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1 Introduction and notations

The introduction of the concept of m-isometric transformation in Hilbert
spaces by Agler and Stankus yielded a flow of papers generalizing this concept
both in Hilbert and Banach spaces, for example (see [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22]).

An operator T acting on a Hilbert spaceH is called m-isometric for some integer
m ≥ 1 if ∑

0≤k≤m
(−1)m−k

(
m

k

)
T ∗kT k = 0 (1.1)

where
(
m
k

)
be the binomial coefficient. A simple manipulation proves that (1.1)

is equivalent to∑
0≤k≤m

(−1)m−k
(
m

k

)
‖T kx‖2 = 0, for all x ∈ H (1.2)

Evidently, an isometric operator (i.e., a 1-isometric operator) is an m-isometric
for all integers m ≥ 1. Indeed the class of m-isometric operators is a generaliza-
tion of the class of isometric operators and a detailed study of this class and in
particular 2-isometric operators on a Hilbert space has been the object of some
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intensive study, especially by J.Agler and M. Stankus in [2], [3] and [4], but
also by S.M. Patel [23]. B.P.Duggal [15, 16] studied when the tensor product of
operators is an m-isometry.

A generalization of m-isometries to operators on general Banach spaces has
been presented by several authors in the last years. Botelho [14] and Sid Ahmed
[21] discussed operators defined via (1.2) on (complex) Banach spaces. Bayart
introduced in [8] the notion of (m, p)-isometries on general (real or complex)
Banach spaces. An operator T on a Banach space X into itself is called an
(m, p)-isometry if there exists an integer m ≥ 1 and a p ∈ [1,∞), with

∀ x ∈ X,
∑

0≤k≤m
(−1)k

(
m

k

)
‖Tm−kx‖p = 0 (1.3)

It is easy to see that, if X = H is a Hilbert space and p = 2, this definition
coincides with the original definition (1.1) of m-isometries. In [19] the authors
took off the restriction p ≥ 1 and defined (m, p)-isometries for all p > 0 . They
studied when an (m, p)-isometry is an (µ, q)-isometry for some pair (µ, q). In
particular, for any positive real number p they gave an example of an operator
T that is a (2, p)-isometry, but is not a (2, q)-isometry for any q different from
p. In [9, 10] it is proven that the powers of an m-isometry are m-isometries and
some products of m-isometries are again m-isometries.

The authors, O.A.M. Sid Ahmed and A. Saddi introduced the concept of
(A,m)-isometric operators. They gave several generalizations of well known facts
on m-isometric operators according to semi-Hilbertian space structures.We refer
the reader to [22] for more details about (A,m)-isometric operators. Recently,
B.P. Duggal has introduced the concept of an A(m, p)-isometry of a Banach
space, following a definition of Bayart in the Banach space.

Definition 1.1. ([17]) Let T and A ∈ B(X) (the set of bounded linear
operators from X into itself), m is a positive integer and p > 0 a real number.
We say that T is an A(m, p)-isometry if, for every x ∈ X∑

0≤k≤m
(−1)k

(
m

k

)
‖ATm−kx‖p = 0. (1.4)

For any T ∈ B(H) we let

θm(T ) :=
∑

0≤k≤m
(−1)k

(
m

k

)
T ∗kT k. (1.5)

The Concept of completely hyperexpansive operators on Hilbert space has at-
tracted much attention of various authors. In [1], J. Agler characterized subnor-
mality with the positivity of θm(T ) in (1.5) and also extended his inequalities to
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the concept ofm-isometry (cf. [2−4]). On the other hand, A. Athavale considered
completely hyperexpansive operators in [5]. In further studies, mainy authors
have studied k-hyperexpansive (cf. [7, 18]). The concept of (A,m)-expansive op-
erators on Hilbert space was introduced in [20].

Definition 1.2.
(
[18]
)

An operator T ∈ B(H) is said to be

(i) m-isometry (m ≥ 1) if θm(T ) = 0 .

(ii) m-expansive (m ≥ 1) if θm(T ) ≤ 0.

(iii) m-hyperexpansive (m ≥ 1), if θk(T ) ≤ 0 for k = 1, 2, ...,m.

(iv) Completely hyperexpansive if θm(T ) ≤ 0 for all m.

We refer the reader to [6, 7, 18] for recent articles concerning this subject.

In [8] the author defined β
(p)
k (T, .) : X −→ R : x 7−→ β

(p)
k (T, x) by

β
(p)
k (T, x) =

1

k!

∑
0≤j≤k

(−1)k−j
(
k

j

)
‖T jx‖p, ∀ x ∈ X (1.6)

For k, n ∈ N denote the (descending Pochhammer) symbol by n(k), i.e.

n(k) =


0, if n = 0

0 if n > 0 and k > n(
n
k

)
k! if n > 0 and k ≤ n.

Then for n > 0, k > 0 and k ≤ n we have

n(k) = n(n− 1)...(n− k + 1).

It was proved in [8, Proposition 2.1] that

‖Tnx‖p =
∑

0≤k≤m−1

n(k)β
(p)
k (T, x) (1.7)

for all integers n ≥ 0 and x ∈ X. In particular,

β
(p)
m−1(T, x) = lim

n−→∞

‖Tnx‖p(
n

m−1

)
(m− 1)!

≥ 0

with equality if and only if T is (m− 1; p)-isometric.

