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1 Introduction

In [1], Eder obtained the existence, uniqueness, analyticity and analytic de-
pendence of solutions to the following equation of an one-variable unknown
functionu: I CR — R :

W (t) = u(u(t)) . (1.1)

This is so-called a differential equation with self-reference, since the right-hand
side is the composition of the unknown and itself. This equation has attracted
much attention. As a more general case than (1.1), Si and Cheng [4] investigated
the functional-differential equation

u'(t) = u(at + bu(t)), (1.2)

where @ # 1 and b # 0 are complex numbers; the unknown u : C — C is
a complex function. By using the power series method, analytic solutions of
this equation are obtained. By generalizing (1.2), in [9] Cheng, Si and Wang
considered the equation

at + Bu'(t) = u(at + bu/(t)),
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where a and 8 are complex numbers. Existence theorems are established for
the analytic solutions, and systematic methods for deriving explicit solutions
are also given.

In [11], Stanek studied maximal solutions of the functional-differential equa-
tion

uw(t)u'(t) = ku (u(t)) (1.3)

with 0 < |k] < 1. Here u : I C R — R is a real unknown. This author showed
that properties of maximal solutions depend on the sign of the parameter k for
two separate cases k € (—1,0) and k € (0,1). For earlier work of Stanek than
(1.3), see [16]-[21].

For a more general model than the above, in [6], Miranda and Pascali studied
the existence and uniqueness of a local solution to the following initial-valued
problem for a partial differential equation with self-reference and heredity

t

gu(m,t) =u (/ u(w,s)ds,t) , T ER, ae. t >0,
ot 0

u(z,0) = ug(z), v € R,

(1.4)

by assuming that ug is a bounded, Lipschitz continuous function. With suitable
weaker conditions on ug, namely ug is a non-negative, non-decreasing, bounded,
lower semi-continuous real function, in [3], Pascali and Le obtained the existence
of a global solution of (1.4).

In [22], T. Nguyen and L. Nguyen, generalizing [7], studied the system of
partial differential equations with self-reference and heredity

gtu(x,t) =u (av(a:,t) +v (/Ot u(w, s)ds, t) t) ’ (1.5)

%U(;p,t) = (Bu(m,t) +u (/Otv(a:,s)ds,t> t) ;

associated with initial conditions
u(w,O) = UO(x)v U(CL‘, 0) = 'U(J(x)a (16)

where o« and 3 are non-negative coeflicients. By the boundedness and Lipschitz
continuity of ug and vy, we obtained the existence and uniqueness of a local
solution to this system. We also proved that this system has a global solution,
provided ug and vg are non-negative, non-decreasing, bounded and lower semi-
continuous functions.
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In [5], Pascali and Miranda considered an initial-valued problem for a second-
order partial differential equation with self-reference as follows:

ok 02
@u(x,t) = kiu (aﬁu(x,t) + k:gu(x,t),t> ,

u($7 O) = a($)7 (17)
0
2 u(w.0) = Bz,

These authors proved that if «(z) and S(z) are bounded and Lipschitz continu-
ous functions, k1 and ko are given real numbers, this problem has a unique local
solution. It is noted that this result still holds when k; = k;(x,t), i = 1,2, are
real functions satisfying some technical conditions.

Motivated from problem (1.7) and related questions in [5], in this paper
we establish the existence and uniqueness of a local solution to the following
Cauchy problem of an partial differential equation with self-reference:

2 2 2
a—u(m t) = uu a—u(x t) + pou a—u(ac t) + psu(x,t),t | ,t

2 ) = M o2 3 w2 o2 ) u3 sU)s 3 )

u(x,0) = p(a) (L8)
0

Eu(xao) = q(m)7

where p and ¢ are given functions, u;, ¢ = 1,2,3, given real numbers z € R

and t € [0,T] for some T > 0. It is clear that this problem is a non-trivial
generalization of (1.7). Let us specify some reasons as follows:

e The operator

2 2
a—u(w t) + pou a—u(:c t) + psu(x,t),t
o2 ) M2 o2 ) us s b))y
is actually a doubly self-reference form, which is more complicated than
that of (1.7);

o If kg = py = 0, problem (1.8) coincides with problem (1.7). This is the
only coincidence of these two problems. This means that the problem we
study in this paper is not a “natural” generalization of (1.7), not including
(1.7) as a special case.

