
by
H3(-1) = {z e Ri|(z,x) = 1,29 > 1},

de Sitter 2-space by
St ={z e Ril{x, @) =1}

and the (open) lightcone at the origin by
LC* = {:12 = (x07:c1,$2) € R? |:C0 75 0, <SL’,£L’> = O}

We remark that H?(—1) is a Riemannian manifold if we consider the induced
metric from R3.

We now consider the plane defined by RZ = {(x9,21,22) € R} | 79 = 0}.
Since (, >\Rg is the canonical Euclidean scalar product, we call it Euclidean plane.
We adopt coordinates (z1,z2) of R instead of (0,z7,22). On Euclidean plane
RZ, we have the Poincaré disc model of the hyperbolic plane. We consider a unit
open disc D = {z € R3 | ||z| < 1} and consider a Riemannian metric

ds? — 4(dx? + dx3)
5= 1—22—22°
1 2

Define a mapping ¥ : H_2F — D by

‘I’(ifo,fﬁl,@) = < e - >

.1‘0—%—1’.7}0—1—1

It is known that ¥ is an isometry. Moreover, the Poinaré disc model is confor-
mally equivalent to the Euclidean plane.
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3 Pseudo-lines in the hyperbolic plane

We consider a curve defined by the intersection of the hyperbolic plane with
a plane in Lorentz-Minkowski 3-space, which is called a pseudo-circle if it is non-
empty. The image of a pseudo-circle by the isometry ¥ is a part of a Euclidean
circle in the Poincaré disc D. Let P(n,c) be a plane with a unit pseudo-normal
n. We call H2(—1) N P(n,c) a circle, an equidistant curve and a horocyle if n
is timelike, spacelike or lightlike respectively. Moreover, if n is spacelike and
¢ = 0, then we call it a hyperbolic line (or, a geodesic). We remark that circles
are compact and other pseudo-circles are non-compact. Therefore, equidistant
curves or horocycles are called pseudo-lines.

We now consider a hyperbolic line

HL(n) = {x € H2(-1) | (z,n) =0}
and a horocycle
HC,—1)={x € Hi(—l) | (x,€) = —1},

where £ is a lightlike vector. In general, a horocycle is defined by (x, £) = ¢ for
a lightlike vector £ and ¢ # 0. However, if we choose —£/c instead of £, then we
have the above equation. We now consider parametrizations of a horocycle and
a hyperbolic line respectively. For any ag € HC(€, —1), let a1 be a unit tangent
vector of HC'(£,—1) at ag, so that (a1,£) = 0. We define as = ap A a1. Then
we have a pseudo orthonormal basis {ag, a1, as} of Ri” such that (ag, ap) = —1.
We remark that ag is timelike and a1, as are spacelike. Since (£ — ag, ag) =
(£,a;) = 0, we have ay = £ — ag. We choose the direction of a; such that
as = £ — ap. It follows that A = (*ag a1 'as) € SOy(1,2), where

ad ab a?
0 4 &
500(1,2): A= acl) a% a% ‘tAILQA:ILQ, CL821
ay ay a3
is the Lorentz group, where

-1 0 0
Lio=|10 10
0 01

For any A = (‘ag 'a; 'as) € SOy(1,2), {ap,a1,az} is a pseudo orthonormal

basis of R}. Then £ = ag + as is lightlike. It follows that we have HC(£, —1) =
HC(aop+asz,—1) such that ag € HC(ap+az, —1) and a; is tangent to HC (ao+
az,—1) at ag. Moreover, we have ay € HL(a2) and a; is tangent to H L(a2) at
ag. Then we have the following lemma.
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Lemma 3.1. With the above notation, we have

(1) HC(e,-1) = {:1; =ao+ra;+ %rz(ao +ag) | re R} :

(2) HL(a2) = {Vr?+ lag+ra; |r € R}.
Proof. (1) For any © € HC(£,—1), there exist a, 3,7 € R such that

r = aay+ fal +vyax (a>1).

We put 8 = r. Since (x,£) = —a + v = —1, we have a = v + 1. Moreover, we
also have (z,x) = —a? 4+ 2 +~% = —(y+ 1)+ 12 + 92 = —1, so that v = 3r2.
Thus,

1 2
x=ag+ra+ g7 (ao + a2)

holds. For the converse, we can easily show that (z,xz) = —1 and (x,£) = —1
for the above vector.
(2) For any « € HL(asg), there exist «, 3,7 € R such that

r = aap + far +vyay (a>1).

