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Abstract. In this paper we consider envelopes of families of equidistant curves and horocy-
cles in the hyperbolic plane. As a special case, we consider a kind of evolutes as the envelope
of normal equidistant families of a curve. The hyperbolic evolute of a curve is a special case.
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1 Introduction

We consider the Poincaré disk model D of the hyperbolic plane which is
conformally equivalent to the Euclidean plane, so that a circle or a line in the
Poincaré disk is also a circle or a line in the Euclidean plane. A geodesic in the
Poincaré disk is a Euclidean circle or a line which is perpendicular to the ideal
boundary (i.e., the unit circle). If we adopt geodesics as lines in the Poincaré
disk, we have the model of the hyperbolic geometry. A horocycle is an Euclidean
circle which is tangent to the ideal boundary. If we adopt horocycles as lines,
we call this geometry a horocyclic geometry (a horospherical geometry for the
higher dimensional case) [4, 6, 7, 8, 9]. We also have another kind of curves
with the properties similar to those of Euclidean lines. A curve in the Poincaré
disk is called an equidistant curve if it is a Euclidean circle or a Euclidean line
whose intersection with the ideal boundary consists of two points. We define an
equidistant curve depends on φ ∈ [0, π/2] whose angles with the ideal boundary
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52 T. Ashino, H. Ichiwara, S. Izumiya

at the intersection points are φ (cf., [10]). A geodesic is the special case with
φ = π/2 and a horocycle is the case with φ = 0. Therefore, a geodesic is called
a vertical pseudo-line and a horocycle a horizontal pseudo-line. For φ ∈ (0, π/2],
the corresponding pseudo-line is an equidistant curve, which we call a φ-slant
pseudo-line. If we consider a φ-slant pseudo-line as a line, we call this geometry
a slant geometry(cf., [1]).

In this paper we consider envelopes of families of φ-slant pseudo-lines in the
general setting. We investigate the singularities of such envelopes. Throughout
the remainder of the paper, we adopt the Lorentz-Minkowski space model of
the hyperbolic plane. For a 3 × 3-matrix A, we say that A is a member of the
Lorentz group SO0(1, 2) if detA > 0 and the induced linear mapping preserves
the Lorentz-Minkowski scalar product. The Lorentz group SO0(1, 2) canonically
acts on the hyperbolic plane. It is well known that this action is transitive,
so that the hyperbolic space is canonically identified with the homogeneous
space SO0(1, 2)/SO(2). It follows that any point of the hyperbolic space can
be identified with a matrix A ∈ SO0(1, 2) (cf., §3). Therefore, a one parameter
family of φ-slant pseudo-lines can be parametrized by using a curve in SO0(1, 2)
(cf., §3 and 4). Then we apply the theory of unfoldings of function germs (cf.,
[2]) and obtain a classification of singularities of the envelopes of the families
of φ-slant pseudo-lines (cf., Theorem 5.6). The singularities of the envelopes
are characterized by using invariants represented by the elements of Lie algebra
so(1, 2) of SO0(1, 2). In §6 we introduce the notion of φ-slant evolutes of unit
speed curves in the hyperbolic plane. If φ = π/2, then the φ-slant evolute is a
hyperbolic evolutes defined in [5]. Moreover, if φ = 0, then the φ-slant evolute
is called a horocyclic evolute. It means that the φ-slant evolutes depending on φ
connects the hyperbolic evolute and the horocyclic evolute of the curve in the
hyperbolic plane.

In [3] families of equal-angle envelopes in the Euclidean plane is investigated.

2 Basic concepts

We now present basic notions on Lorentz-Minkowski 3-space. Let R3 =
{(x0, x1, x2)|xi ∈ R, i = 0, 1, 2} be a 3-dimensional vector space. For any vec-
tors x = (x0, x1, x2),y = (y0, y1, y2) ∈ R3, the pseudo scalar product (or, the
Lorentz-Minkoski scalar product) of x and y is defined by 〈x,y〉 = −x0y0 +
x1y1 + x2y2. The space (R3, 〈, 〉) is called Lorentz-Minkowski 3-space which is
denoted by R3

1. We assume that R3
1 is time-oriented and choose e0 = (1, 0, 0) as

the future timelike vector.

We say that a non-zero vector x in R3
1 is spacelike, lightlike or timelike if

〈x,x〉 > 0,= 0 or < 0 respectively. The norm of the vector x ∈ R3
1 is defined
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by ‖x‖ =
√
|〈x,x〉|. Given a non-zero vector n ∈ R3

1 and a real number c, the
plane with pseudo normal n is given by

P (n, c) = {x ∈ R3
1|〈x,n〉 = c}.

We say that P (n, c) is spacelike , timelike or lightlike if n is timelike, spacelike
or lightlike respectively.

