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Introduction

Fix a line L ⊂ Pr, r ≥ 2, and P ∈ L. A tangent vector of Pr with P
as its support is a zero-dimensional scheme Z ⊂ Pr such that deg(Z) = 2 and
Zred = {P}. The tangent vector Z is uniquely determined by P and the line 〈Z〉
spanned by Z. Conversely, for each line D ⊂ Pr with P ∈ D there is a unique
tangent vector v with vred = P and 〈v〉 = D. A +line M ⊂ Pr supported by L
and with a nilradical at P is the union v∪L of L and a tangent vector v with P
as its support and spanning a line 〈v〉 6= L. The set of all +lines of Pr supported
by L and with a nilradical at P is an irreducible variety of dimension r− 1 (the
complement of L in the (r − 1)-dimensional projective space of all lines of Pr
containing P ). Hence the set of all +lines of Pr supported by L is parametrized
by an irreducible variety of dimension r. Therefore the set of all +lines of Pr
is parametrized by an irreducible variety of dimension 2(r − 1) + r = 3r − 1.
Now assume r ≥ 3. For all integers t ≥ 0 and c ≥ 0 let L(r, t, c) be the set of all
disjoint unions X ⊂ Pr of t lines and c +lines. If (t, c) 6= (0, 0), then L(r, t, c) is
an irreducible variety of dimension (t + c)(2r − 1) + cr. Fix any X ∈ L(r, t, c)
and any integer k > 0. It is easy to check that h0(OX(k)) = (k + 1)(t + c) + c
and hi(OX(k)) = 0 for all i > 0 (Lemma 2). A closed subscheme E ⊂ Pr is
said to have maximal rank if for every integer k > 0 either h0(IE(k)) = 0 or
h1(IE(k)) = 0, i.e. h0(IE(k)) = max{0,

(
r+k
r

)
− h0(OE(k))}.
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Theorem 1. Fix integers r ≥ 3, t ≥ 0 and c ≥ 0 such that (t, c) 6= (0, 0). If
r ≥ 4, then assume that the characteristic is zero. Then a general X ∈ L(r, t, c)
has maximal rank.

We prove Theorem 1 for r = 3 in arbitrary characteristic, while we assume
characteristic zero if r ≥ 4. We also get intermediate results (e.g. Br,k) that
may be useful as a sample of lemmas which may be proved with +lines. We see
+lines as a tool to prove something involving the Hilbert function of unions of
curves and fat points. For an alternative approach to such disjoint unions, see
Remark 1.

1 Preliminaries

Remark 1. Fix a line L ⊂ Pn, n ≥ 2, and a linear system V ⊆ H0(OPn(k)).
Let L(1) be the first infinitesimal neighborhood of L in Pn, i.e. the closed sub-
scheme of Pn with (IL)2 as its ideal sheaf. Let A be any +line with L as its
support. For any closed subscheme B ⊂ Pn set V (−B) := {f ∈ V : f|B ≡ 0}.
The +line A gives independent conditions to V with the only restriction of that
L is the support of L if either V (L) = {0} or dim(V (−A)) = dim(V (−L))− 1.
A general +lines with L as its supports does not give independent conditions to
V with the only restriction that L is its support if and only if V (−L) 6= {0} and
V (−L(1)) = V (−L). Now assume dim(V (−L(1))) = dim(V (−L)) − γ for some
γ > 0. The integer γ is the maximal number of tangent vectors v1, . . . , vγ of Pn
supported by points of L and imposing independent conditions to V (−L) (with
the restriction that their support is a point of L). So if we only need an integer
t + c ≥ 2, t + c disjoint lines and x ≥ 2 tangent vectors supported by some of
these lines we may decide to put more than one tangent vector on a single line.

Lemma 1. Let X ⊂ Pr be a closed subscheme such that the nilradical sheaf
η ⊆ OX is supported by finitely many points. Set Y := Xred and fix k ∈ N.
Then:

(1) χ(OX(k)) = χ(OY (k)) + deg(η);

(2) h0(IX(k)) ≤ h0(IY (k)) ≤ h0(IX(k)) + deg(η);

(3) h1(IY (k)) ≤ h1(IX(k)) ≤ h1(IY (k)) + deg(η);

(4) h0(IX(k))− h1(IX(k)) = h0(IY (k))− h1(IY (k))− deg(η).

Proof. By the definition of the reduction of a scheme the sheaf η is the ideal
sheaf of Y in X. We have exact sequence (respectively of OX -sheaves and of
OPr -sheaves):

0→ η → OX(k)→ OY (k)→ 0 (1)



Decorated lines 3

0→ IX(k)→ IY (k)→ η → 0 (2)

Since η is supported by finitely many points, we have hi(η) = 0 for all i > 0 and
deg(η) = h0(η). Use the cohomology exact sequences of (1) and (2). QED

Remark 2. Fix integers r ≥ 3, t ≥ 0 and c > 0. Fix A ∈ L(r, t, c), D ∈
L(r, t+ c, 0) and set B := Ared.

(1) We have B ∈ L(r, t + c, 0). If A is general in L(r, t, c), then B is general
in L(r, t+ c, 0).

(2) Assume that D is general in L(r, t + c, 0) and fix a decomposition D =
D1 t D2 with D1 ∈ L(r, t, 0) and D2 ∈ L(r, c, 0). Let E be a general
element of L(r, 0, c) with Ered = D2. Then D1 is general in L(r, t, 0), D2

is general in L(r, c, 0) and D1 ∪ E is general in L(r, t, c).

