Existence and Uniqueness of Solutions for the Navier Problems with Degenerate Nonlinear Elliptic Equations

Albo Carlos Cavalheiro
Department of Mathematics, Sate University of Londrina accava@gmail.com

Received: 31.10.2014; accepted: 23.3.2015.
Abstract. In this work we are interested in the existence and uniqueness of solutions for
the Navier problem associated to the degenerate nonlinear elliptic equations
$\Delta\left(v(x)|\Delta u|^{p-2} \Delta u\right)-\sum_{j=1}^{n} D_{j}\left[\omega(x) \mathcal{A}_{j}(x, u, \nabla u)\right]+b(x, u, \nabla u) \omega(x)=f_{0}(x)-\sum_{j=1}^{n} D_{j} f_{j}(x)$, in Ω in the setting of the Weighted Sobolev Spaces

Keywords: Degenerate nonlinear elliptic equations, Weighted Sobolev Spaces.
MSC 2010 classification: primary 35J70, secondary 35J60

Introduction

In this work we prove the existence and uniqueness of (weak) solutions in the weighted Sobolev space $X=W^{2, p}(\Omega, v) \cap W_{0}^{1, p}(\Omega, \omega)$ (see Definition 3 and Definition 4) for the Navier problem

$$
(P)\left\{\begin{array}{l}
L u(x)=f_{0}(x)-\sum_{j=1}^{n} D_{j} f_{j}(x), \text { in } \Omega \\
u(x)=\Delta u(x)=0, \quad \text { on } \partial \Omega
\end{array}\right.
$$

where L is the partial differential operator

$$
L u(x)=\Delta\left(v(x)|\Delta u|^{p-2} \Delta u\right)-\sum_{j=1}^{n} D_{j}\left[\omega(x) \mathcal{A}_{j}(x, u(x), \nabla u(x))\right]+b(x, u, \nabla u) \omega(x)
$$

where $D_{j}=\partial / \partial x_{j}, \Omega$ is a bounded open set in \mathbb{R}^{n}, ω and v are two weight functions, Δ denotes the Laplacian operator, $2 \leq p<\infty$ and the functions
$\mathcal{A}_{j}: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}(j=1, \ldots, n)$ and $b: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfy the following assumptions:
(H1) The function $x \mapsto \mathcal{A}_{j}(x, \eta, \xi)$ is measurable on Ω for all $(\eta, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$. The function $(\eta, \xi) \mapsto \mathcal{A}_{j}(x, \eta, \xi)$ is continuous on $\mathbb{R} \times \mathbb{R}^{n}$ for almost all $x \in \Omega$.
(H2) there exists a constant $\theta_{1}>0$ such that

$$
\left[\mathcal{A}(x, \eta, \xi)-\mathcal{A}\left(x, \eta^{\prime}, \xi^{\prime}\right)\right] \cdot\left(\xi-\xi^{\prime}\right) \geq \theta_{1}\left|\xi-\xi^{\prime}\right|^{p}
$$

whenever $\xi, \xi^{\prime} \in \mathbb{R}^{n}, \xi \neq \xi^{\prime}$, where $\mathcal{A}(x, \eta, \xi)=\left(\mathcal{A}_{1}(x, \eta, \xi), \ldots, \mathcal{A}_{n}(x, \eta, \xi)\right.$) (where a dot denote here the Euclidian scalar product in \mathbb{R}^{n}).
(H3) $\mathcal{A}(x, \eta, \xi) \cdot \xi \geq \lambda_{1}|\xi|^{p}+\Lambda_{1}|\eta|^{p}$, where λ_{1} and Λ_{1} are nonnegative constants.
(H4) $|\mathcal{A}(x, \eta, \xi)| \leq K_{1}(x)+h_{1}(x)|\eta|^{p / p^{\prime}}+h_{2}(x)|\xi|^{p / p^{\prime}}$, where K_{1}, h_{1} and h_{2} are nonegative functions, with h_{1} and $h_{2} \in L^{\infty}(\Omega)$, and $K_{1} \in L^{p^{\prime}}(\Omega, \omega)$ (with $1 / p+$ $1 / p^{\prime}=1$).
(H5) The function $x \mapsto b(x, \eta, \xi)$ is measurable on Ω for all $(\eta, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$. The function $(\eta, \xi) \mapsto b(x, \eta, \xi)$ is continuous on $\mathbb{R} \times \mathbb{R}^{n}$ for almost all $x \in \Omega$.
(H6) there exists a constant $\theta_{2}>0$ such that

$$
\left[b(x, \eta, \xi)-b\left(x, \eta^{\prime}, \xi^{\prime}\right)\right]\left(\eta-\eta^{\prime}\right) \geq \theta_{2}\left|\eta-\eta^{\prime}\right|^{p}
$$

whenever $\eta, \eta^{\prime} \in \mathbb{R}, \eta \neq \eta^{\prime}$.
(H7) $b(x, \eta, \xi) \eta \geq \lambda_{2}|\xi|^{p}+\Lambda_{2}|\eta|^{p}$, where λ_{2} and Λ_{2} are nonnegative constants.
(H8) $|b(x, \eta, \xi)| \leq K_{2}(x)+h_{3}(x)|\eta|^{p / p^{\prime}}+h_{4}(x)|\xi|^{p / p^{\prime}}$, where K_{2}, h_{3} and h_{4} are nonnegative functions, with $K_{2} \in L^{p^{\prime}}(\Omega, \omega), h_{3}$ and $h_{4} \in L^{\infty}(\Omega)$.
(H9) $\lambda_{1}+\lambda_{2}>0$ and $\Lambda_{1}+\Lambda_{2}>0$.
By a weight, we shall mean a locally integrable function ω on \mathbb{R}^{n} such that $\omega(x)>0$ for a.e. $x \in \mathbb{R}^{n}$. Every weight ω gives rise to a measure on the measurable subsets on \mathbb{R}^{n} through integration. This measure will be denoted by μ. Thus, $\mu(E)=\int_{E} \omega(x) d x$ for measurable sets $E \subset \mathbb{R}^{n}$.

In general, the Sobolev spaces $\mathrm{W}^{k, p}(\Omega)$ without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. For degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [1], [2], [4], [8] and [13]).

A class of weights, which is particularly well understood, is the class of $A_{p^{-}}$ weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [10]). These classes have found many useful applications in harmonic analysis (see [12]). Another reason for studying A_{p}-weights is the fact that powers of the distance to submanifolds of \mathbb{R}^{n} often belong to A_{p} (see [9]). There are, in fact, many interesting examples of weights (see [8] for p-admissible weights).

