(m, p)-hyperexpansive mappings on metric

spaces

Ould Ahmed, Mahmoud Sid Ahmed
Department of Mathematics College of Science, Al Jouf University Al Jouf 2014. Saudi Arabia
sidahmed@ju.edu.sa

Received: 22.12.2014; accepted: 2.4.2015.

Abstract

In the present paper, we define the concept of (m, p)-hyperexpansive mappings in metric space, which are the extension of (m, p)-isometric mappings recently introduced in [13]. We give a first approach of the general theory of these maps.

Keywords: metric space, (m, p)-isometric, expansive maps, hyperexpansive maps.
MSC 2010 classification: primary 54E40, secondary 47B99.

1 Introduction and notations

The introduction of the concept of m-isometric transformation in Hilbert spaces by Agler and Stankus yielded a flow of papers generalizing this concept both in Hilbert and Banach spaces, for example (see [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22]).
An operator T acting on a Hilbert space \mathcal{H} is called m-isometric for some integer $m \geq 1$ if

$$
\begin{equation*}
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k} T^{* k} T^{k}=0 \tag{1.1}
\end{equation*}
$$

where $\binom{m}{k}$ be the binomial coefficient. A simple manipulation proves that (1.1) is equivalent to

$$
\begin{equation*}
\sum_{0 \leq k \leq m}(-1)^{m-k}\binom{m}{k}\left\|T^{k} x\right\|^{2}=0, \text { for all } x \in \mathcal{H} \tag{1.2}
\end{equation*}
$$

Evidently, an isometric operator (i.e., a 1 -isometric operator) is an m-isometric for all integers $m \geq 1$. Indeed the class of m-isometric operators is a generalization of the class of isometric operators and a detailed study of this class and in particular 2-isometric operators on a Hilbert space has been the object of some

[^0]intensive study, especially by J.Agler and M. Stankus in [2], [3] and [4], but also by S.M. Patel [23]. B.P.Duggal [15, 16] studied when the tensor product of operators is an m-isometry.

A generalization of m-isometries to operators on general Banach spaces has been presented by several authors in the last years. Botelho [14] and Sid Ahmed [21] discussed operators defined via (1.2) on (complex) Banach spaces. Bayart introduced in [8] the notion of (m, p)-isometries on general (real or complex) Banach spaces. An operator T on a Banach space X into itself is called an (m, p)-isometry if there exists an integer $m \geq 1$ and a $p \in[1, \infty)$, with

$$
\begin{equation*}
\forall x \in X, \quad \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k}\left\|T^{m-k} x\right\|^{p}=0 \tag{1.3}
\end{equation*}
$$

It is easy to see that, if $X=\mathcal{H}$ is a Hilbert space and $p=2$, this definition coincides with the original definition (1.1) of m-isometries. In [19] the authors took off the restriction $p \geq 1$ and defined (m, p)-isometries for all $p>0$. They studied when an (m, p)-isometry is an (μ, q)-isometry for some pair (μ, q). In particular, for any positive real number p they gave an example of an operator T that is a $(2, p)$-isometry, but is not a $(2, q)$-isometry for any q different from p. In $[9,10]$ it is proven that the powers of an m-isometry are m-isometries and some products of m-isometries are again m-isometries.

The authors, O.A.M. Sid Ahmed and A. Saddi introduced the concept of (A, m)-isometric operators. They gave several generalizations of well known facts on m -isometric operators according to semi-Hilbertian space structures. We refer the reader to $[22]$ for more details about (A, m)-isometric operators. Recently, B.P. Duggal has introduced the concept of an $A(m, p)$-isometry of a Banach space, following a definition of Bayart in the Banach space.

Definition 1.1. ([17]) Let T and $A \in \mathcal{B}(X)$ (the set of bounded linear operators from X into itself), m is a positive integer and $p>0$ a real number. We say that T is an $A(m, p)$-isometry if, for every $x \in X$

$$
\begin{equation*}
\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k}\left\|A T^{m-k} x\right\|^{p}=0 \tag{1.4}
\end{equation*}
$$

For any $T \in \mathcal{B}(\mathcal{H})$ we let

$$
\begin{equation*}
\theta_{m}(T):=\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} T^{* k} T^{k} . \tag{1.5}
\end{equation*}
$$

The Concept of completely hyperexpansive operators on Hilbert space has attracted much attention of various authors. In [1], J. Agler characterized subnormality with the positivity of $\theta_{m}(T)$ in (1.5) and also extended his inequalities to
the concept of m-isometry (cf. $[2-4]$). On the other hand, A. Athavale considered completely hyperexpansive operators in [5]. In further studies, mainy authors have studied k-hyperexpansive (cf. [7, 18]). The concept of (A, m)-expansive operators on Hilbert space was introduced in [20].

Definition 1.2. ([18]) An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be
(i) m-isometry $(m \geq 1)$ if $\quad \theta_{m}(T)=0$.
(ii) m-expansive $(m \geq 1)$ if $\theta_{m}(T) \leq 0$.
(iii) m-hyperexpansive $(m \geq 1)$, if $\theta_{k}(T) \leq 0$ for $k=1,2, \ldots, m$.
(iv) Completely hyperexpansive if $\theta_{m}(T) \leq 0$ for all m.

We refer the reader to $[6,7,18]$ for recent articles concerning this subject.
In [8] the author defined $\beta_{k}^{(p)}(T,):. X \longrightarrow \mathbb{R}: \quad x \longmapsto \beta_{k}^{(p)}(T, x)$ by

$$
\begin{equation*}
\beta_{k}^{(p)}(T, x)=\frac{1}{k!} \sum_{0 \leq j \leq k}(-1)^{k-j}\binom{k}{j}\left\|T^{j} x\right\|^{p}, \forall x \in X \tag{1.6}
\end{equation*}
$$

For $k, n \in \mathbb{N}$ denote the (descending Pochhammer) symbol by $n^{(k)}$, i.e.

$$
n^{(k)}=\left\{\begin{array}{l}
0, \text { if } n=0 \\
0 \text { if } n>0 \text { and } k>n \\
\binom{n}{k} k!\text { if } n>0 \text { and } k \leq n
\end{array}\right.
$$

Then for $n>0, k>0$ and $k \leq n$ we have

$$
n^{(k)}=n(n-1) \ldots(n-k+1)
$$

It was proved in [8, Proposition 2.1] that

$$
\begin{equation*}
\left\|T^{n} x\right\|^{p}=\sum_{0 \leq k \leq m-1} n^{(k)} \beta_{k}^{(p)}(T, x) \tag{1.7}
\end{equation*}
$$

for all integers $n \geq 0$ and $x \in X$. In particular,

$$
\beta_{m-1}^{(p)}(T, x)=\lim _{n \longrightarrow \infty} \frac{\left\|T^{n} x\right\|^{p}}{\binom{n}{m-1}(m-1)!} \geq 0
$$

with equality if and only if T is $(m-1 ; p)$-isometric.
In recent work T. Bermúdez, A. Martinôn and V. Müller introduced the concept of (m, p)-isometric maps on metric spaces (see [13]).
Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

Definition 1.3. ([13]) Let E be a metric space. A map $T: E \longrightarrow E$ is called an (m, p)-isometry, $(m \geq 1$ integer and $p>0)$ if, for all $x, y \in E$

$$
\begin{equation*}
\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} d\left(T^{m-k} x, T^{m-k} y\right)^{p}=0 \tag{1.8}
\end{equation*}
$$

For $m \geq 2, T$ is a strict (m, p)-isometry if it is an (m, p)-isometry, but is not an $(m-1, p)$-isometry.

