Separation of unitary representations of certain Cartan motion groups

Majdi Ben Halima
Faculty of Sciences at Sfax, Department of Mathematics, University of Sfax Route de Soukra, 3000-Sfax, Tunisia
majdi.benhalima@yahoo.fr

Aymen Rahali

Faculty of Sciences at Gafsa, Department of Mathematics, University of Gafsa Campus Universitaire Sidi Ahmed Zarroug, 2112-Gafsa, Tunisia
aymenrahali@yahoo.fr

Received: 21.4.2014; accepted: 7.7.2014.

Abstract

Let G be a connected semisimple Lie group with finite center, K a maximal compact connected subgroup of G and G_{0} the Cartan motion group associated to the Riemannian symmetric pair (G, K). Under two assumptions on the pair (G, K), we show that every irreducible unitary representation of G_{0} is characterized by a single element in its generalized moment set.

Keywords: Cartan motion group, unitary representation, moment set
MSC 2000 classification: primary 22D05, 22E45, secondary 22E27

Introduction

Let G be a Lie group with Lie algebra \mathfrak{g}. An interesting problem in harmonic analysis is to give a concrete description of the unitary dual \widehat{G} of G, consisting of all equivalence classes of irreducible unitary representations of G. For several classes of Lie groups, such a description is obtained by using coadjoint orbits of the group in the dual \mathfrak{g}^{*} of its Lie algebra \mathfrak{g}. For example, if G is an exponential solvable Lie group, it is well known that the unitary dual \widehat{G} is realized as the space \mathfrak{g}^{*} / G of G-coadjoint orbits (see [5]).

Let $\left(\pi, \mathcal{H}_{\pi}\right)$ be an irreducible unitary representation of G and $\mathcal{H}_{\pi}^{\infty}$ the space of smooth vectors of π. In [11], N. Wildberger defined the moment map Ψ_{π} of π. For all $\xi \in \mathcal{H}_{\pi}^{\infty} \backslash\{0\}$ and X in \mathfrak{g},

$$
\Psi_{\pi}(\xi)(X):=\frac{1}{i} \frac{\langle d \pi(X) \xi, \xi\rangle}{\langle\xi, \xi\rangle},
$$

where $d \pi$ is the derived representation. The moment set I_{π} of π is by definition the closure in \mathfrak{g}^{*} of the image of the moment map $\Psi_{\pi}: \mathcal{H}_{\pi}^{\infty} \backslash\{0\} \longrightarrow \mathfrak{g}^{*}$. As shown in [11], the map $I: \widehat{G} \longrightarrow \mathcal{P}\left(\mathfrak{g}^{*}\right)$ which associates to π its moment set I_{π} is not necessarily injective even for a nilpotent connected simply connected Lie group. Therefore, the map I does not serve as a description of \widehat{G}. In order to obtain an injective map on \widehat{G}, A. Baklouti, J. Ludwig and M. Selmi extended the moment map to the dual of the universal enveloping algebra $\mathcal{U}\left(\mathfrak{g}^{\mathbb{C}}\right)$ of the complexification $\mathfrak{g}^{\mathbb{C}}$ of \mathfrak{g} as follows: For all $A \in \mathcal{U}\left(\mathfrak{g}^{\mathbb{C}}\right)$ and $\xi \in \mathcal{H}_{\pi}^{\infty} \backslash\{0\}$,

$$
\widetilde{\Psi}_{\pi}(\xi)(A):=\mathfrak{R e}\left(\frac{1}{i} \frac{\langle d \pi(A) \xi, \xi\rangle}{\langle\xi, \xi\rangle}\right),
$$

and considered the convex hull $J(\pi)$ of the image of this generalized moment map $\widetilde{\Psi}_{\pi}$:

$$
J(\pi):=\operatorname{Conv}\left(\widetilde{\Psi}_{\pi}\left(\mathcal{H}_{\pi}^{\infty} \backslash\{0\}\right)\right) .
$$

Let \mathcal{U}_{n} be the subspace of $\mathcal{U}(\mathfrak{g})$ consisting of elements of degree less or equal to n. By restriction to \mathcal{U}_{n}, one can define

$$
J^{n}(\pi):=J(\pi) \mid \mathcal{u}_{n}=\left\{\left.F\right|_{\mathcal{u}_{n}} ; F \in J(\pi)\right\} .
$$

