Envelopes of slant lines in the hyperbolic plane

Takashi, ASHINO
Department of Mathematics, Hokkaido University
Hisayoshi ICHIWARA
Department of Mathematics, Hokkaido University
Shyuichi IZUMIYA
Department of Mathematics, Hokkaido University
izumiya@math.sci.hokudai.ac.jp

Received: 6.1.2015; accepted: 23.4.2015.

Abstract

In this paper we consider envelopes of families of equidistant curves and horocycles in the hyperbolic plane. As a special case, we consider a kind of evolutes as the envelope of normal equidistant families of a curve. The hyperbolic evolute of a curve is a special case. Moreover, a new notion of horocyclic evolutes of curves is induced. We investigate the singularities of such envelopes and introduce new invariants in the Lie algebra of the Lorentz group.

Keywords: slant geometry, Hyperbolic plane, horocycles, equidistant curves
MSC 2010 classification: primary 53B30, secondary 58K99, 53A35, 58C25

1 Introduction

We consider the Poincaré disk model D of the hyperbolic plane which is conformally equivalent to the Euclidean plane, so that a circle or a line in the Poincaré disk is also a circle or a line in the Euclidean plane. A geodesic in the Poincaré disk is a Euclidean circle or a line which is perpendicular to the ideal boundary (i.e., the unit circle). If we adopt geodesics as lines in the Poincaré disk, we have the model of the hyperbolic geometry. A horocycle is an Euclidean circle which is tangent to the ideal boundary. If we adopt horocycles as lines, we call this geometry a horocyclic geometry (a horospherical geometry for the higher dimensional case) $[4,6,7,8,9]$. We also have another kind of curves with the properties similar to those of Euclidean lines. A curve in the Poincaré disk is called an equidistant curve if it is a Euclidean circle or a Euclidean line whose intersection with the ideal boundary consists of two points. We define an equidistant curve depends on $\phi \in[0, \pi / 2]$ whose angles with the ideal boundary

[^0]at the intersection points are ϕ (cf., [10]). A geodesic is the special case with $\phi=\pi / 2$ and a horocycle is the case with $\phi=0$. Therefore, a geodesic is called a vertical pseudo-line and a horocycle a horizontal pseudo-line. For $\phi \in(0, \pi / 2]$, the corresponding pseudo-line is an equidistant curve, which we call a ϕ-slant pseudo-line. If we consider a ϕ-slant pseudo-line as a line, we call this geometry a slant geometry(cf., [1]).

In this paper we consider envelopes of families of ϕ-slant pseudo-lines in the general setting. We investigate the singularities of such envelopes. Throughout the remainder of the paper, we adopt the Lorentz-Minkowski space model of the hyperbolic plane. For a 3×3-matrix A, we say that A is a member of the Lorentz group $S O_{0}(1,2)$ if $\operatorname{det} A>0$ and the induced linear mapping preserves the Lorentz-Minkowski scalar product. The Lorentz group $S O_{0}(1,2)$ canonically acts on the hyperbolic plane. It is well known that this action is transitive, so that the hyperbolic space is canonically identified with the homogeneous space $S O_{0}(1,2) / S O(2)$. It follows that any point of the hyperbolic space can be identified with a matrix $A \in S O_{0}(1,2)$ (cf., $\left.\S 3\right)$. Therefore, a one parameter family of ϕ-slant pseudo-lines can be parametrized by using a curve in $S O_{0}(1,2)$ (cf., $\S 3$ and 4). Then we apply the theory of unfoldings of function germs (cf., [2]) and obtain a classification of singularities of the envelopes of the families of ϕ-slant pseudo-lines (cf., Theorem 5.6). The singularities of the envelopes are characterized by using invariants represented by the elements of Lie algebra $\mathfrak{s o}(1,2)$ of $S O_{0}(1,2)$. In $\S 6$ we introduce the notion of ϕ-slant evolutes of unit speed curves in the hyperbolic plane. If $\phi=\pi / 2$, then the ϕ-slant evolute is a hyperbolic evolutes defined in [5]. Moreover, if $\phi=0$, then the ϕ-slant evolute is called a horocyclic evolute. It means that the ϕ-slant evolutes depending on ϕ connects the hyperbolic evolute and the horocyclic evolute of the curve in the hyperbolic plane.

In [3] families of equal-angle envelopes in the Euclidean plane is investigated.

2 Basic concepts

We now present basic notions on Lorentz-Minkowski 3 -space. Let $\mathbb{R}^{3}=$ $\left\{\left(x_{0}, x_{1}, x_{2}\right) \mid x_{i} \in \mathbb{R}, i=0,1,2\right\}$ be a 3 -dimensional vector space. For any vectors $\boldsymbol{x}=\left(x_{0}, x_{1}, x_{2}\right), \boldsymbol{y}=\left(y_{0}, y_{1}, y_{2}\right) \in \mathbb{R}^{3}$, the pseudo scalar product (or, the Lorentz-Minkoski scalar product) of \boldsymbol{x} and \boldsymbol{y} is defined by $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=-x_{0} y_{0}+$ $x_{1} y_{1}+x_{2} y_{2}$. The space $\left(\mathbb{R}^{3},\langle\rangle,\right)$ is called Lorentz-Minkowski 3 -space which is denoted by \mathbb{R}_{1}^{3}. We assume that \mathbb{R}_{1}^{3} is time-oriented and choose $\boldsymbol{e}_{0}=(1,0,0)$ as the future timelike vector.

We say that a non-zero vector \boldsymbol{x} in \mathbb{R}_{1}^{3} is spacelike, lightlike or timelike if $\langle\boldsymbol{x}, \boldsymbol{x}\rangle>0,=0$ or <0 respectively. The norm of the vector $\boldsymbol{x} \in \mathbb{R}_{1}^{3}$ is defined
by $\|\boldsymbol{x}\|=\sqrt{|\langle\boldsymbol{x}, \boldsymbol{x}\rangle|}$. Given a non-zero vector $\boldsymbol{n} \in \mathbb{R}_{1}^{3}$ and a real number c, the plane with pseudo normal \boldsymbol{n} is given by

$$
P(\boldsymbol{n}, c)=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{3} \mid\langle\boldsymbol{x}, \boldsymbol{n}\rangle=c\right\} .
$$

We say that $P(\boldsymbol{n}, c)$ is spacelike, timelike or lightlike if \boldsymbol{n} is timelike, spacelike or lightlike respectively.

For any vectors $\boldsymbol{x}=\left(x_{0}, x_{1}, x_{2}\right), \boldsymbol{y}=\left(y_{0}, y_{1}, y_{2}\right) \in \mathbb{R}_{1}^{3}$, pseudo exterior product of \boldsymbol{x} and \boldsymbol{y} is defined to be

$$
\boldsymbol{x} \wedge \boldsymbol{y}=\left|\begin{array}{ccc}
-\boldsymbol{e}_{0} & \boldsymbol{e}_{1} & \boldsymbol{e}_{2} \\
x_{0} & x_{1} & x_{2} \\
y_{0} & y_{1} & y_{2}
\end{array}\right|=\left(-\left(x_{1} y_{2}-x_{2} y_{1}\right), x_{2} y_{0}-x_{0} y_{2}, x_{0} y_{1}-x_{1} y_{0}\right)
$$

where $\left\{\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ is the canonical basis of \mathbb{R}_{1}^{3}. We also define Hyperbolic plane by

$$
H_{+}^{2}(-1)=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{3} \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1, x_{0} \geq 1\right\}
$$

de Sitter 2-space by

$$
S_{1}^{2}=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{3} \mid\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1\right\}
$$

and the (open) lightcone at the origin by

$$
L C^{*}=\left\{\boldsymbol{x}=\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}_{1}^{3} \mid x_{0} \neq 0,\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0\right\}
$$

We remark that $H_{+}^{2}(-1)$ is a Riemannian manifold if we consider the induced metric from \mathbb{R}_{1}^{3}.

We now consider the plane defined by $\mathbb{R}_{0}^{2}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}_{1}^{3} \mid x_{0}=0\right\}$. Since $\left.\langle\rangle\right|_{,\mathbb{R}_{0}^{2}}$ is the canonical Euclidean scalar product, we call it Euclidean plane. We adopt coordinates $\left(x_{1}, x_{2}\right)$ of \mathbb{R}_{0}^{2} instead of $\left(0, x_{1}, x_{2}\right)$. On Euclidean plane \mathbb{R}_{0}^{2}, we have the Poincaré disc model of the hyperbolic plane. We consider a unit open disc $D=\left\{\boldsymbol{x} \in \mathbb{R}_{0}^{2} \mid\|\boldsymbol{x}\|<1\right\}$ and consider a Riemannian metric

$$
d s^{2}=\frac{4\left(d x_{1}^{2}+d x_{2}^{2}\right)}{1-x_{1}^{2}-x_{2}^{2}}
$$

Define a mapping $\Psi: H_{+}^{2} \longrightarrow D$ by

$$
\Psi\left(x_{0}, x_{1}, x_{2}\right)=\left(\frac{x_{1}}{x_{0}+1}, \frac{x_{2}}{x_{0}+1}\right)
$$

It is known that Ψ is an isometry. Moreover, the Poinaré disc model is conformally equivalent to the Euclidean plane.