Finally we present the problem (1.8) in the case that p(z) = py and ¢(x) =
qo, where pg and ¢y are two given constants and we remark a particular strange
situation.
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2 Existence and uniqueness of a local solution

By integrating the partial differential equation in (1.8), we obtain the fol-
lowing integral equation:

= ug(x,t)+

// ,u1u< u(z, s) +M2u(8622 (a:,s)+u3u(:c,s),s>,s>dsd7-, (2.9)
()

where ug(z,t) = p(x) + tq(x) and x € R and ¢ € [0, T7.

The following theorem is so clear that its proof is omitted.

Theorem 2.1. If u is a continuous solution of problem (2.9), then it is also
a solution of problem (1.8).

This theorem allows us to consider problem (2.9) only in the rest of this
paper. For simplicity, we assume that |u1| = |u2| = |us| = 1. Now we state our
main result.

Theorem 2.2. Assume that p and ¢ are bounded and Lipschitz continuous
on R. Let o be the lipschitz constant of p and assume that ¢ < 1. Then there
exists a positive constant Ty such that problem (2.9) has a unique solution, de-
noted by us (2, 1), in R x [0, Tp]. Moreover, the function us(z,t) is also bounded
and Lipschitz continuous with respect to each of variables € R and ¢ € [0, Tp].

Proof. To prove this theorem, we use an iterative algorithm. The proof includes
some steps as below.

Step 1:An iterate sequence of functions. We define the following sequence of real
functions (uy)y defined for x € R, ¢t € [0.7] for T' > 0 :

UO(%t) p(z )+t(J( );
t
ui(z,t) = uo(z,t) + le) Mzug (nzuo(z, s), )7S>d8dﬂ
0 Jo
T 9?2 (2.10)
1 (2,1) = (2, ) + / mun( 2 a9+ o (a8
0 Jo

+ psun(x, s ,s), >dsdT

Step 2: Proof of the boundedness of (uy). With simple calculations, taking into
account the boundedness of p and ¢, we get

uo(, 8)| < [p(x)] + tlg(z)] < [lpllzee + tllgllLe,
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lug (z,t)| < |ug(z,t) H—/ /

SMMVHMMw+//ﬁHmW+ﬂme%W

(n3up(z, s) ‘deT

= (14 ) pls + (# 4+ 5) bl

Moreover,

t T 82 82
Iwmmgmwmﬂﬁéé i (5 (@, 5) + paun (55w (@, )
+ psuq(x, s), 3) , s) dsdr
< ol el + [ [ (15 plle + (5-+ 55 ) laledsn

5
(14 L )l + @+y+ o)l

By induction on n we find

[un(@,8)] < €T (Iplzs + llallz=), » €N, t € [0, 7], (2.11)

Step 3: Fvery u,, is lipschitz with respect to the first variable. From the Lipschitz
continuity of p and ¢

Ip(x) —p(y)| < olz —vy|, Va,y €R,

(2.12)
lg(z) —a(y)| Swl|z —y[, Vz,y €R.
where 0 < o,w are real numbers (with o < 1 as in the hypotheses).
Using (2.12), we derive
uo(z,t) = uo(y, t)| < [p(x) = p(y)| + tla(x) — q(y)] (213)

< (o +tw)lz =yl = Lo(le — yl,

where Lo(t) := o + tw.



80 Nguyen T.T. Lan

In addition,

ur(z,t) = ui(y, )] < Lo(®)|z —y| + ; (mouo(usuo(z, 5), 5), )

— pruo(pauo(psuo(y, s), s), s)|dsdr

( / / Li(s dsdr) |z — y|

= Li(t)|z —yl,
(2.14)

where Ly(t) := Lo(t) + [y [y Co(s)dsdr, with Cy(t) := L3(t).
Moreover

0? 0?
(1) = 5wy, t)‘ < Lo(t)‘MUO(M?)Uo(%t)a t) — pouo(psuo(y,t),t)

< L%@)‘%Uo(%t) — psuo(y, t)
< Li(t)|x — y| := Co(t)|z — yl.