In [4], A. Baklouti, J. Ludwig and M. Selmi shown that for all nilpotent Lie group, there exists an integer n such that, for any irreducible unitary representations π and ρ of G, we have

$$
\pi \simeq \rho \Longleftrightarrow J^{n}(\pi)=J^{n}(\rho) .
$$

Later on, in [2], they shown with D. Arnal the following result:
Theorem A. (Separation of unitary representations of exponential Lie groups) Let $G=\exp (\mathfrak{g})$ be an exponential Lie group. Let π and ρ be two irreducible unitary representations of G. Then

$$
\pi \simeq \rho \Longleftrightarrow J(\pi)=J(\rho)
$$

The injectivity of the map J is ultimately proved in [1] for any connected Lie group by using general and sophisticated analytic arguments.

Let now G be a connected semisimple Lie group with finite center and K a maximal compact connected subgroup of G. Let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be the corresponding Cartan decomposition of the Lie algebra \mathfrak{g} of G with $\mathfrak{k}=\operatorname{Lie}(K)$. We can form the semidirect product $G_{0}=K \ltimes \mathfrak{p}$ with respect to the adjoint action of K on \mathfrak{p}. The group G_{0} is called the Cartan motion group associated to the pair (G, K). In this note, it is assumed that the Riemannian symmetric pair (G, K) has rank
one. Furthermore, if \mathfrak{a} is a fixed maximal abelian subspace of \mathfrak{p}, then we shall assume that the centralizer M of \mathfrak{a} in K is connected. Our purpose is to give a simple and effective way to separate the irreducible unitary representations of G_{0}. More precisely, for any irreducible unitary representation (π, \mathcal{H}_{π}) of G_{0}, we associate a special vector ξ_{π} in the space $\mathcal{H}_{\pi}^{\infty} \backslash\{0\}$ and we show the following result:

Theorem B. Let π and ρ be two irreducible unitary representations of G_{0}. Then

$$
\pi \simeq \rho \Longleftrightarrow \widetilde{\Psi}_{\pi}\left(\xi_{\pi}\right)=\widetilde{\Psi}_{\rho}\left(\xi_{\rho}\right)
$$

1 Notation and preliminaries

Let G be a connected semisimple Lie group with finite center and \mathfrak{g} its Lie algebra. We fix a maximal compact connected subgroup K of G and denote by θ the corresponding Cartan involution. Let B be the Killing form of \mathfrak{g}. For $X \in \mathfrak{g}$, we put $\|X\|^{2}:=-B(X, \theta X)$. Notice that $\|\cdot\|$ is a norm on the Lie algebra \mathfrak{g}. Setting $\mathfrak{p}:=\{X \in \mathfrak{g} ; \theta X=-X\}$, we obtain the direct sum decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ where $\mathfrak{k}=\operatorname{Lie}(K)$. It is easy to see that the vector space \mathfrak{p} is $\operatorname{Ad}(K)$ invariant. The semidirect product $G_{0}=K \ltimes \mathfrak{p}$ with respect to the adjoint action of K on \mathfrak{p} is called the Cartan motion group of the pair (G, K). The multiplication rule in this group is given by

$$
\left(k_{1}, X_{1}\right) \cdot\left(k_{2}, X_{2}\right)=\left(k_{1} k_{2}, X_{1}+\operatorname{Ad}\left(k_{1}\right) X_{2}\right) .
$$

The corresponding Lie algebra of G_{0} is denoted by \mathfrak{g}_{0}. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}. The dimension of the real vector space \mathfrak{a} is called the rank of the Riemannian symmetric pair (G, K). Let $C^{+}(\mathfrak{a})$ be a fixed positive Weyl chamber in \mathfrak{a}. An important fact worth mentionning here is that every adjoint orbit of K in \mathfrak{p} intersects the closure $\overline{C^{+}(\mathfrak{a})}$ in exactly one point. A proof of this fact can be found in the standard reference [6].