In recent work T. Bermúdez, A. Martinôn and V. Müller introduced the concept
of (m, p)-isometric maps on metric spaces (see [13] ).

Let N be the set of positive integers and N0 = N ∪ {0}.
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Definition 1.3. ([13]) Let E be a metric space. A map T : E −→ E is
called an (m, p)-isometry,( m ≥ 1 integer and p > 0) if, for all x, y ∈ E∑

0≤k≤m
(−1)k

(
m

k

)
d
(
Tm−kx, Tm−ky

)p
= 0. (1.8)

For m ≥ 2 , T is a strict (m, p)-isometry if it is an (m, p)-isometry, but is not
an (m− 1, p)-isometry.

For any p > 0; (1, p)-isometry coincide with isometry, that is d
(
Tx, Ty

)
=

d
(
x, y
)

for all x, y ∈ E. Every isometry is an (m, p)-isometry for all m ≥ 1 and
p > 0. Many results known in the Banach space setting are established in [13]
for metric spaces. For example, an (m, p)- isometry is an (m + 1, p)-isometry
and any power of (m, p)-isometry is again an (m, p)-isometry.

Let T : E −→ E is an (m, p)-isometry. In [13] the authors defined fT (h, p, x, y)
for h ∈ N, a positive real number p and x, y ∈ E by :

fT (h, p, x, y) =
∑

0≤k≤h
(−1)h−k

(
h

k

)
d
(
T kx, T ky

)p
. (1.9)

We have from (1.9) that

d
(
Tnx, Tny

)p
=

∑
0≤k≤m−1

(
n

k

)
fT (k, p; x, y). (1.10)

for all n ≥ 0 and x, y ∈ X (see [13]).

Definition 1.4. ([5]) A real- valued function Ψ on N0 is said to be

(1) completely monotone if Ψ ≥ 0 and
∑

0≤k≤m
(−1)k

(
m

k

)
Ψ(n+ k) ≥ 0, ∀ n ≥ 0

and m ≥ 1.

(2) completely alternating if
∑

0≤k≤m
(−1)k

(
m

k

)
Ψ(n+k) ≤ 0 ,∀ n ≥ 0 and m ≥ 1.

The content of this paper is as follows. In Section one we set up notation and ter-
minology. Furthermore, we collect some facts about (m, p)-isometries. In Section
two, we introduce and study the concept of (m, p)-expansive and hyperexpansive
mappings on a metric space and we investigate various structural properties of
this classes of mappings.We prove that (2, p)-hyperexpansive mappings which
are (m, p)-expansive must be (m − 1, p)-expansive for m ≥ 2. Recall that if
T is an m-isometry (resp. k-expansive or (A,m)-expansive) operator, then so
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are all its power Tn; for n ≥ 1 (cf [9, 18, 20]). It turns out that the same as-
sertion remains true for (2, p)-hyperexpansive and completely p-hyperexpansive
mapping (Theorem 2.3 and Theorem 2.4). Moreover, we prove that the inter-
section of the class of completely p-hyperexpansive mapping and the class of
(m, p)-isometries for m ≥ 2 is the class of (2, p)-isometries (Proposition 2.10).
The section three of this paper is an attempt to develop some properties of the
class of (m, p)-expansive mappings in seminormed spaces parallel to those of
m-isometries.

2 (m, p)-Hyperexpansive maps in metric spaces

In this section, let (X, d) be a metric space, T : X −→ X is a map, m ∈ N
and p > 0 is a real number. We define the quantity

Θ(p)
m (d, T ;x, y) :=

∑
0≤k≤m

(−1)k
(
m

k

)
d
(
T kx, T ky

)p
,

for all x, y ∈ X and we give several results on (m, p) expansive and hyperex-
pansive mappings on a metric space.

In the following definition, Θ
(p)
m (d, T ; x, y) ≤ 0

(
resp. Θ

(p)
m (d, T ; x, y) ≥ 0

)
really means Θ

(p)
m (d, T ; x, y) ≤ 0 for all x, y ∈ X

(
resp. Θ

(p)
m (d, T ; x, y) ≥ 0 for

all x, y ∈ X
)
.

Definition 2.1. Let T : X −→ X be a map. We say that

(i) T is (m, p)-expansive if Θ
(p)
m (d, T ; x, y) ≤ 0.

(ii) T is (m, p)-hyperexpansive if Θ
(p)
k (d, T ; x, y) ≤ 0 for k = 1, 2, ...,m.

(iii) T is completely p-hyperexpansive if T is (k, p)-expansive for all k ∈ N.

(iv) T is (m, p)-contractive if Θ
(p)
m (d, T ;x, y) ≥ 0.

(v) T is (m, p)-hypercontractive if Θ
(p)
k (d, T ; x, y) ≥ 0 for k = 1, 2, ...,m.

(vi) T is completely p-hypercontractive if T is (k, p)-contractive for all k ∈ N.

For any p > 0, (1, p)-expansive coincide with expansive; that is, maps T
satisfying d(Tx, Ty) ≥ d(x, y), for all x, y ∈ X.
For any p > 0, (1, p)-contractive coincide with contractive; that is, maps T
satisfying d(Tx, Ty) ≤ d(x, y), for all x, y ∈ X. (m, p)-isometries maps are
special cases of the class of (m, p)-expansive and contractive maps.
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We consider the following examples of (m, p)-expansive map and (m, p)-contractive
map which are not (m, p)-isometric map.