3 Pseudo-lines in the hyperbolic plane

We consider a curve defined by the intersection of the hyperbolic plane with a plane in Lorentz-Minkowski 3-space, which is called a pseudo-circle if it is nonempty. The image of a pseudo-circle by the isometry Ψ is a part of a Euclidean circle in the Poincaré disc D. Let $P(\boldsymbol{n}, c)$ be a plane with a unit pseudo-normal \boldsymbol{n}. We call $H_{+}^{2}(-1) \cap P(\boldsymbol{n}, c)$ a circle, an equidistant curve and a horocyle if \boldsymbol{n} is timelike, spacelike or lightlike respectively. Moreover, if \boldsymbol{n} is spacelike and $c=0$, then we call it a hyperbolic line (or, a geodesic). We remark that circles are compact and other pseudo-circles are non-compact. Therefore, equidistant curves or horocycles are called pseudo-lines.

We now consider a hyperbolic line

$$
H L(\boldsymbol{n})=\left\{\boldsymbol{x} \in H_{+}^{2}(-1) \mid\langle\boldsymbol{x}, \boldsymbol{n}\rangle=0\right\}
$$

and a horocycle

$$
H C(\boldsymbol{\ell},-1)=\left\{\boldsymbol{x} \in H_{+}^{2}(-1) \mid\langle\boldsymbol{x}, \boldsymbol{\ell}\rangle=-1\right\}
$$

where $\boldsymbol{\ell}$ is a lightlike vector. In general, a horocycle is defined by $\langle\boldsymbol{x}, \boldsymbol{\ell}\rangle=c$ for a lightlike vector ℓ and $c \neq 0$. However, if we choose $-\boldsymbol{\ell} / c$ instead of ℓ, then we have the above equation. We now consider parametrizations of a horocycle and a hyperbolic line respectively. For any $\boldsymbol{a}_{0} \in H C(\boldsymbol{\ell},-1)$, let \boldsymbol{a}_{1} be a unit tangent vector of $H C(\boldsymbol{\ell},-1)$ at \boldsymbol{a}_{0}, so that $\left\langle\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{\ell}\right\rangle=0$. We define $\boldsymbol{a}_{2}=\boldsymbol{a}_{0} \wedge \boldsymbol{a}_{1}$. Then we have a pseudo orthonormal basis $\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$ of \mathbb{R}_{1}^{3} such that $\left\langle\boldsymbol{a}_{0}, \boldsymbol{a}_{0}\right\rangle=-1$. We remark that \boldsymbol{a}_{0} is timelike and $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ are spacelike. Since $\left\langle\boldsymbol{\ell}-\boldsymbol{a}_{0}, \boldsymbol{a}_{0}\right\rangle=$ $\left\langle\boldsymbol{\ell}, \boldsymbol{a}_{1}\right\rangle=0$, we have $\pm \boldsymbol{a}_{2}=\boldsymbol{\ell}-\boldsymbol{a}_{0}$. We choose the direction of \boldsymbol{a}_{1} such that $\boldsymbol{a}_{2}=\boldsymbol{\ell}-\boldsymbol{a}_{0}$. It follows that $A=\left({ }^{t} \boldsymbol{a}_{0}{ }^{t} \boldsymbol{a}_{1}{ }^{t} \boldsymbol{a}_{2}\right) \in S O_{0}(1,2)$, where

$$
S O_{0}(1,2)=\left\{\left.A=\left(\begin{array}{ccc}
a_{0}^{0} & a_{0}^{1} & a_{0}^{2} \\
a_{1}^{0} & a_{1}^{1} & a_{1}^{2} \\
a_{2}^{0} & a_{2}^{1} & a_{2}^{2}
\end{array}\right) \right\rvert\,{ }^{t} A I_{1,2} A=I_{1,2}, a_{0}^{0} \geq 1\right\}
$$

is the Lorentz group, where

$$
I_{1,2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

For any $A=\left({ }^{t} \boldsymbol{a}_{0}{ }^{t} \boldsymbol{a}_{1}{ }^{t} \boldsymbol{a}_{2}\right) \in S O_{0}(1,2),\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$ is a pseudo orthonormal basis of \mathbb{R}_{1}^{3}. Then $\boldsymbol{\ell}=\boldsymbol{a}_{0}+\boldsymbol{a}_{2}$ is lightlike. It follows that we have $H C(\boldsymbol{\ell},-1)=$ $H C\left(\boldsymbol{a}_{0}+\boldsymbol{a}_{2},-1\right)$ such that $\boldsymbol{a}_{0} \in H C\left(\boldsymbol{a}_{0}+\boldsymbol{a}_{2},-1\right)$ and \boldsymbol{a}_{1} is tangent to $H C\left(\boldsymbol{a}_{0}+\right.$ $\left.\boldsymbol{a}_{2},-1\right)$ at \boldsymbol{a}_{0}. Moreover, we have $\boldsymbol{a}_{0} \in H L\left(\boldsymbol{a}_{2}\right)$ and \boldsymbol{a}_{1} is tangent to $H L\left(\boldsymbol{a}_{2}\right)$ at \boldsymbol{a}_{0}. Then we have the following lemma.

Lemma 3.1. With the above notation, we have
(1) $H C(\boldsymbol{\ell},-1)=\left\{\left.\boldsymbol{x}=\boldsymbol{a}_{0}+r \boldsymbol{a}_{1}+\frac{1}{2} r^{2}\left(\boldsymbol{a}_{0}+\boldsymbol{a}_{2}\right) \right\rvert\, r \in \mathbb{R}\right\}$.
(2) $H L\left(\boldsymbol{a}_{2}\right)=\left\{\sqrt{r^{2}+1} \boldsymbol{a}_{0}+r \boldsymbol{a}_{1} \mid r \in \mathbb{R}\right\}$.

Proof. (1) For any $\boldsymbol{x} \in H C(\boldsymbol{\ell},-1)$, there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
\boldsymbol{x}=\alpha \boldsymbol{a}_{0}+\beta \boldsymbol{a}_{1}+\gamma \boldsymbol{a}_{2} \quad(\alpha \geq 1)
$$

We put $\beta=r$. Since $\langle\boldsymbol{x}, \ell\rangle=-\alpha+\gamma=-1$, we have $\alpha=\gamma+1$. Moreover, we also have $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\alpha^{2}+\beta^{2}+\gamma^{2}=-(\gamma+1)^{2}+r^{2}+\gamma^{2}=-1$, so that $\gamma=\frac{1}{2} r^{2}$. Thus,

$$
\boldsymbol{x}=\boldsymbol{a}_{0}+r \boldsymbol{a}_{1}+\frac{1}{2} r^{2}\left(\boldsymbol{a}_{0}+\boldsymbol{a}_{2}\right)
$$

holds. For the converse, we can easily show that $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1$ and $\langle\boldsymbol{x}, \boldsymbol{\ell}\rangle=-1$ for the above vector.
(2) For any $\boldsymbol{x} \in H L\left(\boldsymbol{a}_{2}\right)$, there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
\boldsymbol{x}=\alpha \boldsymbol{a}_{0}+\beta \boldsymbol{a}_{1}+\gamma \boldsymbol{a}_{2} \quad(\alpha \geq 1)
$$

Since $\left\langle\boldsymbol{x}, \boldsymbol{a}_{2}\right\rangle=0, \gamma=0$. If we put $\beta=r$, then we have $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\alpha^{2}+r^{2}=-1$, so that $\alpha= \pm \sqrt{r^{2}+1}$. Since $\alpha \geq 1$, we have $\alpha=\sqrt{r^{2}+1}$. By a straightforward calculation, the converse holds.