Similarly, we have

lug(,t) — ua(y,t)

62
< Lo(t |5U—y|+//L1 ( ($75)—@U1(y,8)‘

0?
+ ‘Mgul <652 (ZE 8) + p3uy (x 8) S)
82
— izt (55 ua(y, 5) + paur (y, ), 5) ]) dsdr
(2.15)

< sl —ol+ [ [ 1) (Ll -

+ Li(s) (L3(s)|e = 9l + La(s)|z — y1) ) dsdr

< (2o0+ [ [ (246 + 2306)) o) + 145 s )
(o) + [ [ crtsisar ) fo— yl = La(t)lz — .
0 0
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Lg(t) = Lo(t) + /Ot /OT Cl(S)deT,

Ci(t) == (Ll(t) + L%(t))co(t) + I3(t).

where

Moreover

O~ )

< £400)| Sus(o.0) = Feza (30 + s (a0
s (,0,8) = s (s 018) + s :0.1)

< 1a(0) (B30 — o1+ La(0) ()~ o)
i (o.t) = 0] )

< (10 + 0 280+ £20) ) o~

= (10 + BO) ot + 00 )l vl 2= a0l =

Repeating the previous calculation for us we get

luz(z,t) — uz(y, 1)
2

< Loft |x—y|+//L2 (| vt ) uat )

+ ‘uguz<8 sU2(T, 8) + pzuz(z, s), s)

82
_ mug(a su2(y, s) + pzuz(y, s), s) DdsdT (2.16)

( / / ( s) + L3(s ))CI(S) —l—L%(s)dsdr))\x_y‘
i= ( Lo(t) + Cz(s)dsdT @ — gl == Ly(t)|z —yl,
0 Jo
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Ls(t) := Lo(t) + /Ot /OT Cy(s)dsdr,

Co(t) = (L2(t) + Lg(t))cl (t) + L3(1).

where

and

We have also
2 82

~ ous(y.0)| < Cala — .

Next, we proceed by induction. Let Lo(t) := o + tw and Cy(t) := L3(t),
Cu(t) = (La(t) + L2()) Cooa (8) + LE(1)
L, (t) := Lo(t //C’nl Ydsdr, n > 1. (2.17)

From (2.13) — (2.16), by induction on n, we obtain

i1 (2,8) = g1 (9, 8)] < Lsa (D] — . (2.18)
02 02
Stn1 (@) = s (3,8)] < Calblz =y, (2.19)

We introduce a definition. We call (v,,) a stationary sequence in x if

|Un+1($’t) - Un($’t)| < fn(t)v

where (f,,) is a non-negative sequence of real function defined on [0, T]. If f,, = f
for all n, we say that (v,) is uniformly stationary sequence in z.

Step 4: (up) and (g—;un) are stationary sequence in x. Direct calculations show
that

lui(z,t) — ug(z,t)] _/ <M2U0(,u3uo(x 5) )‘dsdT
<[ / (Wl + lalo= )asar (2.20)
0 JO

12 3
5 [Pl Lo + G lallz 1(t)

92 0?
@ul(x,t) — @uo(x,t)‘ = ‘,UluO (uzuo(,uguo(fﬂ,s), 5)73)’ (2.21)

< lIpllee +tlglLe = Bi(?).
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From (2.20) and (2.21), we deduce

t) :/0 /OT B (s)dsdr. (2.22)
lug(x,t) — ui(z,t)|

A1(5) + Los) (| g (a,9) — L uo(a, )
< (it ) gzt )|

’/’LQUO(;Q 1(z, )+M3U1(3775)73)

(2.23)
_ M2u0<6822u0(x, s) + psup(x, s), s) D)dsdT
/ / ( (1+ Lols) + L3(5)) Ar(s) + (Lo(s) + Lg(s))Bl(s)>d5dT
= Ayt
2
‘8752 x,t) — @ul(aj,t)‘
< Ay (t) + Lo(t) (’g;ul(x,t) - g;ug(x,t)‘ + ‘uguo(g;ul(m,t)
82 (2.24)
+ psuq (z,t), t) — Houg <ﬁuo(:c, t) 4+ psuo(z,t), t) D

< Au(t) (14 Lo®) + L3(®)) + (Lo(t) + L3(1) ) Ba(t)
:= Bs(t).