Lemma 1 and Remark 2 give the following result.

Lemma 2. Fix integers r ≥ 3, t ≥ 0 and c > 0. Fix X ∈ L(r, t, c) and
set Y := Xred. We have Y ∈ L(r, t + c, 0). If A is general in L(r, t, c), then
B is general in L(r, t + c, 0). For each integer k > 0 we have h1(OX(k)) = 0,
h0(OX(k)) = (t + c)(k + 1) + c, h0(IY (k)) − c ≤ h0(IX(k)) ≤ h0(IY (k)) and
h1(IY (k)) ≤ h1(IX(k)) ≤ h1(IY (k)) + c.

For all integers r ≥ 3 and k ≥ 0 let Hr,k denote the following statement:

Assertion Hr,k, r ≥ 3, k ≥ 0: Fix (t, c) ∈ N2 \ {(0, 0)} and take a

general X ∈ L(r, t, c). If (k + 1)t + (k + 2)c ≥
(
r+k
k

)
, then h0(IX(k)) = 0. If

(k + 1)t+ (k + 2)c ≤
(
r+k
k

)
, then h1(IX(k)) = 0.

Lemma 3. Fix a general X ∈ L(r, t, c). If 2t+3c ≤ r+1, then h1(IX(1)) =
0. If 2t+ 3c ≥ r + 1, then h0(IX(1)) = 0.

Proof. Since the case c = 0 is obvious, we may assume c > 0 and use induction
on c. Fix a general Y ∈ L(r, t, c−1) and write X = Y tA with A a general +line
of Pr. If 2t+3(c−1) ≥ r−1, we immediately see that h0(IY ∪Ared(1)) = 0. Hence
h0(IX(1)) = 0. Hence we may assume 2t+ 3(c− 1) ≤ r− 2. Let M ⊂ Pr be the
(2t + 3c − 4)-dimensional linear subspace spanned by Y . Since A is general, it
spans a plane N such that M ∩N = ∅. Hence h0(IY ∪A(1)) = h0(IY (1))− 3 =
r + 1− 2t− 3c. QED

Remark 3. Fix an integer r ≥ 3. By the definition of maximal rank and
the irreducibility of each L(r, t, c) Theorem 1 is true for the integer r if and only
if all Hr,k are true. Since Hr,0 is obviously true, to prove Theorem 1 in Pr it is
sufficient to prove Hr,k for all k > 0. Lemma 3 says that Hr,1 is true.
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Remark 4. Fix integers r ≥ 3 and k > 0 and suppose you want to prove
Hr,k. Fix (t, c) ∈ N2 \ {(0, 0)}. First assume t > 0 and (k+ 1)(t+ c) + c <

(
r+k
r

)
.

Hence (k+ 1)(t+ c) + (c+ 1) ≤
(
r+k
r

)
. Suppose that h1(IX(k)) = 0 for a general

X ∈ L(r, t−1, c+1). Then h1(IY (k)) = 0 for a general Y ∈ L(r, t, c) (Lemma 1).
Now assume c > 0 and (k+1)(t+ c)+ c >

(
r+k
r

)
and so (k+1)(t+ c)+(c−1) ≥(

r+k
r

)
. Suppose that h0(IA(k)) = 0 for a general A ∈ L(r, t + 1, c − 1). Then

h0(IB(k)) = 0 for a general B ∈ L(r, t, c). Therefore to prove Hr,k it is sufficient

to test all (t, c) such that either (k + 1)(t + c) + c =
(
k+r
r

)
or t = 0 and

(k + 2)c <
(
k+r
r

)
or c = 0 and (k + 1)t >

(
r+k
r

)
. We do not need to test

the pairs (t, 0) by [6]. Among the pairs (0, c) with (k+2)c ≤
(
r+k
r

)
it is sufficient

to test the ones with
(
r+k
r

)
− k − 1 ≤ (k + 2)c ≤

(
r+k
r

)
.

For all integers r ≥ 3 and k ≥ 0 define the integers mr,k and nr,k by the
relations

(k + 1)mr,k + nr,k =

(
r + k

k

)
, 0 ≤ nr,k ≤ k (3)

Remark 5. Fix integers r ≥ 3 and k > 0. Since mr,k ≤ k and k(k + 1) ≤(
k+3

3

)
≤
(
r+k
r

)
, we get mr,k ≥ nr,k.

For all integers r ≥ 3 and k ≥ 0 set ur,k := d
(
r+k
r

)
/(k + 2)e and vr,k :=

(k + 2)ur,k −
(
r+k
r

)
.

Notice that

(k + 2)(ur,k − vr,k) + (k + 1)vr,k =

(
r + k

r

)
(4)

and that 0 ≤ vr,k ≤ k + 1.

For all integers k > 0 let Ar,k denote the following assertion:

Assertion Ar,k, k > 0: Let X ⊂ Pr be a general union of vr,k lines and
ur,k − vr,k +lines. Then h0(IX(k)) = 0.

2 The proof in P3

In this section we prove the case r = 3 of Theorem 1.

Lemma 4. Fix integers a ≥ 0, b ≥ 0, y ≥ 0. Let Z ⊂ Q be a general
union of y tangent vectors. Then h0(IZ(a, b)) = max{0, (a+ 1)(b+ 1)−2y} and
h1(IZ(a, b)) = max{0, 2y − (a+ 1)(b+ 1)}.