In the non-degenerate case (i.e. with $\omega(x) \equiv 1$), for all $f \in L^{p}(\Omega)$ the Poisson equation associated with the Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(x), \text { in } \Omega \\
u(x)=0, \text { on } \partial \Omega
\end{array}\right.
$$

is uniquely solvable in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ (see [7]), and the nonlinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(x), \text { in } \Omega \\
u(x)=0, \text { on } \partial \Omega
\end{array}\right.
$$

is uniquely solvable in $W_{0}^{1, p}(\Omega)$ (see $\left.[3]\right)$, where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the pLaplacian operator. In the degenerate case, the weighted p-Biharmonic operator has been studied by many authors (see [11] and the references therein), and the degenerated p-Laplacian has been studied in [4]. The problem with degenerated p-Laplacian and p-Biharmonic operators

$$
\left\{\begin{array}{l}
\Delta\left(\omega(x)|\Delta u|^{p-2} \Delta u\right)-\operatorname{div}\left[\omega(x)|\nabla u|^{p-2} \nabla u\right]=f(x)-\operatorname{div}(G(x)), \text { in } \Omega \\
u(x)=\Delta u(x)=0, \text { on } \partial \Omega
\end{array}\right.
$$

has been studied by the author in [2].
The following theorem will be proved in section 3.
Theorem 1. Assume (H1)-(H9). If $\omega, v \in A_{p}$ (with $2 \leq p<\infty$) and $f_{j} / \omega \in L^{p^{\prime}}(\Omega, \omega)(j=0,1, \ldots, n)$ then the problem (P) has a unique solution $u \in X=W^{2, p}(\Omega, v) \cap W_{0}^{1, p}(\Omega, \omega)$. Moreover, we have

$$
\|u\|_{X} \leq \frac{1}{\gamma^{p^{\prime} / p}}\left(\left\|f_{0} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}\right)^{p^{\prime} / p}
$$

where $\gamma=\min \left\{\lambda_{1}+\lambda_{2}, \Lambda_{1}+\Lambda_{2}, 1\right\}$.

1 DEFINITIONS AND BASIC RESULTS

Let ω be a locally integrable nonnegative function in \mathbb{R}^{n} and assume that $0<\omega(x)<\infty$ almost everywhere. We say that ω belongs to the Muckenhoupt class $A_{p}, 1<p<\infty$, or that ω is an A_{p}-weight, if there is a constant $C=C_{p, \omega}$ such that

$$
\left(\frac{1}{|B|} \int_{B} \omega(x) d x\right)\left(\frac{1}{|B|} \int_{B} \omega^{1 /(1-p)}(x) d x\right)^{p-1} \leq C
$$

for all balls $B \subset \mathbb{R}^{n}$, where $|$.$| denotes the n$-dimensional Lebesgue measure in \mathbb{R}^{n}. If $1<q \leq p$, then $A_{q} \subset A_{p}$ (see [6],[8] or [12] for more information about $A_{p^{-}}$ weights). The weight ω satisfies the doubling condition if there exists a positive constant C such that $\mu(B(x ; 2 r)) \leq C \mu(B(x ; r))$ for every ball $B=B(x ; r) \subset \mathbb{R}^{n}$, where $\mu(B)=\int_{B} \omega(x) d x$. If $\omega \in A_{p}$, then μ is doubling (see Corollary 15.7 in [8]).

As an example of A_{p}-weight, the function $\omega(x)=|x|^{\alpha}, x \in \mathbb{R}^{n}$, is in A_{p} if and only if $-n<\alpha<n(p-1)$ (see Corollary 4.4, Chapter IX in [12]).

If $\omega \in A_{p}$, then $\left(\frac{|E|}{|B|}\right)^{p} \leq C \frac{\mu(E)}{\mu(B)}$ whenever B is a ball in \mathbb{R}^{n} and E is a measurable subset of B (see 15.5 strong doubling property in [8]). Therefore, if $\mu(E)=0$ then $|E|=0$.

Definition 1. Let ω be a weight, and let $\Omega \subset \mathbb{R}^{n}$ be open. For $0<p<\infty$ we define $L^{p}(\Omega, \omega)$ as the set of measurable functions f on Ω such that

$$
\|f\|_{L^{p}(\Omega, \omega)}=\left(\int_{\Omega}|f(x)|^{p} \omega(x) d x\right)^{1 / p}<\infty
$$

If $\omega \in A_{p}, 1<p<\infty$, then $\omega^{-1 /(p-1)}$ is locally integrable and we have $L^{p}(\Omega, \omega) \subset L_{\text {loc }}^{1}(\Omega)$ for every open set Ω (see Remark 1.2.4 in [13]). It thus makes sense to talk about weak derivatives of functions in $L^{p}(\Omega, \omega)$.

Definition 2. Let $\Omega \subset \mathbb{R}^{n}$ be open, k be a nonnegative integer and $\omega \in A_{p}$ $(1<p<\infty)$. We define the weighted Sobolev space $W^{k, p}(\Omega, \omega)$ as the set of functions $u \in L^{p}(\Omega, \omega)$ with weak derivatives $D^{\alpha} u \in L^{p}(\Omega, \omega)$ for $1 \leq|\alpha| \leq k$. The norm of u in $W^{k, p}(\Omega, \omega)$ is defined by

$$
\begin{equation*}
\|u\|_{W^{k, p}(\Omega, \omega)}=\left(\int_{\Omega}|u(x)|^{p} \omega(x) d x+\sum_{1 \leq|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u(x)\right|^{p} \omega(x) d x\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

We also define $W_{0}^{k, p}(\Omega, \omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm $\|\cdot\|_{W^{k, p}(\Omega, \omega)}$.

If $\omega \in A_{p}$, then $W^{k, p}(\Omega, \omega)$ is the closure of $C^{\infty}(\Omega)$ with respect to the norm (1.1) (see Theorem 2.1.4 in [13]). The spaces $W^{k, p}(\Omega, \omega)$ and $W_{0}^{k, p}(\Omega, \omega)$ are Banach spaces.

It is evident that the weight function ω which satisfies $0<c_{1} \leq \omega(x) \leq c_{2}$ for $x \in \Omega$ (c_{1} and c_{2} positive constants), gives nothing new (the space $\mathrm{W}_{0}^{k, p}(\Omega, \omega)$ is then identical with the classical Sobolev space $\left.\mathrm{W}_{0}^{k, p}(\Omega)\right)$. Consequently, we study all such weight functions ω that either vanish in $\Omega \cup \partial \Omega$ or increase to infinity (or both).

In this article we use the following results.