For any $p>0 ;(1, p)$-isometry coincide with isometry, that is $d(T x, T y)=$ $d(x, y)$ for all $x, y \in E$. Every isometry is an (m, p)-isometry for all $m \geq 1$ and $p>0$. Many results known in the Banach space setting are established in [13] for metric spaces. For example, an (m, p) - isometry is an $(m+1, p)$-isometry and any power of (m, p)-isometry is again an (m, p)-isometry.

Let $T: E \longrightarrow E$ is an (m, p)-isometry. In [13] the authors defined $f_{T}(h, p, x, y)$ for $h \in \mathbb{N}$, a positive real number p and $x, y \in E$ by :

$$
\begin{equation*}
f_{T}(h, p, x, y)=\sum_{0 \leq k \leq h}(-1)^{h-k}\binom{h}{k} d\left(T^{k} x, T^{k} y\right)^{p} \tag{1.9}
\end{equation*}
$$

We have from (1.9) that

$$
\begin{equation*}
d\left(T^{n} x, T^{n} y\right)^{p}=\sum_{0 \leq k \leq m-1}\binom{n}{k} f_{T}(k, p ; x, y) \tag{1.10}
\end{equation*}
$$

for all $n \geq 0$ and $x, y \in X$ (see [13]).
Definition 1.4. ([5]) A real- valued function Ψ on \mathbb{N}_{0} is said to be
(1) completely monotone if $\Psi \geq 0$ and $\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} \Psi(n+k) \geq 0, \forall n \geq 0$ and $m \geq 1$.
(2) completely alternating if $\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} \Psi(n+k) \leq 0, \forall n \geq 0$ and $m \geq 1$.

The content of this paper is as follows. In Section one we set up notation and terminology. Furthermore, we collect some facts about (m, p)-isometries. In Section two, we introduce and study the concept of (m, p)-expansive and hyperexpansive mappings on a metric space and we investigate various structural properties of this classes of mappings. We prove that $(2, p)$-hyperexpansive mappings which are (m, p)-expansive must be $(m-1, p)$-expansive for $m \geq 2$. Recall that if T is an m-isometry (resp. k-expansive or (A, m)-expansive) operator, then so
are all its power T^{n}; for $n \geq 1$ (cf $[9,18,20]$). It turns out that the same assertion remains true for $(2, p)$-hyperexpansive and completely p-hyperexpansive mapping (Theorem 2.3 and Theorem 2.4). Moreover, we prove that the intersection of the class of completely p-hyperexpansive mapping and the class of (m, p)-isometries for $m \geq 2$ is the class of $(2, p)$-isometries (Proposition 2.10). The section three of this paper is an attempt to develop some properties of the class of (m, p)-expansive mappings in seminormed spaces parallel to those of m-isometries.

2 (m, p)-Hyperexpansive maps in metric spaces

In this section, let (X, d) be a metric space, $T: X \longrightarrow X$ is a map, $m \in \mathbb{N}$ and $p>0$ is a real number. We define the quantity

$$
\Theta_{m}^{(p)}(d, T ; x, y):=\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} d\left(T^{k} x, T^{k} y\right)^{p}
$$

for all $x, y \in X$ and we give several results on (m, p) expansive and hyperexpansive mappings on a metric space.
In the following definition, $\Theta_{m}^{(p)}(d, T ; x, y) \leq 0\left(\right.$ resp. $\left.\Theta_{m}^{(p)}(d, T ; x, y) \geq 0\right)$ really means $\Theta_{m}^{(p)}(d, T ; x, y) \leq 0$ for all $x, y \in X$ (resp. $\Theta_{m}^{(p)}(d, T ; x, y) \geq 0$ for all $x, y \in X$).

Definition 2.1. Let $T: X \longrightarrow X$ be a map. We say that
(i) T is (m, p)-expansive if $\Theta_{m}^{(p)}(d, T ; x, y) \leq 0$.
(ii) T is (m, p)-hyperexpansive if $\Theta_{k}^{(p)}(d, T ; x, y) \leq 0$ for $k=1,2, \ldots, m$.
(iii) T is completely p-hyperexpansive if T is (k, p)-expansive for all $k \in \mathbb{N}$.
(iv) T is (m, p)-contractive if $\Theta_{m}^{(p)}(d, T ; x, y) \geq 0$.
(v) T is (m, p)-hypercontractive if $\Theta_{k}^{(p)}(d, T ; x, y) \geq 0$ for $k=1,2, \ldots, m$.
(vi) T is completely p-hypercontractive if T is (k, p)-contractive for all $k \in \mathbb{N}$.

For any $p>0,(1, p)$-expansive coincide with expansive; that is, maps T satisfying $d(T x, T y) \geq d(x, y)$, for all $x, y \in X$.
For any $p>0,(1, p)$-contractive coincide with contractive; that is, maps T satisfying $d(T x, T y) \leq d(x, y)$, for all $x, y \in X .(m, p)$-isometries maps are special cases of the class of (m, p)-expansive and contractive maps.

We consider the following examples of (m, p)-expansive map and (m, p)-contractive map which are not (m, p)-isometric map.

Example 2.1. Let $X=\mathbb{R}$ be equipped with the Euclidean metric $d(x, y)=|x-y|$ for all $x, y \in X$. Define $T: X \longrightarrow X$ by $T x=2 x$. Clearly $\Theta_{m}^{(p)}(d, T ; x, y)=\left(1-2^{p}\right)^{m}|x-y|^{p}$. So we can say that T is neither (m, p) -isometric, for all $m \geq 1$ and $p>0$. However, one can easily verify that T is (m, p) expansive map for positive odd integer m and (m, p)-contractive map for positive even integer m.

Remark 2.1. Every (m, p)-expansive map T is injective. In fact if $T x=T y$ then $T^{k} x=T^{k} y$ for $k=1,2, \ldots, m$ and from (i) of Definition 2.1 we obtain $d(x, y) \leq 0$ i.e $x=y$. Hence T is an injective map.
We not that an (m, p)-expansive map is in general not an $(m+1, p)$-expansive, as we shown in the following example.