It is known that a horocycle $\Psi\left(H C\left(\boldsymbol{a}_{0}+\boldsymbol{a}_{2},-1\right)\right)$ in the Poincaré disc D is a Euclidean circle tangent to the ideal boundary $S^{1}=\left\{\boldsymbol{x} \in \mathbb{R}_{0}^{2} \mid\|\boldsymbol{x}\|=1\right\}$. It is also known that a hyperbolic line $\Psi\left(H L\left(\boldsymbol{a}_{2}\right)\right)$ is a Euclidean circle or a Euclidean line orthogonal to the ideal boundary (cf., [11]). By these reasons, a horocycle is called a horizontal pseudo-line and a hyperbolic-line is called an orthogonal pseudo-line respectively. We now define a ϕ-slant pseudo-line by

$$
S L\left(\boldsymbol{n}_{\phi},-\cos \phi\right)=\left\{\boldsymbol{x} \in H_{+}^{2}(-1) \mid\left\langle\boldsymbol{x}, \boldsymbol{n}_{\phi}\right\rangle=-\cos \phi\right\}
$$

where $\boldsymbol{n}_{\phi}(t)=\cos \phi \boldsymbol{a}_{0}+\boldsymbol{a}_{2}, \phi \in[0, \pi / 2]$. Since $\left\langle\boldsymbol{n}_{\phi}, \boldsymbol{n}_{\phi}\right\rangle=\sin ^{2} \phi>0, \boldsymbol{n}_{\phi}$ is spacelike. Thus, $S L\left(\boldsymbol{n}_{\phi},-\cos \phi\right)=H_{+}^{2}(-1) \cap P\left(\boldsymbol{n}_{\phi},-\cos \phi\right)$ is an equidistant curve. Moreover, $\boldsymbol{a}_{0} \in S L\left(\boldsymbol{n}_{\phi},-\cos \phi\right)$ and \boldsymbol{a}_{1} is tangent to $S L\left(\boldsymbol{n}_{\phi},-\cos \phi\right)$ at $\boldsymbol{a}_{\mathbf{0}}$. Then $S L\left(\boldsymbol{n}_{\pi / 2},-\cos (\pi / 2)\right)=H L\left(\boldsymbol{a}_{2}\right)$ and $S L\left(\boldsymbol{n}_{0},-\cos 0\right)=H C\left(\boldsymbol{a}_{0}+\right.$ $\left.\boldsymbol{a}_{2},-1\right)$. We have the following parametrization of a ϕ-slant pseudo-line.

Lemma 3.2. With the same notations as those in Lemma 3.1, we have

$$
S L\left(\boldsymbol{n}_{\phi},-\cos \phi\right)=\left\{\left.\boldsymbol{a}_{0}+r \boldsymbol{a}_{1}+\frac{\sqrt{r^{2} \sin ^{2} \phi+1}-1}{\sin ^{2} \phi}\left(\boldsymbol{a}_{0}+\cos \phi \boldsymbol{a}_{2}\right) \right\rvert\, r \in \mathbb{R}\right\}
$$

Proof. We consider a point $\boldsymbol{x} \in S L\left(\boldsymbol{n}_{\phi}(t),-\cos \phi\right)$. Since $\left\{\boldsymbol{a}_{0}, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$ is a pseudo-orthonormal basis of \mathbb{R}_{1}^{3}, There exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that $\boldsymbol{x}=\alpha \boldsymbol{a}_{0}+$ $\beta \boldsymbol{a}_{1}+\gamma \boldsymbol{a}_{2},(\alpha \geq 1)$. Therefore, we have

$$
\begin{aligned}
\left\langle\boldsymbol{x}, \boldsymbol{n}_{\phi}\right\rangle & =\left\langle\alpha \boldsymbol{a}_{0}+\beta \boldsymbol{a}_{1}+\gamma \boldsymbol{a}_{2}, \cos \phi \boldsymbol{a}_{0}+\boldsymbol{a}_{2}\right\rangle \\
& =-\cos \phi \alpha+\gamma=-\cos \phi
\end{aligned}
$$

Thus, we have $\gamma=\cos \phi(\alpha-1)$. Moreover, $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\alpha^{2}+\beta^{2}+\gamma^{2}=-\alpha^{2}+$ $\beta^{2}+\cos ^{2} \phi(\alpha-1)^{2}=-1$. It follows that

$$
\alpha=\frac{1}{\sin ^{2} \phi}\left(\pm \sqrt{\beta^{2} \sin ^{2} \phi+1}-\cos ^{2} \phi\right) .
$$

If we choose $\alpha=-\frac{1}{\sin ^{2} \phi}\left(\sqrt{\beta^{2} \sin ^{2} \phi+1}+\cos ^{2} \phi\right)$, then $\alpha<0$. It contradicts to $\alpha \geq 1$. Hence, we have

$$
\alpha=\frac{1}{\sin ^{2} \phi}\left(\sqrt{\beta^{2} \sin ^{2} \phi+1}-\cos ^{2} \phi\right), \gamma=\frac{\cos \phi}{\sin ^{2} \phi}\left(\sqrt{\beta^{2} \sin ^{2} \phi+1}-1\right) .
$$

We put $\beta=r$. Then

$$
\begin{aligned}
\boldsymbol{x} & =\frac{1}{\sin ^{2} \phi}\left(\sqrt{r^{2} \sin ^{2} \phi+1}-\cos ^{2} \phi\right) \boldsymbol{a}_{0}+r \boldsymbol{a}_{1}+\frac{\cos \phi}{\sin ^{2} \phi}\left(\sqrt{r^{2} \sin ^{2} \phi+1}-1\right) \boldsymbol{a}_{2} . \\
& =\boldsymbol{a}_{0}+r \boldsymbol{a}_{1}+\frac{1}{\sin ^{2} \phi}\left(\sqrt{r^{2} \sin ^{2} \phi+1}-1\right)\left(\boldsymbol{a}_{0}+\cos \phi \boldsymbol{a}_{2}\right)
\end{aligned}
$$

For the converse, we have $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1,\left\langle\boldsymbol{x}, \boldsymbol{n}_{\phi}\right\rangle=-\cos \phi$ and $\left(\sqrt{r^{2} \sin ^{2} \phi+1}-\right.$ $\left.\cos ^{2} \phi\right) / \sin ^{2} \phi \geq 1$. Then $\boldsymbol{x} \in S L\left(\boldsymbol{n}_{\phi}(t),-\cos \phi\right)$.

Remark 3.3. We can show $\lim _{\phi \rightarrow 0}\left(\sqrt{r^{2} \sin ^{2} \phi+1}-1\right) / \sin ^{2} \phi=r^{2} / 2$. In [10] the third author showed that the angle between $\Psi\left(S L\left(\boldsymbol{n}_{\phi}\right)\right)$ and the ideal boundary S^{1} of the Poincaré disc D at an intersection point is equal to ϕ. This is the reason why we call $S L\left(\boldsymbol{n}_{\phi}\right)$ the ϕ-slant pseudo line.

4 One-parameter families of pseudo-lines

In this section we consider one-parameter families of pseudo-lines. By Lemmas 3.1 and 3.2, we consider a one-parameter family of pseudo-orthonormal bases of \mathbb{R}_{1}^{3}. Let $A: J \longrightarrow S O_{0}(1,2)$ be a C^{∞}-mapping. If we write $A(t)=$ $\left({ }^{t} \boldsymbol{a}_{0}(t){ }^{t} \boldsymbol{a}_{1}(t){ }^{t} \boldsymbol{a}_{2}(t)\right)$, then $\left\{\boldsymbol{a}_{0}(t), \boldsymbol{a}_{1}(t), \boldsymbol{a}_{2}(t)\right\}$ is a one-parameter family of pseudo-orthonormal bases of \mathbb{R}_{1}^{3}. We call it a pseudo-orthonormal moving frame
of \mathbb{R}_{1}^{3}. By the standard arguments, we can show the following Frenet-Serret type formulae for the pseudo-orthonormal moving frame $\left\{\boldsymbol{a}_{0}(t), \boldsymbol{a}_{1}(t), \boldsymbol{a}_{2}(t)\right\}$:

$$
\left(\begin{array}{l}
\boldsymbol{a}_{0}^{\prime}(t) \\
\boldsymbol{a}_{1}^{\prime}(t) \\
\boldsymbol{a}_{2}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{ccc}
0 & c_{1}(t) & c_{2}(t) \\
c_{1}(t) & 0 & c_{3}(t) \\
c_{2}(t) & -c_{3}(t) & 0
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{a}_{0}(t) \\
\boldsymbol{a}_{1}(t) \\
\boldsymbol{a}_{2}(t)
\end{array}\right) .
$$

Here,

$$
\left\{\begin{array}{l}
c_{1}(t)=\left\langle\boldsymbol{a}_{0}^{\prime}(t), \boldsymbol{a}_{1}(t)\right\rangle \\
c_{2}(t)=\left\langle\boldsymbol{a}_{0}^{\prime}(t), \boldsymbol{a}_{2}(t)\right\rangle \\
c_{3}(t)=\left\langle\boldsymbol{a}_{1}^{\prime}(t), \boldsymbol{a}_{2}(t)\right\rangle
\end{array}\right.
$$

Then, the matrix $C(t)=\left(\begin{array}{ccc}0 & c_{1}(t) & c_{2}(t) \\ c_{1}(t) & 0 & c_{3}(t) \\ c_{2}(t) & -c_{3}(t) & 0\end{array}\right)$ is an element of Lie algebra $\mathfrak{s o}(1,2)$ of the Lorentz group $S O_{0}(1,2)$. The above Frenet-Serret type formulae are written by $A^{\prime}(t) A^{-1}(t)=C(t)$. For any C^{∞}-mapping $C: J \longrightarrow \mathfrak{s o}(1,2)$ and $A_{0} \in S O_{0}(1,2)$, we can apply the unique existence theorem for systems of linear ordinary differential equations, so that there exists a unique $A(t) \in S O_{0}(1,2)$ such that $A(0)=A_{0}$ and $A^{\prime}(t) A^{-1}(t)=C(t)$.