Theorem 2. Let $\omega \in A_{p}, 1<p<\infty$, and let Ω be a bounded open set in \mathbb{R}^{n}. If $u_{m} \rightarrow u$ in $L^{p}(\Omega, \omega)$ then there exist a subsequence $\left\{u_{m_{k}}\right\}$ and a function $\Phi \in L^{p}(\Omega, \omega)$ such that
(i) $u_{m_{k}}(x) \rightarrow u(x), m_{k} \rightarrow \infty, \mu$-a.e. on Ω;
(ii) $\left|u_{m_{k}}(x)\right| \leq \Phi(x)$, μ-a.e. on Ω;
(where $\mu(E)=\int_{E} \omega(x) d x$).
Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [5]. QED

Lemma 1. Let $1<p<\infty$. (a) There exists a constant α_{p} such that

$$
\left||x|^{p-2} x-|y|^{p-2} y\right| \leq \alpha_{p}|x-y|(|x|+|y|)^{p-2}
$$

for all $x, y \in \mathbb{R}^{n}$;
(b) There exist two positive constants β_{p}, γ_{p} such that for every $x, y \in \mathbb{R}^{n}$

$$
\beta_{p}(|x|+|y|)^{p-2}|x-y|^{2} \leq\left(|x|^{p-2} x-|y|^{p-2} y\right) \cdot(x-y) \leq \gamma_{p}(|x|+|y|)^{p-2}|x-y|^{2}
$$

Proof. See [3], Proposition 17.2 and Proposition 17.3.
QED
Definition 3. We denote by $X=W^{2, p}(\Omega, v) \cap W_{0}^{1, p}(\Omega, \omega)$ with the norm

$$
\|u\|_{X}=\left(\int_{\Omega}|u|^{p} \omega d x+\int_{\Omega}|\nabla u|^{p} \omega d x+\int_{\Omega}|\Delta u|^{p} v d x\right)^{1 / p}
$$

Definition 4. We say that an element $u \in X=W^{2, p}(\Omega, v) \cap W_{0}^{1, p}(\Omega,, \omega)$ is a (weak) solution of problem (P) if, for all $\varphi \in X$,

$$
\begin{aligned}
& \int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta \varphi v d x+\sum_{j=1}^{n} \int_{\Omega} \omega \mathcal{A}_{j}(x, u(x), \nabla u(x)) D_{j} \varphi(x) d x \\
& +\int_{\Omega} b(x, u, \nabla u) \varphi \omega d x=\int_{\Omega} f_{0}(x) \varphi(x) d x+\sum_{j=1}^{n} \int_{\Omega} f_{j}(x) D_{j} \varphi(x) d x
\end{aligned}
$$

2 PROOF OF THEOREM 1

The basic idea is to reduce the problem (P) to an operator equation $A u=T$ and apply the theorem below.

Theorem 3. Let $A: X \rightarrow X^{*}$ be a monotone, coercive and hemicontinuous operator on the real, separable, reflexive Banach space X. Then the following assertions hold:
(a) For each $T \in X^{*}$ the equation $A u=T$ has a solution $u \in X$;
(b) If the operator A is strictly monotone, then equation $A u=T$ is uniquely solvable in X.

Proof. See Theorem 26.A in [15].
We define $B, B_{1}, B_{2}, B_{3}: X \times X \rightarrow \mathbb{R}$ and $T: X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
B(u, \varphi) & =B_{1}(u, \varphi)+B_{2}(u, \varphi)+B_{3}(u, \varphi) \\
B_{1}(u, \varphi) & =\sum_{j=1}^{n} \int_{\Omega} \omega \mathcal{A}_{j}(x, u, \nabla u) D_{j} \varphi d x=\int_{\Omega} \omega \mathcal{A}(x, u, \nabla u) \cdot \nabla \varphi d x \\
B_{2}(u, \varphi) & =\int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta \varphi v d x \\
B_{3}(u, \varphi) & =\int_{\Omega} b(x, u, \nabla u) \varphi \omega d x \\
T(\varphi) & =\int_{\Omega} f_{0}(x) \varphi(x) d x+\sum_{j=1}^{n} \int_{\Omega} f_{j}(x) D_{j} \varphi(x) d x .
\end{aligned}
$$

Then $u \in X$ is a (weak) solution to problem (P) if, for all $\varphi \in X$, we have

$$
B(u, \varphi)=B_{1}(u, \varphi)+B_{2}(u, \varphi)+B_{3}(u, \varphi)=T(\varphi) .
$$

Step 1. For $j=1, \ldots, n$ we define the operator $F_{j}: X \rightarrow L^{p^{\prime}}(\Omega, \omega)$ by

$$
\left(F_{j} u\right)(x)=\mathcal{A}_{j}(x, u(x), \nabla u(x)) .
$$

We have that the operator F_{j} is bounded and continuous. In fact:
(i) Using (H4) we obtain

$$
\begin{align*}
\left\|F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)}^{p^{\prime}} & =\int_{\Omega}\left|F_{j} u(x)\right|^{p^{\prime}} \omega d x=\int_{\Omega}\left|\mathcal{A}_{j}(x, u, \nabla u)\right|^{p^{\prime}} \omega d x \\
& \leq \int_{\Omega}\left(K_{1}+h_{1}|u|^{p / p^{\prime}}+h_{2}|\nabla u|^{p / p^{\prime}}\right)^{p^{\prime}} \omega d x \\
& \leq C_{p} \int_{\Omega}\left[\left(K_{1}^{p^{\prime}}+h_{1}^{p^{\prime}}|u|^{p}+h_{2}^{p^{\prime}}|\nabla u|^{p}\right) \omega\right] d x \\
& =C_{p}\left[\int_{\Omega} K_{1}^{p^{\prime}} \omega d x+\int_{\Omega} h_{1}^{p^{\prime}}|u|^{p} \omega d x\right. \\
& \left.+\int_{\Omega} h_{2}^{p^{\prime}}|\nabla u|^{p} \omega d x\right], \tag{2.1}
\end{align*}
$$

where the constant C_{p} depends only on p. We have,

$$
\int_{\Omega} h_{1}^{p^{\prime}}|u|^{p} \omega d x \leq\left\|h_{1}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}} \int_{\Omega}|u|^{p} \omega d x \leq\left\|h_{1}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\|u\|_{X}^{p},
$$

and

$$
\int_{\Omega} h_{2}^{p^{\prime}}|\nabla u|^{p} \omega d x \leq\left\|h_{2}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}} \int_{\Omega}|\nabla u|^{p} \omega d x \leq\left\|h_{2}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\|u\|_{X}^{p} .
$$

Therefore, in (2.1) we obtain

$$
\left\|F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)} \leq C_{p}\left(\left\|K_{1}\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\left(\left\|h_{1}\right\|_{L^{\infty}(\Omega)}+\left\|h_{2}\right\|_{L^{\infty}(\Omega)}\right)\|u\|_{X}^{p / p^{\prime}}\right) .
$$

