On sets of type $(m, h)_{2}$ in $\operatorname{PG}(3, q)$ with $m \leq q$

Vito Napolitano ${ }^{\text {i }}$

Department of Mathematics and Physics, Seconda Università degli Studi di Napoli Viale Lincoln 5, 81100 Caserta (Italy)
vito.napolitano@unina2.it

Received: 9.1.2014; accepted: 19.2.2015.

Abstract

A set of points of $\mathrm{P} G(3, q)$ of type $(m, h)_{2}$, with $m \leq q$, has size $k \geq m(q+1)$. In this paper, some characterization results of some sets of type $(m, h)_{2}, 3 \leq m \leq q$, of minimal size $m(q+1)$ are given. Finally, sets of type $(3, h)_{2}$ in $\mathrm{P} G(3, q)$ are studied.

Keywords: projective space, linear code, intersection number, linear space
MSC 2000 classification: primary 05B25, secondary 51E20

1 Introduction

Let $\mathbb{P}=\mathrm{P} G(d, q)$ be the finite projective space of order q and dimension $d \geq 3, m_{1}, \ldots, m_{s}$ be s integers such that $0 \leq m_{1} \leq \ldots \leq m_{s}$ and for any integer $r, 1 \leq r \leq d-1$, let \mathcal{P}_{r} denote the family of all the r-dimensional subspaces of \mathbb{P}.

A subset \mathcal{K} of k points of \mathbb{P} is of type $\left(m_{1}, \ldots, m_{s}\right)_{r}$ if $|\mathcal{K} \cap \pi| \in\left\{m_{1}, \ldots, m_{s}\right\}$ for any $\pi \in \mathcal{P}_{r}$, and for every $m_{j} \in\left\{m_{1}, \ldots, m_{s}\right\}$ there is at least one subspace $\pi \in \mathcal{P}_{r}$ such that $|\mathcal{K} \cap \pi|=m_{j}$. The non-negative integers m_{1}, \ldots, m_{s} are the intersection numbers of \mathcal{K} (with respect to \mathcal{P}_{r}).

Quadrics, algebraic varieties which are intersection of quadrics, subgeometries are subsets of points of \mathbb{P} with few intersection numbers with respect to the lines, or to hyperplanes or to a given family of r-dimensonal subspaces, $2 \leq r \leq d-2$, so it arises in a natural way the problem of characterizing such classical objects using their intersection numbers with a prescribed family of subspaces. On the other hand, k-sets of \mathbb{P} with exactly two intersection numbers with respect to hyperplanes give rise to two-weighted linear codes (cf e.g. [6]), and so it arises also an existence problem for sets of a given type. There is a wide literature devoted to the theory of k-sets of a given type, in the references the interested reader may find some papers on this topic.

The study on k-sets with two intersection numbers m and $h, m<h$, developes by increasing the values of m. There is a complete classification of k-sets

[^0]of type $(m, h)_{2}$ for $m=0,1[3,7,9,10], m=2$ and $d=3[4]$, for $m=3, d=3$ and $h=q+3[8]$. In all such cases, except $m=3, q=2$ which is easily solved (cf e.g. [8]), one has $m \leq q$ and so it seems natural to study k-sets of type ($m, h)_{2}$ with $m \leq q$.

If $m \leq q$, a m-plane contains at least an external line thus counting the size of \mathcal{K} via the planes on such external line gives $k \geq m(q+1)$. Some examples, such as subgeometries, sets of points of $m \leq q$ pairwise skew lines, have size $m(q+1)$ and so a characterization problem in the extremal case $k=m(q+1)$ arises.

Note that, already Beutelspacher [1] has considered a similar question for k-sets of \mathbb{P} intersected by every hyperplane in at least m points, $m \leq q$, giving a complete description of those with minimal size $k=m(q+1)$ under the extra hypothesis $m \leq \sqrt{q}+1$.

In this paper, we will give some new characterizations of such sets of $\mathrm{P} G(3, q)$ of minimal size and we also will study k-sets of type $(3, h)_{2}$ of $\mathrm{P} G(3, q)$. We are going to prove the following results.

Theorem 1. Let \mathcal{K} be a k-set of points of $\operatorname{PG}(3, q)$ of type $(m, h)_{2}$, with $m \leq q$ and $k=m(q+1)$. If $s \geq m$ for every s-secant line with $s \geq 3$, then either \mathcal{K} is a subset of points of a hyperbolic quadric \mathcal{H} obtained by deleting $q+1-m$ pairwise skew lines of one of the two reguli of \mathcal{H}, or $m=\sqrt{q}+1$ and \mathcal{K} is the subgeometry $\mathrm{PG}(3, \sqrt{q})$ or $m=3$ and \mathcal{K} is the set K_{1} described in Example 1.1 below.

Theorem 2. Let \mathcal{K} be a k-set of points of $\operatorname{PG}(3, q)$ of type $(m, h)_{2}$, with $m \leq q, k=m(q+1)$ and $q \geq 3$. If \mathcal{K} contains at least $q-\sqrt{q}-1$ lines then \mathcal{K} is the set of points of the union of m pairwise skew lines, or $m=q$ is a square, $k=q^{2}+q$ and \mathcal{K} is the subgeometry $\operatorname{PG}(3, \sqrt{q})$ union the points of $q-\sqrt{q}-1$ lines.