Proof. By the semicontinuity theorem for cohomology ([5], III.12.8) it is suffi-
cient to find a disjoint unionW ⊂ Q of y tangent vectors such that h0(IW (a, b)) =
max{0, (a + 1)(b + 1) − 2y}. It is obviously sufficient to do it for the integers
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y = b(a+1)(b+1)c and y = d(a+1)(b+1)/2e. First assume a odd. Let L0, . . . , Lb
be b+1 distinct lines of type (0, 1). Let Ei ⊂ Li be any disjoint union of (a+1)/2
tangent vectors. In this case we may take W = E1 ∪ · · · ∪ Eb. In the same way
we conclude if b is odd. Hence we may assume that both a and b are even. If
b = 0, then take y tangent vectors of L0. Similarly we conclude if a = 0. Hence
we may assume a ≥ 2 and b ≥ 2 and use induction on a. It is obviously suffi-
cient to check the integers y such that 2y ≥ (a + 1)(b + 1) − 1. Fix a smooth
C ∈ |OQ(2, 2)|. C is a smooth elliptic curve and in particular it is irreducible.
Take a general S ⊂ C with ](S) = a+b. Let W ⊂ C be the union of the 2-points
of C with the points of S as their support, i.e. the degree 2a+2b effective divisor
of C in which each point of S appears with multiplicity two. Let W ′ ⊂ Q be a
union of y − a− b general tangent vectors. Set Z := W ∪W ′. By the inductive
assumption we have h0(IW ′(a−2, b−2)) = max{0, (a−1)(b−1)−2y+2a+2b},
i.e. h0(IW ′(a−2, b−2)) = max{0, (a+1)(b+1)−2y} and h1(IW ′(a−2, b−2)) =
max{0, 2y − (a + 1)(b + 1)}. There are only finitely many (four in characteris-
tic 6= 2, one or two in characteristic 2) line bundles R with R⊗2 ∼= OC(a, b).
Since C has genus > 0 for general S the line bundle OC(S) is not one of them.
Hence W /∈ |OC(a, b)|. Since deg(W ) = deg(OC(a, b)), Riemann-Roch gives
hi(C,OC(a, b)(−W )) = 0, i = 0, 1. Since ResC(Z) = W ′, the Castelnuovo’s
sequence gives hi(IZ(a, b)) = hi(IW ′(a− 2, b− 2)). QED

We have u3,k := d(k + 3)(k + 1)/6e and v3,k := (k + 2)u3,k −
(

3+k
3

)
. Write

k = 6m + b with 0 ≤ b ≤ 5. We have u3,6m = 6m2 + 4m + 1, v3,6m = 3m + 1,
u3,6m+1 = 6m2 + 6m+ 2, v3,6m+1 = 4m+ 2, u3,6m+2 = 6m2 + 8m+ 3, v3,6m+2 =
3m + 2, u3,6m+3 = 6m2 + 10m + 4, v3,6m+3 = 0, u3,6m+4 = 6m2 + 12m + 6,
v3,6m+4 = m + 1, u3,6m+5 = 6m2 + 14m + 8, v3,6m+5 = 0. The construction
below works (in particular Lemma 6) only because u3,6m+7−v3,6m+7 ≥ u3,6m+5−
v3,6m+5 (both sides of the inequality are equal to u3,6m+5 = 6m2 + 14m + 8).
Without this inequality we would have needed a longer proof. In general we
need u3,k+2 − v3,k+2 ≥ u3,k − v3,k for all k > 0, but only in the case k = 6m+ 5
the right hand side is not much bigger than the left hand side.

Let Q ⊂ P3 be a smooth quadric surface. We have Pic(Q) ∼= Z2 and we take
two distinct, but intersecting, lines contained in Q as a basis of Pic(Q). We will
call |OQ(1, 0)| and |OQ(0, 1)| the two rulings of Q and call any D ∈ |OQ(a, b)| a
divisor (or a curve) of type (a, b). Fix a line L ⊂ Q, P ∈ L and let γ be the set of
all +lines A ⊂ P3 with L as their support and P as the support of the nilradical
sheaf of OA. The set γ is the complement of a point in a two-dimensional
projective space (it is P(TPP3) \ P(TPL)). The set γ′ of all A ∈ γ contained
in Q is the line P(TPQ) minus the point P(TPL). If A ∈ γ′, then A ⊂ Q and
ResQ(A) = ∅. If A /∈ γ′, then A ∩Q = L (as schemes) and ResQ(A) = {P} (as
schemes). Now take A ⊂ Q, see L as a divisor of Q; we have ResL(A) = {P}.
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Lemma 5. Ar,1 and A3,2 are true.

Proof. Ar,1 is is true by Remark 3.

We have v3,2 = 2 and u3,2−v3,2 = 1. Take any B = L1tL2tL3 ∈ L(3, 3, 0).
B is contained in a unique quadric surface, Q′, and Q′ is a smooth quadric. Let
A ⊂ P3 be a general +line with L3 as its support. We have L1∪L2∪A ∈ L(3, 2, 1).
Since A * Q′, we have h0(IL1∪L2∪A(2)) = 0. QED

Of course, Ar,k makes sense only if ur,k − vr,k ≥ 0; this is the reason why
we didn’t defined Ar,0. By the semicontinuity theorem for cohomology ([5],
III.12.8) to prove A3,k it is sufficient to find A ∈ L(3, v3,k, u3,k − v3,k) such
that h0(IA(k)) = 0. Fix an integer k > 0 and let X ⊂ P3 be a general union
of v3,k lines and u3,k − v3,k +lines. We have h0(OX(k)) = (u3,k − v3,k)(k + 2) +

v3,k(k+1) =
(
k+3

3

)
, the latter equality being true by the definition of the integer

v3,k. Hence h1(IX(k)) = h0(IX(k)).