(ii) Let $u_{m} \rightarrow u$ in X as $m \rightarrow \infty$. We need to show that $F_{j} u_{m} \rightarrow F_{j} u$ in $L^{p^{\prime}}(\Omega, \omega)$. If $u_{m} \rightarrow u$ in X, then $u_{m} \rightarrow u$ in $L^{p}(\Omega, \omega)$ and $\left|\nabla u_{m}\right| \rightarrow|\nabla u|$ in $L^{p}(\Omega, \omega)$. Using Theorem 2, there exist a subsequence $\left\{u_{m_{k}}\right\}$ and two functions Φ_{1} and Φ_{2} in $L^{p}(\Omega, \omega)$ such that

$$
\begin{aligned}
& u_{m_{k}}(x) \rightarrow u(x), \mu-\text { a.e. in } \Omega, \\
& \left|u_{m_{k}}(x)\right| \leq \Phi_{1}(x), \mu-\text { a.e. in } \Omega, \\
& \left|\nabla u_{m_{k}}(x)\right| \rightarrow|\nabla u(x)|, \mu-\text { a.e. in } \Omega, \\
& \left|\nabla u_{m_{k}}(x)\right| \leq \Phi_{2}(x), \mu \text { a.e. in } \Omega .
\end{aligned}
$$

Hence, using (H4), we obtain

$$
\begin{aligned}
& \left\|F_{j} u_{m_{k}}-F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)}^{p^{\prime}}=\int_{\Omega}\left|F_{j} u_{m_{k}}(x)-F_{j} u(x)\right|^{p^{\prime}} \omega d x \\
& =\int_{\Omega}\left|\mathcal{A}_{j}\left(x, u_{m_{k}}, \nabla u_{m_{k}}\right)-\mathcal{A}_{j}(x, u, \nabla u)\right|^{p^{\prime}} \omega d x \\
& \leq C_{p} \int_{\Omega}\left(\left|\mathcal{A}_{j}\left(x, u_{m_{k}}, \nabla u_{m_{k}}\right)\right|^{p^{\prime}}+\left|\mathcal{A}_{j}(x, u, \nabla u)\right|^{p^{\prime}}\right) \omega d x \\
& \leq C_{p}\left[\int_{\Omega}\left(K_{1}+h_{1}\left|u_{m_{k}}\right|^{p / p^{\prime}}+h_{2}\left|\nabla u_{m_{k}}\right|^{p / p^{\prime}}\right)^{p^{\prime}} \omega d x\right. \\
& \left.+\int_{\Omega}\left(K_{1}+h_{1}|u|^{p / p^{\prime}}+h_{2}|\nabla u|^{p / p^{\prime}}\right)^{p^{\prime}} \omega d x\right] \\
& \leq 2 C_{p} \int_{\Omega}\left(K_{1}+h_{1} \Phi_{1}^{p / p^{\prime}}+h_{2} \Phi_{2}^{p / p^{\prime}}\right)^{p^{\prime}} \omega d x \\
& \leq 2 C_{p}\left[\int_{\Omega} K_{1}^{p^{\prime}} \omega d x+\int_{\Omega} h_{1}^{p^{\prime}} \Phi_{1}^{p} \omega d x+\int_{\Omega} h_{2}^{p^{\prime}} \Phi_{2}^{p} \omega d x\right] \\
& \leq 2 C_{p}\left[\left\|K_{1}\right\|_{L^{p^{\prime}}(\Omega, \omega)}^{p^{\prime}}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}} \int_{\Omega} \Phi_{1}^{p} \omega d x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\|h_{2}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}} \int_{\Omega} \Phi_{2}^{p} \omega d x\right] \\
& \leq 2 C_{p}\left[\left\|K_{1}\right\|_{L^{p^{\prime}}(\Omega, \omega)}^{p^{\prime}}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\left\|\Phi_{1}\right\|_{L^{p}(\Omega, \omega)}^{p}\right. \\
& \left.+\left\|h_{2}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\left\|\Phi_{2}\right\|_{L^{p}(\Omega, \omega)}^{p}\right]
\end{aligned}
$$

By condition (H1), we have

$$
F_{j} u_{m}(x)=\mathcal{A}_{j}\left(x, u_{m}(x), \nabla u_{m}(x)\right) \rightarrow \mathcal{A}_{j}(x, u(x), \nabla u(x))=F_{j} u(x),
$$

as $m \rightarrow+\infty$. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain

$$
\left\|F_{j} u_{m_{k}}-F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)} \rightarrow 0
$$

that is,

$$
F_{j} u_{m_{k}} \rightarrow F_{j} u \quad \text { in } \quad L^{p^{\prime}}(\Omega, \omega) .
$$

By the Convergence Principle in Banach spaces (see Proposition 10.13 in [14]), we have

$$
\begin{equation*}
F_{j} u_{m} \rightarrow F_{j} u \text { in } L^{p^{\prime}}(\Omega, \omega) . \tag{2.2}
\end{equation*}
$$

Step 2. We define the operator

$$
\begin{aligned}
& G: X \rightarrow L^{p^{\prime}}(\Omega, v) \\
& (G u)(x)=|\Delta u(x)|^{p-2} \Delta u(x)
\end{aligned}
$$

We also have that the operator G is continuous and bounded. In fact:
(i) We have

$$
\begin{aligned}
\|G u\|_{L^{p^{\prime}(\Omega, v)}}^{p^{\prime}} & =\left.\left.\int_{\Omega}| | \Delta u\right|^{p-2} \Delta u\right|^{p^{\prime}} v d x \\
& =\int_{\Omega}|\Delta u|^{(p-2) p^{\prime}}|\Delta u|^{p^{\prime}} v d x \\
& =\int_{\Omega}|\Delta u|^{p} v d x \leq\|u\|_{X}^{p} .
\end{aligned}
$$

