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Abstract. Starting from a well know definition of Lie’s series, we define a new type of series
which permit to obtain (or re-obtain) existence and representation of solutions for some types
of particular differential equations.
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1 Introduction

For many evolution problems one of the most (and beautiful) thecnical in-
strument are the Lie’s series. In the book ([3]) there is a sistematic study of such
series and applications. In many interesting paper the Lie’s series are applied
to the study of celestial mechanics, laser physics, neutron transport and so (see
[7], [2], [8] for a list of references). Many paper deal also the numerical aspect
of this type of series ([1]).

Lie’s series are related to the well know Taylor’s series for the analitical
functions:

F (z + t) =

+∞∑
0

tn

n!
F (n)(z). (1)

In fact they are of the form

+∞∑
0

tn

n!
D(n)f(z) (2)

where D is a differential linear operator with D(n)f = D(D(n−1)f) and
D0f = f.
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An investigation of the role of the sequence of functions ( t
n

n! )n in the general
theory of Lie’s series, give the possibility to think a generalization arguing as
follows.

Let X and Y ⊂ X be real vector spaces and let L : X → Y be linear and
let (ϕn) be a sequence of functions such that ϕn ∈ C1(R,R) ∀n ∈ N.

We define ”generalized Lie’s serie” a formal series of the following type

+∞∑
0

ϕn(t)L(n)(f) (3)

if the sequence (ϕn) verify

ϕ̇n(t) = ϕn−1(t) ∀n ≥ 1 ∀t (4)

or similar conditions (see next sections).
We are able to give some results for these series and to present some appli-

cations. In particular we are able to give existence and representation results
for the solution of some differential equation. Moreover in these representations
the role of the data in the equation is clear.

2 A first abstract result

We consider now only the formal aspect of the question. So we assume that
all series given in the sequel converge in a such way that all step of the proof
are true.

The following result is analogous of the fundamental theorem given in ([3]).

Theorem 2. Let X and Y ⊂ X be normed (or Banach) vector real spaces
of real functions; let L : X → Y be a linear continuous trasformation. Let
f ∈ Y, ϕ0 ∈ C1(R,R) and consider the following differential equation

u̇(t) = Lu(t) + ϕ̇0(t)f. (5)

We consider a sequence of functions (ϕn) as follows (starting from ϕ0)

ϕ̇n = ϕn−1 ∀n ≥ 1 ∀t. (6)

Then the function

u(t) = ϕ0(t)f +

+∞∑
1

ϕn(t)Ln(f) (7)

is a solution of the equation (5).
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Proof. Let up(t) = ϕ0(t)f +
∑p

1 ϕn(t)Ln(f) and derive with respect to t

u̇p(t) = ϕ̇0(t)f +

p∑
1

ϕ̇n(t)Ln(f) = ϕ̇0(t)f +

p∑
1

ϕn−1(t)Ln(f) =

= ϕ̇0(t)f + L(

p∑
1

ϕn−1(t)Ln−1(f)) = ϕ̇0(t)f + L(

p−1∑
0

ϕn(t)Ln(f)).

Then there exists the limit of the sequence (u̇p)p and

limp→+∞u̇p(t) = ϕ̇0(t)f + L(
+∞∑

0

ϕn(t)Ln(f)) = ϕ̇0(t)f + Lu(t).

So the function u has derivative with respect to t and

u̇(t) = ϕ̇0(t)f + Lu(t).

Remark 1. If there exists n∗ ∈ N such that Ln∗f = 0 (and so Lnf = 0 for
every n ≥ n∗), the equation (5) has, of course, the solution

u(t) = ϕ0(t)f +
n∗−1∑

1

ϕn(t)Ln(f).

Remark 2. The condition of linearity of L can be replaced with

limp→+∞[L(

p−1∑
0

ϕn(t)Ln(f))−
p−1∑

0

ϕn(t)Ln+1(f)] = 0

3 Other abstract results

With a natural modification of the proof of the theorem 2, we can obtain
some existence theorem and a representation formula for solutions of some spe-
cial differential equations.

As in previous section we consider only the formal aspect of the proof.
Let L be a continuous linear transformation between the normed vector real

spaces X and Y ⊂ X. The following facts hold.

Proposition 6. Consider the following equation

u̇(t) = k(t)Lu(t) + ϕ̇0(t)f (8)

where k ∈ C1(R,R). Then the function
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u(t) = ϕ0(t)f +
+∞∑

1

ϕn(t)Ln(f) (9)

is a solution of (8) when (ϕn)n (starting from ϕ0) is defined, for every n ∈ N,
by

ϕ̇n(t) = k(t)ϕn−1(t). (10)

The proof is similar to the proof of Theorem 2.