We now consider a mapping $g_{\phi}: I \times J \longrightarrow H_{+}^{2}$, where $g_{\phi}(r, t)$ is defined by

$$
\begin{cases}\boldsymbol{a}_{0}(t)+r \boldsymbol{a}_{1}(t)+\frac{\sqrt{r^{2} \sin ^{2} \phi+1}-1}{\sin ^{2} \phi}\left(\boldsymbol{a}_{0}(t)+\cos \phi \boldsymbol{a}_{2}(t)\right) \quad \text { if } \phi \neq 0 \\ \boldsymbol{a}_{0}(t)+r \boldsymbol{a}_{1}(t)+\frac{r^{2}}{2}\left(\boldsymbol{a}_{0}(t)+\boldsymbol{a}_{2}(t)\right) & \text { if } \phi=0\end{cases}
$$

where $I, J \subset \mathbb{R}$ are intervals. Then we have $S L\left(\boldsymbol{n}_{\phi}(t),-\cos \phi\right)=\left\{g_{\phi}(I \times\right.$ $\{t\}) \mid t \in J\}$, for $\boldsymbol{n}_{\phi}(t)=\cos \phi \boldsymbol{a}_{0}(t)+\boldsymbol{a}_{2}(t)$. Thus g_{ϕ} is a one-parameter family of ϕ-slant pseudo-lines. Moreover, g_{0} is a one-parameter family of horocycles and $g_{\pi / 2}$ is a one-parameter family of hyperbolic lines.

5 Height functions

For a one parameter family of ϕ-slant pseudo-lines g_{ϕ}, we define a family of height functions $H: J \times H_{+}^{2} \longrightarrow \mathbb{R}$ by $H(t, \boldsymbol{x})=\left\langle\boldsymbol{x}, \boldsymbol{n}_{\phi}(t)\right\rangle+\cos \phi$. Then we have the following proposition.

Proposition 5.1. For $g_{\phi}: I \times J \longrightarrow H_{+}^{2}$, we have the following:
(1) $H(t, \boldsymbol{x})=0$ if and only if there exists $r \in I$ such that $\boldsymbol{x}=g_{\phi}(r, t)$,
(2) $H(t, \boldsymbol{x})=\frac{\partial H}{\partial t}(t, \boldsymbol{x})=0$ if and only if there exists $r \in I$ such that $\boldsymbol{x}=g_{\phi}(r, t)$ and

$$
-\sqrt{r^{2} \sin ^{2} \phi+1} c_{2}(t)+r\left(\cos \phi c_{1}(t)-c_{3}(t)\right)=0
$$

Proof. (1) If $H(t, \boldsymbol{x})=0$, then $\left\langle\boldsymbol{x}, \boldsymbol{n}_{\phi}(t)\right\rangle=-\cos \phi, \boldsymbol{x} \in H_{+}^{2}(-1)$. Thus, there exists $r \in I$ such that $\boldsymbol{x}=g_{\phi}(r, t)$. The converse also holds.
(2)Since $H(t, \boldsymbol{x})=0$, there exists $r \in I$ such that $\boldsymbol{x}=g_{\phi}(r, t)$. Suppose that $\phi \neq 0$. Since $\boldsymbol{n}_{\phi}^{\prime}(t)=c_{2}(t) \boldsymbol{a}_{0}(t)+\left(\cos \phi c_{1}(t)-c_{3}(t)\right) \boldsymbol{a}_{1}(t)+\cos \phi c_{2}(t) \boldsymbol{a}_{2}(t)$,

$$
\begin{aligned}
& \frac{\partial H}{\partial t}(t, \boldsymbol{x})=\left\langle\boldsymbol{x}, \boldsymbol{n}_{\phi}^{\prime}(t)\right\rangle \\
& =\left\langle\frac{\sqrt{r^{2} \sin ^{2} \phi+1}-\cos ^{2} \phi}{\sin ^{2} \phi} \boldsymbol{a}_{0}(t)+r \boldsymbol{a}_{1}(t)\right. \\
& \left.\quad+\frac{\cos \phi\left(\sqrt{r^{2} \sin ^{2} \phi+1}-1\right)}{\sin ^{2} \phi} \boldsymbol{a}_{2}(t), \boldsymbol{n}_{\phi}^{\prime}(t)\right\rangle \\
& =-\sqrt{r^{2} \sin ^{2} \phi+1} c_{2}(t)+r\left(\cos \phi c_{1}(t)-c_{3}(t)\right) .
\end{aligned}
$$

If $\phi=0$, then

$$
\frac{\partial H}{\partial t}(t, \boldsymbol{x})=\left\langle\boldsymbol{x}, \boldsymbol{n}_{0}^{\prime}(t)\right\rangle=-c_{2}(t)+r\left(c_{1}(t)-c_{3}(t)\right) .
$$

This completes the proof.
We now review some general results on the singularity theory for families of function germs. Detailed descriptions are found in the book[2]. Let $F:(\mathbb{R} \times$ $\left.\mathbb{R}^{r},\left(s_{0}, x_{0}\right)\right) \rightarrow \mathbb{R}$ be a function germ. We call F an r-parameter unfolding of f, where $f(s)=F_{x_{0}}\left(s, x_{0}\right)$. We say that f has an A_{k}-singularity at s_{0} if $f^{(p)}\left(s_{0}\right)=$ 0 for all $1 \leq p \leq k$, and $f^{(k+1)}\left(s_{0}\right) \neq 0$. We also say that f has an $A_{\geq k^{-}}$ singularity at s_{0} if $f^{(p)}\left(s_{0}\right)=0$ for all $1 \leq p \leq k$. Let F be an unfolding of f and $f(s)$ has an A_{k}-singularity $(k \geq 1)$ at s_{0}. We denote the $(k-1)$-jet of the partial derivative $\frac{\partial F}{\partial x_{i}}$ at s_{0} by $j^{(k-1)}\left(\frac{\partial F}{\partial x_{i}}\left(s, x_{0}\right)\right)\left(s_{0}\right)=\sum_{j=0}^{k-1} \alpha_{j i}\left(s-s_{0}\right)^{j}$ for $i=1, \ldots, r$. Then F is called an \mathcal{R}-versal unfolding if the $k \times r$ matrix of coefficients $\left(\alpha_{j i}\right)_{j=0, \ldots, k-1 ; i=1, \ldots, r}$ has rank $k(k \leq r)$. We introduce an important set concerning the unfoldings relative to the above notions. The discriminant set of F is the set

$$
\mathcal{D}_{F}=\left\{x \in \mathbb{R}^{r} \mid \text { there exists } s \text { suchthat } F(s, x)=\frac{\partial F}{\partial s}(s, x)=0\right\} .
$$

Then we have the following classification (cf., [2]).
Theorem 5.2. Let $F:\left(\mathbb{R} \times \mathbb{R}^{r},\left(s_{0}, x_{0}\right)\right) \rightarrow \mathbb{R}$ be an r-parameter unfolding of $f(s)$ which has an A_{k} singularity at $s_{0}(k=1,2)$. Suppose that F is an \mathcal{R}-versal unfolding.
(1) If $k=1$, then \mathcal{D}_{F} is locally diffeomorphic to \mathbb{R}^{r-1}.
(2) If $k=2$, then \mathcal{D}_{F} is locally diffeomorphic to $C \times \mathbb{R}^{r-2}$.

Here, $C=\left\{\left(x_{1}, x_{2}\right) \in\left(\mathbb{R}^{2}, 0\right) \mid x_{1}=t^{2}, x_{2}=t^{3}, t \in(\mathbb{R}, 0)\right\}$ is the ordinary cusp.

By Proposition 5.1, the discriminant set \mathcal{D}_{H} of H is

$$
D_{H}=\left\{g_{\phi}(r, t) \mid-\sqrt{r^{2} \sin ^{2} \phi+1} c_{2}(t)+r\left(\cos \phi c_{1}(t)-c_{3}(t)\right)=0\right\} .
$$

Suppose $c_{2}(t) \neq 0, \cos \phi c_{1}(t)-c_{3}(t) \neq 0$. If

$$
-\sqrt{r^{2} \sin ^{2} \phi+1} c_{2}(t)+r\left(\cos \phi c_{1}(t)-c_{3}(t)\right)=0
$$

then we have

$$
r= \pm \frac{c_{2}(t)}{\sqrt{\left(\cos \phi c_{1}(t)-c_{3}(t)\right)^{2}-\left(\sin \phi c_{2}(t)\right)^{2}}} .
$$

If $r=-c_{2}(t) / \sqrt{\left(\cos \phi c_{1}(t)-c_{3}(t)\right)^{2}-\left(\sin \phi c_{2}(t)\right)^{2}}$, then

$$
-\sqrt{r^{2} \sin ^{2} \phi+1} c_{2}(t)+r\left(\cos \phi c_{1}(t)-c_{3}(t)\right) \neq 0
$$

so that

$$
r=\frac{c_{2}(t)}{\sqrt{\left(\cos \phi c_{1}(t)-c_{3}(t)\right)^{2}-\left(\sin \phi c_{2}(t)\right)^{2}}}
$$