Example 2.1. Let X = R be equipped with the Euclidean metric
d
(
x, y
)

= |x− y| for all x, y ∈ X. Define T : X −→ X by Tx = 2x. Clearly

Θ
(p)
m (d, T ; x, y) =

(
1 − 2p

)m|x − y|p. So we can say that T is neither (m, p)
-isometric, for all m ≥ 1 and p > 0. However, one can easily verify that T is
(m, p) expansive map for positive odd integer m and (m, p)-contractive map for
positive even integer m.

Remark 2.1. Every (m, p)-expansive map T is injective. In fact if Tx = Ty
then T kx = T ky for k = 1, 2, ...,m and from (i) of Definition 2.1 we obtain
d(x, y) ≤ 0 i.e x = y. Hence T is an injective map.

We not that an (m, p)-expansive map is in general not an (m+ 1, p)-expansive,
as we shown in the following example.

Example 2.2. Consider the usual metric d(x, y) = |x− y| on R. Let
T : (R, d) −→ (R, d) defined by Tx = 1 + 2x.Then it is easy to see that
d(Tx, Ty) ≥ d(x, y) and

d(T 2x, T 2y)p − 2d(Tx, Ty)p + d(x, y)p = (2p − 1)2|x− y|p � 0.

Clearly T is (1, p)-expansive which is not (2, p)-expansive.

Remark 2.2. We note the following:

(1) Θ
(p)
m (d, T, x, y) ≤ 0⇐⇒ Θ

(p)
m (d, T, Tnx;Tny) ≤ 0, ∀ x, y ∈ X, ∀ n ∈ N0.

(2) Θ
(p)
m (d, T, x, y) ≥ 0⇐⇒ Θ

(p)
m (d, T, Tnx;Tny) ≥ 0, ∀ x, y ∈ X, ∀ n ∈ N0.

Remark 2.3. We deduce from
(
[5], Proposition 1 and Proposition 2

)
the

following characterizations of completely p-hyperexpansive and completely p-
hypercontractive maps.

(1) A map T : X −→ X is completely p-hyperexpansive if and only if for
every x, y ∈ X, the map n 7−→ Ψ(T, p, x,y)(n) = d

(
Tnx, Tny

)p
is completely

alternating.

(2) A map T : X −→ X is completely p-hypecontractive if and only for every
x, y ∈ X, the map n 7−→ Ψ(T, p, x,y)(n) = d

(
Tnx, Tny

)p
is completely monotone.

In the next proposition we invoke the following relation which plays an
important role in the proof of main results.

Proposition 2.1. For a map T : X −→ X, m ∈ N , real number p > 0 and
x, y ∈ X, we have that

Θ(p)
m (d, T ; x, y) = Θ

(p)
m−1(d, T ; x, y)−Θ

(p)
m−1(d, T ; Tx, Ty). (2.1)
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Proof. By the standard formula
(
m
j

)
=
(
m−1
j

)
+
(
m−1
j−1

)
for binomial coefficients

we have the equalities

Θ(p)
m (d, T ; x, y)

=
∑

0≤k≤m
(−1)k

(
m

j

)
d
(
T kx, T ky

)p
= d

(
x, y
)p

+
∑

1≤k≤m−1

(−1)k
(
m

k

)
d
(
T kx, T ky

)p
+(−1)md

(
Tmx, Tmy

)p
= d

(
x, y
)p

+
∑

1≤k≤m−1

(−1)k
((m− 1

k

)
+

(
m− 1

k − 1

))
d
(
T kx, T ky

)p
+

+(−1)md
(
Tmx, Tmy

)p
= Θ

(p)
m−1(d, T ; x, y)−Θ

(p)
m−1(d, T ; Tx, Ty).

QED

Remark 2.4. We note the following equivalences:

(1) T is (m, p)− expansive ⇐⇒ ∀ x, y ∈ X∑
0 ≤ k ≤ m
k even

(
m

k

)
d
(
T kx, T ky

)p ≤ ∑
0 ≤ k ≤ m
k odd

(
m

k

)
d
(
T kx, T ky

)p

(2) T is (m, p)− contractive ⇐⇒ ∀ x, y ∈ X∑
0 ≤ k ≤ m
k even

(
m

k

)
d
(
T kx, T ky

)p ≥ ∑
0 ≤ k ≤ m
k odd

(
m

k

)
d
(
T kx, T ky

)p

Lemma 2.1. Let T : X −→ X be an (2, p)-expansive mapping. Then the
following properties hold

(1) d
(
Tx, Ty

)p ≥ n− 1

n
d
(
x, y
)p
, n ≥ 1, x, y ∈ X.

(2) d
(
Tx, Ty

)p ≥ d(x, y)p for all x, y ∈ X.

(3) d
(
Tnx, Tny

)p
+ (n− 1)d

(
x, y
)p ≤ n.d(Tx, Ty)p, x, y ∈ X, n = 0, 1, 2, ...

(4) d
(
Tx, Ty

)
≤ 2

1
pd
(
x, y
)
∀ x, y ∈ R(T ) (the range of T ).