For any vectors x = (x0, x1, x2) , y = (y0, y1, y2) ∈ R3
1, pseudo exterior

product of x and y is defined to be

x ∧ y =

∣∣∣∣∣∣
−e0 e1 e2

x0 x1 x2

y0 y1 y2

∣∣∣∣∣∣ = (−(x1y2 − x2y1), x2y0 − x0y2, x0y1 − x1y0),

where {e0, e1, e2} is the canonical basis of R3
1. We also define Hyperbolic plane

by

H2
+(−1) = {x ∈ R3

1|〈x,x〉 = −1, x0 ≥ 1},

de Sitter 2-space by

S2
1 = {x ∈ R3

1|〈x,x〉 = 1 }

and the (open) lightcone at the origin by

LC∗ = {x = (x0, x1, x2) ∈ R3
1 |x0 6= 0, 〈x,x〉 = 0}.

We remark that H2
+(−1) is a Riemannian manifold if we consider the induced

metric from R3
1.

We now consider the plane defined by R2
0 = {(x0, x1, x2) ∈ R3

1 | x0 = 0}.
Since 〈, 〉|R2

0
is the canonical Euclidean scalar product, we call it Euclidean plane.

We adopt coordinates (x1, x2) of R2
0 instead of (0, x1, x2). On Euclidean plane

R2
0, we have the Poincaré disc model of the hyperbolic plane. We consider a unit

open disc D = {x ∈ R2
0 | ‖x‖ < 1} and consider a Riemannian metric

ds2 =
4(dx2

1 + dx2
2)

1− x2
1 − x2

2

.

Define a mapping Ψ : H2
+ −→ D by

Ψ(x0, x1, x2) =

(
x1

x0 + 1
,

x2

x0 + 1

)
.

It is known that Ψ is an isometry. Moreover, the Poinaré disc model is confor-
mally equivalent to the Euclidean plane.
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3 Pseudo-lines in the hyperbolic plane

We consider a curve defined by the intersection of the hyperbolic plane with
a plane in Lorentz-Minkowski 3-space, which is called a pseudo-circle if it is non-
empty. The image of a pseudo-circle by the isometry Ψ is a part of a Euclidean
circle in the Poincaré disc D. Let P (n, c) be a plane with a unit pseudo-normal
n. We call H2

+(−1) ∩ P (n, c) a circle, an equidistant curve and a horocyle if n
is timelike, spacelike or lightlike respectively. Moreover, if n is spacelike and
c = 0, then we call it a hyperbolic line (or, a geodesic). We remark that circles
are compact and other pseudo-circles are non-compact. Therefore, equidistant
curves or horocycles are called pseudo-lines.

We now consider a hyperbolic line

HL(n) = {x ∈ H2
+(−1) | 〈x,n〉 = 0}

and a horocycle

HC(`,−1) = {x ∈ H2
+(−1) | 〈x, `〉 = −1},

where ` is a lightlike vector. In general, a horocycle is defined by 〈x, `〉 = c for
a lightlike vector ` and c 6= 0. However, if we choose −`/c instead of `, then we
have the above equation. We now consider parametrizations of a horocycle and
a hyperbolic line respectively. For any a0 ∈ HC(`,−1), let a1 be a unit tangent
vector of HC(`,−1) at a0, so that 〈a1, `〉 = 0. We define a2 = a0 ∧ a1. Then
we have a pseudo orthonormal basis {a0,a1,a2} of R3

1 such that 〈a0,a0〉 = −1.
We remark that a0 is timelike and a1,a2 are spacelike. Since 〈` − a0,a0〉 =
〈`,a1〉 = 0, we have ±a2 = ` − a0. We choose the direction of a1 such that
a2 = `− a0. It follows that A = (ta0

ta1
ta2) ∈ SO0(1, 2), where

SO0(1, 2) =

A =

a0
0 a1

0 a2
0

a0
1 a1

1 a2
1

a0
2 a1

2 a2
2

∣∣ tAI1,2A = I1,2, a
0
0 ≥ 1


is the Lorentz group, where

I1,2 =

−1 0 0
0 1 0
0 0 1

 .

For any A = (ta0
ta1

ta2) ∈ SO0(1, 2), {a0,a1,a2} is a pseudo orthonormal
basis of R3

1. Then ` = a0 + a2 is lightlike. It follows that we have HC(`,−1) =
HC(a0+a2,−1) such that a0 ∈ HC(a0+a2,−1) and a1 is tangent to HC(a0+
a2,−1) at a0. Moreover, we have a0 ∈ HL(a2) and a1 is tangent to HL(a2) at
a0. Then we have the following lemma.
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Lemma 3.1. With the above notation, we have

(1) HC(`,−1) =

{
x = a0 + ra1 +

1

2
r2(a0 + a2) | r ∈ R

}
.

(2) HL(a2) = {
√
r2 + 1a0 + ra1 |r ∈ R}.

Proof. (1) For any x ∈ HC(`,−1), there exist α, β, γ ∈ R such that

x = αa0 + βa1 + γa2 (α ≥ 1).

We put β = r. Since 〈x, `〉 = −α + γ = −1, we have α = γ + 1. Moreover, we
also have 〈x,x〉 = −α2 + β2 + γ2 = −(γ + 1)2 + r2 + γ2 = −1, so that γ = 1

2r
2.