Combining (2.23) and (2.24) gives

_ /0 t /0 " By(s)dsdr. (2.25)

From (2.20) and (2.23), by inducting on n, we derive

12, ) — (2, 1) < Ay (2) (2.26)
and

0? 0?

at2un+1(x t) — at2un(:13,75) < Bp41(t), (2.27)
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where

t T
Apa(t) 12/0 /0 Bpi1(s)dsdr,
Bua(t) i= (14 Lnoa(t) + L2,(1) ) Ant) (2.28)

n (Ln_l(t) n Li,l(t))Bn(t), n>1.

In the following step, we select Tj for which we prove also that (u,) and
(%un) are uniformly stationary sequences.

Step 5: Existence of a local solution. Because o < 1, we can find Ty > 0, 0 <
M <1, 0 < h < 1 such that for t € [0, Tp], we have

t? t2
a+tw—|—M§§M<2M<h;M+2M2§1; 2M + (1+2M)7 <h. (2.29)

From (2.29) we obtain

Lo(t) =0 +tw < M,

t T t2
Ll(t)§0+tw+// M3dsdT:a+tw—i—M3§§M,

0 JO

t T t2

Lg(t)§0+tw+// (M3+M4+M5>dsd7'§a+tw+M§SM,
0 JO
Co(t) = Li(t) < M* < M,
Cy(t) < (M + M) M + M* = M(M +2M?) < M,

Ca(t) < (M + M?)M + M* = M(M +2M?) < M.
(2.30)
Now, by induction on n, we conclude that

Cn(t) < M,
.2 (2.31)

Lni1(t) <o+ tw+ M7 <M.
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Hence we derive

Bo(t) < A1 (t)(1 + M + M?) + By (t)(M + M?)

< (1+M+MQ)/t/TBl(s)dsdT—kBl(t)(M+M2)
0 JO

t2
< [Billze 5 (1 + M + M?) + || By g (M + M?)

t2
< ||Bill1e (2 (1 + 2M) + 2M>

< ||B1]|Lec h-

From (2.32) we obtain
Bzl zoe < [[Billzoch-

By a similar argument, we get

t2
By(t) < || Ballz g (1+ M + M2) + | Ball = (M + M)

t2
< || Bz (2(1 +2M) +2M> < || Ba|| o h-

So
B3| < || Bz2|| < -

From (2.33) and (2.35), by induction on n, we conclude that

| Busillz= < | Bullz=h.

In addition, from (2.28) we deduce

T3
lAnsllze < IBagall L

85

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

Due to (2.36), we see the series Y B,41(t) converges absolutely and uni-

formly, hence by (2.27) there exists ¢, such that
82
@Un — G0

uniformly in R x [0, Tp].

(2.38)
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Similarly, from (2.26)) and (2.37), we conclude that > A,11(¢) converges abso-
lutely and uniformly and there exists us, such that

Up — Uso (2.39)

uniformly in R x [0, 7%].
We remark that |us(z,t) — ueo(y,t)| < M|x — y|.
Now we are proving that u.(x,t) is a solution of (2.9). It is clear that

0? 0?
H1Un (@un(‘ra t) + p2un (@un(xa t) + M3un(x7 t)7 t) ) t>

— H1Uoo ((boo(x, t) + p2too (Qbm(% t) + pguoo(,t), t) ) t) ‘

82
<l = sl + 31 (| ) = ome(.)