24 Ould Ahmed and Mahmoud Sid Ahmed

Proof. Using the fact that T is (2, p)-expansive map , we get

d
(
T 2x, T 2y

)p − d(Tx, Ty)p ≤ d(Tx, Ty)p − d(x, y)p.
Replacing x by T kx and y by T ky leads to

d
(
T k+2x, T k+2y

)p − d(T k+1x, T k+1y
)p ≤ d(T k+1x, T k+1y

)p − d(T kx, T ky)p,
for k ≥ 0. Hence

d
(
Tnx, Tny

)p
=

∑
1≤k≤n

(
d
(
T kx, T ky

)p − d(T k−1x, T k−1y
)p)

+ d
(
x, y
)p

≤ n
(
d
(
Tx, Ty

)p − d(x, y)p)+ d
(
x, y
)p

≤ nd
(
Tx, Ty

)p
+ (1− n)d

(
x, y
)p
.

Which implies 1. and 3. Letting n −→∞ in 1. yields 2.

4. The (2, p)-expansivity of T implies that

d
(
T 2x, T 2y

)p ≤ 2d
(
Tx, Ty

)p − d(x, y)p ≤ 2d
(
Tx, Ty

)p
.

Thus,

d
(
T 2x, T 2y

)
≤ 2

1
pd
(
Tx, Ty

)
.

QED

Remark 2.5. We make the following remarks:

(1) (2, p)-isometric is completely p-hyperexpansive.

(2) Every (k + 1, p)-hyperexpansive is (k, p)-hyperexpansive for k = 1, 2, ....

Lemma 2.2. Let T : X −→ X be an (2, p)-expansive map, then for all
integer k ≥ 2 and x, y ∈ X, we have

d
(
T kx, T ky

)p − d(T k−1x, T k−1y
)p ≤ d(Tx, Ty)p − d(x, y)p.

Proof. We prove the assertion by induction on k. Since T is an (2, p)-expansive
the result is true for k = 2. Now assume that the result is true for k i.e.; for all
x, y ∈ X,

d
(
T kx, T ky

)p − d(T k−1x, T k−1y
)p ≤ d(Tx, Ty)p − d(x, y)p, (2.2)

and let us prove it of k + 1. From (2.2) we obtain the following inequalities

d
(
T k+1x, T k+1y

)p − d(T kx, T ky)p ≤ d
(
T 2x, T 2y

)p − d(Tx, Ty)p
≤ d

(
Tx, Ty

)p − d(x, y)p.
QED
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Proposition 2.2. Let T : X −→ X be a (2, p)-expansive map.Then the
following statements hold.

(1) T is (2, p)-hyperexpansive map.

(2) d
(
Tx, Ty

)2p ≥ d(x, y)pd(T 2x, T 2y
)p

for all x, y ∈ X.

(3) For each n and x, y ∈ X such that x 6= y,the sequence(
d
(
Tn+1x, Tn+1y

)p
d
(
Tnx, Tny

)p )
n≥0

(2.3)

is monotonically decreasing to 1.

Proof. (1) Follows from part (2) of Lemma 2.1.

(2) Since from (1) T is (2, p)-hyperexpansive map, we have that

d
(
Tx, Ty

)2p ≥ (
d
(
x, y
)p

+ d
(
T 2x, T 2y

)p
2

)2

≥
(
d
(
x, y
) p

2 d
(
T 2x, T 2y

) p
2

)2

≥ d
(
x, y
)p
d
(
T 2x, T 2y

)p
.

(3) Observe that the (2, p)-expansivity of T implies that

d
(
Tn+1x, Tn+1y

)p − 2d
(
Tnx, Tny

)p
+ d
(
Tn−1x, Tn−1y

)p ≤ 0. (2.4)

On the other hand, since(
d
(
Tn−1x, Tn−1y

) p
2 − d

(
Tn+1x, Tn+1y

) p
2

)2

≥ 0

it follows that

d
(
Tn−1x, Tn−1y

) p
2 d
(
Tn+1x, Tn+1y

) p
2

≤
d
(
Tn+1x, Tn+1y

)p
+ d
(
Tn−1x, Tn−1y

)p
2

≤ d
(
Tnx, Tny

)p
(by (2.4)).

Thus,

d
(
Tn−1x, Tn−1y

)p
d
(
Tn+1x, Tn+1y

)p ≤ d(Tnx, Tny)2p
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and hence,

d
(
Tn+1x, Tn+1y

)p
d
(
Tnx, Tny

)p ≤
d
(
Tnx, Tny

)p
d
(
Tn−1x, Tn−1y

)p ,
so the sequence (2.3) is monotonically decreasing. To calculate its limit in view
of part (2) of Lemma 2.1, divide (2.4) by d

(
Tn−1x, Tn−1y

)p
to get

1− 2
d
(
Tnx, Tny

)p
d
(
Tn−1x, Tn−1y

)p +
d
(
Tn+1x, Tn+1y

)p
d
(
Tnx, Tny

)p d
(
Tnx, Tny

)p
d
(
Tn−1x, Tn−1y

)p ≤ 0.

and let n tend to infinity we obtain that

d
(
Tnx, Tny

)p
d
(
Tn−1x, Tn−1y

)p −→ 1 as n −→∞.

. QED

The following theorem gives a sufficient condition for (m, p)-expansive map to
be (m− 1, p)-expansive map for m ≥ 3.

Theorem 2.1. Let T : X −→ X be an (m, p)-expansive map for m ≥ 3. If
T is (2, p)-expansive,then T is (m− 1, p)-expansive.

