On an initial-value problem for second order partial differential equations with self-reference

Nguyen T.T. Lan
Faculty of Mathematics and Applications, Saigon University, 273 An Duong Vuong Str., Ward 3, district 5, Ho Chi Minh City, Viet Nam.
nguyenttlan@sgu.edu.vn; nguyenttlan@gmail.com

Received: 15.6.2014; accepted: 22.10.2014.

Abstract

In this paper, we study the local existence and uniqueness of the solution to an initial-value problem for a second-order partial differential equation with self-reference.

Keywords: Cauchy problem, second-order partial differential equation, self-reference
MSC 2000 classification: primary 35R09, secondary 35F55 45G15

1 Introduction

In [1], Eder obtained the existence, uniqueness, analyticity and analytic dependence of solutions to the following equation of an one-variable unknown function $u: I \subset \mathbb{R} \rightarrow \mathbb{R}:$

$$
\begin{equation*}
u^{\prime}(t)=u(u(t)) . \tag{1.1}
\end{equation*}
$$

This is so-called a differential equation with self-reference, since the right-hand side is the composition of the unknown and itself. This equation has attracted much attention. As a more general case than (1.1), Si and Cheng [4] investigated the functional-differential equation

$$
\begin{equation*}
u^{\prime}(t)=u(a t+b u(t)) \tag{1.2}
\end{equation*}
$$

where $a \neq 1$ and $b \neq 0$ are complex numbers; the unknown $u: \mathbb{C} \rightarrow \mathbb{C}$ is a complex function. By using the power series method, analytic solutions of this equation are obtained. By generalizing (1.2), in [9] Cheng, Si and Wang considered the equation

$$
\alpha t+\beta u^{\prime}(t)=u\left(a t+b u^{\prime}(t)\right)
$$

where α and β are complex numbers. Existence theorems are established for the analytic solutions, and systematic methods for deriving explicit solutions are also given.

In [11], Stanek studied maximal solutions of the functional-differential equation

$$
\begin{equation*}
u(t) u^{\prime}(t)=k u(u(t)) \tag{1.3}
\end{equation*}
$$

with $0<|k|<1$. Here $u: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a real unknown. This author showed that properties of maximal solutions depend on the sign of the parameter k for two separate cases $k \in(-1,0)$ and $k \in(0,1)$. For earlier work of Stanek than (1.3), see [16]-[21].

For a more general model than the above, in [6], Miranda and Pascali studied the existence and uniqueness of a local solution to the following initial-valued problem for a partial differential equation with self-reference and heredity

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(x, t)=u\left(\int_{0}^{t} u(x, s) d s, t\right), x \in \mathbb{R}, \text { a.e. } t>0 \tag{1.4}\\
u(x, 0)=u_{0}(x), x \in \mathbb{R}
\end{array}\right.
$$

by assuming that u_{0} is a bounded, Lipschitz continuous function. With suitable weaker conditions on u_{0}, namely u_{0} is a non-negative, non-decreasing, bounded, lower semi-continuous real function, in [3], Pascali and Le obtained the existence of a global solution of (1.4).

In [22], T. Nguyen and L. Nguyen, generalizing [7], studied the system of partial differential equations with self-reference and heredity

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(x, t)=u\left(\alpha v(x, t)+v\left(\int_{0}^{t} u(x, s) d s, t\right) t\right), \tag{1.5}\\
\frac{\partial}{\partial t} v(x, t)=v\left(\beta u(x, t)+u\left(\int_{0}^{t} v(x, s) d s, t\right) t\right),
\end{array}\right.
$$

associated with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), v(x, 0)=v_{0}(x), \tag{1.6}
\end{equation*}
$$

where α and β are non-negative coefficients. By the boundedness and Lipschitz continuity of u_{0} and v_{0}, we obtained the existence and uniqueness of a local solution to this system. We also proved that this system has a global solution, provided u_{0} and v_{0} are non-negative, non-decreasing, bounded and lower semicontinuous functions.

In [5], Pascali and Miranda considered an initial-valued problem for a secondorder partial differential equation with self-reference as follows:

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial t^{2}} u(x, t)=k_{1} u\left(\frac{\partial^{2}}{\partial t^{2}} u(x, t)+k_{2} u(x, t), t\right) \tag{1.7}\\
u(x, 0)=\alpha(x) \\
\frac{\partial}{\partial t} u(x, 0)=\beta(x)
\end{array}\right.
$$

These authors proved that if $\alpha(x)$ and $\beta(x)$ are bounded and Lipschitz continuous functions, k_{1} and k_{2} are given real numbers, this problem has a unique local solution. It is noted that this result still holds when $k_{i} \equiv k_{i}(x, t), i=1,2$, are real functions satisfying some technical conditions.

Motivated from problem (1.7) and related questions in [5], in this paper we establish the existence and uniqueness of a local solution to the following Cauchy problem of an partial differential equation with self-reference:

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial t^{2}} u(x, t)=\mu_{1} u\left(\frac{\partial^{2}}{\partial t^{2}} u(x, t)+\mu_{2} u\left(\frac{\partial^{2}}{\partial t^{2}} u(x, t)+\mu_{3} u(x, t), t\right), t\right), \tag{1.8}\\
u(x, 0)=p(x) \\
\frac{\partial}{\partial t} u(x, 0)=q(x)
\end{array}\right.
$$

where p and q are given functions, $\mu_{i}, i=1,2,3$, given real numbers $x \in \mathbb{R}$ and $t \in[0, T]$ for some $T>0$. It is clear that this problem is a non-trivial generalization of (1.7). Let us specify some reasons as follows:

- The operator

$$
\frac{\partial^{2}}{\partial t^{2}} u(x, t)+\mu_{2} u\left(\frac{\partial^{2}}{\partial t^{2}} u(x, t)+\mu_{3} u(x, t), t\right)
$$

is actually a doubly self-reference form, which is more complicated than that of (1.7);

- If $k_{2}=\mu_{2}=0$, problem (1.8) coincides with problem (1.7). This is the only coincidence of these two problems. This means that the problem we study in this paper is not a "natural" generalization of (1.7), not including (1.7) as a special case.