For $\phi=0$, we can also choose $r=c_{2}(t) /\left(c_{1}(t)-c_{3}(t)\right)$. Therefore, if $\phi \neq 0$, then

$$
\begin{aligned}
& D_{H}=\left\{g_{\phi}(r, t) \left\lvert\, r=\frac{c_{2}(t)}{\sqrt{\left(\cos \phi c_{1}(t)-c_{3}(t)\right)^{2}-\left(\sin \phi c_{2}(t)\right)^{2}}}\right., c_{2}(t) \neq 0,\right. \\
&\left.\cos \phi c_{1}(t)-c_{3}(t) \neq 0\right\} .
\end{aligned}
$$

Under the assumptions that $c_{2}(t) \neq 0$ and $\cos \phi c_{1}(t)-c_{3}(t) \neq 0$, we have a $g[\phi]: J \longrightarrow H_{+}^{2}$, where $g[\phi](t)$ is defined by

$$
\begin{cases}\boldsymbol{a}_{0}(t)+r(t) \boldsymbol{a}_{1}(t)+\frac{\sqrt{r(t)^{2} \sin ^{2} \phi+1}-1}{\sin ^{2} \phi}\left(\boldsymbol{a}_{0}(t)+\cos \phi \boldsymbol{a}_{2}(t)\right) & \text { if } \phi \neq 0, \\ \boldsymbol{a}_{0}(t)+r(t) \boldsymbol{a}_{1}(t)+\frac{r(t)^{2}}{2}\left(\boldsymbol{a}_{0}(t)+\boldsymbol{a}_{2}(t)\right) & \text { if } \phi=0 .\end{cases}
$$

Here

$$
r(t)= \begin{cases}\frac{c_{2}(t)}{\sqrt{\left(\cos \phi c_{1}(t)-c_{3}(t)\right)^{2}-\left(\sin \phi c_{2}(t)\right)^{2}}} & \text { if } \phi \neq 0 \\ \frac{c_{2}(t)}{c_{1}(t)-c_{3}(t)} \quad \text { if } \phi=0\end{cases}
$$

Then $g[\phi](t)$ is a parametrization of D_{H} and it is the envelope of the family of ϕ-slant pseudo lines $\left\{S L\left(\boldsymbol{n}_{\phi}(t),-\cos \phi\right)\right\}_{t \in J}$.

In order to classify the singularities of $g[\phi]$, we apply the theory of unfoldings to H. For any $\left(r_{0}, t_{0}\right) \in I \times J$, we put $\boldsymbol{x}_{0}=g_{\phi}\left(r_{0}, t_{0}\right)$ and consider the function germ $h_{\boldsymbol{x}_{0}}:\left(J, t_{0}\right) \longrightarrow(\mathbb{R}, 0)$ defined by

$$
h_{\boldsymbol{x}_{0}}\left(t_{0}\right)=H\left(t_{0}, \boldsymbol{x}_{0}\right)=\left\langle\boldsymbol{x}_{0}, \boldsymbol{n}_{\boldsymbol{\phi}}\left(t_{0}\right)\right\rangle+\cos \phi
$$

Then the germ of H at $\left(t_{0}, \boldsymbol{x}_{0}\right)$ is a two-dimensional unfolding of $h_{\boldsymbol{x}_{0}}$. We now try to search the conditions for $h_{\boldsymbol{x}_{0}}$ has the $A_{k^{-}}$-singularity, $(k=1,2)$. If $\phi \neq 0$, then we define two invariants

$$
\left\{\begin{aligned}
\delta[\phi]_{1}(t)= & -\sqrt{r^{2} \sin ^{2} \phi+1} c_{2}^{\prime}+r\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right)+r c_{2}\left(c_{1}-\cos \phi c_{3}\right) \\
& -c_{1}\left(\cos \phi c_{1}-c_{3}\right)-\cos \phi c_{2}^{2} \\
& +\frac{\sqrt{r^{2} \sin ^{2} \phi+1}-1}{\sin ^{2} \phi}\left(\cos \phi c_{1}-c_{3}\right)\left(\cos \phi c_{3}-c_{1}\right) \\
\delta[\phi]_{2}(t)= & -\sqrt{r^{2} \sin ^{2} \phi+1} c_{2}^{\prime \prime} \\
& +r\left(\cos \phi c_{1}^{\prime \prime}-c_{3}^{\prime \prime}\right)+r\left(c_{2}\left(c_{1}^{\prime}-\cos \phi c_{3}^{\prime}\right)+2 c_{2}^{\prime}\left(c_{1}-\cos \phi c_{3}\right)\right) \\
& -2 c_{1}\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right)-c_{1}^{\prime}\left(\cos \phi c_{1}-c_{3}\right)-3 \cos \phi c_{2} c_{2}^{\prime} \\
& +\frac{\sqrt{r^{2} \sin ^{2} \phi+1}-1}{\sin ^{2} \phi}\left(\left(\cos \phi c_{1}-c_{3}\right)\left(\cos \phi c_{3}^{\prime}-c_{1}^{\prime}\right)\right. \\
& \left.+2\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right)\left(\cos \phi c_{3}-c_{1}\right)\right)
\end{aligned}\right.
$$

where $c_{i}=c_{i}(t),(i=1,2,3)$ and $r=r(t)$. For $\phi=0$, we also define

$$
\left\{\begin{aligned}
\delta[0]_{1}(t)= & -c_{2}^{\prime}+r\left(c_{1}^{\prime}-c_{3}^{\prime}\right)-c_{1}\left(c_{1}-c_{3}\right)-\frac{1}{2} c_{2}^{2} \\
\delta[0]_{2}(t)= & -c_{2}^{\prime \prime}+r\left(c_{1}^{\prime \prime}-c_{3}^{\prime \prime}\right)+r c_{2}\left(c_{1}^{\prime}-c_{3}^{\prime}\right)-2 c_{1}\left(c_{1}^{\prime}-c_{3}^{\prime}\right) \\
& -c_{1}^{\prime}\left(c_{1}-c_{3}\right)-c_{2} c_{2}^{\prime}+\frac{3}{2} r c_{2}\left(c_{3}^{\prime}-c_{1}^{\prime}\right)
\end{aligned}\right.
$$

We remark that $\lim _{\phi \rightarrow 0} \delta[\phi]_{1}(t)=\delta[0]_{1}(t)$ and $\lim _{\phi \rightarrow 0} \delta[\phi]_{2}(t)=\delta[0]_{2}(t)$. We expect that $\delta[\phi]_{1}(t)=\delta[\phi]_{2}(t)=0$ if and only if $\delta[\phi]_{1}(t)=\delta[\phi]_{1}^{\prime}(t)=0$. However, we can only show this relation for a special case (cf., $\S 6)$.

Proposition 5.3. We have the following assertions:
(1) $h_{\boldsymbol{x}_{0}}^{\prime}\left(t_{0}\right)=0$ always holds,
(2) $h_{\boldsymbol{x}_{0}}^{\prime \prime}\left(t_{0}\right)=0$ if and only if $\delta[\phi]_{1}\left(t_{0}\right)=0$,
(3) $h_{\boldsymbol{x}_{0}}^{\prime \prime}\left(t_{0}\right)=h_{\boldsymbol{x}_{0}}^{\prime \prime \prime}\left(t_{0}\right)=0$ if and only if $\delta[\phi]_{1}\left(t_{0}\right)=\delta[\phi]_{2}\left(t_{0}\right)=0$.