Proof. The conditions d
(
x, y
)p − d(Tx, Ty)p ≤ 0 and

d
(
x, y
)p − 2d

(
Tx, Ty

)p
+ d
(
T 2x, T 2y

)p ≤ 0

guarantee that the sequence

(
d
(
Tn+1x, Tn+1y

)p− d(Tnx, Tny)p)
n≥0

is mono-

tonically non-increasing and bounded, so that is converges.Thus there exists a
constant C such that

d
(
Tn+1x, Tn+1y

)p − d(Tnx, Tny)p −→ C as n −→∞.

Since Θ
(p)
m (d, T ; x, y) ≤ 0 with m ≥ 2. By Proposition 2.1

Θ(p)
m (d, T ; x, y) = Θ

(p)
m−1(d, T ;x, y)−Θ

(p)
m−1(d, T ; Tx;Ty),

we have that
Θ

(p)
m−1(d, T ; x, y) ≤ Θ

(p)
m−1(d, T ; Tx, Ty).

An induction argument shows that

Θ
(p)
m−1(d, T ; x, y) ≤ Θ

(p)
m−1(d, T ; Tnx, Tny), n ≥ 1.
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Thus,it suffices to show that

Θ
(p)
m−1(d, T ; Tnx, Tny) −→ 0 as n −→∞.

Note that

Θ
(p)
m−1(d, T ; x, y) = Θ

(p)
m−2(d, T ; x, y)−Θ

(p)
m−2(d, T ; Tx, Ty),

so that

Θ
(p)
m−1(d, T ; Tnx, Tny)

=
∑

0≤j≤m−2

(−1)j
(
m− 2

j

)[
d
(
Tn+jx, Tn+jy

)p−d(Tn+1+jx, Tn+1+jy
)p]

.

Letting n −→∞ in the preceding equality leads to

Θ
(p)
m−1(d, T ; Tnx, Tny) −→

∑
0≤j≤m−2

(−1)j
(
m− 2

j

)
C = 0.

This completes the proof. QED

Example 2.3. Let us consider again Example 2.2. T : R −→ R,
Tx = 1 + 2x. This example shows that T is (5, p)-expansive,but not (4, p)-
expansive, so the assumption for T to be (2, p)-expansive in Theorem 2.1 below
is necessary.

The following criterion for (m, p)-hyperexpansivity follows from Theorem 2.1

Corollary 2.1. Let T be (m, p)-expansive and (2, p)-expansive mapping.
Then T is (m, p)-hyperexpansive.

Proposition 2.3. Let T : X −→ X be an (2, p)-expansive map and assume
that T is a (m, p)-isometric for some m ≥ 2. Then T is a (2, p)-isometric.

Proof. Assume that Θ
(p)
m (d, T ; x, y) = 0 for all x, y ∈ X. Since

Θ(p)
m (d, T ; x, y) = Θ

(p)
m−1(d, T ; x, y)−Θ

(p)
m−1(d, T ; Tx, Ty)

we deduce that

Θ
(p)
m−1(d, T ; x, y) = Θ

(p)
m−1(d, T ; Tx, Ty) = Θ

(p)
m−1(d, T ; Tnx, Tny);

for n = 1, 2, .... In the same way as in the proof of Theorem 2.1 we obtain that

Θ
(p)
m−1(d, T ; x, y) = 0. Applying the corresponding results of the (m − 1, p)-

isometric, we have that Θ
(p)
m−2(d, T ; x, y) = 0. Continue the above process to

get Θ
(p)
2 (d, T ; x, y) = 0 and so T is (2, p)-isometric. QED
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In the following lemma we generalize Lemma 1.3 in [14] and Proposition
2.11 in [13].

Lemma 2.3. Let T : X −→ X be a contractive mapping. If T is an (m, p)-
isometry then T is an (m− 1, p)-isometry.

Proof. Since T is contractive,we have the following inequality

d
(
Tn+1x, Tn+1y

)p ≤ d(Tnx, Tny)p for all x, y ∈ X and n ∈ N0. This means
that

(
d
(
Tnx, Tny

)p)
n∈N0

is deceasing sequence, so convergent.

Using the fact that T is an (m, p)-isometry and together (2.1), we obtain

Θ
(p)
m−1(d, T ;x, y) = Θ

(p)
m−1(d, T ;Tx, Ty) = ... = Θ

(p)
m−1(d, T ;Tnx, Tny).

Note that

Θ
(p)
m−1(d, T ;Tnx, Tny) = Θ

(p)
m−2(d, T ;Tnx, Tny)−Θ

(p)
m−2(d, T ;Tn+1x, Tn+1y),

so that

Θ
(p)
m−1(d, T ;Tnx, Tny)

=
m−2∑
j=0

(−1)j
(
m− 2

j

)[
d
(
Tn+jx, Tn+jy

)p − d(Tn+1+jx, Tn+1+jy
)p]

.

Letting n −→∞ in the preceding equality leads to

Θ
(p)
m−1(d, T ;Tnx, Tny) −→ 0.

Thus, Θ
(p)
m−1(d, T ;x, y) = 0 and hence, T is an (m−1, p)-isometry. QED

As a consequence of the lemma, we have the following proposition.

Proposition 2.4. If T is a contractive mapping on X, then T is an (m, p)-
isometry if and only if T is an isometry.