As remarked above, k-sets of $\mathrm{P} G(3, q)$ of type $(3, q+3)_{2}$ have been completely classified. The next theorem concerns with the general case $(3, h)_{2}$.

Theorem 3. Let \mathcal{K} be a k-set of $\operatorname{PG}(3, q)$ of type $(3, h)_{2}$ and let $b_{i}, 0 \leq$ $i \leq q+1$ denote the number of lines intersecting \mathcal{K} in exactly i points. Then, $h-3 \mid q$ and one the following holds be true.
(j) $h=q+3$ and \mathcal{K} is determined.
(jj) $h<q+3$, every line has at most three points in common with $\mathcal{K}, b_{i}>0$ for every $i \in\{0,1,2,3\}$ and either
(jj1) $q=8, h=7$ and $k=39$ and all the planes containing a 3-line are $h-$ planes 1.

[^1]or
(jj2) on each 3-line there is at least one 3 -plane, $k \leq 3+q(h-3)$ and the number c_{3} of 3 -planes is
$$
c_{3}=b_{2} \frac{(q+1) h-k-2 q}{3(h-3)}+b_{3} \frac{(q+1) h-k-3 q}{(h-3)},
$$
where
\[

$$
\begin{aligned}
& b_{2}=\frac{[(q+1) h-k]\left[6\left(q^{2}+1\right)-k(k-1)\right]+3 k q(k-3)}{2 q} \\
& b_{3}=\frac{[(q+1) h-k]\left[k(k-1)-6\left(q^{2}+1\right)\right]-2 k q(k-4)}{6 q} .
\end{aligned}
$$
\]

Moreover, if $h>13$ then

$$
q h+3-\frac{7}{2} q<(q+1) h-\frac{7}{2} q \leq k \leq q h-3 q+3 .
$$

1.1 Some previous results on k-sets of type $(m, h)_{2}$ in $\mathrm{P} G(3, q)$

In this section, we recall some known results on sets of points of $\mathrm{P} G(3, q)$ with two intersection numbers with respect to the planes.

Theorem A ([10], 1973) A set \mathcal{K} of points of $\mathrm{P} G(d, q), d>2$, of type $(1, h)_{2}$ is either a line or an ovoid of $\mathrm{P} G(3, q), q>2$, or the elliptic quadric or $\mathrm{P} G(3,2)$.

Theorem B ([4], 2006) A set \mathcal{K} of points of $\mathrm{P} G(3, q), r>2$, of type $(2, h)_{2}$ is the set of points of the union of two skew lines.

For $m=3$, sets of points of $\mathrm{P} G(3,3)$ of type $(3, h)_{2}$ which are not the pointsets of the union of three lines occur (cf [8]). In the next example, they are descibed via the homogeneous coordinates (x, y, z, t).

EXAMPLE 1.1. Sets of type $(3,6)_{2}$ in $\mathrm{P} G(3,3)$ containing no line.

$$
\begin{aligned}
K_{1}=\{ & A(1,0,0,0), B(0,1,0,0), C(0,1,1,1), D(0,0,1,0), E(0,1,0,1), \\
& F(0,0,0,1), G(1,0,0,1), H(1,1,0,1), I(1,0,2,0), L(1,2,2,0), \\
& M(1,0,2,1), N(0,1,1,0)\} . \\
K_{2}=\{ & A(1,1,2,1), B(1,0,0,0), C(0,1,0,0), D(0,0,1,0), E(0,0,0,1),
\end{aligned}
$$

[^2] $G F(8)$ linear 2 weight code of length 39 , dimension 4 and weights 32 and 36 .
$F(0,0,1,2), G(1,1,1,1), H(1,1,1,2), I(1,0,2,0), L(1,2,2,0)$, $M(0,1,2,2), N(0,1,1,0), O(1,0,2,2), P(1,2,1,1), Q(1,2,1,2)\}$.
\[

$$
\begin{aligned}
K_{3}=\{ & A(1,0,0,0), B(0,1,1,0), C(0,1,0,0), D(0,0,1,0), E(0,0,0,1), \\
& F(1,1,2,1), G(1,1,1,1), H(1,0,1,2), I(1,1,1,2), L(1,2,2,0), \\
& M(0,1,2,2), N(1,1,2,2), O(0,1,2,1), P(1,0,1,1), Q(1,0,2,0)\}
\end{aligned}
$$
\]

For $q=2$ a set of type $(3, h)_{2}$ is either a plane of $\mathrm{P} G(3,2)$ or the whole space $\mathrm{PG}(3,2)$ or the set of points on three pairwise skew lines (cf [8]). For $q>3$ sets of type $(3, q+3)_{2}$ have been completely classified.

Theorem C $([8], 2012)$ Let K be a subset of $\mathrm{PG}(3, q)(q>2)$ of type $(3, q+3)$ with respect to planes. Then,
(i) If $q=3, K$ is the set of points on three pairwise skew lines, or one of the three sets $K_{i}, i=1,2,3$.
(ii) If $q=4, K$ is either the set of points on three pairwise skew lines or $\mathrm{P} G(3,2)$ embedded in $\mathrm{P} G(3,4)$.
(iii) If $q>4, K$ is the set of points on three pairwise skew lines.