Lemma 6. A3,k ⇒ A3,k+2 for all k > 0.

Proof. We have 0 ≤ u3,k+2 − u3,k ≤ k + 2.

(a) First assume v3,k+2 ≥ v3,k, i.e. k ≡ 0, 3, 4, 5 (mod 6). Notice that in all
cases we have u3,k− v3,k ≤ u3,k+2− v3,k+2 (we even have equality if k = 6m+ 5,
because u3,6m+7 = 6m2 +18m+14, v3,6m+7 = 4m+6, u3,6m+5 = 6m2 +14m+8
and v3,6m+5 = 0). Let L1 ⊂ Q be the union of v3,k+2 − v3,k distinct lines of
type (1, 0) and L2 ⊂ Q the union of (u3,k+2 − v3,k+2) − (u3,k − v3,k) distinct
lines of type (1, 0) with L1 ∩ L2 = ∅. Let A2 ⊂ Q be the union of (u3,k+2 −
v3,k+2)−(u3,k−v3,k) general +lines contained in Q and with the lines of L2 as its
support. Let S2 ⊂ L2 be the support of the nilradical of OA2 . Take a general Y ∈
L(3, v3,k, u3,k−v3,k). For general Y we have Y ∩(L1∪L2) = ∅ and so Y ∪A2∪L1 ∈
L(3, v3,k+2, u3,k+2−v3,k+2). By the semicontinuity theorem for cohomology ([5],
III.12.8) it is sufficient to prove h0(IY ∪A2∪L1(k)) = 0. Since ResQ(Y ∪A2∪L1) =
Y and h0(IY (k−2)) = 0, it is sufficient to prove h0(Q, IQ∩(Y ∪A2∪L1)(k+2)) = 0.
Since L1 ∪ L2 ⊂ (Y ∩ Q) ∪ A2 ∪ L1 and L1 ∪ L2 ∈ |OQ(u3,k+2 − u3,k, 0)|, it is
sufficient to prove h0(Q, IResL1∪L2

((Y ∩Q)∪A2∪L1)(k+2−u3,k+2+u3,k, k+2)) = 0.

We have ResL1∪L2((Y ∩ Q) ∪ A2 ∪ L1) = (Y ∩ Q) ∪ S2. For general A2 the set
S2 is a set containing a general point of (u3,k+2 − v3,k+2)− (u3,k − v3,k) general
lines of type (1, 0) and nothing else. Hence S2 may be considered as a general
union of (u3,k+2 − v3,k+2) − (u3,k − v3,k) points of Q. For general Y the set
Y ∩ Q is a general subset of Q with cardinality 2u3,k. Hence it is sufficient
to check that ]((Y ∩ Q) ∪ S2) = h0(Q,OQ(k + 2 − u3,k+2 + u3,k, k + 2)), i.e.
2u3,k + (u3,k+2 − v3,k+2) − (u3,k − v3,k) = (k + 3 − u3,k+2 + u3,k)(k + 3), i.e.
2u3,k + (k+ 2)(u3,k+2− u3,k) = (k+ 3)2 + v3,k+2− v3,k. Taking the difference of
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(4) for the integer k′ = k + 2 from (4) and using that
(
k+5

3

)
−
(
k+3

3

)
= (k + 3)2

we get 2u3,k + (k + 2)(u3,k+2 − u3,k) = (k + 3)2 + v3,k+2 − v3,k, as wanted.

(b) Now assume v3,k+2 < v3,k, i.e. k ≡ 1, 2 (mod 6). Take a general Y ∈
L(3, v3,k, u3,k − v3,k) and write Y = E ∪F with E ∈ L(3, v3,k+2, u3,k − v3,k) and
F ∈ L(3, v3,k−v3,k+2, 0). For general Y we have h0(IY (k)) = 0 (by the inductive
assumption) and Y ∩Q is a general subset of Q with cardinality 2u3,k. For each
line L ⊆ F fix one of the point PL ∈ L∩Q and call vL a general tangent vector of
Q at PL. Let AL = L∪ vL ⊂ P3 be the +lines with L as its reduction, PL as the
support of its nilradical and containing vL. Set G := ∪L∈FAL. Let M ⊂ Q be a
union of u3,k+2−u3,k general lines of type (1, 0). Let N ⊂ Q be a general union
of u3,k+2−u3,k +lines with M as the union of their support. We have E∪G∪N ∈
L(3, v3,k+2, u3,k+2−v3,k+2). Since ResQ(E∪G∪N) = Y and h0(IY (k)) = 0, it is
sufficient to prove h0(Q, IQ∩(E∪G∪N)(k+ 2, k+ 2)). Since M ⊂ Q∩ (E∪G∪N),
it is sufficient to prove h0(Q, IResM (Q∩(E∪G∪N))(k+2−u3,k+2 +u3,k, k+2)) = 0.
The scheme G∩Q is a general union δ of v3,k tangent vectors of Q and a general
union of v3,k − v3,k+2 points of Q; we do not want to use here that general
tangent vectors gives the maximal possible number of conditions to any linear
system, because it requires characteristic zero ([4], [1], Lemma 1.4); however,
since v3,k ≤ 2(k+2)/3, it is obvious that h1(Q, Iδ(k+2−u3,k+2+u3,k, k+2)) = 0;
alternatively, use Lemma 4. Set S := ResM (N). The set S contains one point for
each line of M and it is general with this condition. Since M is a general union
of u3,k+2 − u3,k lines of type (1, 0), S may be considered as a general subset of
Q with its cardinality. The set E ∩Q is a general subset of Q with cardinality
2u3,k−2v3,k+2. Since 2(v3,k−v3,k+2)+(v3,k−v3,k−2)+(u3,k+2−u3,k)+2(u3,k−
v3,k+2) = (k + 3− u3,k+2 + u3,k)(k + 3), we are done. QED