Hence, $\|G u\|_{L^{p^{\prime}}(\Omega, v)} \leq\|u\|_{X}^{p / p^{\prime}}$.
(ii) If $u_{m} \rightarrow u$ in X then $\Delta u_{m} \rightarrow \Delta u$ in $L^{p}(\Omega, v)$.By Theorem 2, there exist a subsequence $\left\{u_{m_{k}}\right\}$ and a function $\Phi_{3} \in L^{p}(\Omega, v)$ such that

$$
\begin{aligned}
& \Delta u_{m_{k}}(x) \rightarrow \Delta u(x), \mu_{1} \text { - a.e. in } \Omega \\
& \left|\Delta u_{m_{k}}(x)\right| \leq \Phi_{3}(x), \mu_{1}-\text { a.e. in } \Omega,
\end{aligned}
$$

where $\mu_{1}(E)=\int_{E} v(x) d x$. Hence, using Lemma 1 (a), we obtain, if $p \neq 2$

$$
\begin{aligned}
& \left\|G u_{m_{k}}-G u\right\|_{L^{p^{\prime}}(\Omega, v)}^{p^{p^{\prime}}}=\int_{\Omega}\left|G u_{m_{k}}-G u\right|^{p^{\prime}} v d x \\
& =\int_{\Omega}\left|\Delta u_{m_{k}}\right|^{p-2} \Delta u_{m_{k}}-\left.|\Delta u|^{p-2} \Delta u\right|^{p^{\prime}} v d x \\
& \leq \int_{\Omega}\left[\alpha_{p}\left|\Delta u_{m_{k}}-\Delta u\right|\left(\left|\Delta u_{m_{k}}\right|+|\Delta u|\right)^{(p-2)}\right]^{p^{\prime}} v d x \\
& \leq \alpha_{p}^{p^{\prime}} \int_{\Omega}\left|\Delta u_{m_{k}}-\Delta u\right|^{p^{\prime}}\left(2 \Phi_{3}\right)^{(p-2) p^{\prime}} v d x \\
& \leq \alpha_{p}^{p^{\prime}} 2^{(p-2) p^{\prime}}\left(\int_{\Omega}\left|\Delta u_{m_{k}}-\Delta u\right|^{p} v d x\right)^{p^{\prime} / p} \times \\
& \times\left(\int_{\Omega} \Phi_{3}^{(p-2) p p^{\prime} /\left(p-p^{\prime}\right)} v d x\right)^{\left(p-p^{\prime}\right) / p} \\
& \leq \alpha_{p}^{p^{\prime}} 2^{(p-2) p^{\prime}}\left\|u_{m_{k}}-u\right\|_{X}^{p^{\prime}}\|\Phi\|_{L^{p}(\Omega, v)}^{p-p^{\prime}},
\end{aligned}
$$

since $(p-2) p p^{\prime} /\left(p-p^{\prime}\right)=p$ if $p \neq 2$. If $p=2$, we have

$$
\left\|G u_{m_{k}}-G u\right\|_{L^{2}(\Omega, v)}^{2}=\int_{\Omega}\left|\Delta u_{m_{k}}-\Delta u\right|^{2} v d x \leq\left\|u_{m_{k}}-u\right\|_{X}^{2}
$$

Therefore (for $2 \leq p<\infty$), by the Lebesgue Dominated Convergence Theorem, we obtain

$$
\left\|G u_{m_{k}}-G u\right\|_{X} \rightarrow 0
$$

that is, $G u_{m_{k}} \rightarrow G u$ in $L^{p^{\prime}}(\Omega, v)$. By the Convergence Principle in Banach spaces (see Proposition 10.13 in [14]), we have

$$
\begin{equation*}
G u_{m} \rightarrow G u \text { in } L^{p^{\prime}}(\Omega, v) \tag{2.3}
\end{equation*}
$$

Step 3. We define the operator $H: X \rightarrow L^{p^{\prime}}(\Omega, \omega)$ by

$$
(H u)(x)=b(x, u(x), \nabla u(x))
$$

We also have that the operator H is continuous and bounded. In fact,
(i) Using (H8) we obtain

$$
\begin{aligned}
\|H u\|_{L^{p^{\prime}}(\Omega, \omega)}^{p^{\prime}} & =\int_{\Omega}|H u|^{p^{\prime}} \omega d x \\
& =\int_{\Omega}|b(x, u, \nabla u)|^{p^{\prime}} \omega d x \\
& \leq \int_{\Omega}\left(K_{2}+h_{3}|u|^{p / p^{\prime}}+h_{4}|\nabla u|^{p / p^{\prime}}\right)^{p^{\prime}} \omega d x \\
& \leq C_{p} \int_{\Omega}\left[\left(K_{2}^{p^{\prime}}+h_{3}^{p^{\prime}}|u|^{p}+h_{4}^{p^{\prime}}|\nabla u|^{p}\right) \omega\right] d x \\
& =C_{p}\left[\int_{\Omega} K_{2}^{p^{\prime}} \omega d x+\int_{\Omega} h_{3}^{p^{\prime}}|u|^{p} \omega d x+\int_{\Omega} h_{4}^{p^{\prime}}|\nabla u|^{p} \omega d x\right] \\
& \leq C_{p}\left(\left\|K_{2}\right\|_{L^{p^{\prime}}(\Omega, \omega)}^{p^{\prime}}+\left(\left\|h_{3}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}+\left\|h_{4}\right\|_{L^{\infty}(\Omega)}^{p^{\prime}}\right)\|u\|_{X}\right) .
\end{aligned}
$$

Hence,

$$
\|H u\|_{L^{p^{\prime}}(\Omega, \omega)} \leq C_{p}\left[\left\|K_{2}\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\left(\left\|h_{3}\right\|_{L^{\infty}(\Omega)}+\left\|h_{4}\right\|_{L^{\infty}(\Omega)}\right)\|u\|_{X}^{p / p^{\prime}}\right]
$$

(ii) By the same argument used in Step 1(ii), we obtain analogously, if $u_{m} \rightarrow u$ in X then

$$
\begin{equation*}
H u_{m} \rightarrow H u, \quad \text { in } L^{p^{\prime}}(\Omega, \omega) . \tag{2.4}
\end{equation*}
$$

Step 4. We also have

$$
\begin{aligned}
|T(\varphi)| & \leq \int_{\Omega}\left|f_{0}\right||\varphi| d x+\sum_{j=1}^{n} \int_{\Omega}\left|f_{j} \| D_{j} \varphi\right| d x \\
& =\int_{\Omega} \frac{\left|f_{0}\right|}{\omega}|\varphi| \omega d x+\sum_{j=1}^{n} \int_{\Omega} \frac{\left|f_{j}\right|}{\omega}\left|D_{j} \varphi\right| \omega d x \\
& \leq\left\|f_{0} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}\|\varphi\|_{L^{p}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}\left\|D_{j} \varphi\right\|_{L^{p}(\Omega, \omega)} \\
& \leq\left(\left\|f_{0} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}\right)\|\varphi\|_{X} .
\end{aligned}
$$

Moreover, using (H4), (H8) and the Hölder inequality, we also have

$$
\begin{align*}
|B(u, \varphi)| & \leq\left|B_{1}(u, \varphi)\right|+\left|B_{2}(u, \varphi)\right|+\left|B_{3}(u, \varphi)\right| \\
& \leq \sum_{j=1}^{n} \int_{\Omega}\left|\mathcal{A}_{j}(x, u, \nabla u)\right|\left|D_{j} \varphi\right| \omega d x+\int_{\Omega}|\Delta u|^{p-2}|\Delta u||\Delta \varphi| v d x \\
& +\int_{\Omega}|b(x, u, \nabla u)||\varphi| \omega d x \tag{2.5}
\end{align*}
$$