+ ‘M2un<§;un($, t) + pzun(z,t), t) — 112U (@oo(x, t) (2.40)
+ p3too(, t), t) D
< = tcllpoe (14 M + M2)

+ Hg;un—%oHLw <M+M2> — 0 as n — oo.

From 2.40, we deduce that

uoo(x,t):uo(m,t)—i-/o/o uluoo<¢oo(%8)+“2“°°(¢°°($’3> (2.41)

+ psuso(x, 8), s) , s> dsdr.
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Moreover, we have

’¢”($’t) 882““’ (1) ‘ Hqﬁo" T o ‘8152 (z,8) = 8:2%0(95 t)‘
<o S Luuun-l—umum+M<\§iun -
§t22uoo(x t) ’4— ‘ugun1<§22un 1(x,t) + psup—1(x, t), t)
it (e ) + (1))
< (Jo - Gl s - ) (1304
— 0 asn — oo.
(2.42)
Hence,
Uoo (T, t) = up(x, 1) / / uluoo uoo(a: s)
(2.43)
+ ,uzuoo<a 5Uoo (T, 8) + H3Uoo (T, 8), ),s) dsdr,

for all z € R, t € [0,Tp]. Then us is a solution of (2.9) in R x [0, Tp).

Step 6: Uniqueness of the local solution u.,. We assume that there exists another
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lipschitz solution wuy(x,t) of (2.9). Then

‘U*(.’Ii,t - uoo(x,t)]

)
g/ot/o <u*<§;u*(:c,s)+u*<§;u*(:c,s)+u*(a:,s),s>,s>

2

0? 9

Uoo <8752U*(x7 3) + Uy (WU*(mv 8) + u*(m, S)’ S> ’ S>
0> 0

Uoo @U*(QT,S)+U* @U*(l',s)‘l’u*(xas)as y S

0? 0?
<6t2 Uso (T, §) + Uso <8t2 Uoo (T, S) + Uso (2, 5), s> , s> dsdr

t T 82 62
< *x — Uso oo M N o Wx 3 — 5 9 Yoo 9
< [ (= vl 01| 6) = gl

2
u*<§t? ( +u~k x S <8t2u00(x S) +u00(aj S) >

o)
<[ <||u* 1 +M<‘§; (@09) ~ 2 el,)
<82 «(,8) 4+ uy(z, 5) ) <8t2 S)—i—u*(x,s),s)

Uoo <§;u*(a:, 5) + ux(z, 5), S) <§t2 Uso (T, S) + Uoo(z, 5), )

t T 82
< Uy — Uoo °°+M<H“*
L[ e = sl o

Lo
8 82

t//(1+M+MMm—%Mw

() - Yo

+

_l’_

e

_l’_

_l’_

o

+ [Jus = uoo| 1o

(2.44)
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Additionally,

atQ ’U/*(x, t)

92 9*
<6 «(z, 1) +u*<8t2 w(z,t) + uy(z, t), >

82
— Uso ool oo 0 00 ),t ).t
u < Uso (T, ) + 1 ((,%QU (x,t) + uoo(z, 1) > >

8252 uoo(x, t)‘

2

(T, 1) + uy 0 Us (T, 1) + us(z,t),t |, T
6t2 o

0 0
oo | s (T, 1) + Uy ke Us (2, 1) + us(z, 1), t |, t

0? 0?
uoo( (z,1) +u*(8t2u*(x,t)—i—u*(:r,t),t>,t>

82
u°o<6t2uoo x,t) Jruoo(a 5 Uoo (T, 1) + Uoo (T, t)7t>7t>

2 82

gz (1) — oo, t)’

(g; (@ 8) + (2, 1), t> <§22u00(93 £) + oo (2, 1), t)')