Proposition 2.5. Let T : X −→ X be a map for which T 2 is isometric ,
then the following properties hold

(i) T is (m, p)-expansive map if and only if T is expansive.

(ii) T is (m, p)-contractive if and only if T is contractive.
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Proof. (i) If we assume that m is odd integer i.e., m = 2q + 1 we have by the
assumption that

Θ
(p)
2q+1(d, T ; x, y)

=
∑

0≤j≤q

[(2q + 1

2j

)
d
(
T 2jx, T 2jy

)p − (2q + 1

2j + 1

)
d
(
T 2j+1x, T 2j+1y

)p]
=

∑
0≤j≤q

[(2q + 1

2j

)
d
(
x, y
)p − (2q + 1

2j + 1

)
d
(
Tx, Ty

)p]

Since
∑

0≤k≤2q+1

(−1)k
(

2q + 1

k

)
= 0, it follows that

∑
0≤j≤q

(
2q + 1

2j + 1

)
=
∑

0≤j≤q

(
2q + 1

2j

)

and we deduce that

Θ
(p)
2q+1(d, T ; x, y) =

∑
0≤j≤q

(
2q + 1

2j

)(
d
(
x, y
)p − d(Tx, Ty)p).

Similarly if m is even integer i.e.,m = 2q we have

Θ
(p)
2q (d, T ; x, y)

=
∑

0≤j≤q

(
2q

2j

)
d
(
T 2jx, T 2jy

)p − q∑
j=1

(
2q

2j − 1

)
d
(
T 2j−1x, T 2j−1y

)p
=

∑
0≤j≤q

(
2q

2j

)
d
(
x, y
)p − ∑

1≤j≤q

(
2q

2j − 1

)
d
(
Tx, Ty

)p

Since
∑

0≤k≤2q

(−1)k
(

2q

k

)
= 0, we have that

∑
1≤j≤q

(
2q

2j − 1

)
=
∑

0≤j≤q

(
2q

2j

)
and hence

Θ
(p)
2q (d, T ; x, y) =

∑
0≤j≤q

(
2q

2j

)(
d
(
x, y
)p − d(Tx, Ty)p).

Therefore,we conclude that (i) and (ii) hold and this establishes the proposition.
QED
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Proposition 2.6. If T : X −→ X be an map satisfies T 2 = T , then the
following properties hold

(i) T is (m, p)-expansive if and only if T is expansive.

(ii) T is (m, p)-contractive if and only if T is contractive.

Proof. By the assumption on T , we have that

Θ(p)
m (d, T ; x, y) = d

(
x, y
)p − d(Tx, Ty)p, ∀ x, y ∈ X.

It is clear from the foregoing that a sufficient condition for T to be (m, p)-
expansive (resp. (m, p)-contractive) is that T is expansive (resp. contractive).

QED

Proposition 2.7. ([13]) If T is a bijective (m, p)-isometry, then T−1 is also
an (m, p)-isometry.

We have the following result about bijective (m, p)-expansive and contractive
maps.

Proposition 2.8. Let T : X −→ X be an bijective map, we have the
following properties

(1) If T is (m, p)-expansive, then

(i) for m even , T−1 is (m, p)-expansive.

(ii) for m odd , T−1 is (m, p)-contractive.

(2) If T is (m, p)-contractive, then

(i) for m even , T−1 is (m, p)-contractive.

(ii) for m odd , T−1 is (m, p)-expansive.

Proof. (1) Assume that Θ
(p)
m (d, T ; x, y) ≤ 0 ∀ x, y ∈ X and for positive integer

m. By a computation stemming essentially from the formula(
m

j

)
=

(
m

m− j

)
; for j = 0, 1, ...,m,

we deduce that

Θ(p)
m (d, T−1; x, y) = (−1)mΘ(p)

m (d, T ; T−mx, T−my).

It follows that Θ
(p)
m (d, T−1; x, y) ≤ 0 for even integer m i.e., T−1 is (m, p)-

expansive, and Θ
(p)
m (d, T−1; x, y) ≥ 0 for odd integer m i.e., T−1 is (m, p)-

contractive.

(2) The proof is similar. QED
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Proposition 2.9. Let T : X −→ X be an bijective (2, p)-expansive map,
then T is (1, p)-isometric.

Proof. Since T is (2, p)-expansive, we have by Lemma 2.1 that d
(
Tx, Ty

)p ≥
d
(
x, y
)p

.This means that T is (1, p)-expansive. Moreover if T is bijective (2, p)-
expansive, then T−1 is (2, p)-expansive, hence d

(
T−1u, T−1v

)p ≥ d(u, v)p for all
u, v ∈ X. Letting u = Tx and v = Ty, this implies

d
(
Tx, Ty

)p
= d
(
x, y
)p

for all x, y ∈ X. This means that T is (1, p)-isometric. QED

Theorem 2.2. Let T ;S : X −→ X two maps such that ST = IX (the iden-

tity mapping). Assume that there exists an integerm ≥ 1 such that Θ
(p)
m (d, S; x, y) ≤

0 for all x, y ∈ R(Tm),the following statements hold.

(i) If m is even, then T is (m, p)-expansive map.

(ii) If m is odd, then T is (m, p)-contractive map.