Proof. Assertion (1) holds by Proposition 5.1, (2).
(2) Since

$$
\begin{aligned}
\boldsymbol{n}_{\phi}^{\prime \prime}= & \left(\boldsymbol{n}_{\phi}^{\prime}\right)^{\prime} \\
= & c_{2}^{\prime} \boldsymbol{a}_{0}+\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right) \boldsymbol{a}_{1}+\cos \phi c_{2}^{\prime} \boldsymbol{a}_{2}+\left(c_{1}\left(\cos \phi c_{1}-c_{3}\right)+\cos \phi c_{2}^{2}\right) \boldsymbol{a}_{0} \\
& +c_{2}\left(c_{1}-\cos \phi c_{3}\right) \boldsymbol{a}_{1}+\left(c_{3}\left(\cos \phi c_{1}-c_{3}\right)+c_{2}^{2}\right) \boldsymbol{a}_{2}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{\partial^{2} H}{\partial t^{2}}(t, \boldsymbol{x})=\left\langle\boldsymbol{x}, \boldsymbol{n}_{\phi}^{\prime \prime}\right\rangle \\
& =-\sqrt{s^{2} \sin ^{2} \phi+1} c_{2}^{\prime}+s\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right) \\
& +\frac{\left(\cos ^{2} \phi-\sqrt{s^{2} \sin ^{2} \phi+1}\right)\left(c_{1}\left(\cos \phi c_{1}-c_{3}\right)+\cos \phi c_{2}^{2}\right)}{\sin ^{2} \phi} \\
& +s c_{2}\left(c_{1}-\cos \phi c_{3}\right)+\frac{\cos \phi\left(\sqrt{s^{2} \sin ^{2} \phi+1}-1\right)\left(c_{3}\left(\cos \phi c_{1}-c_{3}\right)+c_{2}^{2}\right)}{\sin ^{2} \phi} \\
& =-\sqrt{s^{2} \sin ^{2} \phi+1} c_{2}^{\prime}+s\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right)-c_{1}\left(\cos \phi c_{1}-c_{3}\right)-\cos \phi c_{2}^{2} \\
& +\frac{\left(1-\sqrt{s^{2} \sin ^{2} \phi+1}\right)\left(c_{1}\left(\cos \phi c_{1}-c_{3}\right)+\cos \phi c_{2}^{2}\right)}{\sin ^{2} \phi}+s c_{2}\left(c_{1}-\cos \phi c_{3}\right) \\
& \sin ^{2} \phi \\
& +\frac{\cos \phi\left(\sqrt{s^{2} \sin ^{2} \phi+1}-1\right)\left(c_{3}\left(\cos \phi c_{1}-c_{3}\right)+c_{2}^{2}\right)}{\sin { }^{2} \phi} \\
& =-\sqrt{s^{2} \sin ^{2} \phi+1} c_{2}^{\prime}+s\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right)+s c_{2}\left(c_{1}-\cos \phi c_{3}\right) \\
& -c_{1}\left(\cos \phi c_{1}-c_{3}\right)-\cos \phi c_{2}^{2}+\frac{\left(\sqrt{s^{2} \sin ^{2} \phi+1}-1\right)\left(\cos \phi c_{1}-c_{3}\right)\left(\cos \phi c_{3}-c_{1}\right)}{} \\
& =\delta[\phi]_{1}(t)
\end{aligned}
$$

(3) We have
$\boldsymbol{n}_{\phi}^{\prime \prime \prime}=c_{2}^{\prime \prime} \boldsymbol{a}_{0}+\left(\cos \phi c_{1}^{\prime \prime}-c_{3}^{\prime \prime}\right) \boldsymbol{a}_{1}+\cos \phi c_{2}^{\prime \prime} \boldsymbol{a}_{2}$
$+2\left(c_{2}^{\prime} \boldsymbol{a}_{0}^{\prime}+\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right) \boldsymbol{a}_{1}^{\prime}+\cos \phi c_{2}^{\prime} \boldsymbol{a}_{2}^{\prime}\right)+c_{2} \boldsymbol{a}_{0}^{\prime \prime}+\left(\cos \phi c_{1}-c_{3}\right) \boldsymbol{a}_{1}^{\prime \prime}+\cos \phi c_{2} \boldsymbol{a}_{2}^{\prime \prime}$.
Here, $\boldsymbol{a}_{0}^{\prime}=c_{1} \boldsymbol{a}_{1}+c_{2} \boldsymbol{a}_{2}, \quad \boldsymbol{a}_{1}^{\prime}=c_{1} \boldsymbol{a}_{0}+c_{3} \boldsymbol{a}_{2}, \quad \boldsymbol{a}_{2}^{\prime}=c_{2} \boldsymbol{a}_{0}-c_{3} \boldsymbol{a}_{1}$. Then

$$
\left\{\begin{array}{l}
\boldsymbol{a}_{0}^{\prime \prime}=\left(c_{1}^{2}+c_{2}^{2}\right) \boldsymbol{a}_{0}+\left(c_{1}^{\prime}-c_{2} c_{3}\right) \boldsymbol{a}_{1}+\left(c_{2}^{\prime}+c_{1} c_{3}\right) \boldsymbol{a}_{2} \\
\boldsymbol{a}_{1}^{\prime \prime}=\left(c_{1}^{\prime}+c_{2} c_{3}\right) \boldsymbol{a}_{0}+\left(c_{1}^{2}-c_{3}^{2}\right) \boldsymbol{a}_{1}+\left(c_{3}^{\prime}+c_{1} c_{2}\right) \boldsymbol{a}_{2} \\
\boldsymbol{a}_{2}^{\prime \prime}=\left(c_{2}^{\prime}-c_{1} c_{3}\right) \boldsymbol{a}_{0}+\left(c_{1} c_{2}-c_{3}^{\prime}\right) \boldsymbol{a}_{1}+\left(c_{2}^{2}-c_{3}^{2}\right) \boldsymbol{a}_{2}
\end{array}\right.
$$

Therefore,

$$
\begin{aligned}
& \boldsymbol{n}_{\phi}^{\prime \prime \prime}=c_{2}^{\prime \prime} \boldsymbol{a}_{0}+\left(\cos \phi c_{1}^{\prime \prime}-c_{3}^{\prime \prime}\right) \boldsymbol{a}_{1}+\cos \phi c_{2}^{\prime \prime} \boldsymbol{a}_{2} \\
& +\left(c_{2}\left(c_{1}^{2}+c_{2}^{2}-c_{3}^{2}\right)+2 c_{1}\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right)+c_{1}^{\prime}\left(\cos \phi c_{1}-c_{3}\right)+3 \cos \phi c_{2} c_{2}^{\prime}\right) \boldsymbol{a}_{0} \\
& +\left(\left(\cos \phi c_{1}-c_{3}\right)\left(c_{1}^{2}+c_{2}^{2}-c_{3}^{2}\right)+c_{2}\left(c_{1}^{\prime}-\cos \phi c_{3}^{\prime}\right)+2 c_{2}^{\prime}\left(c_{1}-\cos \phi c_{3}\right)\right) \boldsymbol{a}_{1} \\
& +\left(\cos \phi c_{2}\left(c_{1}^{2}+c_{2}^{2}-c_{3}^{2}\right)+2 c_{3}\left(\cos \phi c_{1}^{\prime}-c_{3}^{\prime}\right)+c_{3}^{\prime}\left(\cos \phi c_{1}-c_{3}\right)+3 c_{2} c_{2}^{\prime}\right) \boldsymbol{a}_{2} .
\end{aligned}
$$

By the calculation similar to case (2), we have

$$
\frac{\partial^{3} H}{\partial t^{3}}(t, \boldsymbol{x})=\delta[\phi]_{2}(t) .
$$

For the case $\phi=0$, we also have the similar arguments to the above case. This completes the proof.

We have the following corollary.
Corollary 5.4. For $h_{x_{0}}$ as the above proposition, we have the following:
(1) $h_{\boldsymbol{x}_{0}}$ has the A_{1}-singularity at $t=t_{0}$ if and only if $\delta[\phi]_{1}\left(t_{0}\right) \neq 0$.
(2) $h_{\boldsymbol{x}_{0}}$ has the A_{2}-singularity at $t=t_{0}$ if and only if $\delta[\phi]_{1}\left(t_{0}\right)=0, \delta[\phi]_{2}\left(t_{0}\right) \neq 0$.

Then we have the following proposition.
Proposition 5.5. For $h_{x_{0}}$ as the above proposition, we have the following:
(1) If $h_{\boldsymbol{x}_{0}}$ has the A_{1}-singularity, then H is a \mathcal{R}-versal unfolding of $h_{\boldsymbol{x}_{0}}$,
(2) If $h_{x_{0}}$ has the A_{2}-singularity, then H is a \mathcal{R}-versal unfolding of $h_{x_{0}}$.

Proof. We consider a parametrization of H_{+}^{2} defined by

$$
\psi\left(x_{2}, x_{3}\right)=\left(\sqrt{x_{2}^{2}+x_{3}^{2}+1}, x_{2}, x_{3}\right) .
$$

Then we have

$$
H\left(t, x_{2}, x_{3}\right)=H\left(t, \psi\left(x_{2}, x_{3}\right)\right)=\left\langle\psi\left(x_{2}, x_{3}\right), \boldsymbol{n}_{\phi}(t)\right\rangle+\cos \phi .
$$

We write $\boldsymbol{n}_{\phi}(t)=\left(n_{\phi 1}(t), n_{\phi 2}(t), n_{\phi 3}(t)\right)$ and have

$$
\frac{\partial \tilde{H}}{\partial x_{i}}\left(t, x_{2}, x_{3}\right)=n_{\phi i}(t)-\frac{x_{i}}{\sqrt{x_{2}^{2}+x_{3}^{2}+1}} n_{\phi 1}(t) \quad(i=2,3) .
$$

Moreover, we have

$$
\frac{\partial}{\partial t} \frac{\partial \tilde{H}}{\partial x_{i}}\left(t, x_{2}, x_{3}\right)=n_{\phi i}^{\prime}(t)-\frac{x_{i}}{\sqrt{x_{2}^{2}+x_{3}^{2}+1}} n_{\phi 1}^{\prime}(t) .
$$