Finally we present the problem (1.8) in the case that $p(x)=p_{0}$ and $q(x)=$ q_{0}, where p_{0} and q_{0} are two given constants and we remark a particular strange situation.

2 Existence and uniqueness of a local solution

By integrating the partial differential equation in (1.8), we obtain the following integral equation:

$$
\begin{align*}
& u(x, t)=u_{0}(x, t)+ \\
& \quad \int_{0}^{t} \int_{0}^{\tau} \mu_{1} u\left(\frac{\partial^{2}}{\partial s^{2}} u(x, s)+\mu_{2} u\left(\frac{\partial^{2}}{\partial s^{2}} u(x, s)+\mu_{3} u(x, s), s\right), s\right) d s d \tau \tag{2.9}
\end{align*}
$$

where $u_{0}(x, t)=p(x)+t q(x)$ and $x \in \mathbb{R}$ and $t \in[0, T]$.
The following theorem is so clear that its proof is omitted.
Theorem 2.1. If u is a continuous solution of problem (2.9), then it is also a solution of problem (1.8).

This theorem allows us to consider problem (2.9) only in the rest of this paper. For simplicity, we assume that $\left|\mu_{1}\right|=\left|\mu_{2}\right|=\left|\mu_{3}\right|=1$. Now we state our main result.

Theorem 2.2. Assume that p and q are bounded and Lipschitz continuous on \mathbb{R}. Let σ be the lipschitz constant of p and assume that $\sigma<1$. Then there exists a positive constant T_{0} such that problem (2.9) has a unique solution, denoted by $u_{\infty}(x, t)$, in $\mathbb{R} \times\left[0, T_{0}\right]$. Moreover, the function $u_{\infty}(x, t)$ is also bounded and Lipschitz continuous with respect to each of variables $x \in \mathbb{R}$ and $t \in\left[0, T_{0}\right]$.

Proof. To prove this theorem, we use an iterative algorithm. The proof includes some steps as below.

Step 1:An iterate sequence of functions. We define the following sequence of real functions $\left(u_{n}\right)_{n}$ defined for $x \in \mathbb{R}, t \in[0 . T]$ for $T>0$:

$$
\begin{gather*}
u_{0}(x, t)=p(x)+t q(x), \\
u_{1}(x, t)=u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau} \mu_{1} u_{0}\left(\mu_{2} u_{0}\left(\mu_{3} u_{0}(x, s), s\right), s\right) d s d \tau, \\
u_{n+1}(x, t)=u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau} \mu_{1} u_{n}\left(\frac{\partial^{2}}{\partial s^{2}} u_{n}(x, s)+\mu_{2} u_{n}\left(\frac{\partial^{2}}{\partial s^{2}} u_{n}(x, s)\right.\right. \tag{2.10}\\
\left.\left.+\mu_{3} u_{n}(x, s), s\right), s\right) d s d \tau .
\end{gather*}
$$

Step 2: Proof of the boundedness of $\left(u_{n}\right)$. With simple calculations, taking into account the boundedness of p and q, we get

$$
\left|u_{0}(x, t)\right| \leq|p(x)|+t|q(x)| \leq\|p\|_{L^{\infty}}+t\|q\|_{L^{\infty}},
$$

$$
\begin{aligned}
\left|u_{1}(x, t)\right| & \leq\left|u_{0}(x, t)\right|+\int_{0}^{t} \int_{0}^{\tau}\left|\mu_{1} u_{0}\left(\mu_{2} u_{0}\left(\mu_{3} u_{0}(x, s), s\right), s\right)\right| d s d \tau \\
& \leq\|p\|_{L^{\infty}}+t\|q\|_{L^{\infty}}+\int_{0}^{t} \int_{0}^{\tau}\left(\|p\|_{L^{\infty}}+s\|q\|_{L^{\infty}}\right) d s d \tau \\
& =\left(1+\frac{t^{2}}{2!}\right)\|p\|_{L^{\infty}}+\left(t+\frac{t^{3}}{3!}\right)\|q\|_{L^{\infty}}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left|u_{2}(x, t)\right| \leq\left|u_{0}(x, t)\right|+\int_{0}^{t} \int_{0}^{\tau} \left\lvert\, \mu_{1} u_{1}\left(\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)+\mu_{2} u_{1}\left(\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)\right.\right.\right. \\
& \left.\left.+\mu_{3} u_{1}(x, s), s\right), s\right) \mid d s d \tau \\
& \leq\|p\|_{L^{\infty}}+t\|q\|_{L^{\infty}}+\int_{0}^{t} \int_{0}^{\tau}\left(1+\frac{s^{2}}{2!}\right)\|p\|_{L^{\infty}}+\left(s+\frac{s^{3}}{3!}\right)\|q\|_{L^{\infty}} d s d \tau \\
& =\left(1+\frac{t^{2}}{2!}+\frac{t^{4}}{4!}\right)\|p\|_{L^{\infty}}+\left(t+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}\right)\|q\|_{L^{\infty}} .
\end{aligned}
$$

By induction on n we find

$$
\begin{equation*}
\left|u_{n}(x, t)\right| \leq e^{T}\left(\|p\|_{L^{\infty}}+\|q\|_{L^{\infty}}\right), n \in \mathbb{N}, t \in[0, T] \tag{2.11}
\end{equation*}
$$

Step 3: Every u_{n} is lipschitz with respect to the first variable. From the Lipschitz continuity of p and q

$$
\begin{align*}
& |p(x)-p(y)| \leq \sigma|x-y|, \forall x, y \in \mathbb{R} \\
& |q(x)-q(y)| \leq \omega|x-y|, \forall x, y \in \mathbb{R} \tag{2.12}
\end{align*}
$$

where $0<\sigma, \omega$ are real numbers (with $\sigma<1$ as in the hypotheses).

Using (2.12), we derive

$$
\begin{align*}
\left|u_{0}(x, t)-u_{0}(y, t)\right| & \leq|p(x)-p(y)|+t|q(x)-q(y)| \\
& \leq(\sigma+t \omega)|x-y|:=L_{0}(t)|x-y| \tag{2.13}
\end{align*}
$$

where $L_{0}(t):=\sigma+t \omega$.