In (2.5) we have

$$
\begin{aligned}
& \int_{\Omega}|\mathcal{A}(x, u, \nabla u)||\nabla \varphi| \omega d x \leq \int_{\Omega}\left(K_{1}+h_{1}|u|^{p / p^{\prime}}+h_{2}|\nabla u|^{p / p^{\prime}}\right)|\nabla \varphi| \omega d x \\
\leq & \left\|K_{1}\right\|_{L^{p^{\prime}}(\Omega, \omega)}\|\nabla \varphi\|_{L^{p}(\Omega, \omega)}+\left\|h_{1}\right\|_{L^{\infty}(\Omega)}\|u\|_{L^{p}(\Omega, \omega)}^{p / p^{\prime}}\|\nabla \varphi\|_{L^{p}(\Omega, \omega)} \\
+ & \left\|h_{2}\right\|_{L^{\infty}(\Omega)}\|\nabla u\|_{L^{p}(\Omega, \omega)}^{p / p^{\prime}}\|\nabla \varphi\|_{L^{p}(\Omega, \omega)} \\
\leq & \left(\left\|K_{1}\right\|_{L^{p^{\prime}(\Omega, \omega)}}+\left(\left\|h_{1}\right\|_{L^{\infty}(\Omega)}+\left\|h_{2}\right\|_{L^{\infty}(\Omega)}\right)\|u\|_{X}^{p / p^{\prime}}\right)\|\varphi\|_{X}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\Omega}|\Delta u|^{p-2}|\Delta u||\Delta \varphi| v d x=\int_{\Omega}|\Delta u|^{p-1}|\Delta \varphi| v d x \\
\leq & \left(\int_{\Omega}|\Delta u|^{p} v d x\right)^{1 / p^{\prime}}\left(\int_{\Omega}|\Delta \varphi|^{p} v d x\right)^{1 / p} \leq\|u\|_{X}^{p / p^{\prime}}\|\varphi\|_{X}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\Omega}|b(x, u, \nabla u)||\varphi| \omega d x \leq \int_{\Omega}\left(K_{2}+h_{3}|u|^{p / p^{\prime}}+h_{4}|\nabla u|^{p / p^{\prime}}\right)|\varphi| \omega d x \\
& \leq \int_{\Omega} K_{2}|\varphi| \omega d x+\left\|h_{3}\right\|_{L^{\infty}(\Omega)} \int_{\Omega}|u|^{p / p^{\prime}}|\varphi| \omega d x \\
& +\left\|h_{4}\right\|_{L^{\infty}(\Omega)} \int_{\Omega}|\nabla u|^{p / p^{\prime}}|\varphi| \omega d x \\
& \leq\left(\left\|K_{2}\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}\|u\|_{X}^{p / p^{\prime}}+\left\|h_{4}\right\|_{L^{\infty}(\Omega)}\|u\|_{X}^{p / p^{\prime}}\right)\|\varphi\|_{X}
\end{aligned}
$$

Therefore, in (2.5) we obtain, for all $u, \varphi \in X$

$$
\begin{aligned}
|B(u, \varphi)| & \leq\left[\left\|K_{1}\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\left\|K_{2}\right\|_{L^{p^{\prime}}(\Omega, \omega)}\right. \\
& +\left(\left\|h_{1}\right\|_{L^{\infty}(\Omega)}+\left\|h_{2}\right\|_{L^{\infty}(\Omega, \omega)}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}\right. \\
& \left.\left.+\left\|h_{4}\right\|_{L^{\infty}(\Omega, \omega)}+1\right)\|u\|_{X}^{p / p^{\prime}}\right]\|\varphi\|_{X}
\end{aligned}
$$

Since $B(u,$.$) is linear, for each u \in X$, there exists a linear and continuous operator $A: X \rightarrow X^{*}$ such that $\langle A u, \varphi\rangle=B(u, \varphi)$, for all $u, \varphi \in X$ (where $\langle f, x\rangle$ denotes the value of the linear functional f at the point $x)$ and

$$
\begin{aligned}
\|A u\|_{*} & \leq\left\|K_{1}\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\left\|K_{2}\right\|_{L^{p^{\prime}}(\Omega, \omega)} \\
& +\left(\left\|h_{1}\right\|_{L^{\infty}(\Omega)}+\left\|h_{2}\right\|_{L^{\infty}(\Omega, \omega)}+\left\|h_{3}\right\|_{L^{\infty}(\Omega)}+\left\|h_{4}\right\|_{L^{\infty}(\Omega, \omega)}+1\right)\|u\|_{X}^{p / p^{\prime}}
\end{aligned}
$$

Consequently, problem (P) is equivalent to the operator equation

$$
A u=T, u \in X
$$

Step 5. Using condition (H2), (H6) and Lemma 1 (b), we have

$$
\begin{aligned}
& \left\langle A u_{1}-A u_{2}, u_{1}-u_{2}\right\rangle=B\left(u_{1}, u_{1}-u_{2}\right)-B\left(u_{2}, u_{1}-u_{2}\right) \\
= & \int_{\Omega} \omega \mathcal{A}\left(x, u_{1}, \nabla u_{1}\right) \cdot \nabla\left(u_{1}-u_{2}\right) d x+\int_{\Omega}\left|\Delta u_{1}\right|^{p-2} \Delta u_{1} \Delta\left(u_{1}-u_{2}\right) v d x \\
+ & \int_{\Omega} b\left(x, u_{1}, \nabla u_{1}\right)\left(u_{1}-u_{2}\right) \omega d x \\
- & \int_{\Omega} \omega \mathcal{A}\left(x, u_{2}, \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) d x-\int_{\Omega}\left|\Delta u_{2}\right|^{p-2} \Delta u_{2} \Delta\left(u_{1}-u_{2}\right) v d x \\
- & \int_{\Omega} b\left(x, u_{2}, \nabla u_{2}\right)\left(u_{1}-u_{2}\right) \omega d x \\
= & \int_{\Omega} \omega\left(\mathcal{A}\left(x, u_{1}, \nabla u_{1}\right)-\mathcal{A}\left(x, u_{2}, \nabla u_{2}\right)\right) \cdot \nabla\left(u_{1}-u_{2}\right) d x \\
+ & \int_{\Omega}\left(\left|\Delta u_{1}\right|^{p-2} \Delta u_{1}-\left|\Delta u_{2}\right|^{p-2} \Delta u_{2}\right) \Delta\left(u_{1}-u_{2}\right) v d x \\
+ & \int_{\Omega}\left(b\left(x, u_{1}, \nabla u_{1}\right)-b\left(x, u_{2}, \nabla u_{2}\right)\right)\left(u_{1}-u_{2}\right) \omega d x \\
\geq & \theta_{1} \int_{\Omega} \omega\left|\nabla\left(u_{1}-u_{2}\right)\right|^{p} d x+\beta_{p} \int_{\Omega}\left(\left|\Delta u_{1}\right|+\left|\Delta u_{2}\right|\right)^{p-2}\left|\Delta u_{1}-\Delta u_{2}\right|^{2} v d x \\
+ & \theta_{2} \int_{\Omega}\left|u_{1}-u_{2}\right|^{p} \omega d x \\
\geq & \theta_{1} \int_{\Omega} \omega\left|\nabla\left(u_{1}-u_{2}\right)\right|^{p} d x+\beta_{p} \int_{\Omega}\left(\left|\Delta u_{1}-\Delta u_{2}\right|^{p-2}\left|\Delta u_{1}-\Delta u_{2}\right|^{2} v d x\right. \\
+ & \theta_{2} \int_{\Omega}\left|u_{1}-u_{2}\right|^{p} \omega d x \\
= & \theta_{1} \int_{\Omega} \omega\left|\nabla\left(u_{1}-u_{2}\right)\right|^{p} d x+\beta_{p} \int_{\Omega}\left|\Delta u_{1}-\Delta u_{2}\right|^{p} v d x+\theta_{2} \int_{\Omega}\left|u_{1}-u_{2}\right|^{p} \omega d x \\
\geq & \theta\left\|u_{1}-u_{2}\right\|_{X}^{p}
\end{aligned}
$$