We write that $\boldsymbol{x}_{0}=\left(x_{01}, x_{02}, x_{03}\right)$. Then the 1-jet of $\left(\partial \tilde{H} / \partial x_{i}\right)\left(t, x_{02}, x_{03}\right)$ at $t=t_{0}$ is

$$
\frac{\partial \tilde{H}}{\partial x_{i}}\left(t, x_{02}, x_{03}\right)=\frac{\partial \tilde{H}}{\partial x_{i}}\left(t_{0}, x_{02}, x_{03}\right)+\frac{1}{2} \frac{\partial}{\partial t} \frac{\partial \tilde{H}}{\partial x_{i}}\left(t_{0}, x_{02}, x_{03}\right)\left(t-t_{0}\right)
$$

From now on, we remove $\left(t_{0}\right)$ for abbreviation.
(1) Since $h_{x_{0}}$ has the A_{1}-singularity, we show that the rank of the matrix

$$
\left(\begin{array}{cc}
n_{\phi 2}-\frac{x_{02}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1} & n_{\phi 3}-\frac{x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1}
\end{array}\right)
$$

Is equal to one. If the rank is zero, then

$$
\begin{gathered}
n_{\phi 2}-\frac{x_{02}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1}=-\frac{\cos \phi x_{02}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}}=0 \\
n_{\phi 3}-\frac{x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1}=1-\frac{\cos \phi x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}}=0
\end{gathered}
$$

Thus, we have the sum of the power of the both equations

$$
\begin{aligned}
0 & =\frac{\cos ^{2} \phi\left(x_{02}^{2}+x_{03}^{2}\right)-\left(x_{02}^{2}+x_{03}^{2}+1\right)}{x_{02}^{2}+x_{03}^{2}+1} \\
& =-\frac{\sin ^{2} \phi\left(x_{02}^{2}+x_{03}^{2}\right)+1}{x_{02}^{2}+x_{03}^{2}+1} \neq 0
\end{aligned}
$$

This is a contradiction.
(2) Since $h_{\boldsymbol{x}_{0}}$ has the A_{2}-singularity, we show that the rank of the matrix

$$
B=\left(\begin{array}{ll}
n_{\phi 2}-\frac{x_{02}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1} & n_{\phi 3}-\frac{x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1} \\
n_{\phi 2}^{\prime}-\frac{x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1}^{\prime} & n_{\phi 03}^{\prime}-\frac{x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1}^{\prime}
\end{array}\right)
$$

is equal to two. Since $\boldsymbol{n}_{\phi}^{\prime}=c_{2} \boldsymbol{a}_{0}+\left(\cos \phi c_{1}-c_{3}\right) \boldsymbol{a}_{1}+\cos \phi c_{2} \boldsymbol{a}_{2}$,

$$
\begin{aligned}
\operatorname{det} B & =\left|\begin{array}{ll}
n_{\phi 2}-\frac{x_{02}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1} & n_{\phi 3}-\frac{x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1} \\
n_{\phi 2}^{\prime}-\frac{x_{03}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1}^{\prime} & n_{\phi 3}^{\prime}-\frac{1}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} n_{\phi 1}^{\prime}
\end{array}\right| \\
& =\frac{1}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}}\left|\boldsymbol{x}_{0}, \boldsymbol{n}_{\phi}, \boldsymbol{n}_{\phi}^{\prime}\right| \\
& =-\frac{\left(\cos \phi c_{1}-c_{3}\right) \sqrt{s^{2} \sin ^{2} \phi+1}+s \sin ^{2} \phi c_{2}}{\sqrt{x_{02}^{2}+x_{03}^{2}+1}} \neq 0
\end{aligned} .
$$

This means that the rank of B is two.
It follows from Theorem 5.2 and Proposition 5.5, we have shown the following theorem.

Theorem 5.6. Let $\left\{\boldsymbol{a}_{0}(t), \boldsymbol{a}_{1}(t), \boldsymbol{a}_{2}(t)\right\}_{t \in J}$ be pseudo-orthonormal moving frame of \mathbb{R}_{1}^{3}. Suppose $c_{2}(t) \neq 0$ and $\cos \phi c_{1}(t)-c_{3}(t) \neq 0$. Then we have the following:
(1) The envelope $g[\phi]$ of the family of ϕ-slant pseudo-lines $S L\left(\boldsymbol{n}_{\phi},-\cos \phi\right)$ is regular at a point $t=t_{0}$ if and only if $\delta[\phi]_{1}\left(t_{0}\right) \neq 0$,
(2) The envelope $g[\phi]$ of the family of ϕ-slant pseudo-lines $S L\left(\boldsymbol{n}_{\phi},-\cos \phi\right)$ at a point $t=t_{0}$ is locally diffeomorphic to the cusp C if and only if $\delta[\phi]_{1}\left(t_{0}\right)=$ $0, \delta[\phi]_{2}\left(t_{0}\right) \neq 0$.

6 Slant evolutes of hyperbolic plane curves

There is the notion of hyperbolic evolutes of hyperbolic plane curves [5]. Let $\gamma: J \longrightarrow H_{+}^{2}$ be a unit speed curve, where we use the parameter $s \in J$ instead of t. We call $\boldsymbol{t}(s)=\gamma^{\prime}(s)$ a unit tangent vector of $\boldsymbol{\gamma}$ at s. Since $\langle\gamma(s), \gamma(s)\rangle=-1$ we have $\langle\gamma(s), \boldsymbol{t}(s)\rangle=0$. We define $\boldsymbol{e}(s)=\gamma(s) \wedge \boldsymbol{t}(s)$, which is called a unit binormal vector of γ at $s \in J$. Then we have $\langle\boldsymbol{e}(s), \boldsymbol{e}(s)\rangle=\langle\gamma(s) \wedge \boldsymbol{t}(s), \gamma(s) \wedge$ $\boldsymbol{t}(s)\rangle=-\langle\gamma(s), \gamma(s)\rangle\langle\boldsymbol{t}(s), \boldsymbol{t}(s)\rangle+\langle\gamma(s), \boldsymbol{t}(s)\rangle^{2}=1$. Therefore, we have a pseudoorthonormal moving frame $\{\gamma(s),-\boldsymbol{e}(s), \boldsymbol{t}(s)\}$ of \mathbb{R}_{1}^{3}, which is called a hyperbolic Sabban frame along γ.

$$
\boldsymbol{a}_{0}(s)=\gamma(s), \boldsymbol{a}_{1}(s)=-\boldsymbol{e}(s), \boldsymbol{a}_{2}(s)=\boldsymbol{t}(s)
$$

Then we have the following Frenet-Serret type formulae:

$$
\left\{\begin{array}{l}
\gamma^{\prime}(s)=\boldsymbol{t}(s) \\
\boldsymbol{t}^{\prime}(s)=\gamma(s)+\kappa_{g}(s) \boldsymbol{e}(s) \\
\boldsymbol{e}^{\prime}(s)=-\kappa_{g}(s) \boldsymbol{t}(s),
\end{array}\right.
$$

where $\kappa_{g}(s)=\left|\gamma(s), \gamma^{\prime}(s), \gamma^{\prime \prime}(s)\right|$ is called the geodesic curvature of γ. Since $\boldsymbol{a}_{0}(s)=\gamma(s), \boldsymbol{a}_{1}(s)=-\boldsymbol{e}(s), \boldsymbol{a}_{2}(s)=\boldsymbol{t}(s)$, we have $c_{1}(s)=0, c_{2}(s)=1$ and $c_{3}(s)=-\left\langle\boldsymbol{a}_{1}(s), \boldsymbol{a}_{2}^{\prime}(s)\right\rangle=\left\langle\boldsymbol{e}(s), \boldsymbol{t}^{\prime}(s)\right\rangle=\left\langle\gamma(s) \wedge \boldsymbol{t}(s), \boldsymbol{t}^{\prime}(s)\right\rangle=\left|\gamma(s), \boldsymbol{t}(s), \boldsymbol{t}^{\prime}(s)\right|=$ $\left|\gamma(s), \gamma^{\prime}(s), \gamma^{\prime \prime}(s)\right|=\kappa_{g}(s)$. In this case, the family of ϕ-slant pseudo-lines $g_{\phi}: I \times J \longrightarrow H_{+}^{2}(-1)$ is

$$
g_{\phi}(r, s)=\left\{\begin{array}{l}
\gamma(s)-r \boldsymbol{e}(s)+\frac{\sqrt{r^{2} \sin ^{2} \phi+1}-1}{\sin ^{2} \phi}(\gamma(s)+\cos \phi \boldsymbol{t}(s)) \quad \text { if } \phi \neq 0 \\
\gamma(s)-r \boldsymbol{e}(s)+\frac{r^{2}}{2}(\gamma(s)+\boldsymbol{t}(s)) \quad \text { if } \phi=0
\end{array}\right.
$$