In the remainder of this note, we shall restrict ourselves to the case where the Riemannian symmetric pair (G, K) has rank one. In this case, we can find a unit vector $H_{0} \in \mathfrak{a}$ such that $C^{+}(\mathfrak{a})=\mathbb{R}_{+}^{*} H_{0}$. Furthermore, we shall assume that the stabilizer $M=\left\{k \in K ; A d(k) H_{0}=H_{0}\right\}$ is connected.

2 Irreducible unitary representations of G_{0}

In the notation introduced above, we summarize the description of the unitary dual of the Cartan motion group $G_{0}=K \ltimes \mathfrak{p}$ via Mackey's little group theory (see $[8,9]$).

Let φ be a non-zero linear form on \mathfrak{p}. We denote by χ_{φ} the unitary character of the vector Lie group \mathfrak{p} given by $\chi_{\varphi}=e^{i \varphi}$. We define the little group S_{φ} at φ to be the stabilizer of φ in K. Let σ be an irreducible unitary representation of S_{φ} on some vector space W. The map

$$
\sigma \otimes \chi_{\varphi}:(k, X) \longmapsto e^{i \varphi(X)} \sigma(k)
$$

is a representation of the semidirect product $S_{\varphi} \ltimes \mathfrak{p}$. Let $L^{2}(K, W)$ be the completion of the vector space of all continuous maps $\eta: K \longrightarrow W$ with respect to the norm

$$
\|\eta\|=\left(\int_{K}\|\eta(k)\|^{2} d k\right)^{\frac{1}{2}}
$$

where $d k$ is a normalized Haar measure on K. Define $L^{2}(K, W)^{\sigma}$ to be the subspace of $L^{2}(K, W)$ consisting of the maps ξ which satisfy the covariance condition

$$
\xi(k h)=\sigma\left(h^{-1}\right) \xi(k)
$$

for $h \in S_{\varphi}$ and $k \in K$. The induced representation

$$
\pi_{\left(\sigma, \chi_{\varphi}\right)}:=\operatorname{Ind}_{S_{\varphi} \ltimes \mathfrak{p}}^{G_{0}}\left(\sigma \otimes \chi_{\varphi}\right)
$$

is realized on $L^{2}(K, W)^{\sigma}$ by

$$
\pi_{\left(\sigma, \chi_{\varphi}\right)}((k, X)) \xi(h)=e^{i \varphi\left(A d\left(h^{-1}\right) X\right)} \xi\left(k^{-1} h\right)
$$

where $(k, X) \in G_{0}, \xi \in L^{2}(K, W)^{\sigma}$ and $h \in K$. By Mackey's theory, we know that the representation $\pi_{\left(\sigma, \chi_{\varphi}\right)}$ is irreducible and that every infinite dimensional irreducible unitary representation of G_{0} is equivalent to some $\pi_{\left(\sigma, \chi_{\varphi}\right)}$. Furthermore, two representations $\pi_{\left(\sigma, \chi_{\varphi}\right)}$ and $\pi_{\left(\sigma^{\prime}, \chi_{\varphi^{\prime}}\right)}$ are equivalent if and only if φ and φ^{\prime} belong to the same sphere centered at 0 and the representations σ and σ^{\prime} are equivalent under the identification of the conjugate subgroups S_{φ} and $S_{\varphi^{\prime}}$. In this way, we obtain all irreducible representations of G_{0} which are not trivial on the normal subgroup \mathfrak{p}. On the other hand, every irreducible unitary representation τ of K extends trivially to an irreducible representation, also denoted by τ, of G_{0} by $\tau(k, X):=\tau(k)$ for $k \in K$ and $X \in \mathfrak{p}$.

For $r \in \mathbb{R}_{+}^{*}$, we denote by χ_{r} the character associated with the linear form φ_{r} on \mathfrak{p} which is defined by

$$
\varphi_{r}(X):=r B\left(H_{0}, X\right)
$$

The stabilizer $S_{\varphi_{r}}$ of φ_{r} is the subgroup $M=Z_{K}\left(H_{0}\right)$. If σ_{μ} is an irreducible representation of M with highest weight μ, then we simply write $\pi_{(\mu, r)}$ instead of $\pi_{\left(\sigma_{\mu}, \chi_{r}\right)}$. From the obove description of $\widehat{G_{0}}$, we can state the following

Proposition 1. The unitary dual of G_{0} is in bijection with the set

$$
\left(\widehat{M} \times \mathbb{R}_{+}^{*}\right) \bigcup \widehat{K}
$$

Concluding this section, let us mention that $\widehat{G_{0}}$ has a complete orbital description. More precisely, Lipsman's orbit method tells us that $\widehat{G_{0}}$ is in bijection with the set of "admissible coadjoint orbits" of G_{0} (see [7] for details).