Proposition 7. Consider the following equation

Ẇ (t) =
1

h(t)
LW (t) +

ḣ(t)

h(t)
W (t) + h(t)ϕ0(t)L(f) (11)

where ϕ0, h ∈ C1(R,R), h 6= 0. Then the function

w(t) = h(t)
+∞∑

1

ϕn(t)Ln(f) (12)

is a solution of (11), when ϕ̇n(t) = ϕn−1(t).

The proof of the last proposition follows from the fact that the function

u(t) = ϕ0(t)f + h(t)
+∞∑

1

ϕn(t)Ln(f)

satisfy the following equation

d

dt
[u(t)− ϕ0(t)f ] =

ḣ(t)

h(t)
]u(t)−ϕ0(t)f ]+h(t)ϕ0(t)L(f)− 1

h(t)
[L(u(t)−ϕ0(t)f)]

so that W (t) = u(t)− ϕ0(t)f is a solution of the equation (11).

Now we can also prove this proposition.

Proposition 8. Consider the following equation

Ẇ (t) = ϕ0(t)[LW (t) + L(f)]. (13)

Then there exists a solution of the equation (13).

The easy proof is related to the following remark. If we consider the function

u(t) = ϕ0(t)f +
+∞∑

1

∫ t

0
ϕ0(t1)

∫ t1

0
ϕ0(t2)....

∫ tn−1

0
ϕ0(tn)dtn....dt1L

n(f),
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then such a function is a solution of the equation

d

dt
[u(t)− ϕ0(t)f ] = ϕ0(t)L(u(t)− ϕ0(t)f) + ϕ0(t)L(f).

So, W (t) = u(t)− ϕ0(t)f satisfy (13).
Finally we have

Proposition 9. Consider the following equation

Ẇ (t) = aϕ0(at)LW (t) + [
d

dt
log|h(t)|]W (t) + aϕ0(at)h(t)L(f)], (14)

with a ∈ R. Then there exists a solution of equation (14)

In such a situation we consider the function

u(t) = ϕ0(at)f + h(t)
+∞∑

1

ϕn(at)Ln(f).

It is easy to prove that function

W (t) = u(t)− ϕ0(at)f ≡ h(t)

+∞∑
1

ϕn(at)Ln(f)

is a solution of (14)
Remark 3. It is remarkable that in all the representation formula the

coefficient-function of the equation are inserted and partecipate explicitely to
the representation. So it seem that appropriate information about the solution
can be investigated starting from particular property of coefficient-function.

The greater difference with the application of the classical Lie’s series related
on the fact that the system ( t

n

n! )n play for all equation while for the generalized
Lie’s series for all equation a different system can play.

4 Some Applications and Remarks

In many applications, of course, cannot be easy to investigate the conver-
gence of the formal series.

In the following examples (see [6] for many of them) we are in a situation for
which the formal series reduce to a finite sum. Also in this semplified situation
we seem to have interesting results.

PB1: There is or not a solution of the following equation

∂u(x, t)

∂t
= t

∂u(x, t)

∂x
− x2sent (15)
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such that u(x, π) = x2 and u(x,−π) = −x2?

Assume f(x) = x2, ϕ0(t) = cost, ϕ̇i(t) = tϕi−1(t) and L = ∂
∂x . Because

L3(f) = 0, we have that the function

u(x, t) = x2cost+ 2x

∫ t

−π
τcosτdτ + 2

∫ t

−π
τ

∫ τ

−π
ηcosηdηdτ

is a solution of (15) satisfying the required conditions.

Now we consider a problem as to the previous.

PB2: There is or not a solution of the following equation

∂u(x, t)

∂t
= t

∂2u(x, t)

∂x2
− x2sent (16)

such that u(x,−π) = −x2 and u(x,−π) = −x2?

In such situation it suffice, with respect to the previous problem, to consider
L = ∂2

∂x2
obtaining

u(x, t) = x2cost+ 2x

∫ t

−π
τcosτdτ

as a solution of the equation (16) verifying the required conditions.

Then it easy to think that for all type of the equations of the form

∂u(x, t)

∂t
= h(t)

∂u(x, t)

∂x
− P (x)sent (17)

∂u(x, t)

∂t
= h(t)

∂2u(x, t)

∂x2
− P (x)sent (18)

where h ∈ C1 and P is a polinomial function in the x variable, it is possible
to give a solution.

Moreover we can consider other type of equations.