where $\theta=\min \left\{\theta_{1}, \theta_{2}, \beta_{p}\right\}$.
Therefore, the operator A is strongly monotone, and this implies that the operator A is strictly monotone. Moreover, using (H3) and (H9), we obtain

$$
\begin{aligned}
& \langle A u, u\rangle=B(u, u)=B_{1}(u, u)+B_{2}(u, u)+B_{3}(u, u) \\
& =\int_{\Omega} \omega \mathcal{A}(x, u, \nabla u) \cdot \nabla u d x+\int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta u v d x+\int_{\Omega} b(x, u, \nabla u) u \omega d x \\
& \geq \int_{\Omega}\left(\lambda_{1}|\nabla u|^{p}+\Lambda_{1}|u|^{p}\right) \omega d x+\int_{\Omega}|\Delta u|^{p} v d x+\int_{\Omega}\left(\lambda_{2}|\nabla u|^{p}+\Lambda_{2}|u|^{p}\right) \omega d x \\
& =\left(\Lambda_{1}+\Lambda_{2}\right) \int_{\Omega}|u|^{p} \omega d x+\left(\lambda_{1}+\lambda_{2}\right) \int_{\Omega}|\nabla u|^{p} \omega d x+\int_{\Omega}|\Delta u|^{p} v d x \\
& \geq \gamma\|u\|_{X}^{p}
\end{aligned}
$$

where $\gamma=\min \left\{\lambda_{1}+\lambda_{2}, \Lambda_{1}+\Lambda_{2}, 1\right\}$. Hence, since $p \geq 2$, we have

$$
\frac{\langle A u, u\rangle}{\|u\|_{X}} \rightarrow+\infty, \text { as }\|u\|_{X} \rightarrow+\infty
$$

that is, A is coercive.
Step 6. We need to show that the operator A is continuous.
Let $u_{m} \rightarrow u$ in X as $m \rightarrow \infty$. We have,

$$
\begin{aligned}
\left|B_{1}\left(u_{m}, \varphi\right)-B_{1}(u, \varphi)\right| & \leq \sum_{j=1}^{n} \int_{\Omega}\left|\mathcal{A}_{j}\left(x, u_{m}, \nabla u_{m}\right)-\mathcal{A}_{j}(x, u, \nabla u) \| D_{j} \varphi\right| \omega d x \\
& =\sum_{j=1}^{n} \int_{\Omega}\left|F_{j} u_{m}-F_{j} u \| D_{j} \varphi\right| \omega d x \\
& \leq \sum_{j=1}^{n}\left\|F_{j} u_{m}-F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)}\left\|D_{j} \varphi\right\|_{L^{p}(\Omega, \omega)} \\
& \leq \sum_{j=1}^{n}\left\|F_{j} u_{m}-F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)}\|\varphi\|_{X}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|B_{2}\left(u_{m}, \varphi\right)-B_{2}(u, \varphi)\right| \\
& =\left.\left|\int_{\Omega}\right| \Delta u_{m}\right|^{p-2} \Delta u_{m} \Delta \varphi v d x-\int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta \varphi v d x \mid \\
& \leq \int_{\Omega}\left|\Delta u_{m}\right|^{p-2} \Delta u_{m}-|\Delta u|^{p-2} \Delta u| | \Delta \varphi \mid v d x \\
& =\int_{\Omega}\left|G u_{m}-G u\right||\Delta \varphi| v d x \\
& \leq\left\|G u_{m}-G u\right\|_{L^{p^{\prime}}(\Omega, v)}\|\varphi\|_{X}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|B_{3}\left(u_{m}, \varphi\right)-B_{3}(u, \varphi)\right| & \leq \int_{\Omega}\left|b\left(x, u_{m}, \nabla u_{m}\right)-b(x, u, \nabla u)\right||\varphi| \omega d x \\
& =\int_{\Omega}\left|H u_{m}-H u \| \varphi\right| \omega d x \\
& \leq\left\|H u_{m}-H u\right\|_{L^{p^{\prime}}(\Omega, \omega)}\|\varphi\|_{X}
\end{aligned}
$$

for all $\varphi \in X$. Hence,

$$
\begin{aligned}
& \left|B\left(u_{m}, \varphi\right)-B(u, \varphi)\right| \\
& \leq\left|B_{1}\left(u_{m}, \varphi\right)-B_{1}(u, \varphi)\right|+\left|B_{2}\left(u_{m}, \varphi\right)-B_{2}(u, \varphi)\right|+\left|B_{3}\left(u_{m}, \varphi\right)-B_{3}(u, \varphi)\right| \\
& \leq\left[\sum_{j=1}^{n}\left\|F_{j} u_{m}-F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\left\|G u_{m}-G u\right\|_{L^{p^{\prime}}(\Omega, v)}\right. \\
& \left.\quad+\left\|H u_{m}-H u\right\|_{L^{p^{\prime}}(\Omega, \omega)}\right]\|\varphi\|_{X} .
\end{aligned}
$$

Then we obtain

$$
\begin{aligned}
\left\|A u_{m}-A u\right\|_{*} & \leq \sum_{j=1}^{n}\left\|F_{j} u_{m}-F_{j} u\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\left\|G u_{m}-G u\right\|_{L^{p^{\prime}}(\Omega, v)} \\
& +\left\|H u_{m}-H u\right\|_{L^{p^{\prime}}(\Omega, \omega)}
\end{aligned}
$$

Therefore, using (2.2),(2.3) and (2.4) we have $\left\|A u_{m}-A u\right\|_{*} \rightarrow 0$ as $m \rightarrow+\infty$, that is, A is continuous (and this implies that A is hemicontinuous).