3 Separation of irreducible unitary representations of G_{0}

We keep the notation of the previous section. Let us fix a positive real $r \in \mathbb{R}_{+}^{*}$ and take S and T to be maximal tori respectively in M and K such that $S \subset T$. Consider an irreducible unitary representation $\sigma_{\mu}: M \longrightarrow U(W)$ with highest weight μ. Then

$$
\pi_{(\mu, r)}=\operatorname{Ind} d_{M \ltimes \mathfrak{p}}^{G_{0}}\left(\sigma_{\mu} \otimes \chi_{r}\right)
$$

is an (infinite-dimensional!) irreducible unitary representation of G_{0}. Recall that $\pi_{(\mu, r)}$ is realized on the Hilbert space $\mathcal{H}_{\mu, r}:=L^{2}(K, W)^{\sigma_{\mu}}$. Let for each $\gamma \in \widehat{K}$, $\left(\tau_{\gamma}, W_{\gamma}^{\prime}\right)$ be a fixed representative. An application of the Peter-Weyl theorem (see, e.g., [10]) yields

$$
\mathcal{H}_{\mu, r} \cong \widehat{\bigoplus_{\gamma \in \widehat{K}}} W_{\gamma}^{\prime} \otimes \operatorname{Hom}_{M}\left(W_{\gamma}^{\prime}, W\right)
$$

Now, we fix an irreducible unitary representation $\tau_{\mu}: K \longrightarrow U\left(W^{\prime}\right)$ with highest weight μ and we realize the representation space W of σ_{μ} as the smallest M-invariant subspace of W^{\prime} that contains the μ-weight space of W^{\prime}. Choosing a normalized highest weight vector w_{μ} in W^{\prime} and an orthonormal basis $\left\{w_{j}\right\}_{j=1, \ldots, d}$ of W, we define a smooth function $\xi_{\mu, r} \in C^{\infty}(K, W)$ by

$$
\xi_{\mu, r}(k):=\left(\frac{d^{\prime}}{d}\right)^{\frac{1}{2}} \sum_{j=1}^{d}\left\langle w_{\mu}, \tau_{\mu}(k) w_{j}\right\rangle w_{j}
$$

where $d^{\prime}=\operatorname{dim}\left(W^{\prime}\right)$. One easily verify that $\xi_{\mu, r}$ is a smooth norm-one vector of the representation $\pi_{(\mu, r)}$.
Remark. Define a linear form $\theta_{\mu} \in \mathfrak{k}^{*}$ by

$$
\theta_{\mu}(A):=-i\left\langle d \tau_{\mu}(A) w_{\mu}, w_{\mu}\right\rangle
$$

for all $A \in \mathfrak{k}$. If we set $\phi_{\mu, r}:=\left(\theta_{\mu}, \varphi_{r}\right)$, then we can see that the stabilizer $G_{0}\left(\phi_{\mu, r}\right)$ of $\phi_{\mu, r}$ in G_{0} is equal to $G_{0}\left(\phi_{\mu, r}\right)=K\left(\phi_{\mu, r}\right) \ltimes \mathfrak{p}\left(\phi_{\mu, r}\right)$. Hence, $\phi_{\mu, r}$ is aligned in the sense of Lipsman (see [7]). A linear functional $\phi \in \mathfrak{g}_{0}^{*}$ is called admissible, if there exists a unitary character χ of the connected component of $G_{0}(\phi)$, such that $d \chi=\left.i \phi\right|_{\mathfrak{g}_{0}}$. Notice that the linear functional $\phi_{\mu, r}$ is admissible and so, according to Lipsman [7], the representation of G_{0} obtained by holomorphic induction from $\phi_{\mu, r}$ is equivalent to the representation $\pi_{(\mu, r)}$.