In addition,

$$
\begin{align*}
&\left|u_{1}(x, t)-u_{1}(y, t)\right| \leq L_{0}(t)|x-y|+ \\
& \quad \int_{0}^{t} \int_{0}^{\tau} \mid \mu_{1} u_{0}\left(\mu_{2} u_{0}\left(\mu_{3} u_{0}(x, s), s\right), s\right) \\
& \quad-\mu_{1} u_{0}\left(\mu_{2} u_{0}\left(\mu_{3} u_{0}(y, s), s\right), s\right) \mid d s d \tau \\
& \leq\left(L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau} L_{0}^{3}(s) d s d \tau\right)|x-y| \tag{2.14}\\
&:=L_{1}(t)|x-y|
\end{align*}
$$

where $L_{1}(t):=L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau} C_{0}(s) d s d \tau$, with $C_{0}(t):=L_{0}^{3}(t)$.
Moreover

$$
\begin{aligned}
\left|\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{1}(y, t)\right| & \leq L_{0}(t)\left|\mu_{2} u_{0}\left(\mu_{3} u_{0}(x, t), t\right)-\mu_{2} u_{0}\left(\mu_{3} u_{0}(y, t), t\right)\right| \\
& \leq L_{0}^{2}(t)\left|\mu_{3} u_{0}(x, t)-\mu_{3} u_{0}(y, t)\right| \\
& \leq L_{0}^{3}(t)|x-y|:=C_{0}(t)|x-y|
\end{aligned}
$$

Similarly, we have

$$
\begin{align*}
& \left|u_{2}(x, t)-u_{2}(y, t)\right| \\
& \begin{aligned}
& \leq L_{0}(t)|x-y|+\int_{0}^{t} \int_{0}^{\tau} L_{1}(s)\left(\left|\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)-\frac{\partial^{2}}{\partial s^{2}} u_{1}(y, s)\right|\right. \\
& \quad+\left\lvert\, \mu_{2} u_{1}\left(\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)+\mu_{3} u_{1}(x, s), s\right)\right. \\
&\left.\left.\quad-\mu_{2} u_{1}\left(\frac{\partial^{2}}{\partial s^{2}} u_{1}(y, s)+\mu_{3} u_{1}(y, s), s\right) \right\rvert\,\right) d s d \tau \\
& \leq L_{0}(t)|x-y|+\int_{0}^{t} \int_{0}^{\tau} L_{1}(s)\left(L_{0}^{3}(s)|x-y|\right. \\
&\left.\quad+L_{1}(s)\left(L_{0}^{3}(s)|x-y|+L_{1}(s)|x-y|\right)\right) d s d \tau \\
& \leq\left(L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau}\left(\left(L_{1}(s)+L_{1}^{2}(s)\right) C_{0}(s)+L_{1}^{3}(s)\right) d s d \tau\right)|x-y| \\
&:=\left(L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau} C_{1}(s) d s d \tau\right)|x-y|:=L_{2}(t)|x-y|
\end{aligned}
\end{align*}
$$

where

$$
\begin{gathered}
L_{2}(t):=L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau} C_{1}(s) d s d \tau \\
C_{1}(t):=\left(L_{1}(t)+L_{1}^{2}(t)\right) C_{0}(t)+L_{1}^{3}(t) .
\end{gathered}
$$

Moreover

$$
\begin{aligned}
& \begin{aligned}
& \begin{array}{|l}
\left.\frac{\partial^{2}}{\partial t^{2}} u_{2}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{2}(y, t) \right\rvert\, \\
\leq
\end{array} L_{1}(t)\left(\left|\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{1}(y, t)\right|+\left\lvert\, \mu_{2} u_{1}\left(\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)\right.\right.\right. \\
&\left.\left.\quad+\mu_{3} u_{1}(x, t), t\right) \left.-\mu_{2} u_{1}\left(\frac{\partial^{2}}{\partial t^{2}} u_{1}(y, t)+\mu_{3} u_{1}(y, t), t\right) \right\rvert\,\right) \\
& \leq L_{1}(t)\left(L_{0}^{3}(t)|x-y|+L_{1}(t)\left(\left|\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{1}(y, t)\right|\right.\right. \\
&\left.\left.\quad \quad+\left|\mu_{3} u_{1}(x, t)-\mu_{3} u_{1}(y, t)\right|\right)\right) \\
& \leq\left(\left(L_{1}(t)+L_{1}^{2}(t)\right) L_{0}^{3}(t)+L_{1}^{3}(t)\right)|x-y| \\
&=\left(\left(L_{1}(t)+L_{1}^{2}(t)\right) C_{0}(t)+L_{1}^{3}(t)\right)|x-y|:=C_{1}(t)|x-y| .
\end{aligned}
\end{aligned}
$$

Repeating the previous calculation for u_{3} we get

$$
\begin{align*}
& \left|u_{3}(x, t)-u_{3}(y, t)\right| \\
& \leq L_{0}(t)|x-y|+\int_{0}^{t} \int_{0}^{\tau} L_{2}(s)\left(\left|\frac{\partial^{2}}{\partial s^{2}} u_{2}(x, s) \frac{\partial^{2}}{\partial s^{2}} u_{2}(y, s)\right|\right. \\
& \quad+\left\lvert\, \mu_{2} u_{2}\left(\frac{\partial^{2}}{\partial s^{2}} u_{2}(x, s)+\mu_{3} u_{2}(x, s), s\right)\right. \\
& \left.\left.\quad-\mu_{2} u_{2}\left(\frac{\partial^{2}}{\partial s^{2}} u_{2}(y, s)+\mu_{3} u_{2}(y, s), s\right) \right\rvert\,\right) d s d \tau \tag{2.16}\\
& \leq\left(L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau}\left(\left(\left(L_{2}(s)+L_{2}^{2}(s)\right) C_{1}(s)+L_{2}^{3}(s) d s d \tau\right)\right)|x-y|\right. \\
& :=\left(L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau} C_{2}(s) d s d \tau\right)|x-y|:=L_{3}(t)|x-y|
\end{align*}
$$

where

$$
L_{3}(t):=L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau} C_{2}(s) d s d \tau
$$

and

$$
C_{2}(t):=\left(L_{2}(t)+L_{2}^{2}(t)\right) C_{1}(t)+L_{2}^{3}(t)
$$

We have also

$$
\left|\frac{\partial^{2}}{\partial t^{2}} u_{3}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{3}(y, t)\right| \leq C_{2}(t)|x-y| .
$$