The next result states that in $\mathrm{P} G(3, q)$, when $m \geq 2$, there is at least one line intersecting a set of type $(m, h)_{2}$ in at least three points.

Theorem $\mathbf{D}([5], 1980)$ If \mathcal{K} is a cap of $\mathrm{P} G(3, q)$ of type $(m, n)_{2}$ then either \mathcal{K} is an ovoid $(m=1)$ or $q=2, m=0$ and \mathcal{K} is $\mathrm{P} G(3,2)$ less a plane.

In view of these results, we will assume that $m \geq 3$ and that at least one s-line with $s \geq 3$ exists.

2 Preliminary results

Let \mathcal{K} denote a k-set of type $(m, h)_{2}$. By an m-plane (h-plane) we mean a plane intersecting \mathcal{K} in m-points (h-points).

Let $s \geq 2$ an integer, a line is a s-secant (or s-line) if it intersects \mathcal{K} in s points. A line is external (tangent) if it intersects \mathcal{K} in no point (one point).

Proposition 1. Let \mathcal{K} be a set of type $(m, h)_{2}$ in $\mathrm{PG}(3, q)$ with $m \leq q$. Then $(h-m) \mid q$, and so $h-m \leq q$.

Proof. Let π be an m-plane, since $m \leq q$, each point of π not belonging to \mathcal{K} is on at least one external line and each point of \mathcal{K} in π lies on at least one tangent line. Hence, there are both an external line and a tangent line. Let ℓ

On sets of type $(m, h)_{2}$ in $\mathrm{P} G(3, q)$ with $m \leq q$
be an external line and α be the number of m-planes on ℓ, counting k via the planes on ℓ gives:

$$
k=(q+1) h-\alpha(h-m) .
$$

Let ℓ^{\prime} be a tangent line, and let β denote the number of m-planes on ℓ^{\prime}, counting k via the planes on ℓ^{\prime} gives

$$
k=(q+1) h-q-\beta(h-m) .
$$

Comparing these two values of k gives $(h-m) \mid q$ and so $h-m \leq q$.

```
QED
```

From the results contained in [9] it follows that $1+m q \leq k \leq h q$ and

$$
\begin{equation*}
k^{2}(q+1)-k\left[(h+m)\left(q^{2}+q+1\right)-q^{2}\right]+m h\left(q^{3}+q^{2}+q+1\right)=0 . \tag{1}
\end{equation*}
$$

For $k=m(q+1)$ Equation (1) gives $h=m+q$. Vice versa, for $h=m+q$ it has the two solutions

$$
k_{-}=m(q+1) \text { and } k_{+}=(q+m)(q-1)+2+\frac{2(m-1)}{q+1} .
$$

So, for $h=m+q$ and $m \leq q$ either $k=m(q+1)$ or $q=2 m-3$ and $k=3\left(2 m^{2}-6 m+5\right)$.

Let ℓ be an s-line, $s \leq m$, and let α denote the number of m-planes on ℓ, then

$$
m(q+1)=k=s+\alpha(m-s)+(q+1-\alpha)(q+m-s)
$$

from which it follows that

$$
\alpha=q+1-s .
$$

Thus, the number of h-planes passing through a s-line is s.

3 Proof of Theorem 1

In this section \mathcal{K} denotes a subset of $m(q+1)$ points of $\mathrm{PG}(3, q)$ of type $(m, n)_{2}$ such that each line intersecting \mathcal{K} in at least three points intersects \mathcal{K} in at least m points.

Lemma 1. If there is an s-secant secant line ℓ with $s \geq 3$ such that $s \geq$ $m+1$, then ℓ is contained in \mathcal{K} and \mathcal{K} is the set of points of the union of m lines of a regulus containing ℓ.

Proof. Let ℓ be an s-secant line with $s \geq m+1$. Any plane on ℓ is an h-plane, so $k=s+(q+1)(h-s)=(q+1) h-s q$. By assumptions, $k=m(q+1)$, thus

$$
m(q+1)=(q+1) h-s q .
$$

It follows that $q+1 \mid s$ and so $s=q+1$ and $h=m+q$. Therefore, \mathcal{K} contains at least one line.

Let ℓ be a line contained in \mathcal{K}. Being $m \geq 3$ each plane through ℓ contains at least two points of \mathcal{K} outside ℓ. Let π be a plane on ℓ, and p and q two distinct points of $\mathcal{K} \cap(\pi \backslash\{\ell\})$. The line connecting p and q is an m-secant line ℓ^{\prime} and so $\pi \cap \mathcal{K}=\ell \cup \ell^{\prime}$.

Let $\pi_{i}, i=1, \ldots, q+1$, denote the $q+1$ planes containing ℓ, and for each $i=1, \ldots, q+1$ let ℓ_{i} denote the m-line in π_{i}.