PB3: Give a solution of the following equation

∂u(x, t)

∂t
= A

∂2u(x, t)

∂x2
+B

∂u(x, t)

∂x
+ x2ϕ̇0(t) (19)

where A,B are real number.

This equation is a generalization of a well known equation, namely the equa-
tion of the random walk with drift and source. In such situation there is a
solution of the following type

u(x, t) = ϕ0(t)x2 + 2(A+Bx)ϕ1(t) + 2B2ϕ2(t)
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where we assume Lu = A∂2u
∂x2

+ B ∂u
∂x and ϕ′i+1 = ϕi. Now it is certainly true

that such solution is periodic in the variable t if the same holds for all ϕi.
PB4: Give a solution for the following equation

∂u(x, t)

∂t
= A

∂2u(x, t)

∂x2
+B

∂u(x, t)

∂x
+ Cu(x, t) + xϕ̇0(t) (20)

where A,B,C are real number.
The previous equation is related to the problem of diffusion with transport,

reaction and source. If we consider Lu = A∂2u
∂x2

+B ∂u
∂x +Cu and still ϕ′i+1 = ϕi,

a solution of (20) is

u(x, t) = x[ϕ0(t) +
∞∑
1

Ciϕi(t)] +BC2
∞∑
1

iϕi(t)

PB5: Give a solution of the following equation

∂u(x, t)

∂t
= A

∂2u(x, t)

∂x2
+B

∂u(x, t)

∂x
+ Cu(x, t) + x2ϕ̇0(t) (21)

where A,B,C are real number.
Assuming L as in the previous problem, ϕ′i+1 = ϕi, we remark that Ln(x2) =

Cnx2 + nBCn−1x+ (2nACn−1 + n(n− 1)B2Cn−2); so a solution of (21) is

u(x, t) = x2[ϕ0(t)+
∞∑
1

Ciϕi(t)]+2
Bx+A

C

∞∑
1

iCiϕi(t)+
B2

C2

∞∑
1

i(i−1)Ciϕi(t).

Moreover we consider also the following problem.
PB6: Give a solution of the equation

∂u(x, t)

∂t
= ġ(t)[ϕ̇0(g(t))f(x) + L(u(x, t))] (22)

Arguing as previous, a solution is

u(x, t) = ϕ0(g(t))f(x) +
+∞∑

1

ϕi(g(t))Li(f(x)). (23)

In particular if g(t) =
√
t, (23) give a solution for the equation

2
√
t
∂u(x, t)

∂t
= ϕ̇0(

√
t)f(x) + L(u(x, t)).

Otherwhise, if g(t) = 1
1−α t

1−α we have that a solution for the equation

tα
∂u(x, t)

∂t
= ϕ̇0(

1

1− α
t1−α)f(x) + L(u(x, t))
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is the following function

u(x, t) = ϕ0(
1

1− α
t1−α)f(x) +

+∞∑
1

ϕi(
1

1− α
t1−α)Li(f(x)).

If g(t) = 1
t , for the equation

t
∂u(x, t)

∂t
= ϕ̇0(logt)f(x) + L(u(x, t))

a solution is

u(x, t) = ϕ0(logt)f(x) +

+∞∑
1

ϕi(logt)L
i(f(x))

We remark that if L(f) = 0 our procedure fails.

Remark 4. A simple abstract situation for which
∑+∞

0 ϕn,j(t)L
n
j (fj)(x) is

convergent can be considered as follows.

Let X = C([c, d];R) the Banach space w.r.t. norm ||f ||X = supx∈[c,d]|f(x)|;
assume L : X −→ X be a linear, continuous operator such that

∃α ∈ [0, 1[ ||L|| ≤ α (24)

where, of course, ||L|| = sup||f ||X≤1||Lf ||. Moreover assume that

∃M ≥ 0 |ϕi(t)| ≤M ∀(x, t) ∈ [c, d]× [a, b]. (25)

Then for every f ∈ X the serie
∑+∞

0 ϕn,j(t)L
n
j (fj)(x) is convergent w.r.t. the

norm

||u(., .)|| = sup(x,t)∈[c,d]×[a,b|u(x, t)|. (26)

Remark 5. From a very abstract point of view, it seem interesting to study
the limit for formulas of the following type

ϕ0,j(t)fj +

+∞∑
1

ϕn,j(t)L
n
j (fj) (27)

where (Lj) is a sequence of continuous linear transformations, (fj) a sequence
of functions and, for every j, (ϕn,j) is a sequence such that ϕ̇n,j = ϕn−i,j .
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