Since (x,az) = 0, v = 0. If we put 8 = r, then we have (z,z) = —a?®+1r? = —1,
so that @ = +v/72 4 1. Since a > 1, we have o = /72 + 1. By a straightforward
calculation, the converse holds. ]

It is known that a horocycle W(HC(ag + a2, —1)) in the Poincaré disc D
is a Euclidean circle tangent to the ideal boundary S' = {z € R2 | ||z| = 1}.
It is also known that a hyperbolic line W(H L(az)) is a Euclidean circle or a
Euclidean line orthogonal to the ideal boundary (cf., [11]). By these reasons,
a horocycle is called a horizontal pseudo-line and a hyperbolic-line is called an
orthogonal pseudo-line respectively. We now define a ¢-slant pseudo-line by

SL(ng, —cos¢) = {x € H3(-1) | (®,ny) = —cos ¢},

where ng(t) = cosgag + a2, ¢ € [0, 7/2]. Since (ny, ny) = sin®¢ > 0, ny is
spacelike. Thus, SL(ng, —cos¢) = H3(—1) N P(ng, —cos$) is an equidistant
curve. Moreover, ag € SL(ng, —cos¢) and a; is tangent to SL(ng,— cos @)
at ag. Then SL(n,/, —cos(m/2)) = HL(az) and SL(ng, —cos0) = HC(ap +
az, —1). We have the following parametrization of a ¢-slant pseudo-line.

Lemma 3.2. With the same notations as those in Lemma 3.1, we have

Vr2sin?g+1—1

sin? ¢

SL(ng,—cos¢) = {ao +ra; + (ag + cosdas) | r € R} .
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Proof. We consider a point € € SL(ng(t),—cos¢). Since {ap,a1,as} is a
pseudo-orthonormal basis of Ri{’, There exist a, 8,7 € R such that € = aag +
Bai + vag, (a > 1). Therefore, we have

(z,my) = (aag + Bai + yaz, cos pag + az)
= —cospa+y= —coso

Thus, we have v = cos ¢(a — 1). Moreover, (x,z) = —a? + %2 +72 = —a? +
B2 + cos? p(a — 1)2 = —1. It follows that

o= Sinlng(:t\/ﬂ2 sin? ¢ + 1 — cos? ¢).

1

If we choose @ = ——— ¢(\/52 sin? ¢ 4 1 + cos? ¢), then a < 0. Tt contradicts
sin

to a > 1. Hence, we have

1
o= — (/85 6+ 1 - cos?9), v = <DL (/s g+ 1-1).
sin® ¢ sin” ¢
We put 8 = r. Then
1 102 2 COS¢ .92
x=——(\/r?sin® ¢+ 1 — cos” p)ag + ra; + —5—(\/r?sin ¢ + 1 — 1)ay
sin” ¢ sin“ ¢
1 .
=ao+rar+ —— (m—l)(ag—kcosd)ag)
sin“ ¢

For the converse, we have (x,x) = —1, (x,ny) = —cos ¢ and (Vr2sin2¢+ 1 —
cos? ¢)/sin? ¢ > 1. Then & € SL(ny(t), — cos ). 0

Remark 3.3. We can show limg_o(y/72sin?¢ +1 — 1)/sin’ ¢ = r?/2. In
[10] the third author showed that the angle between W(SL(ng)) and the ideal

boundary S! of the Poincaré disc D at an intersection point is equal to ¢. This
is the reason why we call SL(ng) the ¢-slant pseudo line.

