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Introduction

Fix a line L C P", » > 2, and P € L. A tangent vector of P" with P
as its support is a zero-dimensional scheme Z C P" such that deg(Z) = 2 and
Zreqd = {P}. The tangent vector Z is uniquely determined by P and the line (Z)
spanned by Z. Conversely, for each line D C P" with P € D there is a unique
tangent vector v with v,.q = P and (v) = D. A +line M C P" supported by L
and with a nilradical at P is the union vU L of L and a tangent vector v with P
as its support and spanning a line (v) # L. The set of all +lines of P" supported
by L and with a nilradical at P is an irreducible variety of dimension r — 1 (the
complement of L in the (r — 1)-dimensional projective space of all lines of P"
containing P). Hence the set of all +lines of P" supported by L is parametrized
by an irreducible variety of dimension r. Therefore the set of all +lines of P"
is parametrized by an irreducible variety of dimension 2(r — 1) +r = 3r — 1.
Now assume r > 3. For all integers t > 0 and ¢ > 0 let L(r,t,c) be the set of all
disjoint unions X C P" of ¢ lines and ¢ +lines. If (¢,¢) # (0,0), then L(r,t,c) is
an irreducible variety of dimension (¢ + ¢)(2r — 1) 4+ ¢r. Fix any X € L(r,t,¢)
and any integer k > 0. It is easy to check that h°(Ox(k)) = (k+1)(t +¢) +¢
and h'(Ox(k)) = 0 for all i > 0 (Lemma 2). A closed subscheme E C P is
said to have mazimal rank if for every integer k > 0 either h°(Zg(k)) = 0 or
R (Zg(k)) =0, i.e. h°(Zr(k)) = max{0, (Tjk) — R (Og(k))}.
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Theorem 1. Fiz integersr > 3,t >0 and ¢ > 0 such that (t,c) # (0,0). If
r >4, then assume that the characteristic is zero. Then a general X € L(r,t,c)
has mazximal rank.

We prove Theorem 1 for » = 3 in arbitrary characteristic, while we assume
characteristic zero if » > 4. We also get intermediate results (e.g. B, ) that
may be useful as a sample of lemmas which may be proved with +lines. We see
+lines as a tool to prove something involving the Hilbert function of unions of
curves and fat points. For an alternative approach to such disjoint unions, see
Remark 1.

1 Preliminaries

Remark 1. Fix aline L C P, n > 2, and a linear system V C HY(Opn (k)).
Let LY be the first infinitesimal neighborhood of L in P", i.e. the closed sub-
scheme of P" with (Zr)? as its ideal sheaf. Let A be any +line with L as its
support. For any closed subscheme B C P" set V(—B) := {f € V : fjp = 0}.
The +line A gives independent conditions to V' with the only restriction of that
L is the support of L if either V(L) = {0} or dim(V(—A)) = dim(V(-L)) — 1.
A general +lines with L as its supports does not give independent conditions to
V with the only restriction that L is its support if and only if V/(—L) # {0} and
V(—LW) = V(-L). Now assume dim(V (—L")) = dim(V(—L)) — v for some
v > 0. The integer v is the maximal number of tangent vectors v1,...,vy of P"
supported by points of L and imposing independent conditions to V(—L) (with
the restriction that their support is a point of L). So if we only need an integer
t+c > 2 t+ cdisjoint lines and x > 2 tangent vectors supported by some of
these lines we may decide to put more than one tangent vector on a single line.

Lemma 1. Let X CP" be a closed subscheme such that the nilradical sheaf
n C Ox is supported by finitely many points. Set Y = X,eq and fix k € N.
Then:

(1) x(Ox(k)) = x(Oy (k)) + deg(n);
(2) hO(Zx(k)) < h°(Zy (k) < hO(Zx (k) + deg(n);
(3) W' (Zy (k) < h1(Zx (k) < h'(Zy (k) + deg(n);
(4) h0(Zx (k) — h'(Zx (k) = h°(Zy (k) — h'(Zy (k)) — deg(n).