Lemma 7. For all integers k > 0 and c > 0 such that c(k + 2) ≤
(
k+3

3

)
we

have h1(IX(k)) = 0 for a general X ∈ L(3, 0, c).

Proof. If k = 1, then c = 1. The lemma is obvious in this case.

Now assume k = 2. It is sufficient to do the case c = 2. Take A = A1 ∪A2 ∈
L(3, 0, 2) with L1 and L2 two different lines of type (1, 0) of Q, A1 ⊂ Q and
general with these restrictions, A2 * Q and general among the +lines supported
by Q. We get h0(Q,OQ∩A(2)) = 2 and h0(IResQ(A)) = 0, because ResQ(A) 6= ∅.

From now on we assume k ≥ 3. Lemmas 5 and 6 give that A3,k−2 and A3,k

are true. We have c ≤ u3,k and c ≤ u3,k − 1 if v3,k > 0. If c ≤ u3,k − v3,k,
then we may use A3,k. In particular we are done if v3,k = 0. Hence we may
assume v3,k > 0. In this case it is sufficient to do the case c = u3,k − 1. Fix a
general Y ∈ L(3, v3,k−2, u3,k−2 − v3,k−2). We have hi(IY (k − 2)) = 0, i = 0, 1,
by A3,k−2. We mimic part (b) of the proof of Lemma 6. Write Y = E t F
with E ∈ L(3, 0, u3,k − v3,k) and F ∈ L(3, v3,k, 0). For each line L ⊆ F fix
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one of the point PL ∈ L ∩ Q and call vL a general tangent vector of Q at
PL. Let AL = L ∪ vL ⊂ P3 be the +line with L as its reduction, PL as the
support of its nilradical and containing vL. Set G := ∪L∈FAL. Let M ⊂ Q be
a union of u3,k+2 − u3,k − 1 general lines of type (1, 0). Let N ⊂ Q be a general
union of u3,k+2 − u3,k − 1 +lines with M as the union of their support. Take
X := E∪G∪N ∈ L(3, 0, u3,k−1). Since v3,k ≤ k+1, as in part (b) of the proof
of Lemma 6 we get h1(Q, IX∩Q(k)) = 0 and hence h1(IX(k)) = 0. QED

Proof of Theorem 1 for r = 3: It is sufficient to prove H3,k for all k ≥ 2
(Remark 3). Fix an integer k > 0. It is sufficient to check the Hilbert function in
degree k of a general element of L(3, t, c) with either t = 0 and (k+ 2)c ≤

(
k+3

3

)
or (k + 1)t + (k + 2)c =

(
k+3

3

)
(Remark 4). By Lemma 7 it is sufficient to

check the pairs (t, c) with t > 0 and (k + 1)t+ (k + 2)c =
(
k+3

3

)
, i.e. (since the

integers k + 1 and k + 2 are coprime) the pairs (t, c) with t = v3,k + (k + 2)α,
c = u3,k − v3,k − (k+ 1)α for some non-negative integer α such that (k+ 1)α ≤
u3,k − v3,k. By [6] we may assume c > 0. By Lemma 6 we may assume t > v3,k.
Since v3,2 = 2, u3,2 = 3 and A3,2 is true (Lemma 5), we may assume k ≥ 3. By
induction on k we may assume that hi(IW (k − 2)) = 0, i = 0, 1, for a general
W ∈ L(3, t′, c′) for all non-negative integers t′, c′ such that (k−1)t′+kc′ =

(
k+1

3

)
.

Fix a general Y ∈ L(3,m3,k−2 − n3,k−2, n3,k−2). We have hi(IY (k − 2)) = 0,
i = 0, 1.

Claim 1: We have t+ c ≥ m3,k−2.

Proof of Claim 1: Assume t+ c ≤ m3,k−2 − 1, i.e. assume (k− 1)(t+ c) +

k − 1 ≤
(
k+1

3

)
. Since (k + 1)t + (k + 2)c =

(
k+3

3

)
, we get (k + 2)/(k − 1) >(

k+3
3

)
/
(
k+1

3

)
= (k + 3)(k + 2)/k(k − 1), a contradiction.

Claim 2: We have c ≥ n3,k−2.

Proof of Claim 2: If k − 2 ≡ 0, 1 (mod 3), then n3,k−2 = 0. If k − 2 ≡ 2
(mod 3), then n3,k−2 = (k − 1)/3. Hence we may assume k ≡ 4 (mod 3). Since

n3,k = 0, c > 0 and (k + 1)t + (k + 2)c =
(
k+3

3

)
, we get c = β(k + 1) for some

integer β > 0. Hence c ≥ k + 1 > n3,k−2.