62
o2 T g2t

0
< ||U* Uoo”L‘X’ + M(‘

(2.45)
+

< e — ol + M(H

o>

ny <(§; (2, 1) + (2, 8), t> <5822 o2, ) + ui(z,t), t>‘

uw(g;u*(a:,t)+u*($’t)at> (522%0(95 t) + uoo(, t), t)D

2 o
‘ o2 T g2

_.|_

+ HU* - Uoo”Loo
LOO

< ux — Uso| e + M(
21| Zgue.)— el ] + a0 —um<x,t>|)>

< N = usellaoo (1 + M + M2)
32

+ Haﬁ T o
(1 n 2M) s — tioo || oo + ZMH S

uooH (M+M2>

@MOOHLOO'
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From (2.45), we deduce

1+2M

Haﬂ e t2 °°H T apz s = uoollzee. (2.46)

From (2.11), (2.44) and (2.46), we deduce

1+2M
ol ) = (o, < (Tomg) D — el (247
This shows that u. = us and the proof is complete. QED

Remark 2.1. It is clear that a trivial example for problem (1.8) is that
u(z,t) = 0 is a solution for p(z) = ¢q(z) = 0.

Remark 2.2. In this paper, we only consider the existence and uniqueness
of a local solution to problem (1.8). It is of course interesting to investigate the
behavior of this solution for some special cases of the initial more regular data
p and g. We do not think that such problems are trivial.

Remark 2.3. A numerical algorithm for problem (1.8) is still open. We be-
lieve that various specific differential equations with self-reference of the general
form

Au(z,t) = u (Bu(z,t),t),

where A : X — R and B : X — R are two functionals, X is a function
space, u = u(x,t), (x,t) € R x [0,+00) is an unknown function, can be solved
numerically.

3 A remark for particular initial data

Now we present a particular situation that show as the initial value are very
important in the study the iterative procedure considered in previous section,
in particular if we assume p(z) = po, ¢(x) = qo; po and qo are two given real
constants.

Now, suppose p(x) = pp and ¢(x) = qo, where py and ¢y are two given real
constants. We consider, as in previous section

uo(,t) = po + tqo, (3.48)
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and remark that

t
ui(z,t) —uoxt—l—//uououoxs) s), s)dsdr

0

o

t
—i—/ / uo(uo(po + $qo, 8), $)dsdT

0 Jo
t
= po + tqo + / / po + sqo)dsdt (3.49)
o Jo
2
= t
=po+1iq + Do+ 5 +q 6
n(1+5) nfr )
Therefore
82
@ul(x, t) = po + tqo = up(z,t). (3.50)

In addition, we get

t T 82 82
ws(e,t) = u(z, ) + /O /O ul(wu1<w,s>+u1(882u1<x,s>

+ ui(z, s), s),s> dsdr

(3.51)
t T 82 83
= up(z,t) + / / <p0 (1 + 5) +q (s + 3'>)d5d7'
t2 4 t3 t5
ZPO(H T 4|) +q°(t+ T 5!)
Now, by induction on k we obtain
ko 2 k 2i+1
t t
t) = — S
)= (20)! T (20 + 1)1
=0 =0
We deduce
k k 2i+1
s2 t
Ug+1(x,t) = uo(x,t) / / <pozg +q0 > @ +1)'>dsd7'
= - (3.52)
2042 koo j2i+3
= po(1 7) (t 7)
po( +;(2¢+2)! + +iz;(2i+3)!
From (3.48) — (3.52) we obtain
n t2’L n t2i+1

Un(,t) :pogo (TZ)' +QOZ m, (3.53)
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ot?
Letting n go to infinity, for all ¢ € [0,T],T > 0, we get

Upt1(z,t) = up—1(x,t). (3.54)

Cel, pp=qo=0C

P Xonto oyt + @0 Sono Tonrry = Pocosht + qosinhit, po # qo.

(3.55)
But it is easy to prove that u, are solution of (1.8). The functions u, are solution
of the ordinary differential equation i(t) = u(t).

Hence we have the following situation. The problem (2.9) generated an inte-
gral equation; starting from non-constant initial condition (so that almost one
of p, q depend explicitely on x) the iteration procedure give a local solution of
problem (2.9). But starting from constant initial condition (p and q togheter
constant) the same iteration procedure give a solution of a different problem.
This seem to be a very interesting situation.

Uiz, t) =
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