Thus,

x = a0 + ra1 +
1

2
r2(a0 + a2)

holds. For the converse, we can easily show that 〈x,x〉 = −1 and 〈x, `〉 = −1
for the above vector.

(2) For any x ∈ HL(a2), there exist α, β, γ ∈ R such that

x = αa0 + βa1 + γa2 (α ≥ 1).

Since 〈x,a2〉 = 0, γ = 0. If we put β = r, then we have 〈x,x〉 = −α2 +r2 = −1,
so that α = ±

√
r2 + 1. Since α ≥ 1, we have α =

√
r2 + 1. By a straightforward

calculation, the converse holds. �

It is known that a horocycle Ψ(HC(a0 + a2,−1)) in the Poincaré disc D
is a Euclidean circle tangent to the ideal boundary S1 = {x ∈ R2

0 | ‖x‖ = 1}.
It is also known that a hyperbolic line Ψ(HL(a2)) is a Euclidean circle or a
Euclidean line orthogonal to the ideal boundary (cf., [11]). By these reasons,
a horocycle is called a horizontal pseudo-line and a hyperbolic-line is called an
orthogonal pseudo-line respectively. We now define a φ-slant pseudo-line by

SL(nφ,− cosφ) =
{
x ∈ H2

+(−1) | 〈x,nφ〉 = − cosφ
}
,

where nφ(t) = cosφa0 + a2, φ ∈ [0, π/2]. Since 〈nφ,nφ〉 = sin2 φ > 0, nφ is
spacelike. Thus, SL(nφ,− cosφ) = H2

+(−1) ∩ P (nφ,− cosφ) is an equidistant
curve. Moreover, a0 ∈ SL(nφ,− cosφ) and a1 is tangent to SL(nφ,− cosφ)
at a0. Then SL(nπ/2,− cos(π/2)) = HL(a2) and SL(n0,− cos 0) = HC(a0 +
a2,−1). We have the following parametrization of a φ-slant pseudo-line.

Lemma 3.2. With the same notations as those in Lemma 3.1, we have

SL(nφ,− cosφ) =

{
a0 + ra1 +

√
r2 sin2 φ+ 1− 1

sin2 φ
(a0 + cosφa2)

∣∣ r ∈ R} .
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Proof. We consider a point x ∈ SL(nφ(t),− cosφ). Since {a0,a1,a2} is a
pseudo-orthonormal basis of R3

1, There exist α, β, γ ∈ R such that x = αa0 +
βa1 + γa2, (α ≥ 1). Therefore, we have

〈x,nφ〉 = 〈αa0 + βa1 + γa2, cosφa0 + a2〉
= − cosφα+ γ = − cosφ

Thus, we have γ = cosφ(α − 1). Moreover, 〈x,x〉 = −α2 + β2 + γ2 = −α2 +
β2 + cos2 φ(α− 1)2 = −1. It follows that

α =
1

sin2 φ
(±
√
β2 sin2 φ+ 1− cos2 φ).

If we choose α = − 1

sin2 φ
(

√
β2 sin2 φ+ 1 + cos2 φ), then α < 0. It contradicts

to α ≥ 1. Hence, we have

α =
1

sin2 φ
(

√
β2 sin2 φ+ 1− cos2 φ), γ =

cosφ

sin2 φ
(

√
β2 sin2 φ+ 1− 1).

We put β = r. Then

x =
1

sin2 φ
(

√
r2 sin2 φ+ 1− cos2 φ)a0 + ra1 +

cosφ

sin2 φ
(

√
r2 sin2 φ+ 1− 1)a2

= a0 + ra1 +
1

sin2 φ
(

√
r2 sin2 φ+ 1− 1)(a0 + cosφa2)

.

For the converse, we have 〈x,x〉 = −1, 〈x,nφ〉 = − cosφ and (
√
r2 sin2 φ+ 1−

cos2 φ)/ sin2 φ ≥ 1. Then x ∈ SL(nφ(t),− cosφ). �

Remark 3.3. We can show limφ→0(
√
r2 sin2 φ+ 1 − 1)/ sin2 φ = r2/2. In

[10] the third author showed that the angle between Ψ(SL(nφ)) and the ideal
boundary S1 of the Poincaré disc D at an intersection point is equal to φ. This
is the reason why we call SL(nφ) the φ-slant pseudo line.

4 One-parameter families of pseudo-lines

In this section we consider one-parameter families of pseudo-lines. By Lem-
mas 3.1 and 3.2, we consider a one-parameter family of pseudo-orthonormal
bases of R3

1. Let A : J −→ SO0(1, 2) be a C∞-mapping. If we write A(t) =
(ta0(t) ta1(t) ta2(t)), then {a0(t),a1(t),a2(t)} is a one-parameter family of
pseudo-orthonormal bases of R3

1. We call it a pseudo-orthonormal moving frame
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of R3
1. By the standard arguments, we can show the following Frenet-Serret type

formulae for the pseudo-orthonormal moving frame {a0(t),a1(t),a2(t)}:a′0(t)
a′1(t)
a′2(t)

 =

 0 c1(t) c2(t)
c1(t) 0 c3(t)
c2(t) −c3(t) 0

a0(t)
a1(t)
a2(t)

 .