Therefore, by Theorem 3, the operator equation $A u=T$ has a unique solution $u \in X$ and it is the unique solution for problem (P).
Step 7. In particular, by setting $\varphi=u$ in Definition 4 , we have

$$
\begin{equation*}
B(u, u)=B_{1}(u, u)+B_{2}(u, u)+B_{3}(u, u)=T(u) . \tag{2.6}
\end{equation*}
$$

Hence, using (H3), (H7), (H9) and $\gamma=\min \left\{\lambda_{1}+\lambda_{2}, \Lambda_{1}+\Lambda_{2}, 1\right\}$, we obtain

$$
\begin{aligned}
& B_{1}(u, u)+B_{2}(u, u)+B_{3}(u, u) \\
& =\int_{\Omega} \omega \mathcal{A}(x, u, \nabla u) \cdot \nabla u d x+\int_{\Omega}|\Delta u|^{p-2} \Delta u \Delta u v d x \\
& +\int_{\Omega} b(x, u, \nabla u) u \omega d x \\
& \geq \int_{\Omega}\left(\lambda_{1}|\nabla u|^{p}+\Lambda_{1}|u|^{p}\right) \omega d x+\int_{\Omega}|\Delta u|^{p} v d x \\
& +\int_{\Omega}\left(\Lambda_{2}|u|^{p}+\lambda_{1}|\nabla u|^{p}\right) \omega d x \\
& \geq \gamma\|u\|_{X}^{p}
\end{aligned}
$$

and

$$
\begin{aligned}
T(u) & =\int_{\Omega} f_{0} u d x+\sum_{j=1}^{n} \int_{\Omega} f_{j} D_{j} u d x \\
& \leq\left\|f_{0} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}\|u\|_{L^{p}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|f_{j} /\left.\omega\right|_{L^{p^{\prime}}(\Omega)}\right\| D_{j} u \|_{L^{p}(\Omega, \omega)} \\
& \leq\left(\left\|f_{0} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p^{\prime}}(\Omega)}\right)\|u\|_{X} .
\end{aligned}
$$

Therefore, in (2.6), we have

$$
\gamma\|u\|_{X}^{p} \leq\left(\left\|f_{0} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}\right)\|u\|_{X}
$$

and we obtain

$$
\|u\|_{X} \leq \frac{1}{\gamma^{p^{\prime} / p}}\left(\left\|f_{0} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}+\sum_{j=1}^{n}\left\|f_{j} / \omega\right\|_{L^{p^{\prime}}(\Omega, \omega)}\right)^{p^{\prime} / p}
$$

Example 1. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. Consider the weight functions $\omega(x, y)=\left(x^{2}+y^{2}\right)^{-1 / 2}$ and $v(x, y)=\left(x^{2}+y^{2}\right)^{-1 / 3}\left(\omega, v \in A_{2}, p=2\right)$, and the functions $\mathcal{A}: \Omega \times \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $b: \Omega \times \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \mathcal{A}((x, y), \eta, \xi)=h_{2}(x, y) \xi \\
& b((x, y), \eta, \xi)=\eta\left(\cos ^{2}(x y)+1\right)
\end{aligned}
$$

where $h(x, y)=2 \mathrm{e}^{\left(x^{2}+y^{2}\right)}$. Let us consider the partial differential operator

$$
\begin{aligned}
L u(x, y) & =\Delta\left(\left(x^{2}+y^{2}\right)^{-1 / 3}|\Delta u| \Delta u\right)-\operatorname{div}\left(\left(x^{2}+y^{2}\right)^{-1 / 2} \mathcal{A}((x, y), u, \nabla u)\right) \\
& +\left(x^{2}+y^{2}\right)^{-1 / 2} b(x, u, \nabla u)
\end{aligned}
$$

Therefore, by Theorem 1, the problem

$$
(P)\left\{\begin{array}{l}
L u(x)=\frac{\cos (x y)}{\sqrt{x^{2}+y^{2}}}-\frac{\partial}{\partial x}\left(\frac{\sin (x y)}{\sqrt{x^{2}+y^{2}}}\right)-\frac{\partial}{\partial y}\left(\frac{\sin (x y)}{\sqrt{x^{2}+y^{2}}}\right), \text { in } \Omega \\
u(x)=\Delta u(x)=0, \text { on } \partial \Omega
\end{array}\right.
$$

has a unique solution $u \in X=W^{2,2}(\Omega, v) \cap W_{0}^{1,2}(\Omega, \omega)$.

Acknowledgements. We thank the referee for his/her helpful suggestions which improved the original results.

References

[1] A.C.Cavalheiro: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems, J. Appl. Anal., 19 (2013), 41-54.
[2] A.C.Cavalheiro: Existence results for Dirichlet problems with degenerated p-Laplacian and p-Biharmonic operators, Appl. Math. E-Notes, 13 (2013), 234-242.
[3] M. Chipot: Elliptic Equations: An Introductory Course, Birkhäuser, Berlin (2009).
[4] P. Drábek, A. Kufner and F. Nicolosi: Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin (1997)
[5] S. Fuc̆í, O. John and A. Kufner: Function Spaces, Noordhoff International Publ., Leyden, (1977).
[6] J. Garcia-Cuerva and J.L. Rubio de Francia: Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, (1985).
[7] D.Gilbarg and N.S. Trudinger: Elliptic Partial Equations of Second Order, 2nd Ed., Springer, New York (1983).
[8] J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, (1993).
[9] A. Kufner: Weighted Sobolev Spaces, John Wiley \& Sons, (1985).
[10] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[11] M. Talbi and N. Tsouli: On the spectrum of the weighted p-Biharmonic operator with weight, Mediterr. J. Math., 4 (2007), 73-86.
[12] A. Torchinsky: Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, (1986).
[13] B.O. Turesson: Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Math., vol. 1736, Springer-Verlag, (2000).
[14] E. Zeidler: Nonlinear Functional Analysis and its Applications, vol.I, Springer-Verlag, (1990).
[15] E. Zeidler: Nonlinear Functional Analysis and its Applications, vol.II/B, SpringerVerlag, (1990).