All the lines $\ell_{i}, i=1, \ldots, q+1$ intersect ℓ and are pairwise skew. Indeed, if there were two lines ℓ_{i} and ℓ_{j} intersecting each other in a point, say p, then $p \in \ell$. Let π be the h-plane containing ℓ_{i} and ℓ_{j}. Since $h=q+m$, each point of $\pi \cap\left(\ell_{i} \backslash \mathcal{K}\right)$ (and of $\pi \cap\left(\ell_{j} \backslash \mathcal{K}\right)$ belongs to exactly one m-line and q tangent lines. It follows that there is a point x of \mathcal{K} in π outside ℓ_{i} and ℓ_{j}. Connecting x with a point of $\left(\ell_{i} \cap \mathcal{K}\right) \backslash\{p\}$ gives a line ℓ^{\prime} intersecting ℓ_{j} in a point \mathcal{K} and so ℓ^{\prime} is an m-line. Since ℓ^{\prime} is skew to ℓ, all the planes on ℓ^{\prime} are $(q+m)$-planes, contradicting the fact that the number of h-planes on an m-line is m.

Since the lines ℓ_{i} are pairwise skew and all of them intersect ℓ, it follows that \mathcal{K} is the set of points on $q+1$ pairwise skew m-lines.

Let $i \neq j$, consider a point $x \in \ell_{i} \backslash\left\{\ell \cap \ell_{i}\right\}$ and a point $y \in \ell_{j} \backslash\left\{\ell \cap \ell_{i}\right\}$. Since ℓ_{i} and ℓ_{j} are skew and have ℓ as a transversal, $x y$ must be skew to ℓ. If $x y$ contains another point of \mathcal{K} distinct from x and y, the line $x y$ meets \mathcal{K} in $\beta \geq m$ points, by assumption. Then every plane π through $x y$ meets ℓ in a single point, forcing π to be an h-plane, as it contains at least $\beta-1>m$ points. Thus, $k=m(q+1)=(h-\beta)(q+1)+\beta=(m+q-\beta)(q+1)+\beta=m(q+1)+q(q+1)-\beta q$. This forces $\beta=q+1$. i.e. $x y$ is contained in \mathcal{K}. Therefore the line $x y$ must either be a 2 -line or fully contained in \mathcal{K}.

Consider one of the lines ℓ_{i}, w.l.o.g. let such a line be ℓ_{1}. We prove that, the intersection of \mathcal{K} and an h-plane through ℓ_{1} consists of the points of ℓ_{1} union those of a line contained in \mathcal{K}. Namely, this is true for the plane containing ℓ and ℓ_{1}. Let π an h-plane through ℓ_{1} different from the plane containing ℓ and ℓ_{1}. Such a plane intersects each of the lines $\ell_{i}, i \neq 1$, in a point of \mathcal{K}. Let x and y be two points of $\pi \cap \mathcal{K} \backslash\left\{\ell_{1}\right\}$. The line $x y$ intersects ℓ_{1} in a point p of

On sets of type $(m, h)_{2}$ in $\mathrm{P} G(3, q)$ with $m \leq q$
\mathcal{K}, indeed being π an h-plane it has no external line and so in π every point of ℓ_{1} not in \mathcal{K} lies on one m-line (clearly, ℓ_{1}) and q tangent lines. Thus, from the above argument the line $x y$ is fully contained in \mathcal{K}. Since the number of h-planes on ℓ_{1} is m, there are exactly m lines intersecting ℓ_{1} and contained in \mathcal{K}, say $L, L_{2}, \ldots L_{m}$. For every $i=2, \ldots m$, the line L_{i} is skew with L, otherwise the plane containing L ad L_{i} should contain ℓ_{1} and so its size should be greater then $q+m$. Similarly, since any line L_{i} intersects every line ℓ_{j} it follows that the lines L_{i} and L_{j} are pairwise skew. So on each point of $\ell_{1} \cap \mathcal{K}$ there is exactly one line contained in \mathcal{K}. Since $m \geq 3$ there are at least three lines contained in \mathcal{K}, thus the lines ℓ_{i} are the the transversal lines of the regulus generated by these three lines and so \mathcal{K} is the set of points of a hyperbolic quadric with $q+1-m$ lines of one of its reguli deleted.

Lemma 2. If any secant line with more than two points in \mathcal{K} intersects \mathcal{K} in exactly m points, then either $m=\sqrt{q}$ and \mathcal{K} is $\mathrm{PG}(3, \sqrt{q})$ or $m=3$ and \mathcal{K} is the set K_{1} described in Example 1.1.

Proof. By the assumptions, \mathcal{K} contains no line. Since $k=m(q+1)$ a h-plane contains no external line. Let ℓ be an m-line. On ℓ there are exactly $m \geq 3$ planes intersecting \mathcal{K} in h points.

Each h-plane π contains at least one m-line, otherwise $\mathcal{K} \cap \pi$ should be an arc with $q+m \geq q+3$ points.

Since external lines lie only on m-planes, an h-plane π intersects \mathcal{K} in a blocking set, and so if ℓ is an m-line of π, being $h=q+m$, on each point of $\ell \backslash \mathcal{K}$ there are exactly one m-line and q tangent lines. It follows that in an h-plane π if there are two m-lines, they intersect each other in a point of $\mathcal{K} \cap \pi$.