Proof. Since Θ
(p)
m (d, S; Tmu, Tmv) ≤ 0 for all u, v ∈ X , we have that

0 ≥
∑

0≤k≤m
(−1)k

(
m

k

)
d
(
SkTmu, SkTmv

)p
≥

∑
0≤k≤m

(−1)k
(
m

k

)
d
(
Tm−ku, Tm−kv

)p
≥ (−1)m

∑
0≤k≤m

(−1)k
(
m

k

)
d
(
T ku, T kv

)p
QED

Note that every power of k-expansive (resp. (A,m)-expansive ) operators on a
Hilbert space is k-expansive (resp. (A,m)-expansive ). See ( [18], Theorem 2.3)
and ([20], Proposition 3.9).

In the following theorem we investigate the powers of (2, p)-expansive maps as
well as (2, p)-expansive maps by using Lemma 2.2.

Theorem 2.3. Let T : X −→ X be an (2, p)-expansive map. Then for any
positive integer n , Tn is (2, p)-expansive map.
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Proof. We will induct on n, the result obviously holds for n = 1. Suppose then
the assertion holds for n ≥ 2, i.e

d
(
T 2nx, T 2ny

)p − 2d
(
Tnx, Tny

)p
+ d
(
x, y
)p ≤ 0, ∀x, y ∈ X.

Then

d
(
T 2n+2x, T 2n+2y

)p − 2d
(
Tn+1x, Tn+1y

)p
+ d
(
x, y
)p

= d
(
T 2T 2nx, T 2T 2ny

)p − 2d
(
Tn+1x, Tn+1y

)p
+ d
(
x, y
)p

≤ 2d
(
T 2n+1x, T 2n+1y

)p − d(T 2nx, T 2ny
)p

−2d
(
Tn+1x, Tn+1y

)p
+ d
(
x, y
)p

≤ 2(2d
(
Tn+1x, Tn+1y

)p−d(Tx, Ty)p)−d(T 2nx, T 2ny
)p

−2d
(
Tn+1x, Tn+1y

)p
+d
(
x, y
)p

≤ 2d
(
Tn+1x, Tn+1y

)p − d(T 2nx, T 2ny
)p

−2d
(
Tx, Ty

)p
+ d
(
x, y
)p

≤ 2d
(
Tn+1x, Tn+1y

)p−(2d
(
Tnx, Tny

)p−d(x, y)p)
−2d

(
Tx, Ty

)p
+d
(
x, y
)p

≤ 2d
(
Tn+1x, Tn+1y

)2 − 2d
(
Tnx, Tny

)p − 2d
(
Tx, Ty

)p
+ 2d

(
x, y
)p

≤ 2
(
d
(
Tx, Ty

)p−d(x, y)p)−2d
(
Tx, Ty

)p
+ 2d

(
x, y
)p

(by Lemma 2.2).

≤ 0.

Thus means that Tn is (2, p)-expansive map. QED

In the following theorem we investigate the powers of completely p-hyperexpansive
mapping as well as completely p-hyperexpansive mapping.

According to [ 5, Remark 1.] for every completely p-hyperexpansive map, the
condition that n 7−→ d

(
Tnx, Tny

)p
be completely alternating on N implies the

representation, for every x, y ∈ X,

d
(
Tnx, Tny

)p
= d(x, y

)p
+ nµx,y({1}) +

∫
[0,1)

(1− tn)
dµx,y(t)

1− t
, (2.5)

where µx,y is a positive regular Borel measure on [0; 1] (for more details see
[5]).

Theorem 2.4. Any positive integral power of a completely p-hyperexpansive
mapping is completely p-hyperexpansive.
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Proof. Let T be a completely p-hyperexpansive map and let k ≥ 1. In view of
(2.5) we have that

d
(
(T k)nx, (T k)ny

)p
= d
(
Tnkx, Tnky

)p
= d

(
x, y
)p

+ nkµx,y({1}) +

∫
[0,1)

(1− tnk)dµx,y(t)
1− t

= d
(
x, y
)p

+ n(kµx,({1})) +

∫
[0,1)

(1− sn)
dµ′x,y(s)

1− s
1
k

.

Therefore the map n 7−→ d
(
Tnkx, Tnky

)p
is completely alternating and so that

T k is completely p-hyperexpansive. QED

The next proposition describes the intersection of the class of completely p-
hyperexpansive maps with the class of (m, p)-isometries.

Proposition 2.10. Let T be a mapping on metric space X into itself. If T
is completely p-hyperexpansive as well as (m, p)-isometric (m ≥ 2), then T is a
(2, p)-isometric.

Proof. First, if T is isometric, then T is a (2, p)-isometric. Assume that T is a

(m, p)-isometric with m ≥ 2, then we have that Θ
(p)
m (d, T ; x, y) = 0 and from

(2.5) it follows that

0 =
∑

0≤k≤m
(−1)k

(
m

k

)
kµx,y({1})

+
∑

0≤k≤m
(−1)k

(
m

k

)∫
[0, 1)

(1− tk)dµx,y(t)
1− t

= −
∫

[0, 1)
(1− t)m−1dµx,y(t)

Now

∫
[0, 1)

(1− t)m−1dµx,y(t) = 0 gives that

d
(
T kx, T ky

)p
= d
(
x, y
)p

+ kµx,y({1}) for all k

and therefore

Θ
(p)
2 (d, T ; x, y) = 0.

QED
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Example 2.4. Consider the map T : (R, d) −→ (R, d) defined by

Tx =


2x− 1, for x ≤ 0

2x+ 1 for x > 0.