4 One-parameter families of pseudo-lines

In this section we consider one-parameter families of pseudo-lines. By Lem-
mas 3.1 and 3.2, we consider a one-parameter family of pseudo-orthonormal
bases of R}. Let A : J — SOy(1,2) be a C*®-mapping. If we write A(t) =
(tag(t) tai(t) tas(t)), then {ag(t),ai(t),as(t)} is a one-parameter family of
pseudo-orthonormal bases of R}. We call it a pseudo-orthonormal moving frame
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of R?. By the standard arguments, we can show the following Frenet-Serret type
formulae for the pseudo-orthonormal moving frame {ao(t), a1(t), as(t)}:

ag(t) 0 a@) @) [aot)
a]={at) 0 b aw
as(t) cot) —es(t) 0 ax(t)
Here,
c1(t) = {ag(t), ar(t))
ca(t) = (ag(t), ax(t))
c3(t) = (aq(t), ax(t))
0 C1 (t) Cg(t)
Then, the matrix C(t) = | ¢1(t) 0 c3(t) | is an element of Lie algebra

C9 (t) —Cg(t) 0
50(1,2) of the Lorentz group SOq(1,2). The above Frenet-Serret type formulae
are written by A’(t)A~1(t) = C(t). For any C*-mapping C' : J — s0(1,2) and
Ap € SOy(1,2), we can apply the unique existence theorem for systems of linear
ordinary differential equations, so that there exists a unique A(t) € SOp(1,2)
such that A(0) = Ag and A'(t)A~L(t) = C(t).
We now consider a mapping g4 : [ X J — Hf_, where gy (r,t) is defined by

Vr2sin?g+1—1
sin? ¢

ao(t) + a1 (t) + T (ao(t) + as()) if 6 =0,

where I,J C R are intervals. Then we have SL(ng(t), —cos¢) = {gs(I x
{t}) | t € J}, for my(t) = cos pag(t) + ax(t). Thus g4 is a one-parameter family
of ¢-slant pseudo-lines. Moreover, gy is a one-parameter family of horocycles
and g/ is a one-parameter family of hyperbolic lines.

ao(t) +rai(t) + (ao(t) + cos pas(t)) if ¢ #0,

5 Height functions

For a one parameter family of ¢-slant pseudo-lines g4, we define a family of
height functions H : J x H2 — R by H(t,z) = (z,n4(t)) + cos ¢. Then we
have the following proposition.

Proposition 5.1. For gy : [ x J — H? | we have the following:

(1) H(t,z) = 0 if and only if there exists r € I such that & = gy(r,?),

H
(2) H(t,z) = %t(t, x) = 0if and only if there exists r € I such that & = g4(r,t)

_\/mcg(t) + 1 (cos pei () — es(t)) = 0.

and
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Proof. (1) If H(t,x) = 0, then (x,my(t)) = —cos¢ , € H3(—1). Thus, there
exists 7 € I such that = g4(r,t). The converse also holds.

(2)Since H(t,x) = 0, there exists r € I such that * = g4(r,t). Suppose that
¢ # 0. Since niy(t) = ca(t)ao(t) + (cos dei(t) — c3(t)) ai(t) + cos pea(t)as(t),

DL (t,2) = (wm (1)

B <\/r251n2<;5+1—cos?¢a

o(t) +raq(t)

sin? ¢
. 2 _
+COS¢(V?"2‘51I; ¢+1 1)a2(t), ’I’L:b(t)>
sin“ ¢
= —/72sin? ¢ + Lea(t) + 7 (cos per (t) — e3(t)) .
If ¢ =0, then
%(tw) = (z,ny(t)) = —c2(t) +r(ea(t) — es(t)).

This completes the proof. O

We now review some general results on the singularity theory for families
of function germs. Detailed descriptions are found in the book[2]. Let F': (R x
R", (s0,20)) — R be a function germ. We call F' an r-parameter unfolding of f,
where f(s) = Fy,(s,z0). We say that f has an Ag-singularity at s if f®)(sq) =
0 for all 1 < p < k, and f(k+1)(so) # 0. We also say that f has an A>j-
singularity at so if f®)(sg) = 0 for all 1 < p < k. Let F be an unfolding of
f and f(s) has an Ag-singularity (k > 1) at so. We denote the (k — 1)-jet of

the partial derivative % at so by j(k_l)(%(s,xo))(so) = Z;:é aji(s — so)!
for i = 1,...,r. Then F is called an R-versal unfolding if the k x r matrix of

coefficients (ovj;)j—0,... k—1:i=1,...» has rank k (K < 7). We introduce an important
set concerning the unfoldings relative to the above notions. The discriminant
set of F' is the set

F
Dr = {x € R"|there exists s suchthat F(s,z) = %(s, z)=0 } )
s

Then we have the following classification (cf., [2]).