Example 2.2. Consider the usual metric $d(x, y)=|x-y|$ on \mathbb{R}. Let $T:(\mathbb{R}, d) \longrightarrow(\mathbb{R}, d)$ defined by $T x=1+2 x$. Then it is easy to see that $d(T x, T y) \geq d(x, y)$ and

$$
d\left(T^{2} x, T^{2} y\right)^{p}-2 d(T x, T y)^{p}+d(x, y)^{p}=\left(2^{p}-1\right)^{2}|x-y|^{p} \not \leq 0
$$

Clearly T is $(1, p)$-expansive which is not $(2, p)$-expansive.
Remark 2.2. We note the following:

$$
\begin{align*}
& \Theta_{m}^{(p)}(d, T, x, y) \leq 0 \Longleftrightarrow \Theta_{m}^{(p)}\left(d, T, T^{n} x ; T^{n} y\right) \leq 0, \forall x, y \in X, \forall n \in \mathbb{N}_{0} \tag{1}\\
& \Theta_{m}^{(p)}(d, T, x, y) \geq 0 \Longleftrightarrow \Theta_{m}^{(p)}\left(d, T, T^{n} x ; T^{n} y\right) \geq 0, \forall x, y \in X, \forall n \in \mathbb{N}_{0} \tag{2}
\end{align*}
$$

Remark 2.3. We deduce from ([5], Proposition 1 and Proposition 2) the following characterizations of completely p-hyperexpansive and completely p hypercontractive maps.
(1) A map $T: X \longrightarrow X$ is completely p-hyperexpansive if and only if for every $x, y \in X$, the map $n \longmapsto \Psi_{(T, p, x, y)}(n)=d\left(T^{n} x, T^{n} y\right)^{p}$ is completely alternating.
(2) A map $T: X \longrightarrow X$ is completely p-hypecontractive if and only for every $x, y \in X$, the map $n \longmapsto \Psi_{(T, p, x, y)}(n)=d\left(T^{n} x, T^{n} y\right)^{p}$ is completely monotone.

In the next proposition we invoke the following relation which plays an important role in the proof of main results.

Proposition 2.1. For a map $T: X \longrightarrow X, m \in \mathbb{N}$, real number $p>0$ and $x, y \in X$, we have that

$$
\begin{equation*}
\Theta_{m}^{(p)}(d, T ; x, y)=\Theta_{m-1}^{(p)}(d, T ; x, y)-\Theta_{m-1}^{(p)}(d, T ; T x, T y) \tag{2.1}
\end{equation*}
$$

Proof. By the standard formula $\binom{m}{j}=\binom{m-1}{j}+\binom{m-1}{j-1}$ for binomial coefficients we have the equalities

$$
\begin{aligned}
& \Theta_{m}^{(p)}(d, T ; x, y) \\
= & \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{j} d\left(T^{k} x, T^{k} y\right)^{p} \\
= & d(x, y)^{p}+\sum_{1 \leq k \leq m-1}(-1)^{k}\binom{m}{k} d\left(T^{k} x, T^{k} y\right)^{p}+(-1)^{m} d\left(T^{m} x, T^{m} y\right)^{p} \\
= & d(x, y)^{p}+\sum_{1 \leq k \leq m-1}(-1)^{k}\left(\binom{m-1}{k}+\binom{m-1}{k-1}\right) d\left(T^{k} x, T^{k} y\right)^{p}+ \\
& +(-1)^{m} d\left(T^{m} x, T^{m} y\right)^{p} \\
= & \Theta_{m-1}^{(p)}(d, T ; x, y)-\Theta_{m-1}^{(p)}(d, T ; T x, T y) .
\end{aligned}
$$

Remark 2.4. We note the following equivalences:

$$
\begin{align*}
& T \text { is }(m, p)-\text { expansive } \Longleftrightarrow \forall x, y \in X \tag{1}\\
& \quad \sum_{\substack{m \leq k \leq m}}\binom{m}{k} d\left(T^{k} x, T^{k} y\right)^{p} \leq \sum_{\substack{k \leq k \leq m}}\binom{m}{k} d\left(T^{k} x, T^{k} y\right)^{p} \\
& \quad \text { odd }
\end{align*}
$$

(2) $\quad T$ is (m, p) - contractive $\Longleftrightarrow \forall x, y \in X$

$$
\sum_{\substack{0 \leq k \leq m \\ k \text { even }}}\binom{m}{k} d\left(T^{k} x, T^{k} y\right)^{p} \geq \sum_{0 \leq k \leq m}\binom{m}{k} d\left(T^{k} x, T^{k} y\right)^{p}
$$

Lemma 2.1. Let $T: X \longrightarrow X$ be an (2, p)-expansive mapping. Then the following properties hold
(1) $d(T x, T y)^{p} \geq \frac{n-1}{n} d(x, y)^{p}, \quad n \geq 1, x, y \in X$.
(2) $d(T x, T y)^{p} \geq d(x, y)^{p}$ for all $x, y \in X$.
(3) $d\left(T^{n} x, T^{n} y\right)^{p}+(n-1) d(x, y)^{p} \leq n . d(T x, T y)^{p}, x, y \in X, n=0,1,2, \ldots$
(4) $d(T x, T y) \leq 2^{\frac{1}{p}} d(x, y) \quad \forall x, y \in \mathcal{R}(T)$ (the range of $\left.T\right)$.

Proof. Using the fact that T is $(2, p)$-expansive map, we get

$$
d\left(T^{2} x, T^{2} y\right)^{p}-d(T x, T y)^{p} \leq d(T x, T y)^{p}-d(x, y)^{p} .
$$

Replacing x by $T^{k} x$ and y by $T^{k} y$ leads to

$$
d\left(T^{k+2} x, T^{k+2} y\right)^{p}-d\left(T^{k+1} x, T^{k+1} y\right)^{p} \leq d\left(T^{k+1} x, T^{k+1} y\right)^{p}-d\left(T^{k} x, T^{k} y\right)^{p}
$$

for $k \geq 0$. Hence

$$
\begin{aligned}
d\left(T^{n} x, T^{n} y\right)^{p} & =\sum_{1 \leq k \leq n}\left(d\left(T^{k} x, T^{k} y\right)^{p}-d\left(T^{k-1} x, T^{k-1} y\right)^{p}\right)+d(x, y)^{p} \\
& \leq n\left(d(T x, T y)^{p}-d(x, y)^{p}\right)+d(x, y)^{p} \\
& \leq n d(T x, T y)^{p}+(1-n) d(x, y)^{p} .
\end{aligned}
$$

Which implies 1 . and 3 . Letting $n \longrightarrow \infty$ in 1 . yields 2 .
4. The $(2, p)$-expansivity of T implies that

$$
d\left(T^{2} x, T^{2} y\right)^{p} \leq 2 d(T x, T y)^{p}-d(x, y)^{p} \leq 2 d(T x, T y)^{p} .
$$

Thus,

$$
d\left(T^{2} x, T^{2} y\right) \leq 2^{\frac{1}{p}} d(T x, T y)
$$

Remark 2.5. We make the following remarks:
(1) (2, p)-isometric is completely p-hyperexpansive.
(2) Every $(k+1, p)$-hyperexpansive is (k, p)-hyperexpansive for $k=1,2, \ldots$.