It is easy to verify that T is a (1, p)-expansive, but T is neither continuous
nor linear.

3 (m, p)-hyperexpansive maps in seminormed space

Let X be a linear vector space and considering a seminorm s on X, we may
define the quantity

Θ(p)
m (s, T ;x) :=

∑
0≤k≤m

(−1)k
(
m

k

)
s
(
T kx

)p
for all x ∈ X, and introducing a concept similar to that of (m, p)-expansive
maps.

Definition 3.1. Let T : X −→ X be a map , m ∈ N and p > 0. We say
that

(1) T is s(m, p)-isometric if Θ
(p)
m (s, T ; x) = 0 for all x ∈ X.

(2) T is s(m, p)-expansive if Θ
(p)
m (s, T ; x) ≤ 0 ∀ x ∈ X

(3) T is s(m, p)-hyperexpansive if Θ
(p)
k (s, T ; x) ≤ 0 for k = 1, ...,m and x ∈ X.

(4) T is completely s-hyperexpansive if T is s(k, p)-expansive for all k ∈ N.

(5) T is s(m, p)-contractive if Θ
(p)
m (s, T ;x) ≥ 0 ∀ x ∈ X.

(6) T is s(m, p)-hypercontractive if Θ
(p)
k (s, T ; x) ≥ 0 for k = 1, 2, ...,m and

x ∈ X.

(7) T is completely s- hypercontractive if T is s(k, p)-contractive for all k ∈ N.

For any p > 0, s(1, p)-expansive coincide with s-expansive; that is, maps T
satisfying s(Tx) ≥ s(x), for all x ∈ X. Every s-isometry is an s(m, p)-isometry
for all m ≥ 1 and p > 0. s(m, p)-isometries maps are special cases of the class
of s(m , p)-expansive maps.

If X is a normed space with norm ‖.‖ and T : X −→ X we have that

Θ(p)
m (‖.‖, T ;x) =

∑
0≤k≤m

(−1)k
(
m

k

)∥∥T kx∥∥p.
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Clearlym-hyperexpansivity on Hilbert spaces agree with (m, 2)-hyperexpansivity.

Example 3.1. Let D denote the open unit disk in the complex plane. An
analytic function f on D is said to be Bloch if

s(f) = sup
z∈D

(1− |z|2)|f ′(z)| <∞.

The mapping f 7−→ s(f) is a semi-norm on the space B of Bloch functions,
called the Bloch space. See [24] for some additional details. Consider for λ ∈ C
the map Tλ : B −→ B : Tλ(f) = λf .
A simple computation shows that∑

0≤k≤m
(−1)k

(
m

k

)
s(T kλ f)

=
∑

0≤k≤m
(−1)k

(
m

k

)
|λ|k sup

z∈D
(1− |z|2)|f ′(z)|

=
(
1− |λ|

)m
sup
z∈D

(1− |z|2)|f ′(z)|

and it follows that

Θ
(p)
m (s, Tλ, f) ≤ 0, if |λ| > 1, for odd m.

Θ
(p)
m (s, Tλ, f) = 0 if |λ| = 1 and for all m

Θ
(p)
m (s, Tλ, f) > 0 if |λ| < 1 and for all m.

Setting

β
(p)
k (s, T ; x) :=

1

k!

∑
0≤j≤k

(−1)k−j
(
k

j

)
s
(
T jx

)p
, ∀ x ∈ X. (3.1)

In the following theorem, we generalized the identities (1.7) and (1.10) to semi-
normed space. We omit the proof which is very similar to [13,Theorem 2.5] and
[8,Proposition 2.1].

Theorem 3.1. Let (X, s) be seminormed space and T : X −→ X be a map,
we have that

(i) s
(
Tnx)p =

∑
0≤j≤n

n(j)β
(p)
j (s, T ; x); ∀ n ∈ N.

(ii) T is an s(m, p)-isometry if and only if

s
(
Tnx)p =

∑
0≤j≤m−1

n(j)β
(p)
j (s, T ; x); ∀ n ∈ N.
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Proposition 3.1. Let (X, s) be a seminormed space and T : X −→ X be
a map. The following are true

(i) T is s(m, p)-expansive if and only if, λT is s(m, p)-expansive for all λ ∈ C:
|λ| = 1,

(ii) If T is s(2, p)-expansive, then

(1) λT is s(2, p)-expansive for |λ| < 1, if λT 2 is s-expansive.

(2) λT is s(2, p)-expansive for |λ| > 1, if λT 2 is s-contractive.

Proof. (i) Note that, for all p > 0, λ ∈ C, and all x ∈ X, we have

Θ(p)
m (s, T x) = Θ(p)

m (s, λT ; x), |λ| = 1.

(ii) If T is s(2, p)-expansive, then

−2|λ|ps
(
Tx
)p ≤ |λ|p[− s(T 2x

)p − s(x)p] for every λ ∈ C.

So we have for every λ ∈ C

|λ|2ps
(
T 2x

)p − 2|λ|ps
(
Tx
)p

+ s
(
x)p ≤

(
|λ|p − 1

)(
|λ|ps

(
T 2x

)p − s(x)p
)

This finishes the proof. QED
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[9] T. Bermúdez , C. D́ıaz-Mendora, A. Martinón: Powers of m-isometries, Studia Math.
208 (2012) 249-255.
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