Theorem 5.2. Let F': (R x R", (s, x0)) — R be an r-parameter unfolding
of f(s) which has an Ay singularity at sg (k = 1,2). Suppose that F' is an
R-versal unfolding.

(1) If k = 1, then D is locally diffeomorphic to R" 1.
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(2) If k = 2, then Dp is locally diffeomorphic to C' x R"~2.
Here, C = {(x1,22) € (R%,0) | z1 = t},25 = 3, t € (R,0) } is the ordinary
cusp.

By Proposition 5.1, the discriminant set Dy of H is

Dy = {g¢(r, t) ‘ —/r2sin? ¢ + Lea(t) + 7 (cos per (t) — c3(t)) = 0} .

Suppose ca(t) # 0, cos pcy(t) — c3(t) # 0. If

—y/72sin? ¢ + Lea(t) + 7 (cos per (t) — es(t)) = 0,

(&) (t) .
v/ (cos gea(t) — es(t))? — (sin ea(1))?

If r = —ca(t)/+/(cos pei (t) — c3(t))2 — (sin pea(t))?, then
—\/r2sin? ¢ + Lea(t) + 7 (cos per () — c3(t)) # 0,

_ ca(t) _
V/(cos gei(t) — e3(t))? — (sin dea(t))?
For ¢ = 0, we can also choose r = ¢a(t)/(c1(t) — c3(t)). Therefore, if ¢ # 0, then

r = Cz(t) .
\/(COS pci(t) — e3(t))2 — (sin ¢02(t))2’ 2(t) # 0,

cos ¢cq (t) — es(t) # O}.

then we have

r==+

so that

Da = {aslr)

Under the assumptions that co(t) # 0 and cos¢ci(t) — c3(t) # 0, we have a
gl¢] : J — H?, where g[¢](t) is defined by

N s

sin? ¢

ao(t) + r(t)ai(t) + (ao(t) + cos pas(t)) if ¢ #0,

ao(t) + r(t)ar (t) + - ?2 (ao(t) + as(t)) if ¢ = 0.
Here ®)
@ if ,
v - | Viewgam —awr —Gmeamy
2l 4,

C1 (t) — C3 (t)
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Then g[¢](t) is a parametrization of Dy and it is the envelope of the family of
¢-slant pseudo lines {SL(ny(t), — cos @) }ies.

In order to classify the singularities of g[¢], we apply the theory of unfoldings
to H. For any (r9,t9) € I x J, we put &g = g¢(ro,to) and consider the function
germ hg, : (J,tg) — (R,0) defined by

hwo (to) = H(to, $0) = <m0, ’I’L¢(t0)> + cos ¢.

Then the germ of H at (fp, o) is a two-dimensional unfolding of hg,. We now
try to search the conditions for hg, has the Ag-singularity, (k = 1,2). If ¢ # 0,
then we define two invariants

(5[<;5]1(t) = —\/r2sin? ¢ + 1cy + 7(cos ¢c| — ) + rea(cr — cos des)

—c1(cos pey — ¢3) — cos pca
Vr2sin? g +1 -1
+ . 2
sin® ¢
§[pl2(t) = —1/r2sin? ¢ + 1c)
+r(cos ¢c — ) + r (c2(c] — cos dpcy) + 2¢5(c1 — cos deg))
—2c1(cos ¢c) — ) — ¢} (cos pey — c3) — 3 cos peacy
Vr2sin? ¢ +1—1
+ 5
sin“ ¢
+2(cos ¢c} — ¢3)(cos ez — c1)),

(cos ¢y — c3)(cos peg — 1),

((cos der — es)(cos 6cs — )

where ¢; = ¢;(t), (1 =1,2,3) and r = r(t). For ¢ = 0, we also define

1
6[0]1(t) = —cy +r(c) — &) — erer — e3) — §C§»
6[0]2(t) = —cy 4+ r(c] — ¢3) + rea(c) — ¢3) — 2c1(c) — )

3
—ci(e1 — e3) — cach + 51‘62(6% —d)).

We remark that limg_o 6] (¢) = 8[0)1(£) and limy_o 6[6)a(t) = 5[0]a(t). We
expect that 6[@]1(t) = d[¢]2(t) = 0 if and only if §[¢]i(t) = 35[¢]’1 t) = 0.
§6).