Here, 
c1(t) = 〈a′0(t),a1(t)〉
c2(t) = 〈a′0(t),a2(t)〉
c3(t) = 〈a′1(t),a2(t)〉

Then, the matrix C(t) =

 0 c1(t) c2(t)
c1(t) 0 c3(t)
c2(t) −c3(t) 0

 is an element of Lie algebra

so(1, 2) of the Lorentz group SO0(1, 2). The above Frenet-Serret type formulae
are written by A′(t)A−1(t) = C(t). For any C∞-mapping C : J −→ so(1, 2) and
A0 ∈ SO0(1, 2), we can apply the unique existence theorem for systems of linear
ordinary differential equations, so that there exists a unique A(t) ∈ SO0(1, 2)
such that A(0) = A0 and A′(t)A−1(t) = C(t).

We now consider a mapping gφ : I × J −→ H2
+, where gφ(r, t) is defined by

a0(t) + ra1(t) +

√
r2 sin2 φ+ 1− 1

sin2 φ
(a0(t) + cosφa2(t)) if φ 6= 0,

a0(t) + ra1(t) +
r2

2
(a0(t) + a2(t)) if φ = 0,

where I, J ⊂ R are intervals. Then we have SL(nφ(t),− cosφ) = {gφ(I ×
{t}) | t ∈ J}, for nφ(t) = cosφa0(t) + a2(t). Thus gφ is a one-parameter family
of φ-slant pseudo-lines. Moreover, g0 is a one-parameter family of horocycles
and gπ/2 is a one-parameter family of hyperbolic lines.

5 Height functions

For a one parameter family of φ-slant pseudo-lines gφ, we define a family of
height functions H : J ×H2

+ −→ R by H(t,x) = 〈x,nφ(t)〉 + cosφ. Then we
have the following proposition.

Proposition 5.1. For gφ : I × J −→ H2
+, we have the following:

(1) H(t,x) = 0 if and only if there exists r ∈ I such that x = gφ(r, t),

(2) H(t,x) =
∂H

∂t
(t,x) = 0 if and only if there exists r ∈ I such that x = gφ(r, t)

and

−
√
r2 sin2 φ+ 1c2(t) + r (cosφc1(t)− c3(t)) = 0.
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Proof. (1) If H(t,x) = 0, then 〈x,nφ(t)〉 = − cosφ , x ∈ H2
+(−1). Thus, there

exists r ∈ I such that x = gφ(r, t). The converse also holds.
(2)Since H(t,x) = 0, there exists r ∈ I such that x = gφ(r, t). Suppose that
φ 6= 0. Since n′φ(t) = c2(t)a0(t) + (cosφc1(t)− c3(t))a1(t) + cosφc2(t)a2(t),

∂H

∂t
(t,x) = 〈x,n′φ(t)〉

=

〈√
r2 sin2 φ+ 1− cos2 φ

sin2 φ
a0(t) + ra1(t)

+
cosφ(

√
r2 sin2 φ+ 1− 1)

sin2 φ
a2(t), n′φ(t)

〉

= −
√
r2 sin2 φ+ 1c2(t) + r (cosφc1(t)− c3(t)) .

If φ = 0, then

∂H

∂t
(t,x) = 〈x,n′0(t)〉 = −c2(t) + r(c1(t)− c3(t)).

This completes the proof. �

We now review some general results on the singularity theory for families
of function germs. Detailed descriptions are found in the book[2]. Let F : (R×
Rr, (s0, x0))→ R be a function germ. We call F an r-parameter unfolding of f ,
where f(s) = Fx0(s, x0). We say that f has an Ak-singularity at s0 if f (p)(s0) =
0 for all 1 ≤ p ≤ k, and f (k+1)(s0) 6= 0. We also say that f has an A≥k-
singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F be an unfolding of
f and f(s) has an Ak-singularity (k ≥ 1) at s0. We denote the (k − 1)-jet of
the partial derivative ∂F

∂xi
at s0 by j(k−1)( ∂F∂xi (s, x0))(s0) =

∑k−1
j=0 αji(s − s0)j

for i = 1, . . . , r. Then F is called an R-versal unfolding if the k × r matrix of
coefficients (αji)j=0,...,k−1;i=1,...,r has rank k (k ≤ r). We introduce an important
set concerning the unfoldings relative to the above notions. The discriminant
set of F is the set

DF =

{
x ∈ Rr|there exists s suchthat F (s, x) =

∂F

∂s
(s, x) = 0

}
.

Then we have the following classification (cf., [2]).