Lemma 2.2. Let $T: X \longrightarrow X$ be an (2, p)-expansive map, then for all integer $k \geq 2$ and $x, y \in X$, we have

$$
d\left(T^{k} x, T^{k} y\right)^{p}-d\left(T^{k-1} x, T^{k-1} y\right)^{p} \leq d(T x, T y)^{p}-d(x, y)^{p} .
$$

Proof. We prove the assertion by induction on k. Since T is an ($2, p$-expansive the result is true for $k=2$. Now assume that the result is true for k i.e.; for all $x, y \in X$,

$$
\begin{equation*}
d\left(T^{k} x, T^{k} y\right)^{p}-d\left(T^{k-1} x, T^{k-1} y\right)^{p} \leq d(T x, T y)^{p}-d(x, y)^{p} \tag{2.2}
\end{equation*}
$$

and let us prove it of $k+1$. From (2.2) we obtain the following inequalities

$$
\begin{aligned}
d\left(T^{k+1} x, T^{k+1} y\right)^{p}-d\left(T^{k} x, T^{k} y\right)^{p} & \leq d\left(T^{2} x, T^{2} y\right)^{p}-d(T x, T y)^{p} \\
& \leq d(T x, T y)^{p}-d(x, y)^{p} .
\end{aligned}
$$

Proposition 2.2. Let $T: X \longrightarrow X$ be a $(2, p)$-expansive map. Then the following statements hold.
(1) T is $(2, p)$-hyperexpansive map.
(2) $d(T x, T y)^{2 p} \geq d(x, y)^{p} d\left(T^{2} x, T^{2} y\right)^{p}$ for all $x, y \in X$.
(3) For each n and $x, y \in X$ such that $x \neq y$,the sequence

$$
\begin{equation*}
\left(\frac{d\left(T^{n+1} x, T^{n+1} y\right)^{p}}{d\left(T^{n} x, T^{n} y\right)^{p}}\right)_{n \geq 0} \tag{2.3}
\end{equation*}
$$

is monotonically decreasing to 1 .
Proof. (1) Follows from part (2) of Lemma 2.1.
(2) Since from (1) T is $(2, p)$-hyperexpansive map, we have that

$$
\begin{aligned}
d(T x, T y)^{2 p} & \geq\left(\frac{d(x, y)^{p}+d\left(T^{2} x, T^{2} y\right)^{p}}{2}\right)^{2} \\
& \geq\left(d(x, y)^{\frac{p}{2}} d\left(T^{2} x, T^{2} y\right)^{\frac{p}{2}}\right)^{2} \\
& \geq d(x, y)^{p} d\left(T^{2} x, T^{2} y\right)^{p}
\end{aligned}
$$

(3) Observe that the $(2, p)$-expansivity of T implies that

$$
\begin{equation*}
d\left(T^{n+1} x, T^{n+1} y\right)^{p}-2 d\left(T^{n} x, T^{n} y\right)^{p}+d\left(T^{n-1} x, T^{n-1} y\right)^{p} \leq 0 \tag{2.4}
\end{equation*}
$$

On the other hand, since

$$
\left(d\left(T^{n-1} x, T^{n-1} y\right)^{\frac{p}{2}}-d\left(T^{n+1} x, T^{n+1} y\right)^{\frac{p}{2}}\right)^{2} \geq 0
$$

it follows that

$$
\begin{aligned}
& d\left(T^{n-1} x, T^{n-1} y\right)^{\frac{p}{2}} d\left(T^{n+1} x, T^{n+1} y\right)^{\frac{p}{2}} \\
\leq & \frac{d\left(T^{n+1} x, T^{n+1} y\right)^{p}+d\left(T^{n-1} x, T^{n-1} y\right)^{p}}{2} \\
\leq & d\left(T^{n} x, T^{n} y\right)^{p} \quad(\text { by } \quad(2.4))
\end{aligned}
$$

Thus,

$$
d\left(T^{n-1} x, T^{n-1} y\right)^{p} d\left(T^{n+1} x, T^{n+1} y\right)^{p} \leq d\left(T^{n} x, T^{n} y\right)^{2 p}
$$

and hence,

$$
\frac{d\left(T^{n+1} x, T^{n+1} y\right)^{p}}{d\left(T^{n} x, T^{n} y\right)^{p}} \leq \frac{d\left(T^{n} x, T^{n} y\right)^{p}}{d\left(T^{n-1} x, T^{n-1} y\right)^{p}},
$$

so the sequence (2.3) is monotonically decreasing. To calculate its limit in view of part (2) of Lemma 2.1, divide (2.4) by $d\left(T^{n-1} x, T^{n-1} y\right)^{p}$ to get

$$
1-2 \frac{d\left(T^{n} x, T^{n} y\right)^{p}}{d\left(T^{n-1} x, T^{n-1} y\right)^{p}}+\frac{d\left(T^{n+1} x, T^{n+1} y\right)^{p}}{d\left(T^{n} x, T^{n} y\right)^{p}} \frac{d\left(T^{n} x, T^{n} y\right)^{p}}{d\left(T^{n-1} x, T^{n-1} y\right)^{p}} \leq 0
$$

and let n tend to infinity we obtain that

$$
\frac{d\left(T^{n} x, T^{n} y\right)^{p}}{d\left(T^{n-1} x, T^{n-1} y\right)^{p}} \longrightarrow 1 \quad \text { as } n \longrightarrow \infty
$$

The following theorem gives a sufficient condition for (m, p)-expansive map to be ($m-1, p$)-expansive map for $m \geq 3$.

Theorem 2.1. Let $T: X \longrightarrow X$ be an (m, p)-expansive map for $m \geq 3$. If T is ($2, p$)-expansive, then T is $(m-1, p)$-expansive.
Proof. The conditions $d(x, y)^{p}-d(T x, T y)^{p} \leq 0$ and

$$
d(x, y)^{p}-2 d(T x, T y)^{p}+d\left(T^{2} x, T^{2} y\right)^{p} \leq 0
$$

guarantee that the sequence $\left(d\left(T^{n+1} x, T^{n+1} y\right)^{p}-d\left(T^{n} x, T^{n} y\right)^{p}\right)_{n \geq 0}$ is monotonically non-increasing and bounded, so that is converges. Thus there exists a constant C such that

$$
d\left(T^{n+1} x, T^{n+1} y\right)^{p}-d\left(T^{n} x, T^{n} y\right)^{p} \longrightarrow C \text { as } n \longrightarrow \infty
$$

Since $\Theta_{m}^{(p)}(d, T ; x, y) \leq 0$ with $m \geq 2$. By Proposition 2.1

$$
\Theta_{m}^{(p)}(d, T ; x, y)=\Theta_{m-1}^{(p)}(d, T ; x, y)-\Theta_{m-1}^{(p)}(d, T ; T x ; T y),
$$

we have that

$$
\Theta_{m-1}^{(p)}(d, T ; x, y) \leq \Theta_{m-1}^{(p)}(d, T ; T x, T y) .
$$

An induction argument shows that

$$
\Theta_{m-1}^{(p)}(d, T ; x, y) \leq \Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right), n \geq 1
$$

Thus,it suffices to show that

$$
\Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right) \longrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