Proposition 5.3. We have the following assertions:
(1) h,(to) = 0 always holds,
(2) hig,(to) = 0 if and only if §[¢]1(to) = 0,
(3) hgy(to) = hgy (to) = 0 if and only if 5[¢]1(t0) = d[@]2(t0) = 0.
Proof. Assertion (1) holds by Proposition 5.1, (2).
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(2) Since

= o)
= chag + (cos ¢cy — cy)ay + cos pchas + (c1(cos pep — ¢3) + cos ped)ag

+ ca(c1 — cos ¢pes)ag + (03(008 pc1 —c3) + cg) as,

we have

O*H
ot? (

= —1/s2sin? ¢ + 1c, + s(cos ¢c) — c4)
N (cos? ¢ — \/s2sin® ¢ + 1) (c1(cos ey — ¢3) + cos ¢c3)

sin? ¢
cosp(y/s2sin ¢+ 1 —1) (cs(cos et — c3) + ¢3)
sin® ¢
= —1/s2sin? ¢ + 1ch + s(cos ¢c) — ¢§) — ¢1(cos pey — ¢3) — cos e
(1—/s2sin? ¢ + 1) (c1(cos pey — ¢3) + cos dc)
sin? ¢
N cosp(v/s2sin® ¢+ 1 — 1) (cs(cos et — c3) + ¢3)
sin? ¢
= —1/s2sin? ¢ + 1c) + s(cos ¢c — c§) + sca(cr — cos ge3)
(v/s2sin® ¢ + 1 — 1)(cos pe1 — c3)(cos pes — c1)

sin? ¢

t,x) = <:L',n;§>

+ sca(c1 — cos des) +

+ + sca(e1 — cos ¢es)

— ¢1(cos pey — ¢3) — cos pca +

= d[o]1(1).

(3) We have

ny = cyag + (cos ¢cf — ¢3)ay + cos pcyay

/ / / /! " " "
+ 2 (chag + (cos pc) — dy)a) + cos pchay) + caag + (cos pe1 — cz)a] + cos peaas.
Here, a{) = c1a1 + c2a9, a’l = c1a0 + c3a2, (1/2 = coag — czaq. Then

all = (2 4+ B)ag + (¢} — cacz)ay + (ch + cic3)as,
a} = (| + cacs3)ag + (3 — c3)ay + (c§ + cica)az,
a2 = (62 — Clcg)ao + (6102 — C3)CL1 + (02 — 63) 2
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Therefore,

ng = cyag + (cos ¢cf — ¢3)an + cos pchay

+ (ca(c] + 3 — c3) + 2c1(cos ¢cy — ) + ¢} (cos per — e3) + 3 cos peach) ag
+ ((cos per — e3)(cf + 3 — 3) + ea(c) — cos pcy) + 2ch(e1 — cos es)) ar

+ (cos pea(ci + c3 — c3) + 2c3(cos o) — ) + cy(cos ey — ¢3) + 3each) as.
By the calculation similar to case (2), we have

PH

W(t,w) = d[pla(t).

For the case ¢ = 0, we also have the similar arguments to the above case.
This completes the proof. O

We have the following corollary.

Corollary 5.4. For h,, as the above proposition, we have the following:
(1) hg, has the A;-singularity at ¢ = to if and only if 6[¢]1 (o) # O.
(2) hg, has the Ag-singularity at ¢ = ¢ if and only if 6[¢]1(t0) = 0, d[¢]2(to) # 0.

Then we have the following proposition.

Proposition 5.5. For hy, as the above proposition, we have the following:
(1) If hg, has the Aj-singularity, then H is a R-versal unfolding of hg,,
(2) If hg, has the As-singularity, then H is a R-versal unfolding of hg,.

Proof. We consider a parametrization of H?F defined by

Y, x3) = (\/23 + 23 4+ 1, 22, 3).