To simplify notation, denote by $\widetilde{\Psi}_{\mu, r}$ the generalized moment map of the representation $\pi_{(\mu, r)}$.

Lemma 1. For all $(A, X) \in \mathfrak{g}_{0}$, we have:
$\widetilde{\Psi}_{\mu, r}\left(\xi_{\mu, r}\right)((A, X))=-i\left\langle d \tau_{\mu}(A) w_{\mu}, w_{\mu}\right\rangle+\int_{K} \varphi_{r}\left(A d\left(k^{-1}\right) X\right)\left\langle\xi_{\mu, r}(k), \xi_{\mu, r}(k)\right\rangle d k$.
Proof. For $(A, X) \in \mathfrak{g}_{0}$ and $h \in K$, we have:

$$
\begin{aligned}
d \pi_{\mu, r}((A, X)) \xi_{\mu, r}(h) & =\left.\frac{d}{d t}\right|_{t=0} \pi_{\mu, r}\left(\left(\exp _{K}(t A), t X\right)\right) \xi_{\mu, r}(h) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left\{e^{i t \varphi_{r}\left(A d\left(h^{-1}\right) X\right)} \xi_{\mu, r}(h)+\xi_{\mu, r}\left(\exp _{K}(-t A) h\right)\right\} \\
& =i \varphi_{r}\left(\operatorname{Ad}\left(h^{-1}\right) X\right) \xi_{\mu, r}(h)+\left(A \cdot \xi_{\mu, r}\right)(h)
\end{aligned}
$$

Using the Schur orthogonality relations for the compact Lie group K, we get the following equality:

$$
\begin{aligned}
\left\langle A . \xi_{\mu, r}, \xi_{\mu, r}\right\rangle & =\frac{d^{\prime}}{d} \sum_{j=1}^{d} \int_{K}\left\langle\tau_{\mu}(k) w_{j}, w_{\mu}\right\rangle \overline{\left\langle\tau_{\mu}(k) w_{j}, d \tau_{\mu}(A) w_{\mu}\right\rangle} d k \\
& =\left\langle d \tau_{\mu}(A) w_{\mu}, w_{\mu}\right\rangle .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\widetilde{\Psi}_{\mu, r}\left(\xi_{\mu, r}\right)((A, X)) & =\Psi_{\mu, r}\left(\xi_{\mu, r}\right)(A, X) \\
& =-i\left\langle d \tau_{\mu}(A) w_{\mu}, w_{\mu}\right\rangle+\int_{K} \varphi_{r}\left(A d\left(k^{-1}\right) X\right)\left\langle\xi_{\mu, r}(k), \xi_{\mu, r}(k)\right\rangle d k
\end{aligned}
$$

Let us fix an orthonormal basis $\left\{X_{1}, \ldots, X_{p}\right\}$ of \mathfrak{p} with respect to the scalar product $\langle,\rangle_{\mathfrak{p}}:=\left.B\right|_{\mathfrak{p} \times \mathfrak{p}}$, and put

$$
\Delta_{\mathfrak{p}}:=-\sum_{j=1}^{p} X_{j}^{2} .
$$

Obviously, $i \Delta_{\mathfrak{p}}$ is an element of the universal enveloping algebra $\mathcal{U}\left(\mathfrak{g}_{0}^{\mathbb{C}}\right)$ of $\mathfrak{g}_{0}^{\mathbb{C}}$. Given a unit vector $\xi \in \mathcal{H}_{\mu, r}^{\infty} \backslash\{0\}$, we have

$$
\begin{aligned}
d \pi_{(\mu, r)}\left(\Delta_{\mathfrak{p}}\right) \xi(h) & =\left(\sum_{j=1}^{p}\left\langle A d(h) H_{0}, X_{j}\right\rangle_{\mathfrak{p}}^{2}\right) r^{2} \xi(h) \\
& =r^{2} \xi(h)
\end{aligned}
$$

and hence

$$
\widetilde{\Psi}_{\mu, r}(\xi)\left(i \Delta_{\mathfrak{p}}\right)=r^{2}
$$

Definition 1. For $\pi \in \widehat{G_{0}}$, define

$$
\xi_{\pi}:= \begin{cases}\xi_{\mu, r} & \text { if } \pi \simeq \pi_{(\mu, r)} \\ w_{\lambda} & \text { if } \pi \simeq \tau_{\lambda}\end{cases}
$$