Let π be an h-plane, and let ℓ be an m-line of π. The q points of $\pi \cap \mathcal{K} \backslash \ell$ do not lie on a single line, so they give rise to at least q secant lines. The points of $X:=\pi \cap \mathcal{K} \backslash \ell$ together with the secant lines connecting any two of its points may be seen as a linear space on q points. Since all these lines have a constant number m of points, by the de Bruijn-Erdos Theorem [2] it follows that either $q=m=3$ and X is a triangle or there is a point of ℓ on at least three m-secant lines.

If X is a triangle then $k=3(q+1)=12$ and $m=3, h=6$ and so by the result in [8] \mathcal{K} is the set K_{1} described in Example 1.1.

Finally, assume that there is a point p on ℓ on at least three m lines. Let ℓ_{1} and ℓ_{2} two m-lines sharing with ℓ the point p of \mathcal{K}. Connecting a point of $\left(\ell_{1} \backslash\{p\}\right) \cap \mathcal{K}$ with a point of $\ell \cap \mathcal{K}$ gives an m-line intersecting ℓ_{2} in a point of \mathcal{K} otherwise ℓ_{2} should contain a point not in \mathcal{K} on a 2 -secant line. The same occur connecting a point of ℓ_{1} with a point of $\mathcal{K} \cap \pi$ outside $\ell \cup \ell_{2}$ so on each
point of ℓ_{1} there are exactly m lines intersecting $\mathcal{K} \cap \pi$ in m points. It follows that $h=q+m=1+m(m-1)$ and so $q=(m-1)^{2}$.

Hence, $m=1+\sqrt{q}$ and so by the results in [1] the assertion follows. QED

4 Proof of Theorem 2

Let \mathcal{K} denote a set of points of $\mathrm{P} G(3, q)$ of type $(m, h)_{2}$. The next lemma gives the proof of Theorem 2.

Lemma 3. If $m \leq q, q \geq 3$, and there are at least $q-\sqrt{q}-1$ lines contained in \mathcal{K}, then $k=m(q+1)$ if and only if \mathcal{K} is either the set of the points of the union of m pairwise skew lines or q is a square, $m=q, k=q^{2}+q$ and \mathcal{K} is the set of points of $\operatorname{P} G(3, \sqrt{q})$ union the points of $q-\sqrt{q}-1$ lines.

Proof. Since $h \leq m+q \leq 2 q$, the lines contained in \mathcal{K} are pairwise skew. Assume $k=m(q+1)$, and so $h=q+m$.

Let \mathcal{L} the set of all the the lines lines contained in \mathcal{K} and let α denote the size of \mathcal{L}. Namely, $\alpha \leq m$.

Consider the set $\mathcal{K}^{\prime}=\mathcal{K} \backslash \bigcup_{\ell \in \mathcal{L}} \ell$. If it is the empty set then $m=\alpha$ and \mathcal{K} is the set of the points of the union of m pairwise skew lines.

Thus, let \mathcal{K}^{\prime} be different from the empty set. By its definition, \mathcal{K}^{\prime} contains no line, has size $(m-\alpha)(q+1)$ and it is of type $(m-\alpha, q+m-\alpha)_{2}$.

An external line lies only on $(m-\alpha)$-planes, so any $(h-\alpha)$-plane is a blocking set, thus

$$
q+m-\alpha \geq q+m-\alpha \geq q+\sqrt{q}+1
$$

from which it follows that $\alpha \leq m-\sqrt{q}-1 \leq q-\sqrt{q}-1$. Therefore, $\alpha=q-\sqrt{q}-1$, and so q is a square.

Hence, $m-\alpha=m-q+\sqrt{q}+1 \leq q-q+\sqrt{q}+1=\sqrt{q}+1$, and by the results in [1] it follows that \mathcal{K}^{\prime} is $\mathrm{P} G(3, \sqrt{q})$.

5 On sets of type $(3, h)_{2}$

Let \mathcal{K} denote a subset of points of $\operatorname{PG}(3, q)$ of size k and of type $(3, h)_{2}$. As remarked in the Introduction, the sets of type $(3, h)_{2}$ in $\mathrm{P} G(3,2)$ are the planes, the set of the points of the union of three pairwise skew lines and the whole space $\operatorname{P} G(3,2)$, so we may assume $q \geq 3$. We are going to prove Theorem 3 .

For $m=3$, Equation (1) becomes:

$$
\begin{equation*}
k^{2}(q+1)-k\left[(h+3)\left(q^{2}+q+1\right)-q^{2}\right]+3 h\left(q^{3}+q^{2}+q+1\right)=0 \tag{2}
\end{equation*}
$$

The following Lemmata give the proof of Theorem 3. Recall, that by Theorem (C) when $h=q+3$ the set \mathcal{K} is determined, so in the following (j) Theorem 3 will follow whenever one has $h=q+3$.

Lemma 4. Either $h=q+3$ or \mathcal{K} contains no line.
Proof. Assume that \mathcal{K} contains a line. Then $h \geq q+2$. Since $(h-3) \mid q$ and $q \geq 3$ it follows that $h=q+3$.