Notice that m3,k−2 ≥ n3,k−2. Fix a general Y ∈ L(3,m3,k−2−n3,k−2, n3,k−2).
By the inductive assumption we have hi(IY (k − 2)) = 0, i = 0, 1. Set e :=
t + c −m3,k−2. Claim 1 gives e ≥ 0. Take a general union M ⊂ Q of e lines of
type (1, 0).

(a) Assume c − n3,k−2 ≤ e. Claim 2 gives c − n3,k−2 ≥ 0. Write M =
M1 tM2 with M2 a union of c−n3,k−2 lines and M1 a union of e− (c−n3,k−2)
lines. Let A2 ⊂ Q be a general union of c − n3,k−2 +lines with the lines in
M2 as their support. Let S2 be the support of the nilpotent sheaf of A2. Since
A2 is general, S2 is obtained taking for each line L ⊆ M2 a general point of
L. Set X := Y ∪M1 ∪ A2. Since X ∈ L(3, t, c), it is sufficient to prove that
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h1(IX(k)) = 0. Since ResQ(X) = Y and h1(IY (k − 2)) = 0, it is sufficient to
prove that h1(Q, IX∩Q(k)) = 0. Since ResM (X∩Q) = (Y ∩Q)∪S2, it is sufficient
to prove that h1(Q, I(Y ∩Q)∪S2

(k − e, k)) = 0. Since M2 is general and for each
line L ⊂M2 the set S2∩L is a general point of L, S2 is a general subset of Q with
cardinality c−n3,k−2. Since Y is general, the set (Y ∩Q)∪S2 is a general subset

of Q of cardinality 2m3,k−2 + c− n3,k−2. Since (k − 1)m3,k−2 + n3,k−2 =
(
k+1

3

)
,

(k + 1)t + (k + 2)c =
(
k+3

3

)
,
(
k+3

3

)
−
(
k+1

3

)
= (k + 1)2 and e = t + c −m3,k−2,

we have 2m3,k−2 + (k + 1)e + c − n3,k−2 = (k + 1)2, i.e. ](S2 ∪ (Y ∩ Q)) =
(k + 1)(k + 1− e) = h0(Q,OQ(k − e, k)). Hence hi(Q, I(Y ∩Q)∪S2

(k − e, k)) = 0,
i = 0, 1.

(b) Now assume c − n3,k−2 > e. For each line R ⊆ M fix a general
OR ∈ R and call vR a general tangent vector of Q with OR as its support.
Set R+ := R ∪ vR, M+ := ∪R⊆MR+ and S := ∪R⊆MOR. Since M is general
and each OR is general in R, S is a general subset of Q with cardinality e.
We have M+ ⊂ Q and hence M+ ∩ Q = M+ and ResQ(M+) = ∅. Set g :=
c−n3,k−2−e. Since e = t+c−m3,k−2, we get m3,k−2−n3,k−2 = g+ t > t. Write
Y = Y1 t Y2 with Y2 ∈ L(3, 0, n3,k−2) and Y1 ∈ L(3,m3,k−2 − n3,k−2, 0). Since
m3,k−2 − n3,k−2 = g+ t ≥ t, we may write Y1 = Y3 t Y4 with Y3 ∈ L(3, t, 0) and
Y4 ∈ L(3, g, 0). For each line L ⊆ Y4 fix one of the two points, say OL, of L∩Q
and let wL be a general tangent vector of Q with OL as its support; set L+ :=
L ∪ wL ∈ L(3, 0, 1). Set Y4

+ := ∪L⊆Y4L+ and X ′ := M+ ∪ Y4
+ ∪ Y2 ∪ Y3. Since

X ′ ∈ L(3, t, c), it is sufficient to prove that h1(IX′(k)) = 0. Since ResQ(X ′) = Y
and h1(IY (k−2)) = 0, by the Castelnuovo’s sequence it is sufficient to prove that
h1(Q, IX′∩Q(k)) = 0. The scheme X ′∩Q is the union of M+ and (Y3∪Y4

+)∩Q.
We have ResM (M+ ∪ (Y3 ∪ Y4

+) ∩Q) = S ∪ ((Y \ Y4) ∩Q) ∪
⋃
L⊆Y4 wL. Since

Y ∩ Q is a general subset of Q with cardinality 2m3,k−2, the scheme Z :=
S ∪ ((Y \ Y4) ∩Q) ∪

⋃
L⊆Y4 wL is a general union of g tangent vectors of Q and

e + 2m3,k−2 − g points of Q. By the Castelnuovo’s sequence it is sufficient to
prove that h1(Q, IZ(k − e, k)) = 0. By Lemma 4 it is sufficient to check that
deg(Z) ≤ (k−e+1)(k+1). By (3) for the integers r = 3 and k′ = k−2 and the
equality (k+ 1)t+ (k+ 2)c =

(
k+3

3

)
we get deg(Z) = (k+ 1)(k− e+ 1). QED

3 When r > 3

In this section we prove Theorem 1 for all integers r ≥ 4. For numerical
reasons this is easier than in the case r = 3 (as it was in [6] and [2]). The proof
in characteristic zero is very short and we will only give it.