Proof. By the definition of the reduction of a scheme the sheaf 7 is the ideal
sheaf of Y in X. We have exact sequence (respectively of Ox-sheaves and of
Opr-sheaves):

(
(

0—n—Ox(k)— Oy(k)—0 (1)
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0—=Zx(k) > Zy(k) > n—0 (2)

Since 7 is supported by finitely many points, we have h’(n) = 0 for all i > 0 and
deg(n) = h°(n). Use the cohomology exact sequences of (1) and (2). QED

Remark 2. Fix integers » > 3, ¢t > 0 and ¢ > 0. Fix A € L(r,t,¢), D €
L(r,t + ¢,0) and set B := A, ¢q.

(1) We have B € L(r,t + ¢,0). If A is general in L(r,t,c), then B is general
in L(r,t+ ¢,0).

(2) Assume that D is general in L(r,t + ¢,0) and fix a decomposition D =
Dy U Dy with D; € L(r,t,0) and Dy € L(r,c,0). Let E be a general
element of L(r,0,c) with E..q = Ds. Then Dy is general in L(r,t,0), Do
is general in L(r,¢,0) and Dy U E is general in L(r,t,c).

Lemma 1 and Remark 2 give the following result.

Lemma 2. Fiz integers r > 3, t > 0 and ¢ > 0. Fiz X € L(r,t,c) and
set Y := X,eq. We have Y € L(r,t + ¢,0). If A is general in L(r,t,c), then
B is general in L(r,t + ¢,0). For each integer k > 0 we have h*(Ox(k)) = 0,
ROOx (k) = (t+ )k + 1) + ¢, BTy (k) — ¢ < h(Tx (K)) < hO(Ty (k) and
W' (Zy (k) < B (Zx (k) < B (Zy () + c.

For all integers r > 3 and k > 0 let H, ;. denote the following statement:

Assertion H,p, r > 3, k > 0: Fix (t,¢c) € N?\ {(0,0)} and take a
general X € L(r,t,c). If (k+ 1)t + (k+ 2)c > (TJ,gk), then h%(Zx(k)) = 0. If
(k+ 1)t + (k+2)c < ("1F), then h' (Zx(k)) = 0.

Lemma 3. Fiz a general X € L(r,t,c). If 2t+3c < r+1, then h'(Zx (1)) =

0. If 2t + 3c > r + 1, then h%(Zx (1)) = 0.

Proof. Since the case ¢ = 0 is obvious, we may assume ¢ > 0 and use induction
on c. Fix a general Y € L(r,t,c—1) and write X = Y UA with A a general +line
of P". If 2t +3(c—1) > r—1, we immediately see that h®(Zy4,.,(1)) = 0. Hence
hY(Zx (1)) = 0. Hence we may assume 2t + 3(c — 1) < 7 — 2. Let M C P" be the
(2t 4+ 3¢ — 4)-dimensional linear subspace spanned by Y. Since A is general, it
spans a plane N such that M N N = (. Hence h°(Zyua(1)) = h%(Zy (1)) — 3 =
r+1—2t—3c. QED

Remark 3. Fix an integer » > 3. By the definition of maximal rank and
the irreducibility of each L(r,t,c) Theorem 1 is true for the integer r if and only
if all H, j, are true. Since H,  is obviously true, to prove Theorem 1 in P" it is
sufficient to prove H, j for all £ > 0. Lemma 3 says that H, 1 is true.
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Remark 4. Fix integers » > 3 and k£ > 0 and suppose you want to prove
H, .. Fix (t,¢) € N?\ {(0,0)}. First assume ¢t > 0 and (k+1)(t+¢)+c < ("HF).
Hence (k+1)(t4+c¢)+(c+1) < (Tjk) Suppose that h'(Zx(k)) = 0 for a general
X € L(r,t—1,c+1). Then h'(Zy (k)) = 0 for a general Y € L(r,t,c) (Lemma 1).
Now assume ¢ > 0 and (k+1)(t+c¢)+c¢ > (Tjk) and so (k+1)(t+c¢)+(c—1) >
(rik) Suppose that h%(Za(k)) = 0 for a general A € L(r,t + 1,¢ — 1). Then
h%(Zg(k)) = 0 for a general B € L(r,t,c). Therefore to prove H, it is sufficient
to test all (¢,c¢) such that either (kK + 1)(t +¢) + ¢ = (kjfr) ort = 0 and
(k+2)c < (") or ¢ = 0 and (k + 1)t > ("IF). We do not need to test
the pairs (¢,0) by [6]. Among the pairs (0, ¢) with (k+2)c < (ijk) it is sufficient
to test the ones with (Tjk) —k—-1<(k+2)c< (Tjk)