Next, we proceed by induction. Let $L_{0}(t):=\sigma+t \omega$ and $C_{0}(t):=L_{0}^{3}(t)$,

$$
\begin{align*}
& C_{n}(t):=\left(L_{n}(t)+L_{n}^{2}(t)\right) C_{n-1}(t)+L_{n}^{3}(t) \\
& L_{n}(t):=L_{0}(t)+\int_{0}^{t} \int_{0}^{\tau} C_{n-1}(s) d s d \tau, n \geq 1 . \tag{2.17}
\end{align*}
$$

From (2.13) - (2.16), by induction on n, we obtain

$$
\begin{align*}
& \left|u_{n+1}(x, t)-u_{n+1}(y, t)\right| \leq L_{n+1}(t)|x-y| \tag{2.18}\\
& \left|\frac{\partial^{2}}{\partial t^{2}} u_{n+1}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{n+1}(y, t)\right| \leq C_{n}(t)|x-y| \tag{2.19}
\end{align*}
$$

We introduce a definition. We call $\left(v_{n}\right)$ a stationary sequence in x if

$$
\left|v_{n+1}(x, t)-v_{n}(x, t)\right| \leq f_{n}(t)
$$

where $\left(f_{n}\right)$ is a non-negative sequence of real function defined on $[0, T]$. If $f_{n}=f$ for all n, we say that $\left(v_{n}\right)$ is uniformly stationary sequence in x.

Step 4: $\left(u_{n}\right)$ and $\left(\frac{\partial^{2}}{\partial t^{2}} u_{n}\right)$ are stationary sequence in x. Direct calculations show that

$$
\begin{align*}
\left|u_{1}(x, t)-u_{0}(x, t)\right| & =\int_{0}^{t} \int_{0}^{\tau}\left|\mu_{1} u_{0}\left(\mu_{2} u_{0}\left(\mu_{3} u_{0}(x, s), s\right), s\right)\right| d s d \tau \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(\|p\|_{L^{\infty}}+t\|q\|_{L^{\infty}}\right) d s d \tau \tag{2.20}\\
& =\frac{t^{2}}{2}\|p\|_{L^{\infty}}+\frac{t^{3}}{6}\|q\|_{L^{\infty}}:=A_{1}(t) \\
\left|\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{0}(x, t)\right| & =\left|\mu_{1} u_{0}\left(\mu_{2} u_{0}\left(\mu_{3} u_{0}(x, s), s\right), s\right)\right| \tag{2.21}\\
& \leq\|p\|_{L^{\infty}}+t\|q\|_{L^{\infty}}:=B_{1}(t)
\end{align*}
$$

From (2.20) and (2.21), we deduce

$$
\begin{equation*}
A_{1}(t):=\int_{0}^{t} \int_{0}^{\tau} B_{1}(s) d s d \tau \tag{2.22}
\end{equation*}
$$

$$
\begin{aligned}
& \left|u_{2}(x, t)-u_{1}(x, t)\right| \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(A_{1}(s)+L_{0}(s)\left(\left|\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)-\frac{\partial^{2}}{\partial s^{2}} u_{0}(x, s)\right|\right.\right. \\
& +\left\lvert\, \mu_{2} u_{0}\left(\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)+\mu_{3} u_{1}(x, s), s\right)\right. \\
& \left.\left.\left.-\mu_{2} u_{0}\left(\frac{\partial^{2}}{\partial s^{2}} u_{0}(x, s)+\mu_{3} u_{0}(x, s), s\right) \right\rvert\,\right)\right) d s d \tau \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(\left(1+L_{0}(s)+L_{0}^{2}(s)\right) A_{1}(s)+\left(L_{0}(s)+L_{0}^{2}(s)\right) B_{1}(s)\right) d s d \tau \\
& :=A_{2}(t) \text {. } \\
& \left|\frac{\partial^{2}}{\partial t^{2}} u_{2}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)\right| \\
& \leq A_{1}(t)+L_{0}(t)\left(\left|\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{0}(x, t)\right|+\left\lvert\, \mu_{2} u_{0}\left(\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)\right.\right.\right. \\
& \left.\left.+\mu_{3} u_{1}(x, t), t\right) \left.-\mu_{2} u_{0}\left(\frac{\partial^{2}}{\partial t^{2}} u_{0}(x, t)+\mu_{3} u_{0}(x, t), t\right) \right\rvert\,\right) \\
& \leq A_{1}(t)\left(1+L_{0}(t)+L_{0}^{2}(t)\right)+\left(L_{0}(t)+L_{0}^{2}(t)\right) B_{1}(t) \\
& :=B_{2}(t) \text {. }
\end{aligned}
$$

Combining (2.23) and (2.24) gives

$$
\begin{equation*}
A_{2}(t):=\int_{0}^{t} \int_{0}^{\tau} B_{2}(s) d s d \tau \tag{2.25}
\end{equation*}
$$

From (2.20) and (2.23), by inducting on n, we derive

$$
\begin{equation*}
\left|u_{n+1}(x, t)-u_{n}(x, t)\right| \leq A_{n+1}(t) \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\partial^{2}}{\partial t^{2}} u_{n+1}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{n}(x, t)\right| \leq B_{n+1}(t) \tag{2.27}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{n+1}(t):=\int_{0}^{t} \int_{0}^{\tau} B_{n+1}(s) d s d \tau \\
B_{n+1}(t):=\left(1+L_{n-1}(t)+L_{n-1}^{2}(t)\right) A_{n}(t) \tag{2.28}\\
\quad+\left(L_{n-1}(t)+L_{n-1}^{2}(t)\right) B_{n}(t), n \geq 1
\end{gather*}
$$