Lemma 8. For all integers r ≥ 3 and k ≥ 2 we have mr,k−1 < ur,k.
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Proof. We have kmr,k−1 ≤
(
k+r−1
r

)
and (k + 2)ur,k ≥

(
r+k
r

)
. Note that(

r + k

r

)/(r + k − 1

r

)
= (r + k)/k

and that (r + k)k > (k + 2)k for all r ≥ 3. QED

We need the following assumption Br,k:

Br,k, r ≥ 4, k > 0. Fix a hyperplane H ⊂ Pr. There is X ∈ L(r,mr,k −
nr,k, nr,k) such that the support of the nilradical sheaf of X is contained in H
and h0(IX(k)) = 0.

For all X ∈ L(r,mr,k − nr,k, nr,k) we have h0(OX(k)) =
(
r+k
r

)
and so

h1(IX(k)) = h0(IX(k)).

Lemma 9. For all integers r ≥ 4 and k ≥ 2 we have mr,k ≥ mr,k−1.

Proof. We have

mr,k−1 + (k + 1)(mr,k −mr,k−1) + nr,k − nr,k−1 =

(
r + k − 1

r − 1

)
(5)

Assume mr,k ≤ mr,k−1 − 1. Since nr,k − nr,k−1 ≤ k, (6) gives

mr,k−1 − 1 ≥
(
r + k − 1

r − 1

)
Since kmr,k−1 ≤

(
r+k−1
r

)
and k

(
r+k−1
r−1

)
= r
(
r+k−1
r

)
, we get −k ≥ (r−1)

(
r+k−1
r−1

)
,

a contradiction. QED

Lemma 10. Fix an integer r ≥ 4 and assume that Theorem 1 is true in
Pr−1. Then Br,k is true for all k > 0.

Proof. Br,1 is true by Remark 3. Hence we may assume k ≥ 2 and that Br,k−1 is
true. Fix Y ∈ L(r,mr,k−1−nr,k−1, nr,k−1) such that the support of the nilradical
sheaf of Y is contained in H and h0(IY (k − 1)) = 0. By the semicontinuity
theorem for cohomology ([5], III.12.8) we may assume that Y is general among
the elements of L(r,mr,k−1 − nr,k−1, nr,k−1) whose nilradical sheaf is supported
by points of H. Hence we may assume that no irreducible component of Yred
is contained in H, that Yred is a general subset of H with cardinality mr,k−1

and that for each +line A ⊂ Y , say A = L ∪ vL, the tangent vector vL of A is
not contained in H. The latter assumption implies Yred ∩H = Y ∩H (scheme-
theoretic intersection) and ResH(Y ) = Y . We have mr,k ≥ mr,k−1 (Lemma
9).
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(a) In this step we assume nr,k < nr,k−1. Let F ⊂ H be a general union
of mr,k − mr,k−1 lines, with the only restriction that exactly nr,k−1 − nr,k of
them contain a point of Yred ∩H. We have mr,k−1 − nr,k−1 − (nr,k−1 − nr,k) +
mr,k − mr,k−1 = mr,k − 2nr,k−1 + nr,k. The scheme Y ∪ F is a disjoint union
of nr,k−1 − nr,k sundials, nr,k +lines and mr,k − 2nr,k−1 + nr,k lines. Since a
sundial is a flat limit of a family of elements of L(r, 2, 0) ([2]), it is sufficient
to prove h0(IY ∪F (k)) = 0. Since the set Yred ∩ H is general in H, F may be
considered as a general union of lines. Hence F has maximal rank. By (5) we
have h1(H, IF (k)) = 0 and h0(H, IF (k)) = mr,k−1 − nr,k−1 + nr,k. Since for
fixed Yred ∩ H ∩ F we may deform the other components of Y so that the
other mr,k−1 − nr,k−1 + nr,k points of Yred ∩ (H \ F ) are general in H, then
hi(H, IH∩(Y ∪F )(k)) = 0. Castelnuovo’s sequence gives h0(IY ∪F (k)) = 0.

(b) In this step we assume nr,k ≥ nr,k−1 and mr,k − nr,k ≥ mr,k−1 −
nr,k−1. Let E ⊂ H be a general union of mr,k − nr,k − (mr,k−1 − nr,k−1) lines
and nr,k − nr,k−1 +lines. We have Y ∪ E ∈ L(r,mr,k − nr,k, nr,k) and the
support of the nilradical sheaf of Y ∪ E is contained in H. By (5) we have
h0(E,OE(k)) + deg(Y ∩ H) =

(
r+k−1
r−1

)
. Since Theorem 1 is true in Pr−1, we

have h1(H.IE(k)) = 0. Since Y ∩ H is a general union of mr,k−1 points of H,
(5) implies hi(H, I(Y ∪E)∩H(k)) = 0.

(c) In this step we assume nr,k ≥ nr,k−1 and mr,k−nr,k < mr,k−1−nr,k−1.
Therefore g := nr,k−nr,k−1−(mr,k−mr,k−1) > 0. Since nr,k ≤ k, we have g ≤ k.

Since kmr,k−1+nr,k−1 =
(
r+k−1
r

)
and nr,k−1 ≤ k−1, we have g ≤ mr,k−1−nr,k−1.