For all integers » > 3 and k > 0 define the integers m,.; and n,; by the

relations
r+k

k
Remark 5. Fix integers » > 3 and k > 0. Since m,;, < k and k(k +1) <
(k;rg) < (Tfk), we get my g > Ny .
For all integers » > 3 and k > 0 set u,; = f(rjfk)/(k: +2)] and v, =

(k + 2)uns — ("H).
Notice that

(k+ 1)mr7k +npg = ( ), 0<n. <k (3)

r+k
(k4 2)ns = vea) + 6+ Docs = (7 1) ()
and that 0 < wv,, <k + 1.
For all integers k& > 0 let A, denote the following assertion:
Assertion A, j, k > 0: Let X C P" be a general union of v, lines and
Up, — Uk, +lines. Then h(Zx (k)) = 0.

2 The proof in P3

In this section we prove the case r = 3 of Theorem 1.

Lemma 4. Fiz integers a > 0, b > 0, y > 0. Let Z C Q be a general
union of y tangent vectors. Then h®(Zz(a,b)) = max{0, (a+1)(b+1) —2y} and
ht(Zz(a,b)) = max{0,2y — (a +1)(b+ 1)}.

Proof. By the semicontinuity theorem for cohomology ([5], 111.12.8) it is suffi-
cient to find a disjoint union W C @ of y tangent vectors such that h%(Zy (a, b)) =
max{0, (a + 1)(b+ 1) — 2y}. It is obviously sufficient to do it for the integers
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y = |(a+1)(b+1)] and y = [(a+1)(b+1)/2]. First assume a odd. Let Ly, ..., L
be b+1 distinct lines of type (0,1). Let E; C L; be any disjoint union of (a+1)/2
tangent vectors. In this case we may take W = E; U --- U Ep. In the same way
we conclude if b is odd. Hence we may assume that both a and b are even. If
b = 0, then take y tangent vectors of Ly. Similarly we conclude if a = 0. Hence
we may assume a > 2 and b > 2 and use induction on a. It is obviously suffi-
cient to check the integers y such that 2y > (a + 1)(b+ 1) — 1. Fix a smooth
C € 10¢(2,2)|. C is a smooth elliptic curve and in particular it is irreducible.
Take a general S C C with §(S) = a+b. Let W C C be the union of the 2-points
of C with the points of S as their support, i.e. the degree 2a+ 2b effective divisor
of C' in which each point of S appears with multiplicity two. Let W/ C Q be a
union of y — a — b general tangent vectors. Set Z := W U W’. By the inductive
assumption we have h®(Zy(a—2,b—2)) = max{0, (a—1)(b—1) — 2y +2a+2b},
i.e. hO(Ty(a—2,b—2)) = max{0, (a+1)(b+1)—2y} and h* (T (a—2,b—2)) =
max{0,2y — (a + 1)(b + 1)}. There are only finitely many (four in characteris-
tic # 2, one or two in characteristic 2) line bundles R with R®? = O¢(a,b).
Since C has genus > 0 for general S the line bundle O¢(S) is not one of them.
Hence W ¢ |Oc¢(a,b)|. Since deg(W) = deg(Oc(a,b)), Riemann-Roch gives
h'(C, Oc(a,b)(=W)) = 0, i = 0,1. Since Resc(Z) = W', the Castelnuovo’s
sequence gives h'(Zz(a,b)) = b (Ty(a — 2,b — 2)). QED