Note that

$$
\Theta_{m-1}^{(p)}(d, T ; x, y)=\Theta_{m-2}^{(p)}(d, T ; x, y)-\Theta_{m-2}^{(p)}(d, T ; T x, T y)
$$

so that

$$
\begin{aligned}
& \Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right) \\
= & \sum_{0 \leq j \leq m-2}(-1)^{j}\binom{m-2}{j}\left[d\left(T^{n+j} x, T^{n+j} y\right)^{p}-d\left(T^{n+1+j} x, T^{n+1+j} y\right)^{p}\right] .
\end{aligned}
$$

Letting $n \longrightarrow \infty$ in the preceding equality leads to

$$
\Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right) \longrightarrow \sum_{0 \leq j \leq m-2}(-1)^{j}\binom{m-2}{j} C=0
$$

This completes the proof.
QED
Example 2.3. Let us consider again Example 2.2. $T: \mathbb{R} \longrightarrow \mathbb{R}$,
$T x=1+2 x$. This example shows that T is $(5, p)$-expansive,but not $(4, p)$ expansive, so the assumption for T to be $(2, p)$-expansive in Theorem 2.1 below is necessary.
The following criterion for (m, p)-hyperexpansivity follows from Theorem 2.1
Corollary 2.1. Let T be (m, p)-expansive and $(2, p)$-expansive mapping. Then T is (m, p)-hyperexpansive.

Proposition 2.3. Let $T: X \longrightarrow X$ be an $(2, p)$-expansive map and assume that T is a (m, p)-isometric for some $m \geq 2$. Then T is a $(2, p)$-isometric.

Proof. Assume that $\Theta_{m}^{(p)}(d, T ; x, y)=0$ for all $x, y \in X$. Since

$$
\Theta_{m}^{(p)}(d, T ; x, y)=\Theta_{m-1}^{(p)}(d, T ; x, y)-\Theta_{m-1}^{(p)}(d, T ; T x, T y)
$$

we deduce that

$$
\Theta_{m-1}^{(p)}(d, T ; x, y)=\Theta_{m-1}^{(p)}(d, T ; T x, T y)=\Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right)
$$

for $n=1,2, \ldots$. In the same way as in the proof of Theorem 2.1 we obtain that $\Theta_{m-1}^{(p)}(d, T ; x, y)=0$. Applying the corresponding results of the $(m-1, p)$ isometric, we have that $\Theta_{m-2}^{(p)}(d, T ; x, y)=0$. Continue the above process to get $\Theta_{2}^{(p)}(d, T ; x, y)=0$ and so T is $(2, p)$-isometric.

QED

In the following lemma we generalize Lemma 1.3 in [14] and Proposition 2.11 in [13].

Lemma 2.3. Let $T: X \longrightarrow X$ be a contractive mapping. If T is an (m, p) isometry then T is an ($m-1, p$)-isometry.

Proof. Since T is contractive, we have the following inequality
$d\left(T^{n+1} x, T^{n+1} y\right)^{p} \leq d\left(T^{n} x, T^{n} y\right)^{p}$ for all $x, y \in X$ and $n \in \mathbb{N}_{0}$. This means that $\left(d\left(T^{n} x, T^{n} y\right)^{p}\right)_{n \in \mathbb{N}_{0}}$ is deceasing sequence, so convergent.
Using the fact that T is an (m, p)-isometry and together (2.1), we obtain

$$
\Theta_{m-1}^{(p)}(d, T ; x, y)=\Theta_{m-1}^{(p)}(d, T ; T x, T y)=\ldots=\Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right)
$$

Note that

$$
\Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right)=\Theta_{m-2}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right)-\Theta_{m-2}^{(p)}\left(d, T ; T^{n+1} x, T^{n+1} y\right),
$$

so that

$$
\begin{aligned}
& \Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right) \\
= & \sum_{j=0}^{m-2}(-1)^{j}\binom{m-2}{j}\left[d\left(T^{n+j} x, T^{n+j} y\right)^{p}-d\left(T^{n+1+j} x, T^{n+1+j} y\right)^{p}\right] .
\end{aligned}
$$

Letting $n \longrightarrow \infty$ in the preceding equality leads to

$$
\Theta_{m-1}^{(p)}\left(d, T ; T^{n} x, T^{n} y\right) \longrightarrow 0 .
$$

Thus, $\quad \Theta_{m-1}^{(p)}(d, T ; x, y)=0$ and hence, T is an $(m-1, p)$-isometry. QED $^{Q E D}$

As a consequence of the lemma, we have the following proposition.
Proposition 2.4. If T is a contractive mapping on X, then T is an (m, p) isometry if and only if T is an isometry.

Proposition 2.5. Let $T: X \longrightarrow X$ be a map for which T^{2} is isometric, then the following properties hold
(i) T is (m, p)-expansive map if and only if T is expansive.
(ii) T is (m, p)-contractive if and only if T is contractive.

Proof. (i) If we assume that m is odd integer i.e., $m=2 q+1$ we have by the assumption that

$$
\begin{aligned}
& \Theta_{2 q+1}^{(p)}(d, T ; x, y) \\
= & \sum_{0 \leq j \leq q}\left[\binom{2 q+1}{2 j} d\left(T^{2 j} x, T^{2 j} y\right)^{p}-\binom{2 q+1}{2 j+1} d\left(T^{2 j+1} x, T^{2 j+1} y\right)^{p}\right] \\
= & \sum_{0 \leq j \leq q}\left[\binom{2 q+1}{2 j} d(x, y)^{p}-\binom{2 q+1}{2 j+1} d(T x, T y)^{p}\right]
\end{aligned}
$$

Since $\sum_{0 \leq k \leq 2 q+1}(-1)^{k}\binom{2 q+1}{k}=0$, it follows that

$$
\sum_{0 \leq j \leq q}\binom{2 q+1}{2 j+1}=\sum_{0 \leq j \leq q}\binom{2 q+1}{2 j}
$$

and we deduce that

$$
\Theta_{2 q+1}^{(p)}(d, T ; x, y)=\sum_{0 \leq j \leq q}\binom{2 q+1}{2 j}\left(d(x, y)^{p}-d(T x, T y)^{p}\right)
$$

Similarly if m is even integer i.e., $m=2 q$ we have

$$
\begin{aligned}
& \Theta_{2 q}^{(p)}(d, T ; x, y) \\
= & \sum_{0 \leq j \leq q}\binom{2 q}{2 j} d\left(T^{2 j} x, T^{2 j} y\right)^{p}-\sum_{j=1}^{q}\binom{2 q}{2 j-1} d\left(T^{2 j-1} x, T^{2 j-1} y\right)^{p} \\
= & \sum_{0 \leq j \leq q}\binom{2 q}{2 j} d(x, y)^{p}-\sum_{1 \leq j \leq q}\binom{2 q}{2 j-1} d(T x, T y)^{p}
\end{aligned}
$$

Since $\sum_{0 \leq k \leq 2 q}(-1)^{k}\binom{2 q}{k}=0$, we have that $\sum_{1 \leq j \leq q}\binom{2 q}{2 j-1}=\sum_{0 \leq j \leq q}\binom{2 q}{2 j}$ and hence

$$
\Theta_{2 q}^{(p)}(d, T ; x, y)=\sum_{0 \leq j \leq q}\binom{2 q}{2 j}\left(d(x, y)^{p}-d(T x, T y)^{p}\right)
$$

Therefore, we conclude that (i) and (ii) hold and this establishes the proposition.