Take a general union G ⊂ H of mr,k−mr,k−1 +lines. Since Theorem 1 is assumed
to be true in Pr−1, G has maximal rank. By (5) we have h1(H, IG(k)) = 0 and
h0(H, IG(k)) = mr,k−1 + g. Write Y = Y1 t Y2 t Y3 with Y3 ∈ L(r, 0, nr,k−1),
Y1 ∈ L(r,mr,k−1−nr,k−1, 0) and Y2 ∈ L(r, g, 0). For each line L ⊆ Y2 let vL be the
general tangent vector of H with L∩H as its support. Set A2 := ∪L⊆Y2(L∪vL).
Since U := Y1∪A2∪Y3∪G ∈ L(r,mr,k−nr,k, nr,k), it is sufficient to prove that
h0(IU (k)) = 0. We have ResH(U) = Y , because each vL is contained in H. The
scheme U ∩H is the union of G, mr,k−1 − nr,k−1 − g general points of H and g
general tangent vectors of H. Hence hi(H, IU∩H(k)) = 0, i = 0, 1 ([1], Lemma
1.4). QED

Proof of Theorem 1 for r > 3: Let H ⊂ Pr be a hyperplane. We use
induction on r, the starting case being the one with r = 3 proved in section 2.
Hence we assume Theorem 1 in H ∼= Pr−1 for all L(r− 1, t′, c′). By Remark 3 it
is sufficient to prove Hr,k for all k > 0. Hr,1 is true (Remark 3). Hence we may
assume k ≥ 2 and that Hr,k−1 is true. By Remark 4 it is sufficient to prove Hr,k

for the pairs (t, c) such that either t = 0 and
(
r+k
r

)
− k − 1 ≤ c(k + 2) ≤

(
r+k
r

)
or t(k + 1) + (k + 2)c =

(
r+k
r

)
and c > 0. If

(
r+k
r

)
− k − 1 ≤ c(k + 2) ≤
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(
r+k
r

)
, then either vr,k = 0 and ur,k = c or vr,k > 0 and c = ur,k − 1. If

t(k + 1) + (k + 2)c =
(
r+k
r

)
, then t + c ≥ ur,k. Hence in both cases we have

mr,k−1 ≤ t + c (Lemma 8). Since k ≥ 2, we have mr,k−1 ≥ nr,k−1 (Remark 5).
Fix a general Y ∈ L(r,mr,k−1−nr,k−1, nr,k−1). Hr,k−1 implies hi(IY (k−1)) = 0,
i = 0, 1. The set H ∩ Y is a general subset of H with cardinality mr,k−1. We
have ResH(Y ) = Y . We have

mr,k+1 + (k + 1)(t+ c−mr,k−1) + c− nr,k−1 ≤
(
t+ k − 1

r − 1

)
(6)

and the difference among the right hand side and the left hand side is at most
k + 1.

(a) In this step we assume c ≥ nr,k−1 (this is always the case if t = 0). Set
e := t+ c−mr,k−1.

(a1) First assume c−nr,k−1 ≤ e. Let E ⊂ H be a general union of c−nr,k−1

+lines and e− c+nr−1,k lines. By the inductive assumption on r the scheme E

has maximal rank in H ∼= Pr−1. By (6) we have ](Y ∩H)+h0(OE(k)) ≤
(
k+r+1
r−1

)
.

Since E has maximal rank in H, we get h1(H, IE(k)) = 0. Since ](Y ∩ H) +
h0(OE(k)) ≤

(
k+r+1
r−1

)
and Y ∩H is general in H, we get h1(H, I(Y ∩H)∪H(k)) = 0.

Since h1(IY (k − 1)) = 0, the Castelnuovo’s sequence gives h1(IY ∪E(k)) = 0,
concluding the proof in this case.

(a2) Now assume c − nr,k−1 > e. Let F ⊂ H be a general union of e
+lines of H. Set g := c − nr,k−1 − e = mr,k−1 − nr,k−1 − t. We have t ≥ 0,
g > 0 and t+ g = mr,k−1−nr,k−1. Write Y = Y1 tY2 with Y1 a general element
of L(r,mr,k−1 − nr,k−1, 0) and Y2 a general element of L(r, 0, nr,k−1). Write
Y1 = Y3 t Y4 with Y4 ∈ L(r, g, 0) and Y3 ∈ L(r, t, 0). For each line L ⊆ Y4 let vL
be a general tangent vector of H with L∩H as its support. Set L+ := L∪vL and
Y4

+ := ∪L⊆Y4L+. Set X ′ := F ∪Y2∪Y4
+∪Y3. The scheme X ′ is a disjoint union

of t lines and c +lines. Since ResH(X ′) = Y , by the Castelnuovo’s sequence it
is sufficient to prove that h1(H, IX′∩H(k)) = 0. The scheme X ′ ∩H is a general
union of F (i.e. of e general +lines), deg(Y3) + deg(Y2) general points of H
and deg(Y4) general tangent vectors of H. Since F ⊂ H has maximal rank in
H and the tangent vectors are general in H, the scheme X ′ ∩H has maximal
rank in H ([4], [1], Lemma 1.4). We have deg(Y3) + deg(Y2) + 2 deg(Y4) =
mr,k−1 +mr,k−1 − n3,k−1 − t. By (6) we have mr,k−1 + g + (k + 2)e ≤

(
r+k−1
r−1

)
.

Hence h1(H, IX′∩H(k)) = 0.

(b) Now assume c < nr,k−1. In particular we have nr,k−1 > 0. Since
nr,k−1 ≤ k−1, we have t = mr,k−nr,k and c = nr,k. Lemma 10 gives hi(IX(k)) =
0, i = 0, 1, for a general X ∈ L(r, t, c). QED
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