Lemma 5. If $h<q+3$ then $s \leq 3$ for every s-line.
Proof. Let ℓ be a line intersecting \mathcal{K} in s points, with $4 \leq s \leq q$. Thus, $k=$ $(q+1) h-s q$, and Equation (1.1) becomes

$$
\begin{gathered}
(q+1)^{3} h^{2}+s^{2} q^{2}(q+1)-2 s h q(q+1)^{2}-\left[h\left(q^{2}+q+1\right)+2 q^{2}+3 q+3\right](q+1) h+ \\
{\left[h\left(q^{2}+q+1\right)+2 q^{2}+3 q+3\right] s q+3 h\left(q^{3}+q^{2}+q+1\right)=0}
\end{gathered}
$$

and so
$h^{2}(q+1)-h\left[(s-1) q^{2}+(3 s+2) q+(s+3)\right]+s(s+2) q^{2}+s(s+3) q+3 s=0$.
The discriminant of such equation is

$$
\Delta=(s-1)^{2} q^{4}+\left(2 s^{2}-10 s-4\right) q^{3}+\left(3 s^{2}-4 s-2\right) q^{2}+\left(2 s^{2}-2 s+12\right) q+(s-3)^{2}
$$

Since $\Delta>\left[(s-1) q^{2}-(s+2) q\right]^{2}$ and $q \geq 3$ it follows that

$$
\begin{gathered}
h_{+}=\frac{(s-1) q^{2}+(3 s+2) q+(s+3)+\sqrt{\Delta}}{2 q+2}> \\
\frac{(s-1) q^{2}+(3 s+2) q+(s+3)+(s-1) q^{2}-(s+2) q}{2 q+2}= \\
=\frac{2(s-1) q^{2}+2 s q+(s+3)}{2 q+2}=(s-1) q+1+\frac{s+1}{2 q+2}
\end{gathered}
$$

which cannot occur since $h \leq q+3$.

Now, we prove that $h_{-}=\frac{(s-1) q^{2}+(3 s+2) q+(s+3)-\sqrt{\Delta}}{2 q+2} \leq s+3$.
Assume to the contrary that $h_{-}=\frac{(s-1) q^{2}+(3 s+2) q+(s+3)-\sqrt{\Delta}}{2 q+2} \geq$ $s+4$.

Thus, $(s-1) q^{2}+(s-6) q-(s+5) \geq \sqrt{\Delta}$, which gives

$$
(s-4) q^{3}+\left(s^{2}+4 s-12\right) q^{2}+\left(s^{2}-s-12\right) q-(s+4) \leq 0
$$

which is not possible since $4 \leq s \leq q$.
From $3 q+3 \leq k=(q+1) h-s q$, it follows that $h \geq s+2$.
If $h=s+2$, then $3 q+3 \leq(q+1)(s+2)-s q=2 q+s+2$ and so $s=q+1$.
A contradiction to Lemma 4.
If $h=s+3$ then: $k=3(q+1)+s=3 q+h$.
For $k=3 q+h$ Equation (2) gives:
$(3 q+h)^{2}(q+1)-(3 q+h)\left[h q^{2}+h q+h+2 q^{2}+3 q+3\right]+3 h\left(q^{3}+q^{2}+q+1\right)=0$
$(3 q+h)\left(3 q^{2}+3 q+h q+h-h q^{2}-h q-h-2 q^{2}-3 q-3\right)+3 q^{3} h+3 q^{2} h+3 q h+3 h=0$

$$
\begin{gathered}
(3 q+h)\left(q^{2}-h q^{2}-3\right)+3 q^{3} h+3 q^{2} h+3 q h+3 h=0 \\
3 q^{3}-3 h q^{3}-9 q+h q^{2}-h^{2} q^{2}-3 h+3 q^{3} h+3 q^{2} h+3 q h+3 h=0 \\
3 q^{3}-9 q+h q^{2}-h^{2} q^{2}+3 q^{2} h+3 q h=0 \\
3 q^{2}-9+4 h q-h^{2} q+3 h=0 \\
3 h-9=h^{2} q-4 h q-3 q^{2}
\end{gathered}
$$

and so

$$
\begin{equation*}
3=\frac{q}{h-3}\left(h^{2}-4 h-3 q\right) \tag{3}
\end{equation*}
$$

Since $h-3 \mid q$, the ratio $\frac{q}{h-3}$ is an integer and so either $\frac{q}{h-3}=1$ or $\frac{q}{h-3}=3$.
In the former case, it follows that $h=q+3$ against the assumptions of the Lemma.

In the latter case, being $q=3 h-9$ Equation 3 gives $1=h^{2}-4 h-3 q$ and so $h^{2}-13 h+26=0$ whose roots are not integers.

On sets of type $(m, h)_{2}$ in $\mathrm{P} G(3, q)$ with $m \leq q$

By the results contained in [5] and the previous lemma it there exists at least one line intersecting \mathcal{K} in exactly 3 points. Thus, counting the size of \mathcal{K} via the planes on a 3 -line gives $k \leq 3+q(h-3)$.