Proposition 2.6. If $T: X \longrightarrow X$ be an map satisfies $T^{2}=T$, then the following properties hold
(i) T is (m, p)-expansive if and only if T is expansive.
(ii) T is (m, p)-contractive if and only if T is contractive.

Proof. By the assumption on T, we have that

$$
\Theta_{m}^{(p)}(d, T ; x, y)=d(x, y)^{p}-d(T x, T y)^{p}, \forall x, y \in X .
$$

It is clear from the foregoing that a sufficient condition for T to be (m, p) expansive (resp. (m, p)-contractive) is that T is expansive (resp. contractive).

Proposition 2.7. ([13]) If T is a bijective (m, p)-isometry, then T^{-1} is also an (m, p)-isometry.

We have the following result about bijective (m, p)-expansive and contractive maps.

Proposition 2.8. Let $T: X \longrightarrow X$ be an bijective map, we have the following properties
(1) If T is (m, p)-expansive, then
(i) for m even, T^{-1} is (m, p)-expansive.
(ii) for m odd, T^{-1} is (m, p)-contractive.
(2) If T is (m, p)-contractive, then
(i) for m even, T^{-1} is (m, p)-contractive.
(ii) for m odd, T^{-1} is (m, p)-expansive.

Proof. (1) Assume that $\Theta_{m}^{(p)}(d, T ; x, y) \leq 0 \quad \forall x, y \in X$ and for positive integer m. By a computation stemming essentially from the formula

$$
\binom{m}{j}=\binom{m}{m-j} ; \text { for } j=0,1, \ldots, m
$$

we deduce that

$$
\Theta_{m}^{(p)}\left(d, T^{-1} ; x, y\right)=(-1)^{m} \Theta_{m}^{(p)}\left(d, T ; T^{-m} x, T^{-m} y\right)
$$

It follows that $\Theta_{m}^{(p)}\left(d, T^{-1} ; x, y\right) \leq 0$ for even integer m i.e., T^{-1} is (m, p) expansive, and $\Theta_{m}^{(p)}\left(d, T^{-1} ; x, y\right) \geq 0$ for odd integer m i.e., T^{-1} is (m, p) contractive.
(2) The proof is similar.

Proposition 2.9. Let $T: X \longrightarrow X$ be an bijective $(2, p)$-expansive map, then T is $(1, p)$-isometric.

Proof. Since T is $(2, p)$-expansive, we have by Lemma 2.1 that $d(T x, T y)^{p} \geq$ $d(x, y)^{p}$.This means that T is $(1, p)$-expansive. Moreover if T is bijective $(2, p)$ expansive, then T^{-1} is $(2, p)$-expansive, hence $d\left(T^{-1} u, T^{-1} v\right)^{p} \geq d(u, v)^{p}$ for all $u, v \in X$. Letting $u=T x$ and $v=T y$, this implies

$$
d(T x, T y)^{p}=d(x, y)^{p}
$$

for all $x, y \in X$. This means that T is $(1, p)$-isometric.
QED

Theorem 2.2. Let $T ; S: X \longrightarrow X$ two maps such that $S T=I_{X}$ (the identity mapping). Assume that there exists an integer $m \geq 1$ such that $\Theta_{m}^{(p)}(d, S ; x, y) \leq$ 0 for all $x, y \in \mathcal{R}\left(T^{m}\right)$, the following statements hold.
(i) If m is even, then T is (m, p)-expansive map.
(ii) If m is odd, then T is (m, p)-contractive map.

Proof. Since $\Theta_{m}^{(p)}\left(d, S ; T^{m} u, T^{m} v\right) \leq 0$ for all $u, v \in X$, we have that

$$
\begin{aligned}
0 & \geq \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} d\left(S^{k} T^{m} u, S^{k} T^{m} v\right)^{p} \\
& \geq \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} d\left(T^{m-k} u, T^{m-k} v\right)^{p} \\
& \geq(-1)^{m} \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} d\left(T^{k} u, T^{k} v\right)^{p}
\end{aligned}
$$

Note that every power of k-expansive (resp. (A, m)-expansive) operators on a Hilbert space is k-expansive (resp. (A, m)-expansive). See ([18], Theorem 2.3) and ([20], Proposition 3.9).

In the following theorem we investigate the powers of $(2, p)$-expansive maps as well as $(2, p)$-expansive maps by using Lemma 2.2.

Theorem 2.3. Let $T: X \longrightarrow X$ be an $(2, p)$-expansive map. Then for any positive integer n, T^{n} is (2,p)-expansive map.

Proof. We will induct on n, the result obviously holds for $n=1$. Suppose then the assertion holds for $n \geq 2$, i.e

$$
d\left(T^{2 n} x, T^{2 n} y\right)^{p}-2 d\left(T^{n} x, T^{n} y\right)^{p}+d(x, y)^{p} \leq 0, \forall x, y \in X
$$

Then

$$
\begin{aligned}
& d\left(T^{2 n+2} x, T^{2 n+2} y\right)^{p}-2 d\left(T^{n+1} x, T^{n+1} y\right)^{p}+d(x, y)^{p} \\
= & d\left(T^{2} T^{2 n} x, T^{2} T^{2 n} y\right)^{p}-2 d\left(T^{n+1} x, T^{n+1} y\right)^{p}+d(x, y)^{p} \\
\leq & 2 d\left(T^{2 n+1} x, T^{2 n+1} y\right)^{p}-d\left(T^{2 n} x, T^{2 n} y\right)^{p} \\
& -2 d\left(T^{n+1} x, T^{n+1} y\right)^{p}+d(x, y)^{p} \\
\leq & 2\left(2 d\left(T^{n+1} x, T^{n+1} y\right)^{p}-d(T x, T y)^{p}\right)-d\left(T^{2 n} x, T^{2 n} y\right)^{p} \\
& -2 d\left(T^{n+1} x, T^{n+1} y\right)^{p}+d(x, y)^{p} \\
\leq & 2 d\left(T^{n+1} x, T^{n+1} y\right)^{p}-d\left(T^{2 n} x, T^{2 n} y\right)^{p} \\
& -2 d(T x, T y)^{p}+d(x, y)^{p} \\
\leq & 2 d\left(T^{n+1} x, T^{n+1} y\right)^{p}-\left(2 d\left(T^{n} x, T^{n} y\right)^{p}-d(x, y)^{p}\right) \\
& -2 d(T x, T y)^{p}+d(x, y)^{p} \\
\leq & 2 d\left(T^{n+1} x, T^{n+1} y\right)^{2}-2 d\left(T^{n} x, T^{n} y\right)^{p}-2 d(T x, T y)^{p}+2 d(x, y)^{p} \\
\leq & 2\left(d(T x, T y)^{p}-d(x, y)^{p}\right)-2 d(T x, T y)^{p}+2 d(x, y)^{p} \quad(\text { by } \text { Lemma 2.2). } \\
\leq & 0 .
\end{aligned}
$$

Thus means that T^{n} is $(2, p)$-expansive map.