Therefore, the envelope $g[\phi]: J \longrightarrow H_{+}^{2}$ of g_{ϕ} is
$g[\phi](s)=\left\{\begin{array}{l}\gamma(s)-r(s) \boldsymbol{e}(s)+\frac{\sqrt{r(s)^{2} \sin ^{2} \phi+1}-1}{\sin ^{2} \phi}(\gamma(s)+\cos \phi \boldsymbol{t}(s)) \text { if } \phi \neq 0, \\ \gamma(s)+\frac{1}{\kappa_{g}(s)} \boldsymbol{e}(s)+\frac{1}{2 \kappa_{g}^{2}(s)}(\gamma(s)+\boldsymbol{t}(s)) \text { if } \phi=0,\end{array}\right.$
where

$$
r(s)=\frac{1}{\sqrt{\kappa_{g}^{2}(s)-\sin ^{2} \phi}}
$$

We call $g[\pi / 2]$ a hyperbolic evolute and $g[0]$ a horocyclic evolute of γ, respectively. For $s_{0} \in J$, we define

$$
\left\{\begin{array}{l}
\sigma[\phi]_{1}\left(s_{0}\right)=\kappa_{g}^{\prime}\left(s_{0}\right)+\frac{\cos \phi\left(\kappa_{g}\left(s_{0}\right)^{2}-\sin ^{2} \phi\right)}{\sqrt{\kappa_{g}^{2}\left(s_{0}\right)-\sin ^{2} \phi}-\kappa_{g}\left(s_{0}\right)}, \\
\sigma[\phi]_{2}\left(s_{0}\right)=\kappa_{g}^{\prime \prime}\left(s_{0}\right)+\cos \phi \kappa_{g}^{\prime}\left(s_{0}\right)\left(\frac{\sqrt{\kappa_{g}^{2}\left(s_{0}\right)-\sin ^{2} \phi}+2 \kappa_{g}\left(s_{0}\right)}{\sqrt{\kappa_{g}^{2}\left(s_{0}\right)-\sin ^{2} \phi}-\kappa_{g}\left(s_{0}\right)}\right) .
\end{array}\right.
$$

In this case, by a straightforward calculation, we can show that $\sigma[\phi]_{1}^{\prime}(s)=$ $\sigma[\phi]_{2}(s)$. Moreover, we can show that $\delta[\phi]_{1}(s)=\delta[\phi]_{2}(s)=0$ if and only if $\sigma[\phi]_{1}(s)=\sigma[\phi]_{1}^{\prime}(s)=0$. As special cases, we have

$$
\sigma[0]_{1}(s)=\kappa_{g}^{\prime}(s)-\frac{1}{2} \kappa_{g}(s), \sigma[\pi / 2]_{1}(s)=\kappa_{g}^{\prime}(s) .
$$

As a corollary of Theorem 5.6, we have the following theorem.
Theorem 6.1. Let $\gamma: J \longrightarrow H_{+}^{2}(-1)$ be a unit speed curve with $\kappa_{g}(s)^{2}-$ $\sin ^{2} \phi>0$. Then we have the following:
(1) $g[\phi]$ is a regular curve at $s=s_{0}$ if and only if $\sigma[\phi]_{1}\left(s_{0}\right) \neq 0$,
(2) $g[\phi]$ is locally diffeomorphic to the cusp C at $s=s_{0}$ if and only if

$$
\sigma[\phi]_{1}\left(s_{0}\right)=0 \text { and } \sigma[\phi]_{1}^{\prime}\left(s_{0}\right) \neq 0
$$

As a special case, we have the following corollary.
Corollary 6.2. Let $\gamma: J \longrightarrow H_{+}^{2}(-1)$ be a unit speed curve.
(A) Suppose $\kappa_{g}^{2}>1$. Then we have the following (cf., [5]):
(1) The hyperbolic evolute $g[\pi / 2]$ is a regular curve at $s=s_{0}$ if and only if $\kappa_{g}^{\prime}(s) \neq 0$.
(2) The hyperbolic evolute $g[\pi / 2]$ is locally diffeomorphic to the cusp C at $s=s_{0}$ if and only if

$$
\kappa_{g}^{\prime}\left(s_{0}\right) \neq 0 \text { and } \kappa_{g}^{\prime \prime}\left(s_{0}\right) \neq 0
$$

(B) Suppose $\kappa_{g} \neq 0$. Then we have the following:
(1) The horocyclic evolute $g[0]$ is a regular curve at $s=s_{0}$ if and only if $\kappa_{g}^{\prime}(s)-\frac{1}{2} \kappa_{g}(s) \neq 0$.
(2) The horocyclic evolute $g[0]$ is locally diffeomorphic to the cusp C at $s=s_{0}$ if and only if

$$
\kappa_{g}^{\prime}\left(s_{0}\right)-\frac{1}{2} \kappa_{g}\left(s_{0}\right)=0 \text { and } \kappa_{g}^{\prime \prime}\left(s_{0}\right)-\frac{1}{2} \kappa_{g}^{\prime}\left(s_{0}\right) \neq 0
$$

The hyperbolic evolute is given by

$$
g[\pi / 2](s)=\left\{\begin{array}{l}
\frac{-1}{\sqrt{\kappa_{g}^{2}(s)-1}}\left(\kappa_{g}(s) \gamma(s)+\boldsymbol{e}(s)\right) \text { if } \kappa_{g}(s)<-1 \\
\frac{1}{\sqrt{\kappa_{g}^{2}(s)-1}}\left(\kappa_{g}(s) \gamma(s)-\boldsymbol{e}(s)\right) \text { if } \kappa_{g}(s)>1
\end{array}\right.
$$

and the horocyclic evolute is

$$
g[0](s)=\gamma(s)+\frac{1}{\kappa_{g}(s)} \boldsymbol{e}(s)+\frac{1}{2 \kappa_{g}^{2}(s)}(\gamma(s)+\boldsymbol{t}(s))
$$

In [5] hyperbolic evolutes was introduced and the classified the singularities. Moreover, a de Sitter evolute of γ was introduced in [5], which is located in the de Sitter 2 -space. It corresponds to points of $\gamma(s)$ with $\kappa_{g}^{2}(s)<1$. Here we only consider families of hyperbolic lines, so that we do not consider de Sitter evolutes. It is also shown in [5] that $g[\pi / 2](s)$ is a constant point if and only if γ is a part of a circle. This condition is also equivalent to $\kappa_{g}^{\prime}(s) \equiv 0$. We have a natural question what is γ when $g[0](s)$ is a constant point. Of course it is equivalent to

$$
\kappa_{g}^{\prime}(s)-\frac{1}{2} \kappa_{g}(s) \equiv 0
$$

The solution of the above differential equation is $\kappa_{g}(s)=c e^{s / 2}$ for a constant real number c. The curvature tends to infinity, so that γ is a kind of spirals in $H_{+}^{2}(-1)$. If $c=1 / 2$, the curve with the curvature $\frac{1}{2} c^{s / 2}$ in the Euclidean plane is called a Nielsen spiral. So we call γ with $\kappa_{g}(s)=\frac{1}{2} c^{s / 2}$ a hyperbolic Nielsen spiral. We have two open problems as follows:
(1) What is γ with $\sigma[\phi]_{1}(s) \equiv 0$?
(2) For a general one-parameter family of pseudo-lines, is it always true that $\delta[\phi]_{1}(t)=\delta[\phi]_{2}(t)=0$ if and only if $\delta[\phi]_{1}(t)=\delta[\phi]_{1}^{\prime}(t)=0 ?$

References

[1] M. Asayama, S. Izumiya, A. Tamaoki and H. Yıldırım, Slant geometry of spacelike hypersurfaces in Hyperbolic space and de Sitter space. Revista Matematica Iberoamericana, 28 (2012), 371-400.
[2] J. W. Bruce and P. J. Giblin, Curves and singularities (second edition). Cambridge University Press (1992)
[3] P.J. Giblin and J. P. Warder, Evolving evolutoids. Amer. Math. Monthly 121 (2014), 871-889.
[4] R. Hayashi, S. Izumiya and T. Sato, Duals of curves in Hyperbolic space. Note Mat. 33 (2013), 97-106.
[5] S. Izumiya, D-H. Pei, T. Sano and E. Torii, Evolutes of hyperbolic plane curves. Acta Mathematica Sinica, English Series 20 (2004), 543-550.
[6] S. Izumiya, D.-H.Pei and T. Sano, Horospherical surfaces of curves in hyperbolic space. Publ. Math. Debrecen, 64 (2004), 1-13.
[7] S. Izumiya, D-H. Pei, M.C. Romero-Fuster and M. Takahashi, On the horospherical ridges of submanifolds of codimension 2 in hyperbolic n-space, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 177-198.
[8] S. Izumiya, D-H. Pei, M.C. Romero Fuster and M. Takahashi, The horospherical geometry of submanifolds in hyperbolic space, J. London Math. Soc., 271 (2005), 779-800.
[9] S. Izumiya, Horospherical geometry in the hyperbolic space, Advanced Studies in Pure Mathematics 55 (2009), 31-49.
[10] S, Izumiya, Slant pseudo-lines in the hyperbolic plane. International Journal of Geometry 4 (2015), 37-41.
[11] A. Ramsay and R. D. Richtmyer, Introduction to hyperbolic geometry. Springer-Verlag, New York Berlin Heidelberg (1994)

[^0]: http://siba-ese.unisalento.it/ © 2015 Università del Salento