Now, we prove that there is at least one 2 -line.
As usual, let b_{i} denote the number of lines intersecting \mathcal{K} in exactly i points (i.e. the number of $i-$ secant lines), and let c_{3} denote the number of 3 -planes. Let x_{3} and y_{3} denote the number of T-planes and L-planes, respectively. Thus, $x_{3}+y_{3}=c_{3}$.

Being $m=3 \leq q$, it follows that $b_{0}, b_{1}>0$.
Assume $b_{2}=0$. Using the usual counting argument

$$
\begin{gathered}
b_{0}+b_{1}+b_{3}=\left(q^{2}+1\right)\left(q^{2}+q+1\right) \\
b_{1}+3 b_{3}=k\left(q^{2}+q+1\right) \\
3 b_{3}=k(k-1)(q+1) .
\end{gathered}
$$

From the last two equations it follows that $b_{1}=k\left(q^{2}+q+1-k(q+1)\right)$, which gives $k(q+1) \leq q^{2}+q+1$ being $b_{1} \geq 0$. So, from $k \geq 3 q+3$ a contradiction follows.

Hence $b_{i}>0$ for every $i=0,1,2,3$.
Since there are 2 -secant lines, there are two types of 3 -planes: the T-planes i.e. those intersecting \mathcal{K} in three non-collinear points and the L-planes that is those intersecting \mathcal{K} in three collinear points.

The usual counting argument (cf e.g. [9]) on the types gives:

$$
c_{3}=\frac{\left(q^{2}+1\right)[h(q+1)-k]-k q}{h-3} .
$$

Double counting give:

$$
\begin{align*}
& b_{2} \frac{(q+1) h-k-2 q}{h-3}=3 x_{3} \tag{4}\\
& b_{3} \frac{(q+1) h-k-3 q}{h-3}=y_{3} . \tag{5}
\end{align*}
$$

If $x_{3}=0$, then $k=(q+1) h-2 q$. Counting k via the planes on a 3 -line, gives $k=3+x(h-3)$, where x is the number of h-planes on the 3 -line.

Thus,

$$
q(h-3)+q+h-3=(q+1) h-2 q-3=k-3=x(h-3)
$$

and so $x>q+1$, which is not possible.

If $y_{3}=0$, then $k=(q+1) h-3 q$. Moreover, all the planes containing a 3 -line are h-planes.

Lemma 6. If $k=(q+1) h-3 q$ then either $h=q+3, q=3, k=15$ and \mathcal{K} $i s$ one of the two sets $\Omega_{i}, i=1,2$ or $q=8, h=7$ and $k=39$.

Proof. Arguing as in the proof of the previous lemma with $s=3$ gives

$$
h=\frac{2 q^{2}+11 q+6 \pm \sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q}}{2 q+2}
$$

Since the discriminant $\Delta=4 q^{4}-16 q^{3}+13 q^{2}+24 q>\left(2 q^{2}-5 q\right)^{2}$, it follows that $h_{+}=\frac{2 q^{2}+11 q+6+\sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q}}{2 q+2}>2 q+1+2 /(q+1)>q+3$ and so $h=h_{-}=\frac{2 q^{2}+11 q+6-\sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q}}{2 q+2}$.

From $2 q+1+\frac{2}{q+1}+h_{-}<h_{+}+h_{-}=2 q+9-\frac{3}{q+1}$ it follows that $h=h_{-} \leq 7$.

If $h \leq 6$, then

$$
\begin{gathered}
h_{-}=\frac{2 q^{2}+11 q+6-\sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q}}{2 q+2} \leq 6 \\
2 q^{2}+11 q+6-\sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q} \leq 12 q+12 \\
2 q^{2}-q-6 \leq \sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q} \\
4 q^{4}+q^{2}+36-4 q^{3}-24 q^{2}+12 q \leq 4 q^{4}-16 q^{3}+13 q^{2}+24 q \\
12 q^{3}-36 q^{2}-12 q+36 \leq 0 \\
q^{2}(q-3)-(q-3) \leq 0 \\
\left(q^{2}-1\right)(q-3) \leq 0
\end{gathered}
$$

thus $q=2,3$.
Being $q \geq 3$, it follows that $q=3$ and so $h=6$ (since $h-3 \mid q$), that is $h=q+3$ against the assumptions.

If $h=7$,

$$
\begin{gathered}
\frac{2 q^{2}+11 q+6-\sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q}}{2 q+2}=7 \\
2 q^{2}+11 q+6-\sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q}=14 q+14 \\
2 q^{2}-3 q-8=\sqrt{4 q^{4}-16 q^{3}+13 q^{2}+24 q} \\
4 q^{4}+9 q^{2}+64-12 q^{3}-32 q^{2}+48 q=4 q^{4}-16 q^{3}+13 q^{2}+24 q \\
4 q^{3}-36 q^{2}+24 q+64=0 \\
(q-2)\left(q^{2}-7 q-8\right)=0
\end{gathered}
$$

from which it follows that $q=2,8$. Hence, $q=8, h=7$ e $k=39$.
Thus, we may assume that both x_{3} and y_{3} are different from 0 . Hence, equations (4) and (5) give

$$
b_{2}[(q+1) h-k-2 q]+3 b_{3}[(q+1) h-k-3 q]=3 c_{3}(h-3)
$$

From which it follows

$$
[(q+1) h-k-2 q] b_{2}+3[(q+1) h-k-3 q] b_{3}=3\left(q^{2}+1\right)[h(q+1)-k]-3 k q .
$$