In the following theorem we investigate the powers of completely p-hyperexpansive mapping as well as completely p-hyperexpansive mapping.

According to [5, Remark 1.] for every completely p-hyperexpansive map, the condition that $n \longmapsto d\left(T^{n} x, T^{n} y\right)^{p}$ be completely alternating on \mathbb{N} implies the representation, for every $x, y \in X$,

$$
\begin{equation*}
d\left(T^{n} x, T^{n} y\right)^{p}=d(x, y)^{p}+n \mu_{x, y}(\{1\})+\int_{[0,1)}\left(1-t^{n}\right) \frac{d \mu_{x, y}(t)}{1-t} \tag{2.5}
\end{equation*}
$$

where $\mu_{x, y}$ is a positive regular Borel measure on $[0 ; 1]$ (for more details see [5]).

Theorem 2.4. Any positive integral power of a completely p-hyperexpansive mapping is completely p-hyperexpansive.

Proof. Let T be a completely p-hyperexpansive map and let $k \geq 1$. In view of (2.5) we have that

$$
\begin{aligned}
& d\left(\left(T^{k}\right)^{n} x,\left(T^{k}\right)^{n} y\right)^{p}=d\left(T^{n k} x, T^{n k} y\right)^{p} \\
= & d(x, y)^{p}+n k \mu_{x, y}(\{1\})+\int_{[0,1)}\left(1-t^{n k}\right) \frac{d \mu_{x, y}(t)}{1-t} \\
= & d(x, y)^{p}+n\left(k \mu_{x,(}(\{1\})\right)+\int_{[0,1)}\left(1-s^{n}\right) \frac{d \mu_{x, y}^{\prime}(s)}{1-s^{\frac{1}{k}}} .
\end{aligned}
$$

Therefore the map $n \longmapsto d\left(T^{n k} x, T^{n k} y\right)^{p}$ is completely alternating and so that T^{k} is completely p-hyperexpansive.

QED

The next proposition describes the intersection of the class of completely p hyperexpansive maps with the class of (m, p)-isometries.

Proposition 2.10. Let T be a mapping on metric space X into itself. If T is completely p-hyperexpansive as well as (m, p)-isometric $(m \geq 2)$, then T is a (2, p)-isometric.

Proof. First, if T is isometric, then T is a $(2, p)$-isometric. Assume that T is a (m, p)-isometric with $m \geq 2$, then we have that $\Theta_{m}^{(p)}(d, T ; x, y)=0$ and from (2.5) it follows that

$$
\begin{aligned}
0= & \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} k \mu_{x, y}(\{1\}) \\
& +\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} \int_{[0,1)}\left(1-t^{k}\right) \frac{d \mu_{x, y}(t)}{1-t} \\
= & -\int_{[0,1)}(1-t)^{m-1} d \mu_{x, y}(t)
\end{aligned}
$$

Now $\int_{[0,1)}(1-t)^{m-1} d \mu_{x, y}(t)=0$ gives that

$$
d\left(T^{k} x, T^{k} y\right)^{p}=d(x, y)^{p}+k \mu_{x, y}(\{1\}) \text { for all } k
$$

and therefore

$$
\Theta_{2}^{(p)}(d, T ; x, y)=0
$$

Example 2.4. Consider the map $T:(\mathbb{R}, d) \longrightarrow(\mathbb{R}, d)$ defined by

$$
T x=\left\{\begin{array}{l}
2 x-1, \text { for } x \leq 0 \\
2 x+1 \text { for } x>0
\end{array}\right.
$$

It is easy to verify that T is a $(1, p)$-expansive, but T is neither continuous nor linear.

3 (m, p)-hyperexpansive maps in seminormed space

Let X be a linear vector space and considering a seminorm s on X, we may define the quantity

$$
\Theta_{m}^{(p)}(s, T ; x):=\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} s\left(T^{k} x\right)^{p}
$$

for all $x \in X$, and introducing a concept similar to that of (m, p)-expansive maps.

Definition 3.1. Let $T: X \longrightarrow X$ be a map, $m \in \mathbb{N}$ and $p>0$. We say that
(1) T is $s(m, p)$-isometric if $\Theta_{m}^{(p)}(s, T ; x)=0$ for all $x \in X$.
(2) T is $s(m, p)$-expansive if $\Theta_{m}^{(p)}(s, T ; x) \leq 0 \forall x \in X$
(3) T is $s(m, p)$-hyperexpansive if $\Theta_{k}^{(p)}(s, T ; x) \leq 0$ for $k=1, \ldots, m$ and $x \in X$.
(4) T is completely s-hyperexpansive if T is $s(k, p)$-expansive for all $k \in \mathbb{N}$.
(5) T is $s(m, p)$-contractive if $\Theta_{m}^{(p)}(s, T ; x) \geq 0 \forall x \in X$.
(6) T is $s(m, p)$-hypercontractive if $\Theta_{k}^{(p)}(s, T ; x) \geq 0$ for $k=1,2, \ldots, m$ and $x \in X$.
(7) T is completely s - hypercontractive if T is $s(k, p)$-contractive for all $k \in \mathbb{N}$.

For any $p>0, s(1, p)$-expansive coincide with s-expansive; that is, maps T satisfying $s(T x) \geq s(x)$, for all $x \in X$. Every s-isometry is an $s(m, p)$-isometry for all $m \geq 1$ and $p>0$. $s(m, p)$-isometries maps are special cases of the class of $\mathrm{s}(\mathrm{m}, \mathrm{p})$-expansive maps.

If X is a normed space with norm $\|\cdot\|$ and $T: X \longrightarrow X$ we have that

$$
\Theta_{m}^{(p)}(\|\cdot\|, T ; x)=\sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k}\left\|T^{k} x\right\|^{p}
$$

Clearly m-hyperexpansivity on Hilbert spaces agree with ($m, 2$)-hyperexpansivity.
Example 3.1. Let \mathbb{D} denote the open unit disk in the complex plane. An analytic function f on \mathbb{D} is said to be Bloch if

$$
s(f)=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty
$$

The mapping $f \longmapsto s(f)$ is a semi-norm on the space \mathcal{B} of Bloch functions, called the Bloch space. See [24] for some additional details. Consider for $\lambda \in \mathbb{C}$ the map $T_{\lambda}: \mathcal{B} \longrightarrow \mathcal{B}: T_{\lambda}(f)=\lambda f$.
A simple computation shows that

$$
\begin{aligned}
& \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k} s\left(T_{\lambda}^{k} f\right) \\
= & \sum_{0 \leq k \leq m}(-1)^{k}\binom{m}{k}|\lambda|^{k} \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \\
= & (1-|\lambda|)^{m} \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|
\end{aligned}
$$

and it follows that

$$
\left\{\begin{array}{l}
\Theta_{m}^{(p)}\left(s, T_{\lambda}, f\right) \leq 0, \text { if }|\lambda|>1, \text { for odd } m \\
\Theta_{m}^{(p)}\left(s, T_{\lambda}, f\right)=0 \text { if }|\lambda|=1 \text { and for all } m \\
\Theta_{m}^{(p)}\left(s, T_{\lambda}, f\right)>0 \text { if }|\lambda|<1 \text { and for all } m
\end{array}\right.
$$