In the following step, we select T_{0} for which we prove also that $\left(u_{n}\right)$ and $\left(\frac{\partial^{2}}{\partial t^{2}} u_{n}\right)$ are uniformly stationary sequences.
Step 5: Existence of a local solution. Because $\sigma<1$, we can find $T_{0}>0,0<$ $M<1,0<h<1$ such that for $t \in\left[0, T_{0}\right]$, we have

$$
\begin{equation*}
\sigma+t \omega+M \frac{t^{2}}{2} \leq M<2 M<h ; M+2 M^{2} \leq 1 ; 2 M+(1+2 M) \frac{t^{2}}{2}<h \tag{2.29}
\end{equation*}
$$

From (2.29) we obtain

$$
\begin{gather*}
L_{0}(t)=\sigma+t \omega \leq M \\
L_{1}(t) \leq \sigma+t \omega+\int_{0}^{t} \int_{0}^{\tau} M^{3} d s d \tau=\sigma+t \omega+M^{3} \frac{t^{2}}{2} \leq M \\
L_{2}(t) \leq \sigma+t \omega+\int_{0}^{t} \int_{0}^{\tau}\left(M^{3}+M^{4}+M^{5}\right) d s d \tau \leq \sigma+t \omega+M \frac{t^{2}}{2} \leq M \\
C_{0}(t)=L_{0}^{3}(t) \leq M^{3} \leq M \\
C_{1}(t) \leq\left(M+M^{2}\right) M+M^{3}=M\left(M+2 M^{2}\right) \leq M \\
C_{2}(t) \leq\left(M+M^{2}\right) M+M^{3}=M\left(M+2 M^{2}\right) \leq M \tag{2.30}
\end{gather*}
$$

Now, by induction on n, we conclude that

$$
\begin{gather*}
C_{n}(t) \leq M \\
L_{n+1}(t) \leq \sigma+t \omega+M \frac{t^{2}}{2} \leq M \tag{2.31}
\end{gather*}
$$

Hence we derive

$$
\begin{align*}
B_{2}(t) & \leq A_{1}(t)\left(1+M+M^{2}\right)+B_{1}(t)\left(M+M^{2}\right) \\
& \leq\left(1+M+M^{2}\right) \int_{0}^{t} \int_{0}^{\tau} B_{1}(s) d s d \tau+B_{1}(t)\left(M+M^{2}\right) \\
& \leq\left\|B_{1}\right\|_{L^{\infty}} \frac{t^{2}}{2}\left(1+M+M^{2}\right)+\left\|B_{1}\right\|_{L^{\infty}}\left(M+M^{2}\right) \tag{2.32}\\
& \leq\left\|B_{1}\right\|_{L^{\infty}}\left(\frac{t^{2}}{2}(1+2 M)+2 M\right) \\
& \leq\left\|B_{1}\right\|_{L^{\infty}} h
\end{align*}
$$

From (2.32) we obtain

$$
\begin{equation*}
\left\|B_{2}\right\|_{L^{\infty}} \leq\left\|B_{1}\right\|_{L^{\infty}} h \tag{2.33}
\end{equation*}
$$

By a similar argument, we get

$$
\begin{align*}
B_{3}(t) & \leq\left\|B_{2}\right\|_{L^{\infty}} \frac{t^{2}}{2}\left(1+M+M^{2}\right)+\left\|B_{2}\right\|_{L^{\infty}}\left(M+M^{2}\right) \\
& \leq\left\|B_{2}\right\|_{L^{\infty}}\left(\frac{t^{2}}{2}(1+2 M)+2 M\right) \leq\left\|B_{2}\right\|_{L^{\infty}} h \tag{2.34}
\end{align*}
$$

So

$$
\begin{equation*}
\left\|B_{3}\right\|_{L^{\infty}} \leq\left\|B_{2}\right\|_{L^{\infty}} h \tag{2.35}
\end{equation*}
$$

From (2.33) and (2.35), by induction on n, we conclude that

$$
\begin{equation*}
\left\|B_{n+1}\right\|_{L^{\infty}} \leq\left\|B_{n}\right\|_{L^{\infty} h} \tag{2.36}
\end{equation*}
$$

In addition, from (2.28) we deduce

$$
\begin{equation*}
\left\|A_{n+1}\right\|_{L^{\infty}} \leq\left\|B_{n+1}\right\|_{L^{\infty}} \frac{T_{0}^{2}}{2} \tag{2.37}
\end{equation*}
$$

Due to (2.36), we see the series $\sum B_{n+1}(t)$ converges absolutely and uniformly, hence by (2.27) there exists ϕ_{∞} such that

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u_{n} \rightarrow \phi_{\infty} \tag{2.38}
\end{equation*}
$$

uniformly in $\mathbb{R} \times\left[0, T_{0}\right]$.

Similarly, from (2.26)) and (2.37), we conclude that $\sum A_{n+1}(t)$ converges absolutely and uniformly and there exists u_{∞} such that

$$
\begin{equation*}
u_{n} \rightarrow u_{\infty} \tag{2.39}
\end{equation*}
$$

uniformly in $\mathbb{R} \times\left[0, T_{*}\right]$.
We remark that $\left|u_{\infty}(x, t)-u_{\infty}(y, t)\right| \leq M|x-y|$.

Now we are proving that $u_{\infty}(x, t)$ is a solution of (2.9). It is clear that

$$
\begin{align*}
& \left\lvert\, \mu_{1} u_{n}\left(\frac{\partial^{2}}{\partial t^{2}} u_{n}(x, t)+\mu_{2} u_{n}\left(\frac{\partial^{2}}{\partial t^{2}} u_{n}(x, t)+\mu_{3} u_{n}(x, t), t\right), t\right)\right. \\
& \quad-\mu_{1} u_{\infty}\left(\phi_{\infty}(x, t)+\mu_{2} u_{\infty}\left(\phi_{\infty}(x, t)+\mu_{3} u_{\infty}(x, t), t\right), t\right) \mid \\
& \leq\left\|u_{n}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left|\frac{\partial^{2}}{\partial t^{2}} u_{n}(x, t)-\phi_{\infty}(x, t)\right|\right. \\
& \quad+\left\lvert\, \mu_{2} u_{n}\left(\frac{\partial^{2}}{\partial t^{2}} u_{n}(x, t)+\mu_{3} u_{n}(x, t), t\right)-\mu_{2} u_{\infty}\left(\phi_{\infty}(x, t)\right.\right. \tag{2.40}\\
& \left.\left.\quad+\mu_{3} u_{\infty}(x, t), t\right) \mid\right) \\
& \leq\left\|u_{n}-u_{\infty}\right\|_{L^{\infty}}\left(1+M+M^{2}\right) \\
& \quad+\left\|\frac{\partial^{2}}{\partial t^{2}} u_{n}-\phi_{\infty}\right\|_{L^{\infty}}\left(M+M^{2}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{align*}
$$