Being

$$
2 b_{2}+6 b_{3}=k(k-1)
$$

we have a system of two linear equations in the unknowns b_{2} and b_{3} with determinant $6 q$, and so:

$$
\begin{aligned}
& b_{2}=\frac{[(q+1) h-k]\left[6\left(q^{2}+1\right)-k(k-1)\right]+3 k q(k-3)}{2 q} \\
& b_{3}=\frac{[(q+1) h-k]\left[k(k-1)-6\left(q^{2}+1\right)\right]-2 k q(k-4)}{6 q} .
\end{aligned}
$$

Being $b_{2}>0$ it follows that

$$
\begin{equation*}
3 k q(k-3)>[(q+1) h-k]\left[k(k-1)-6\left(q^{2}+1\right)\right] . \tag{6}
\end{equation*}
$$

From $3 q+3 \leq k \leq 3+q(h-3)$ it follows that $h-3 \geq 3$.

Lemma 7. $h>13 \Rightarrow k \geq(q+1) h-\frac{7}{2} q$.
Proof. If $[(q+1) h-k]>9 q$ then (6) gives:

$$
2 k^{2}-18\left(q^{2}+1\right)<0
$$

which cannot occur, since $k \geq 3(q+1)$. Thus, $k \geq(q+1) h-9 q$.
Assume $k \leq 5 q$, then $(q+1) h \leq 14 q$ and so $14 \leq h \leq 14-\frac{14}{q+1}$ which is a contradiction. Hence $k>5 q$.

If $[(q+1) h-k] \geq 4 q$, from (6) it follows that

$$
k^{2}+5 k-24\left(q^{2}+1\right)<0
$$

and so $k<5 q$, a contradiction.
Therefore, $[(q+1) h-k]<4 q$, that is $k>(q+1) h-4 q$.
Write $k=(q+1) h-4 q+x, 0<x<q$ and x is divisible for $h-3$.
When $x<q / 2$ it follows that $k<(q+1) h-\frac{7}{2} q$ and so $(q+1) h-k>\frac{7}{2} q$ and from Equation (6) one gets

$$
6 k(k-3)>7\left[k(k-1)-6\left(q^{2}+1\right)\right]
$$

and so

$$
k^{2}+11 k-42\left(q^{2}+1\right)<0
$$

which gives $k<7 q$. But $7 q>k>(q+1) h-4 q$ gives $h<11$, contracting our assumptions.

Thus, $x \geq q / 2$ and $k \geq(q+1) h-4 q+q / 2=(q+1) h-\frac{7}{2} q$.
Thus, Theorem 3 is proved.

References

[1] A. Beutelspacher: On Baer Subspaces of Finite Projective Spaces, Math. Z. 184 (1983), 301-319.
[2] N. G. de Bruijn, P. Erdös: On a combinatorial problem, Indag. Math. 10 (1948), 421-423.
[3] N. Durante, V. Napolitano, D. Olanda: On k-sets of class $[1, h]$ in a planar space, Atti Sem. Mat. Fis. Univ. Modena 50 (2002), no. 2, 305312.
[4] N. Durante, D. Olanda: On k-sets of type $(2, h)$ in a planar space, Ars. Combin. 78 (2006), 201-209.

On sets of type $(m, h)_{2}$ in $\mathrm{P} G(3, q)$ with $m \leq q$
[5] O. Ferri: Le calotte a due caratteri rispetto ai piani in uno spazio di Galois $S_{r, q}$, Riv. Mat. Univ. Parma, IV Ser. 6 (1980), 55-63.
[6] R. Calderbank, W.M. Kantor: The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), 97-122.
[7] V. Napolitano: k-sets of type ($1, h$) in finite planar spaces, Note Mat., 29 no. 2 (2008), 193-201.
[8] V. Napolitano, D. Olanda: Sets of type $(3, h)_{2}$ in $\mathrm{P} G(3, q)$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 23 (2012), 395-403 (DOI 10.4171/RLM/635).
[9] M. Tallini Scafati: Sui k-insiemi di uno spazio di Galois $S_{r, q}$ a due soli caratteri nella dimensione d, Rend. Acc.Naz. Lincei 8 vol.LX (1976), 782-788.
[10] J.A. Thas: A combinatorial problem, Geom. Dedicata 1, (1973), no.2, 236-240.

[^0]: ${ }^{\mathrm{i}}$ This work is partially supported by G.N.S.A.G.A. of INdAM.
 http://siba-ese.unisalento.it/ © 2015 Università del Salento

[^1]: ${ }^{1}$ As remarked in the review of the paper [8] on Mathematical Reviews (MathSciNet), an

[^2]: example of a 39 -set of type $(3,7)_{2}$ in $\mathrm{P} G(3,8)$ exists. It is associated with a quasy-cyclic