Setting

$$
\begin{equation*}
\beta_{k}^{(p)}(s, T ; x):=\frac{1}{k!} \sum_{0 \leq j \leq k}(-1)^{k-j}\binom{k}{j} s\left(T^{j} x\right)^{p}, \forall x \in X . \tag{3.1}
\end{equation*}
$$

In the following theorem, we generalized the identities (1.7) and (1.10) to seminormed space. We omit the proof which is very similar to [13, Theorem 2.5] and [8, Proposition 2.1].

Theorem 3.1. Let (X, s) be seminormed space and $T: X \longrightarrow X$ be a map, we have that
(i) $s\left(T^{n} x\right)^{p}=\sum_{0 \leq j \leq n} n^{(j)} \beta_{j}^{(p)}(s, T ; x) ; \forall n \in \mathbb{N}$.
(ii) T is an $s(m, p)$-isometry if and only if

$$
s\left(T^{n} x\right)^{p}=\sum_{0 \leq j \leq m-1} n^{(j)} \beta_{j}^{(p)}(s, T ; x) ; \forall n \in \mathbb{N} .
$$

Proposition 3.1. Let (X, s) be a seminormed space and $T: X \longrightarrow X$ be a map. The following are true
(i) T is $s(m, p)$-expansive if and only if, λT is $s(m, p)$-expansive for all $\lambda \in \mathbb{C}$: $|\lambda|=1$,
(ii) If T is $s(2, p)$-expansive, then
(1) λT is $s(2, p)$-expansive for $|\lambda|<1$, if λT^{2} is s-expansive.
(2) λT is $s(2, p)$-expansive for $|\lambda|>1$, if λT^{2} is s-contractive.

Proof. (i) Note that, for all $p>0, \lambda \in \mathbb{C}$, and all $x \in X$, we have

$$
\Theta_{m}^{(p)}(s, T x)=\Theta_{m}^{(p)}(s, \lambda T ; x),|\lambda|=1 .
$$

(ii) If T is $s(2, p)$-expansive, then

$$
-2|\lambda|^{p} s(T x)^{p} \leq|\lambda|^{p}\left[-s\left(T^{2} x\right)^{p}-s(x)^{p}\right] \text { for every } \lambda \in \mathbb{C} .
$$

So we have for every $\lambda \in \mathbb{C}$

$$
|\lambda|^{2 p} s\left(T^{2} x\right)^{p}-2|\lambda|^{p} s(T x)^{p}+s(x)^{p} \leq\left(|\lambda|^{p}-1\right)\left(|\lambda|^{p} s\left(T^{2} x\right)^{p}-s(x)^{p}\right)
$$

This finishes the proof.
Acknowledgements. The author would like to thank the referee for a number of helpful comments and suggestions that improved the presentation of the paper.

References

[1] J. Agler: Hypercontractions and subnormality, J. Operator Theory 13 (1985) 203-217.
[2] J. Agler and M. Stankus: m-Isometric transformations of Hilbert space I, Integral Equations and Operator Theory, 21 (1995), 383-429.
[3] J. Agler, M. Stankus: m-Isometric transformations of Hilbert space II, Integral Equations Operator Theory 23 (1) (1995) 1-48.
[4] J. Agler, M. Stankus: m-Isometric transformations of Hilbert space III, Integral Equations Operator Theory 24 (4) (1996) 379-421.
[5] A. Athavale: On completely hyperexpansive operators, Proc. Amer. Math. Soc. 124 (1996), 3745-3752.
[6] A. Athavale , A.Ranjkar: Bernstein functions, complete hyperexpansivity and subnormality. I. Integral Equations Operator Theory 43 (2002), 253-263.
[7] A. Athavale, A.Ranjekar: Bernstein functions, complete hyperexpansivity and subnormality, II, Integral Equations Operator Theory 44 (2002), 1-9.
[8] F. Bayart: m-isometries on Banach spaces, Math. Nachr. 284 (2011), 2141-2147.
[9] T. Bermúdez, C. Díaz-Mendora, A. Martinón: Powers of m-isometries, Studia Math. 208 (2012) 249-255.
[10] T. Bermúdez, A. Martinón, J.Noda: Products of m-isometries. Linear Algebra App. 438 (2013) 80-86.
[11] T. Bermúdez, I. Marrero and A. Martinón : On the Orbit of an m-Isometry. Integral Equation and operator Theory, 64 (2009), 487-494.
[12] T. Bermúdez, A. Martinón, J. Noda: An isometry plus an nilpotent operator is an m-isometry. J. Math. Anal. Appl. 407 (2013) 505-512.
[13] T. Bermúdez, A. Martinôn and V. Müller: (m, q)-isometries on metric spaces (to appear).
[14] F. Botelho: On the existence of n-isometries on ' $l_{p^{-}}$spaces. Acta Sci. Math. (Szeged) 76 (2010), no. 1-2, 183-192.
[15] B. P. Duggal: Tensor product of n-isometries, Linear Alg. Appl. 437(2012),307-318.
[16] B. P. Duggal: Tensor product of n-isometries II, Functional Analysis, Approximation and Computation 4:1(2012), 27-32.
[17] B. P. Duggal: Tensor product of n-isometries III, Functional Analysis, Approximation and Computation 4:2 (2012),61-67.
[18] G. Exner, Il B. Jung , C. Li: k-hyperexpansive operators.J. Math. Anal. Appl. 323 (2006) 569-582.
[19] P. Hoffman, M. Mackey and M. Ó Searcóid: On the second parameter of an ($m ; p$)isometry, Integral Equat. Oper. Th.71(2011), 389-405.
[20] S. Jung, Y. Kim, E. Ko and J. E. Lee (Seoul) : On ($A ; m$)-expansive operators. Studia Mathematica 213 (1) (2012)
[21] O.A. M. Sid Ahmed: m-isometric operators on Banach spaces, Asian-European J. Math. 3(2010), 1-19.
[22] O. A.M. Sid Ahmed and A. Saddi: A - m-isometric operators on semi-Hilbertian spaces, Linear Alg. Appl. 436(2012), 3930-3942.
[23] S. M. Patel: 2-Isometric Operators, Glasnik Matematicki. Vol. 37(57)(2002), 143-147.
[24] K. Zhu: Operator theory in function spaces. - Math. Surveys Monogr. 138, 2nd edition, Amer. Math. Soc., Providence, RI, 2007.

[^0]: http://siba-ese.unisalento.it/ © 2015 Università del Salento