From 2.40, we deduce that

$$
\begin{align*}
u_{\infty}(x, t)=u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau} \mu_{1} u_{\infty}(& \phi_{\infty}(x, s)+\mu_{2} u_{\infty}\left(\phi_{\infty}(x, s)\right. \tag{2.41}\\
& \left.\left.+\mu_{3} u_{\infty}(x, s), s\right), s\right) d s d \tau
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
& \left|\phi_{\infty}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)\right| \leq\left\|\phi_{\infty}-\frac{\partial^{2}}{\partial t^{2}} u_{n}\right\|_{L^{\infty}}+\left|\frac{\partial^{2}}{\partial t^{2}} u_{n}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)\right| \\
& \leq\left\|\phi_{\infty}-\frac{\partial^{2}}{\partial t^{2}} u_{n}\right\|_{L^{\infty}}+\left\|u_{n-1}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left\lvert\, \frac{\partial^{2}}{\partial t^{2}} u_{n-1}(x, t)\right.\right. \\
& \quad-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)|+| \mu_{2} u_{n-1}\left(\frac{\partial^{2}}{\partial t^{2}} u_{n-1}(x, t)+\mu_{3} u_{n-1}(x, t), t\right) \\
& \left.\left.\quad-\mu_{2} u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)+\mu_{3} u_{\infty}(x, t), t\right) \right\rvert\,\right) \\
& \leq\left(\left\|\phi_{\infty}-\frac{\partial^{2}}{\partial t^{2}} u_{n}\right\|_{L^{\infty}}+\left\|u_{n-1}-u_{\infty}\right\|_{L^{\infty}}\right)\left(1+M+M^{2}\right) \\
& \quad \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.42}
\end{align*}
$$

Hence,

$$
\begin{align*}
u_{\infty}(x, t)=u_{0}(x, t) & +\int_{0}^{t} \int_{0}^{\tau} \mu_{1} u_{\infty}\left(\frac{\partial^{2}}{\partial s^{2}} u_{\infty}(x, s)\right. \tag{2.43}\\
& \left.+\mu_{2} u_{\infty}\left(\frac{\partial^{2}}{\partial s^{2}} u_{\infty}(x, s)+\mu_{3} u_{\infty}(x, s), s\right), s\right) d s d \tau
\end{align*}
$$

for all $x \in \mathbb{R}, t \in\left[0, T_{0}\right]$. Then u_{∞} is a solution of (2.9) in $\mathbb{R} \times\left[0, T_{0}\right]$.

Step 6: Uniqueness of the local solution u_{∞}. We assume that there exists another
lipschitz solution $u_{\star}(x, t)$ of (2.9). Then

$$
\begin{align*}
& \left|u_{\star}(x, t)-u_{\infty}(x, t)\right| \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(\left\lvert\, u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}(x, s), s\right), s\right)\right.\right. \\
& \left.-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}(x, s), s\right), s\right) \right\rvert\, \\
& +\left\lvert\, u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}(x, s), s\right), s\right)\right. \\
& \left.\left.-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, s)+u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, s)+u_{\infty}(x, s), s\right), s\right) \right\rvert\,\right) d s d \tau \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left|\frac{\partial^{2}}{\partial s^{2}} u_{\star}(x, s)-\frac{\partial^{2}}{\partial s^{2}} u_{\infty}(x, s)\right|\right.\right. \\
& \left.\left.+\left|u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}(x, s), s\right)-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, s)+u_{\infty}(x, s), s\right)\right|\right)\right) d s d \tau \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left|\frac{\partial^{2}}{\partial s^{2}} u_{\star}(x, s)-\frac{\partial^{2}}{\partial s^{2}} u_{\infty}(x, s)\right|\right.\right. \\
& +\left|u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}(x, s), s\right)-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}(x, s), s\right)\right| \\
& \left.\left.+\left|u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, s)+u_{\star}(x, s), s\right)-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, s)+u_{\infty}(x, s), s\right)\right|\right)\right) d s d \tau \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left\|\frac{\partial^{2}}{\partial s^{2}} u_{\star}-\frac{\partial^{2}}{\partial s^{2}} u_{\infty}\right\|\left\|_{L^{\infty}}+\right\| u_{\star}-u_{\infty} \|_{L^{\infty}}\right.\right. \\
& \left.\left.+M\left(\left\|\frac{\partial^{2}}{\partial s^{2}} u_{\star}-\frac{\partial^{2}}{\partial s^{2}} u_{\infty}\right\|_{L^{\infty}}+\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}\right)\right)\right) d s d \tau \\
& \leq \int_{0}^{t} \int_{0}^{\tau}\left(\left(1+M+M^{2}\right)\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}\right. \\
& \left.+\left(M+M^{2}\right)\left\|\frac{\partial^{2}}{\partial s^{2}} u_{\star}-\frac{\partial^{2}}{\partial s^{2}} u_{\infty}\right\|_{L^{\infty}}\right) d s d \tau . \tag{2.44}
\end{align*}
$$