Then we have

H(t,x9,23) = H(t,¥(x2,x3)) = (Y(x2,x3), ny(t)) + cos ¢.
We write ng(t) = (ng1(t), ng2(t), ng3(t)) and have

OH T;

—(t, 2, x3) = Ngi(t) — ————=n01(t 1=12,3).
(t, w2, 73) = ngi(t) $%+x§+1¢1() ( )

6:@-
Moreover, we have

0 0H
&%(2&71'2,333) = Tl/:m(t) —

T

/
=y (%).
Zrai+l ?
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We write that @y = (xo1, Zo2, o3). Then the 1-jet of (8ﬁ/8xi)(t,x02,x03) at
t= to is

OH (1 ooaoo) = 2210 R AL )t~ to)
O, » L02,203) = o 0,202, X03 2 0t O, 0,202, 203 0)-

From now on, we remove (ty) for abbreviation.
(1) Since hg, has the A;-singularity, we show that the rank of the matrix

ngs Z02 ot Mg 03 not
_ . _
Vg + 53 + 1 Vg + 3 + 1

Is equal to one. If the rank is zero, then

202 COos px(2 0
Ngo — N1 — — =
¢ Vg + 253 + 1 i Vg + 23 + 1
o3 COS gf)%og

M L ran a1 b Vi taZ +1
Thus, we have the sum of the power of the both equations
cos” p(afy + x33) — (25 + 255 + 1)
xdy + 2ty + 1
_ _sin2 P(xdy + 223) + 1 40
23, + 2ty + 1 '

0:

This is a contradiction.
(2) Since hg, has the As-singularity, we show that the rank of the matrix

Ng2 — e Mgt N¢3 — G Ng1
B ¢ Vg, +x3s 4+ 1 o e Vady + xds + 1 ¢
- / 02 / / o3 /
Mga — N1 Mgo3 — Ny1

g + 53 + 1 Ty + 53 + 1

is equal to two. Since n;s = coag + (cos ¢c; — ¢3) a1 + cos gpcaag,

Ng2 — il Ng1 N¢3 — s Ng1
2 2 2 2
Tho + T + 1 Tho + Tha + 1
det B = 02 Lo 03 / , 02 T3 03 /
n¢2 — TL¢1 n¢)3 — n¢1

TGy + T3 + 1 gy + T3 + 1

1 /
= |$0, Ny, n(z)‘

Vs +agy + 1
(cos pcy — c3)\/s2sin? ¢ + 1 + ssin? ey

S £0
Vg + 75 + 1
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This means that the rank of B is two. O

It follows from Theorem 5.2 and Proposition 5.5, we have shown the following
theorem.

Theorem 5.6. Let {ag(t),a1(t),as(t)}+cs be pseudo-orthonormal moving
frame of R3. Suppose c(t) # 0 and cos ¢c;(t) — c3(t) # 0. Then we have the
following;:

(1) The envelope g[¢] of the family of ¢-slant pseudo-lines SL(ny, —cos¢) is
regular at a point t = tg if and only if d[¢]1(¢9) # O,

(2) The envelope g[¢] of the family of ¢-slant pseudo-lines SL(ngy, —cos¢) at
a point t = t¢ is locally diffeomorphic to the cusp C' if and only if d[¢]1(t9) =

0, d[¢la(to) # 0.

6 Slant evolutes of hyperbolic plane curves

There is the notion of hyperbolic evolutes of hyperbolic plane curves [5]. Let
y:J— H?r be a unit speed curve, where we use the parameter s € J instead
of t. We call t(s) = v/(s) a unit tangent vector of v at s. Since (v(s),v(s)) = —1
we have (y(s),t(s)) = 0. We define e(s) = ~(s) A t(s), which is called a unit
binormal vector of v at s € J. Then we have (e(s), e(s)) = (v(s) At(s),v(s) A
t(s)) = —{(v(s),v(5)){t(s),t(s))+(v(s), t(s))? = 1. Therefore, we have a pseudo-
orthonormal moving frame {~(s), —e(s), t(s)} of R}, which is called a hyperbolic
Sabban frame along ~.

ao(s) =(s) , ai(s) = —e(s) , ax(s) = t(s)

Then we have the following Frenet-Serret type formulae:

v'(s) = t(s)

t'(s) = v(s) + rg(s)e(s)

"(5) = —rg(s)t(s),

) =17(s), ¥'(s), v"(s)| is called the geodesic curvature of «. Since
s), ai(s) = —e(s) , az(s) =t(s), we have c1(s) =0, ca(s) = 1 and
c3(s) = — al(S)vaé(F) (e(s),¥'(s)) = (V(s)AE(s),t'(5)) = |7(s), t(s), ¥'(s)] =

kg(s). In this case, the family of ¢-slant pseudo-lines

a

~(s) —re(s)+ risint+1-1

s) + cos ¢t (s if 0,
e = (0l ifs 2

¥(s) —re(s)+ %(‘)’(S) +t(s)) ifp=0.
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Therefore, the envelope g[¢] : J — H? of g, is