Theorem 1. Let π and ρ be two irreducible unitary representations of G_{0}. Then

$$
\pi \simeq \rho \Longleftrightarrow \widetilde{\Psi}_{\pi}\left(\xi_{\pi}\right)=\widetilde{\Psi}_{\rho}\left(\xi_{\rho}\right)
$$

Proof. Assume that $\widetilde{\Psi}_{\pi}\left(\xi_{\pi}\right)=\widetilde{\Psi}_{\rho}\left(\xi_{\rho}\right)$. Since

$$
\widetilde{\Psi}_{\pi}\left(\xi_{\pi}\right)\left(i \Delta_{\mathfrak{p}}\right)= \begin{cases}r^{2} & \text { if } \pi \simeq \pi_{(\mu, r)} \\ 0 & \text { if } \pi \simeq \tau_{\lambda}\end{cases}
$$

we conclude that the irreducible representation (π, ρ) of $G_{0} \times G_{0}$ is unitarily equivalent to a representation either of type $\left(\tau_{\lambda}, \tau_{\lambda^{\prime}}\right)$ or of type $\left(\pi_{(\mu, r)}, \pi_{\left(\mu^{\prime}, r\right)}\right)$.
Case 1. If $(\pi, \rho) \simeq\left(\tau_{\lambda}, \tau_{\lambda^{\prime}}\right)$, then

$$
\widetilde{\Psi}_{\pi}\left(\xi_{\pi}\right)=\widetilde{\Psi}_{\rho}\left(\xi_{\rho}\right) \Leftrightarrow \theta_{\lambda}=\theta_{\lambda^{\prime}}
$$

and hence $\lambda=\lambda^{\prime}$.
Case 2. If $(\pi, \rho) \simeq\left(\pi_{(\mu, r)}, \pi_{\left(\mu^{\prime}, r\right)}\right)$, then we can write

$$
\widetilde{\Psi}_{\mu, r}\left(\xi_{\mu, r}\right)((A, 0))=\widetilde{\Psi}_{\mu^{\prime}, r}\left(\xi_{\mu^{\prime}, r}\right)((A, 0))
$$

for all $A \in \mathfrak{k}$. This implies that $\theta_{\mu}(A)=\theta_{\mu^{\prime}}(A)$ for all $A \in \mathfrak{k}$. Thus we get $\mu=\mu^{\prime}$.

References

[1] L. Abdelmoula, D. Arnal, J. Ludwig, M. Selmi: Separation of unitary representations of connected Lie groups by their moment sets, J. Funct. Anal. 228 (2005), 189-206.
[2] D. Arnal, A. Baklouti, J. Ludwig, M. Selmi: Separation of unitary representations of exponential Lie groups, J. Lie. Th. 10 (2000), 399-410.
[3] D. Arnal, J. Ludwig: La convexité de l'application moment d'un groupe de Lie, J. Funct. Anal. 105 (1992), 256-300.
[4] A. Baklouti, J. Ludwig, M. Selmi: Séparation des représentations unitaires des groupes de Lie nilpotents, in: Lie Theory and its Applications in Physics II (Clausthal, 1997), 7591, World Scientific, Singapore/New Jersey/London, 1998.
[5] B. Bernat, N. Conze, M. Duflo, M. Levy-Nahas, M. Raïs, P. Renouard, M. Vergne: Représentations des Groupes de Lie Exponentiels, Dunod, Paris, 1972.
[6] S. Helgason: Differential geometry, Lie groups and symmetric spaces, Academic press, New York, 1978.
[7] R. L. Lipsman: Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. pures et appl., 59 (1980), 337-374.
[8] G.W. Mackey: The Theory of Unitary Group Representations, Chicago University Press, 1976.
[9] G.W. Mackey: Unitary Group Representations in Physics, Probability and Number Theory, Benjamin-Cummings, 1978.
[10] N. Wallach: Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.
[11] N. Wildberger: Convexity and unitary representations of nilpotent Lie groups, Invent. Math. 98 (1989), 281-292.