Additionally,

$$
\begin{align*}
& \left|\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)\right| \\
& =\left\lvert\, u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right), t\right)\right. \\
& \left.-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)+u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)+u_{\infty}(x, t), t\right), t\right) \right\rvert\, \\
& \leq \left\lvert\, u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right), t\right)\right. \\
& \left.-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right), t\right) \right\rvert\, \\
& +\left\lvert\, u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right), t\right)\right. \\
& \left.-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)+u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)+u_{\infty}(x, t), t\right), t\right) \right\rvert\, \\
& \leq\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left|\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)\right|\right. \\
& \left.+\left|u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right)-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)+u_{\infty}(x, t), t\right)\right|\right) \tag{2.45}\\
& \leq\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left\|\frac{\partial^{2}}{\partial t^{2}} u_{\star}-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}\right\|_{L^{\infty}}\right. \\
& +\left|u_{\star}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right)-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right)\right| \\
& \left.+\left|u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)+u_{\star}(x, t), t\right)-u_{\infty}\left(\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)+u_{\infty}(x, t), t\right)\right|\right) \\
& \leq\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}+M\left(\left\|\frac{\partial^{2}}{\partial t^{2}} u_{\star}-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}\right\|_{L^{\infty}}+\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}\right. \\
& \left.+M\left(\left|\frac{\partial^{2}}{\partial t^{2}} u_{\star}(x, t)-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}(x, t)\right|+\left|u_{\star}(x, t)-u_{\infty}(x, t)\right|\right)\right) \\
& \leq\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}\left(1+M+M^{2}\right) \\
& +\left\|\frac{\partial^{2}}{\partial t^{2}} u_{\star}-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}\right\|_{L^{\infty}}\left(M+M^{2}\right) \\
& \leq(1+2 M)\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}}+2 M\left\|\frac{\partial^{2}}{\partial t^{2}} u_{\star}-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}\right\|_{L^{\infty}} .
\end{align*}
$$

From (2.45), we deduce

$$
\begin{equation*}
\left\|\frac{\partial^{2}}{\partial t^{2}} u_{\star}-\frac{\partial^{2}}{\partial t^{2}} u_{\infty}\right\|_{L^{\infty}} \leq \frac{1+2 M}{1-2 M}\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}} \tag{2.46}
\end{equation*}
$$

From (2.11), (2.44) and (2.46), we deduce

$$
\begin{equation*}
\left|u_{\star}(x, t)-u_{\infty}(x, t)\right| \leq\left(\frac{1+2 M}{1-2 M}\right) \frac{T_{0}^{2}}{2}\left\|u_{\star}-u_{\infty}\right\|_{L^{\infty}} \tag{2.47}
\end{equation*}
$$

This shows that $u_{\infty} \equiv u_{*}$ and the proof is complete.

Remark 2.1. It is clear that a trivial example for problem (1.8) is that $u(x, t)=0$ is a solution for $p(x)=q(x)=0$.

Remark 2.2. In this paper, we only consider the existence and uniqueness of a local solution to problem (1.8). It is of course interesting to investigate the behavior of this solution for some special cases of the initial more regular data p and q. We do not think that such problems are trivial.

Remark 2.3. A numerical algorithm for problem (1.8) is still open. We believe that various specific differential equations with self-reference of the general form

$$
A u(x, t)=u(B u(x, t), t)
$$

where $A: X \rightarrow \mathbb{R}$ and $B: X \rightarrow \mathbb{R}$ are two functionals, X is a function space, $u=u(x, t),(x, t) \in \mathbb{R} \times[0,+\infty)$ is an unknown function, can be solved numerically.

3 A remark for particular initial data

Now we present a particular situation that show as the initial value are very important in the study the iterative procedure considered in previous section, in particular if we assume $p(x)=p_{0}, q(x)=q_{0} ; p_{0}$ and q_{0} are two given real constants.

Now, suppose $p(x)=p_{0}$ and $q(x)=q_{0}$, where p_{0} and q_{0} are two given real constants. We consider, as in previous section

$$
\begin{equation*}
u_{0}(x, t)=p_{0}+t q_{0} \tag{3.48}
\end{equation*}
$$ and remark that

$$
\begin{align*}
u_{1}(x, t) & =u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau} u_{0}\left(u_{0}\left(u_{0}(x, s), s\right), s\right) d s d \tau \\
& =u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau} u_{0}\left(u_{0}\left(p_{0}+s q_{0}, s\right), s\right) d s d \tau \\
& =p_{0}+t q_{0}+\int_{0}^{t} \int_{0}^{\tau}\left(p_{0}+s q_{0}\right) d s d \tau \tag{3.49}\\
& =p_{0}+t q_{0}+p_{0} \frac{t^{2}}{2}+q_{0} \frac{t^{3}}{6} \\
& =p_{0}\left(1+\frac{t^{2}}{2!}\right)+q_{0}\left(t+\frac{t^{3}}{3!}\right)
\end{align*}
$$

Therefore

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u_{1}(x, t)=p_{0}+t q_{0}=u_{0}(x, t) \tag{3.50}
\end{equation*}
$$

In addition, we get

$$
\begin{align*}
u_{2}(x, t)= & u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau} u_{1}\left(\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)+u_{1}\left(\frac{\partial^{2}}{\partial s^{2}} u_{1}(x, s)\right.\right. \\
& \left.\left.\quad+u_{1}(x, s), s\right), s\right) d s d \tau \tag{3.51}\\
= & u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau}\left(p_{0}\left(1+\frac{s^{2}}{2!}\right)+q_{0}\left(s+\frac{s^{3}}{3!}\right)\right) d s d \tau \\
= & p_{0}\left(1+\frac{t^{2}}{2!}+\frac{t^{4}}{4!}\right)+q_{0}\left(t+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}\right)
\end{align*}
$$

Now, by induction on k we obtain

$$
u_{k}(x, t)=p_{0} \sum_{i=0}^{k} \frac{t^{2 i}}{(2 i)!}+q_{0} \sum_{i=0}^{k} \frac{t^{2 i+1}}{(2 i+1)!}
$$

We deduce

$$
\begin{align*}
u_{k+1}(x, t) & =u_{0}(x, t)+\int_{0}^{t} \int_{0}^{\tau}\left(p_{0} \sum_{i=0}^{k} \frac{s^{2 i}}{(2 i)!}+q_{0} \sum_{i=0}^{k} \frac{t^{2 i+1}}{(2 i+1)!}\right) d s d \tau \\
& =p_{0}\left(1+\sum_{i=0}^{k} \frac{t^{2 i+2}}{(2 i+2)!}\right)+q_{0}\left(t+\sum_{i=0}^{k} \frac{t^{2 i+3}}{(2 i+3)!}\right) \tag{3.52}
\end{align*}
$$