Theorem 5.2. Let F : (R×Rr, (s0, x0))→ R be an r-parameter unfolding
of f(s) which has an Ak singularity at s0 (k = 1, 2). Suppose that F is an
R-versal unfolding.
(1) If k = 1, then DF is locally diffeomorphic to Rr−1.
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(2) If k = 2, then DF is locally diffeomorphic to C × Rr−2.
Here, C = {(x1, x2) ∈ (R2, 0) | x1 = t2, x2 = t3, t ∈ (R, 0) } is the ordinary
cusp.

By Proposition 5.1, the discriminant set DH of H is

DH =

{
gφ(r, t)

∣∣∣∣ −√r2 sin2 φ+ 1c2(t) + r (cosφc1(t)− c3(t)) = 0

}
.

Suppose c2(t) 6= 0, cosφc1(t)− c3(t) 6= 0. If

−
√
r2 sin2 φ+ 1c2(t) + r (cosφc1(t)− c3(t)) = 0,

then we have

r = ± c2(t)√
(cosφc1(t)− c3(t))2 − (sinφc2(t))2

.

If r = −c2(t)/
√

(cosφc1(t)− c3(t))2 − (sinφc2(t))2, then

−
√
r2 sin2 φ+ 1c2(t) + r (cosφc1(t)− c3(t)) 6= 0,

so that

r =
c2(t)√

(cosφc1(t)− c3(t))2 − (sinφc2(t))2
.

For φ = 0, we can also choose r = c2(t)/(c1(t)− c3(t)). Therefore, if φ 6= 0, then

DH =

{
gφ(r, t)

∣∣∣∣ r =
c2(t)√

(cosφc1(t)− c3(t))2 − (sinφc2(t))2
, c2(t) 6= 0,

cosφc1(t)− c3(t) 6= 0

}
.

Under the assumptions that c2(t) 6= 0 and cosφc1(t) − c3(t) 6= 0, we have a
g[φ] : J −→ H2

+, where g[φ](t) is defined by
a0(t) + r(t)a1(t) +

√
r(t)2 sin2 φ+ 1− 1

sin2 φ
(a0(t) + cosφa2(t)) if φ 6= 0,

a0(t) + r(t)a1(t) +
r(t)2

2
(a0(t) + a2(t)) if φ = 0.

Here

r(t) =


c2(t)√

(cosφc1(t)− c3(t))2 − (sinφc2(t))2
if φ 6= 0,

c2(t)

c1(t)− c3(t)
if φ = 0.
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Then g[φ](t) is a parametrization of DH and it is the envelope of the family of
φ-slant pseudo lines {SL(nφ(t),− cosφ)}t∈J .

In order to classify the singularities of g[φ], we apply the theory of unfoldings
to H. For any (r0, t0) ∈ I × J , we put x0 = gφ(r0, t0) and consider the function
germ hx0 : (J, t0) −→ (R, 0) defined by

hx0(t0) = H(t0,x0) = 〈x0,nφ(t0)〉+ cosφ.

Then the germ of H at (t0,x0) is a two-dimensional unfolding of hx0 . We now
try to search the conditions for hx0 has the Ak-singularity, (k = 1, 2). If φ 6= 0,
then we define two invariants

δ[φ]1(t) = −
√
r2 sin2 φ+ 1c′2 + r(cosφc′1 − c′3) + rc2(c1 − cosφc3)

−c1(cosφc1 − c3)− cosφc2
2

+

√
r2 sin2 φ+ 1− 1

sin2 φ
(cosφc1 − c3)(cosφc3 − c1),

δ[φ]2(t) = −
√
r2 sin2 φ+ 1c′′2

+r(cosφc′′1 − c′′3) + r
(
c2(c′1 − cosφc′3) + 2c′2(c1 − cosφc3)

)
−2c1(cosφc′1 − c′3)− c′1(cosφc1 − c3)− 3 cosφc2c

′
2

+

√
r2 sin2 φ+ 1− 1

sin2 φ

(
(cosφc1 − c3)(cosφc′3 − c′1)

+2(cosφc′1 − c′3)(cosφc3 − c1)
)
,

where ci = ci(t), (i = 1, 2, 3) and r = r(t). For φ = 0, we also define
δ[0]1(t) = −c′2 + r(c′1 − c′3)− c1(c1 − c3)− 1

2
c2

2,

δ[0]2(t) = −c′′2 + r(c′′1 − c′′3) + rc2(c′1 − c′3)− 2c1(c′1 − c′3)

−c′1(c1 − c3)− c2c
′
2 +

3

2
rc2(c′3 − c′1).

We remark that limφ→0 δ[φ]1(t) = δ[0]1(t) and limφ→0 δ[φ]2(t) = δ[0]2(t). We
expect that δ[φ]1(t) = δ[φ]2(t) = 0 if and only if δ[φ]1(t) = δ[φ]′1(t) = 0.
However, we can only show this relation for a special case (cf., §6).

Proposition 5.3. We have the following assertions:

(1) h′x0
(t0) = 0 always holds,

(2) h′′x0
(t0) = 0 if and only if δ[φ]1(t0) = 0,

(3) h′′x0
(t0) = h′′′x0

(t0) = 0 if and only if δ[φ]1(t0) = δ[φ]2(t0) = 0.