Vr(s)?sin? ¢+ 1 -1

((s) + cos 6t(s)) if & # 0,

gl¢l(s) = 1 1 oo t(s)) if 6 =0
)+ o)+ gy (10 + ) 6 =0
where 1
r(s) = .
K2(s) — sin? ¢

We call g[7/2] a hyperbolic evolute and g[0] a horocyclic evolute of vy, respectively.
For sg € J, we define

cos ¢ (ky(s0)? — sin? ¢)

K2 (s0) — sin? § — kg (s0).

\/#2(s0) — sin® ¢ + 2k4(s0)
(so)

KZ(s0) — sin® ¢ — rig(s0)

ol¢li(so0) = ry(so) +

ol¢la(so0) = Ky (so) + cos ¢ry

In this case, by a straightforward calculation, we can show that o[¢]}(s) =
o[¢]a(s). Moreover, we can show that [¢]i(s) = d[¢p|2(s) = 0 if and only if
olé]1(s) = o[@]}(s) = 0. As special cases, we have

1

ol0)1(s) = Ky(s) = 5hq(s), alm/2(s) = wy(s).

As a corollary of Theorem 5.6, we have the following theorem.

Theorem 6.1. Let v : J — H%(—1) be a unit speed curve with x4(s)* —

sin? ¢ > 0. Then we have the following:
(1) g[¢] is a regular curve at s = s¢ if and only if o[¢]i(so) # 0,
(2) g[¢] is locally diffeomorphic to the cusp C at s = s if and only if

o[¢l1(s0) = 0 and o[@]1(s0) # 0.

As a special case, we have the following corollary.

Corollary 6.2. Let v :J — H2(—1) be a unit speed curve.
(A) Suppose /13 > 1. Then we have the following (cf., [5]):

(1) The hyperbolic evolute g[r/2] is a regular curve at s = sq if and only if
Ky(s) # 0.

(2) The hyperbolic evolute g[r/2] is locally diffeomorphic to the cusp C' at
s = sg if and only if

kig(50) # 0 and k7 (s0) # 0.
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(B) Suppose 4 # 0. Then we have the following:

(1) The horocyclic evolute g[0] is a regular curve at s = s if and only if
Ky (s) — Thg(s) # 0.

(2) The horocyclic evolute g[0] is locally diffeomorphic to the cusp C at
s = sg if and only if

1 1
tg(50) — fig(s0) = 0 and Fg(50) — 5/‘0;(80) # 0.

The hyperbolic evolute is given by

2zl)_1(/<;g(s)7(s) +e(s)) if ky(s) < —1,
glr/2)(s) = V74 '
(kg(s)v(s) —e(s)) if Ky(s) > 1
K2(s) —1

and the horocyclic evolute is

32 (1) + )

In [5] hyperbolic evolutes was introduced and the classified the singularities.
Moreover, a de Sitter evolute of 4 was introduced in [5], which is located in
the de Sitter 2-space. It corresponds to points of y(s) with £2(s) < 1. Here we
only consider families of hyperbolic lines, so that we do not consider de Sitter
evolutes. It is also shown in [5] that g[7/2](s) is a constant point if and only if
7 is a part of a circle. This condition is also equivalent to xj(s) = 0. We have
a natural question what is v when ¢[0](s) is a constant point. Of course it is

equivalent to

Fig(5) — %ch(s) = 0.

The solution of the above differential equation is ry(s) = ce®/? for a constant

real number ¢. The curvature tends to infinity, so that ~ is a kind of spirals in
H?(—1). If ¢ = 1/2, the curve with the curvature 565/2 in the Euclidean plane

is called a Nielsen spiral. So we call v with k4(s) = %05/2 a hyperbolic Nielsen
spiral. We have two open problems as follows:
(1) What is v with o[¢];(s) = 07
(2) For a general one-parameter family of pseudo-lines, is it always true that
t

S[¢]1(t) = 6[p)2(t) = 0 if and only if §[¢]; (t) = &[]} (t) = 0?
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