From (3.48) - (3.52) we obtain

$$
\begin{equation*}
u_{n}(x, t)=p_{0} \sum_{i=0}^{n} \frac{t^{2 i}}{(2 i)!}+q_{0} \sum_{i=0}^{n} \frac{t^{2 i+1}}{(2 i+1)!} \tag{3.53}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u_{n+1}(x, t)=u_{n-1}(x, t) \tag{3.54}
\end{equation*}
$$

Letting n go to infinity, for all $t \in[0, T], T>0$, we get

$$
u_{\star}(x, t)=\left\{\begin{array}{l}
C e^{t}, p_{0}=q_{0}=C \tag{3.55}\\
p_{0} \sum_{n=0}^{\infty} \frac{t^{2 n}}{(2 n)!}+q_{0} \sum_{n=0}^{\infty} \frac{t^{2 n+1}}{(2 n+1)!}=p_{0} \cosh t+q_{0} \sinh t, p_{0} \neq q_{0} .
\end{array}\right.
$$

But it is easy to prove that u_{*} are solution of (1.8). The functions u_{*} are solution of the ordinary differential equation $\ddot{u}(t)=u(t)$.

Hence we have the following situation. The problem (2.9) generated an integral equation; starting from non-constant initial condition (so that almost one of p, q depend explicitely on x) the iteration procedure give a local solution of problem (2.9). But starting from constant initial condition (p and q togheter constant) the same iteration procedure give a solution of a different problem. This seem to be a very interesting situation.

References

[1] Eder. E.: The functional-differential equation $x^{\prime}(t)=x(x(t))$, J. Differ. Equ. 54, 390-400 (1984).
[2] W. T. Li, S. Zhang: Classification and existence of positive solutions of higer order nonlinear iterative functional differential equations, J. Comput. Appl. Math., 139, 351$367(2002)$.
[3] U. V. Lê and E. Pascali: An existence theorem for self-referred and hereditary differential equations, Adv. Differential Equations Control Process. 1, 25-32 (2008).
[4] J. G. Si and S. S. Cheng: Analytic solutions of a functional-differential equation with state dependent argument, Taiwanese J. Math. 4, 471-480 (1997).
[5] M. Miranda and E. Pascali: On a class of differential equations with self-reference, Rend. Mat., serie VII, 25, Roma 155-164 (2005).
[6] M. Miranda and E. Pascali: On a type of evolution of self-referred and hereditary phenomena, Aequationes Math. 71, 253-268 (2006).
[7] E. Pascali: Existence of solutions to a self-referred and hereditary system of differential equations, Electron. J. Diff. Eqns. Vol. 2006 No. 07, pp. 1-7 (2006).
[8] X. P. Wang, J. G. Si: Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients, J. Math. Anal. Appl. 226, 377-392 (1998).
[9] X. Wang, J. G. Si and S. S. Cheng: Analytic solutions of a functional differential equation with state derivative dependent delay, Aequationes Math. 1, 75-86 (1999).
[10] U. V. Lê and L. T. T. Nguyen: Existence of solutions for systems of self-referred and hereditary differential equations, Electron. J. Diff. Eqns. Vol. 2008 51, pp. 1-7 (2008).
[11] Stanek, Svatoslav: Global properties of solutions of the functional differential equation $u(t) u^{\prime}(t)=k x(x(t)), 0<|k|<1$, Funct. Differ. Equ. 9, 527-550 (2002).
[12] Slenak, Benat: On the smooth parameter-dependence of the solutions of abstract functional differential equations with state-dependent delay, Funct. Differ. Equa., 17, 253-293 (2010).
[13] A. Domoshnitsky; A. Drakhlin; E. Litsyn: On equations with delay depending on solution, Nonlinear Anal., 49, 489-701(2002).
[14] A. Domoshnitsky; A. Drakhlin; E. Litsyn: Nonocillation and positivity of solutions to first order state-dependent differential equations with impulses in variable moments., J. Differential Equations, 288 no. 1, 39-48 (2006)
[15] F. Hartung: Linearized stability in periodic functional differential equations with statedependent delays, J. Comput. Anal. Math., 174 no. 2, 201-211 (2005).
[16] Stanek, Svatoslav: On global properties of solutions of the equation $u^{\prime}(t)=a u(t-b u(t))$, Hokkaido Math. J. 30, 75-89 (2001).
[17] Stanek, Svatoslav: Global properties of decreasing solutions for the equation $u^{\prime}(t)=$ $u(u(t))-b u(t), b \in(0,1)$, Soochow J. Math. 26, 123-134 (2000).
[18] Stanek, Svatoslav: Global properties of increasing solutions for the equation $u^{\prime}(t)=$ $u(u(t))-b u(t), b \in(0,1)$, Soochow J. Math. 26, 37-65 (2000).
[19] Stanek, Svatoslav: Global properties of solutions of iterative-differential equations, Funct. Differ. Equ. 5, 463-481 (1998).
[20] Stanek, Svatoslav: Global properties of decreasing solutions of the equation $u^{\prime}(t)=$ $u(u(t))+u(t)$, Funct. Differ. Equ. 4, 191-213 (1997).
[21] Stanek, Svatoslav: On global properties of solutions of functional differential equation $u^{\prime}(t)=u(u(t))+u(t)$, Dynamical Systems and Appl. 4, 263-278 (1995).
[22] N. M. Tuan, N. T. T. Lan: On solutions of a system of hereditary and self-referred partial-differential equations, Numer. Algor., DOI 10.1007/s11075-009-9360 (2010).
[23] P. K. Anh, N. T. T. Lan, N. M. Tuan: Solutions to systems of partial differential equations with weighted self-reference and heredity Electron. J. Diff. Eqns. Vol. 2012(2012), No. 117, pp. 1-14. ISSN: 1072-6691.
[24] V. Volterra: Opere Matematiche: Memorie e note, Vol. V, 1926-1940, Accad. Naz. Lincei. Roma (1962).