Proof. Assertion (1) holds by Proposition 5.1, (2).
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(2) Since

n′′φ = (n′φ)′

= c′2a0 + (cosφc′1 − c′3)a1 + cosφc′2a2 + (c1(cosφc1 − c3) + cosφc2
2)a0

+ c2(c1 − cosφc3)a1 +
(
c3(cosφc1 − c3) + c2

2

)
a2,

we have

∂2H

∂t2
(t,x) = 〈x,n′′φ〉

= −
√
s2 sin2 φ+ 1c′2 + s(cosφc′1 − c′3)

+
(cos2 φ−

√
s2 sin2 φ+ 1)

(
c1(cosφc1 − c3) + cosφc2

2

)
sin2 φ

+ sc2(c1 − cosφc3) +
cosφ(

√
s2 sin2 φ+ 1− 1)

(
c3(cosφc1 − c3) + c2

2

)
sin2 φ

= −
√
s2 sin2 φ+ 1c′2 + s(cosφc′1 − c′3)− c1(cosφc1 − c3)− cosφc2

2

+
(1−

√
s2 sin2 φ+ 1)

(
c1(cosφc1 − c3) + cosφc2

2

)
sin2 φ

+ sc2(c1 − cosφc3)

+
cosφ(

√
s2 sin2 φ+ 1− 1)

(
c3(cosφc1 − c3) + c2

2

)
sin2 φ

= −
√
s2 sin2 φ+ 1c′2 + s(cosφc′1 − c′3) + sc2(c1 − cosφc3)

− c1(cosφc1 − c3)− cosφc2
2 +

(
√
s2 sin2 φ+ 1− 1)(cosφc1 − c3)(cosφc3 − c1)

sin2 φ

= δ[φ]1(t).

(3) We have

n′′′φ = c′′2a0 + (cosφc′′1 − c′′3)a1 + cosφc′′2a2

+ 2
(
c′2a
′
0 + (cosφc′1 − c′3)a′1 + cosφc′2a

′
2

)
+ c2a

′′
0 + (cosφc1 − c3)a′′1 + cosφc2a

′′
2.

Here, a′0 = c1a1 + c2a2, a′1 = c1a0 + c3a2, a′2 = c2a0 − c3a1. Then
a′′0 = (c2

1 + c2
2)a0 + (c′1 − c2c3)a1 + (c′2 + c1c3)a2,

a′′1 = (c′1 + c2c3)a0 + (c2
1 − c2

3)a1 + (c′3 + c1c2)a2,

a′′2 = (c′2 − c1c3)a0 + (c1c2 − c′3)a1 + (c2
2 − c2

3)a2.
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Therefore,

n′′′φ = c′′2a0 + (cosφc′′1 − c′′3)a1 + cosφc′′2a2

+
(
c2(c2

1 + c2
2 − c2

3) + 2c1(cosφc′1 − c′3) + c′1(cosφc1 − c3) + 3 cosφc2c
′
2

)
a0

+
(
(cosφc1 − c3)(c2

1 + c2
2 − c2

3) + c2(c′1 − cosφc′3) + 2c′2(c1 − cosφc3)
)
a1

+
(
cosφc2(c2

1 + c2
2 − c2

3) + 2c3(cosφc′1 − c′3) + c′3(cosφc1 − c3) + 3c2c
′
2

)
a2.

By the calculation similar to case (2), we have

∂3H

∂t3
(t,x) = δ[φ]2(t).

For the case φ = 0, we also have the similar arguments to the above case.
This completes the proof. �

We have the following corollary.

Corollary 5.4. For hx0 as the above proposition, we have the following:

(1) hx0 has the A1-singularity at t = t0 if and only if δ[φ]1(t0) 6= 0.

(2) hx0 has the A2-singularity at t = t0 if and only if δ[φ]1(t0) = 0, δ[φ]2(t0) 6= 0.

Then we have the following proposition.

Proposition 5.5. For hx0 as the above proposition, we have the following:

(1) If hx0 has the A1-singularity, then H is a R-versal unfolding of hx0 ,

(2) If hx0 has the A2-singularity, then H is a R-versal unfolding of hx0 .

Proof. We consider a parametrization of H2
+ defined by

ψ(x2, x3) = (
√
x2

2 + x2
3 + 1, x2, x3).

Then we have

H(t, x2, x3) = H(t, ψ(x2, x3)) = 〈ψ(x2, x3),nφ(t)〉+ cosφ.

We write nφ(t) = (nφ1(t), nφ2(t), nφ3(t)) and have

∂H̃

∂xi
(t, x2, x3) = nφi(t)−

xi√
x2

2 + x2
3 + 1

nφ1(t) (i = 2, 3).

Moreover, we have

∂

∂t

∂H̃

∂xi
(t, x2, x3) = n′φi(t)−

xi√
x2

2 + x2
3 + 1

n′φ1(t).
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We write that x0 = (x01, x02, x03). Then the 1-jet of (∂H̃/∂xi)(t, x02, x03) at
t = t0 is

∂H̃

∂xi
(t, x02, x03) =

∂H̃

∂xi
(t0, x02, x03) +

1

2

∂

∂t

∂H̃

∂xi
(t0, x02, x03)(t− t0).

From now on, we remove (t0) for abbreviation.
(1) Since hx0 has the A1-singularity, we show that the rank of the matrix(

nφ2 −
x02√

x2
02 + x2

03 + 1
nφ1 nφ3 −

x03√
x2

02 + x2
03 + 1

nφ1

)
Is equal to one. If the rank is zero, then

nφ2 −
x02√

x2
02 + x2

03 + 1
nφ1 = − cosφx02√

x2
02 + x2

03 + 1
= 0

nφ3 −
x03√

x2
02 + x2

03 + 1
nφ1 = 1− cosφx03√

x2
02 + x2

03 + 1
= 0

Thus, we have the sum of the power of the both equations

0 =
cos2 φ(x2

02 + x2
03)− (x2

02 + x2
03 + 1)

x2
02 + x2

03 + 1

= −sin2 φ(x2
02 + x2

03) + 1

x2
02 + x2

03 + 1
6= 0.

This is a contradiction.
(2) Since hx0 has the A2-singularity, we show that the rank of the matrix

B =

nφ2 −
x02√

x2
02 + x2

03 + 1
nφ1 nφ3 −

x03√
x2

02 + x2
03 + 1

nφ1

n′φ2 −
x02√

x2
02 + x2

03 + 1
n′φ1 n′φ03 −

x03√
x2

02 + x2
03 + 1

n′φ1


is equal to two. Since n′φ = c2a0 + (cosφc1 − c3)a1 + cosφc2a2,

detB =

∣∣∣∣∣∣∣
nφ2 −

x02√
x2

02 + x2
03 + 1

nφ1 nφ3 −
x03√

x2
02 + x2

03 + 1
nφ1

n′φ2 −
x02√

x2
02 + x2

03 + 1
n′φ1 n′φ3 −

x03√
x2

02 + x2
03 + 1

n′φ1

∣∣∣∣∣∣∣
=

1√
x2

02 + x2
03 + 1

|x0, nφ, n
′
φ |

= −(cosφc1 − c3)
√
s2 sin2 φ+ 1 + s sin2 φc2√
x2

02 + x2
03 + 1

6= 0

.
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This means that the rank of B is two. �

It follows from Theorem 5.2 and Proposition 5.5, we have shown the following
theorem.

Theorem 5.6. Let {a0(t),a1(t),a2(t)}t∈J be pseudo-orthonormal moving
frame of R3

1. Suppose c2(t) 6= 0 and cosφc1(t) − c3(t) 6= 0. Then we have the
following:
(1) The envelope g[φ] of the family of φ-slant pseudo-lines SL(nφ,− cosφ) is
regular at a point t = t0 if and only if δ[φ]1(t0) 6= 0,
(2) The envelope g[φ] of the family of φ-slant pseudo-lines SL(nφ,− cosφ) at
a point t = t0 is locally diffeomorphic to the cusp C if and only if δ[φ]1(t0) =
0, δ[φ]2(t0) 6= 0.

6 Slant evolutes of hyperbolic plane curves

There is the notion of hyperbolic evolutes of hyperbolic plane curves [5]. Let
γ : J −→ H2

+ be a unit speed curve, where we use the parameter s ∈ J instead
of t. We call t(s) = γ ′(s) a unit tangent vector of γ at s. Since 〈γ(s),γ(s)〉 = −1
we have 〈γ(s), t(s)〉 = 0. We define e(s) = γ(s) ∧ t(s), which is called a unit
binormal vector of γ at s ∈ J. Then we have 〈e(s), e(s)〉 = 〈γ(s) ∧ t(s),γ(s) ∧
t(s)〉 = −〈γ(s),γ(s)〉〈t(s), t(s)〉+〈γ(s), t(s)〉2 = 1. Therefore, we have a pseudo-
orthonormal moving frame {γ(s), −e(s), t(s)} of R3

1, which is called a hyperbolic
Sabban frame along γ.

a0(s) = γ(s) , a1(s) = −e(s) , a2(s) = t(s)

Then we have the following Frenet-Serret type formulae:
γ ′(s) = t(s)

t′(s) = γ(s) + κg(s)e(s)

e′(s) = −κg(s)t(s),

where κg(s) = |γ(s), γ ′(s), γ ′′(s) | is called the geodesic curvature of γ. Since
a0(s) = γ(s) , a1(s) = −e(s) , a2(s) = t(s), we have c1(s) = 0, c2(s) = 1 and
c3(s) = −〈a1(s),a′2(s)〉 = 〈e(s), t′(s)〉 = 〈γ(s)∧t(s), t′(s)〉 = |γ(s), t(s), t′(s) | =
|γ(s), γ ′(s), γ ′′(s) | = κg(s). In this case, the family of φ-slant pseudo-lines
gφ : I × J −→ H2

+(−1) is

gφ(r, s) =


γ(s)− r e(s) +

√
r2 sin2 φ+ 1− 1

sin2 φ
(γ(s) + cosφt(s)) if φ 6= 0,

γ(s)− r e(s) +
r2

2
(γ(s) + t(s)) if φ = 0.
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Therefore, the envelope g[φ] : J −→ H2
+ of gφ is

g[φ](s) =


γ(s)− r(s) e(s) +

√
r(s)2 sin2 φ+ 1− 1

sin2 φ
(γ(s) + cosφt(s)) if φ 6= 0,

γ(s) +
1

κg(s)
e(s) +

1

2κ2
g(s)

(γ(s) + t(s)) if φ = 0,

where

r(s) =
1√

κ2
g(s)− sin2 φ

.

We call g[π/2] a hyperbolic evolute and g[0] a horocyclic evolute of γ, respectively.
For s0 ∈ J, we define

σ[φ]1(s0) = κ′g(s0) +
cosφ(κg(s0)2 − sin2 φ)√
κ2
g(s0)− sin2 φ− κg(s0)

,

σ[φ]2(s0) = κ′′g(s0) + cosφκ′g(s0)


√
κ2
g(s0)− sin2 φ+ 2κg(s0)√
κ2
g(s0)− sin2 φ− κg(s0)

 .

In this case, by a straightforward calculation, we can show that σ[φ]′1(s) =
σ[φ]2(s). Moreover, we can show that δ[φ]1(s) = δ[φ]2(s) = 0 if and only if
σ[φ]1(s) = σ[φ]′1(s) = 0. As special cases, we have

σ[0]1(s) = κ′g(s)−
1

2
κg(s), σ[π/2]1(s) = κ′g(s).

As a corollary of Theorem 5.6, we have the following theorem.

Theorem 6.1. Let γ : J −→ H2
+(−1) be a unit speed curve with κg(s)

2 −
sin2 φ > 0. Then we have the following:
(1) g[φ] is a regular curve at s = s0 if and only if σ[φ]1(s0) 6= 0,
(2) g[φ] is locally diffeomorphic to the cusp C at s = s0 if and only if

σ[φ]1(s0) = 0 and σ[φ]′1(s0) 6= 0.

As a special case, we have the following corollary.

Corollary 6.2. Let γ : J −→ H2
+(−1) be a unit speed curve.

(A) Suppose κ2
g > 1. Then we have the following (cf., [5]):

(1) The hyperbolic evolute g[π/2] is a regular curve at s = s0 if and only if
κ′g(s) 6= 0.

(2) The hyperbolic evolute g[π/2] is locally diffeomorphic to the cusp C at
s = s0 if and only if

κ′g(s0) 6= 0 and κ′′g(s0) 6= 0.
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(B) Suppose κg 6= 0. Then we have the following:

(1) The horocyclic evolute g[0] is a regular curve at s = s0 if and only if
κ′g(s)− 1

2κg(s) 6= 0.

(2) The horocyclic evolute g[0] is locally diffeomorphic to the cusp C at
s = s0 if and only if

κ′g(s0)− 1

2
κg(s0) = 0 and κ′′g(s0)− 1

2
κ′g(s0) 6= 0.

The hyperbolic evolute is given by

g[π/2](s) =


−1√

κ2
g(s)− 1

(κg(s)γ(s) + e(s)) if κg(s) < −1,

1√
κ2
g(s)− 1

(κg(s)γ(s)− e(s)) if κg(s) > 1

and the horocyclic evolute is

g[0](s) = γ(s) +
1

κg(s)
e(s) +

1

2κ2
g(s)

(γ(s) + t(s)).

In [5] hyperbolic evolutes was introduced and the classified the singularities.
Moreover, a de Sitter evolute of γ was introduced in [5], which is located in
the de Sitter 2-space. It corresponds to points of γ(s) with κ2

g(s) < 1. Here we
only consider families of hyperbolic lines, so that we do not consider de Sitter
evolutes. It is also shown in [5] that g[π/2](s) is a constant point if and only if
γ is a part of a circle. This condition is also equivalent to κ′g(s) ≡ 0. We have
a natural question what is γ when g[0](s) is a constant point. Of course it is
equivalent to

κ′g(s)−
1

2
κg(s) ≡ 0.

The solution of the above differential equation is κg(s) = ces/2 for a constant
real number c. The curvature tends to infinity, so that γ is a kind of spirals in

H2
+(−1). If c = 1/2, the curve with the curvature

1

2
cs/2 in the Euclidean plane

is called a Nielsen spiral. So we call γ with κg(s) = 1
2c
s/2 a hyperbolic Nielsen

spiral. We have two open problems as follows:

(1) What is γ with σ[φ]1(s) ≡ 0?

(2) For a general one-parameter family of pseudo-lines, is it always true that
δ[φ]1(t) = δ[φ]2(t) = 0 if and only if δ[φ]1(t) = δ[φ]′1(t) = 0?
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