We have ugy = [(k+3)(k+1)/6] and vz} = (k + 2)ug ) — (3J§k). Write
k= 6m +b with 0 < b < 5. We have uggm = 6m? +4m + 1, v36m = 3m + 1,
U3, 6m+1 = 6m? +6m +2, v36m11 = 4m +2, Uz emia = 6m> +8m+3, v3gmi2 =
3m + 2, uz gmi3 = 6m? + 10m + 4, v36m+3 = 0, U3 6mi+a = 6m? + 12m + 6,
V3 6m+4 = M+ 1, U3 gm45 = 6m? + 14m + 8, v36m+5 = 0. The construction
below works (in particular Lemma 6) only because u3 g1m+7—03 6m-+7 > U3.6m+5—
v3.6m+5 (both sides of the inequality are equal to uggm+s5 = 6m? + 14m + 8).
Without this inequality we would have needed a longer proof. In general we
need ug3 42 — V3 k42 > Uz — U3k for all & > 0, but only in the case k = 6m + 5
the right hand side is not much bigger than the left hand side.

Let Q C P3 be a smooth quadric surface. We have Pic(Q) = Z? and we take
two distinct, but intersecting, lines contained in @ as a basis of Pic(Q). We will
call |Og(1,0)| and |Og(0,1)| the two rulings of @ and call any D € |Og(a,b)| a
divisor (or a curve) of type (a,b). Fix aline L C @, P € L and let y be the set of
all +lines A C P? with L as their support and P as the support of the nilradical
sheaf of O4. The set v is the complement of a point in a two-dimensional
projective space (it is P(TpP3) \ P(TpL)). The set +' of all A € ~ contained
in @ is the line P(TpQ) minus the point P(TpL). If A € 4/, then A C @ and
Resg(A) =0.If A ¢+, then ANQ = L (as schemes) and Resg(A) = {P} (as
schemes). Now take A C @, see L as a divisor of @; we have Res(4) = {P}.
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Lemma 5. A,; and Asz2 are true.

Proof. A, is is true by Remark 3.

We have v39 = 2 and uz 2 —v32 = 1. Take any B = L1 ULy U L3 € L(3,3,0).
B is contained in a unique quadric surface, @, and Q' is a smooth quadric. Let
A C P3 be a general +line with L3 as its support. We have L1ULyUA € L(3,2,1).
Since A ¢ @', we have h(Zr,ur,u4(2)) = 0.

Of course, A, j makes sense only if u, — v, > 0; this is the reason why
we didn’t defined A,o. By the semicontinuity theorem for cohomology ([5],
II1.12.8) to prove Agy it is sufficient to find A € L(3,v3y,u3x — v3y) such
that h®(Za(k)) = 0. Fix an integer k > 0 and let X C P? be a general union
of vg x lines and ugj, — v3 +lines. We have h°(Ox (k)) = (ugx — vax)(k +2) +
vap(k+1) = (k+3), the latter equality being true by the definition of the integer

vs . Hence hl(%x(k:)) = h%(Zx(k)).

Lemma 6. A3z = A3 42 for all k > 0.

Proof. We have 0 < us3 o —uzp < k+ 2.

(a) First assume v 12 > v3, i.e. k =0,3,4,5 (mod 6). Notice that in all
cases we have ug  —v3 ; < U3 g2 — U3 k2 (We even have equality if k = 6m +5,
because U3, 6m+7 = 6m?+18m + 14, V3 6m+7 = Am+6, U3 em+s5 = 6m?+14m+8
and v3em+s5 = 0). Let L1 C @ be the union of vz ;19 — vy distinct lines of
type (1,0) and Ly C @ the union of (u3 g2 — v3x42) — (u3k — vsy) distinct
lines of type (1,0) with L1 N Ly = . Let Ay C @ be the union of (ug o —
v k+2) — (uz p —v3.) general +lines contained in @) and with the lines of Ly as its
support. Let So C Lg be the support of the nilradical of O4,. Take a general Y €
L(3,vs 1, ug - —vs 1). For general Y we have Y N(L1UL2) = () and so YUAUL; €
L(3,v3 k42, u3 g+2 — V3 k+2). By the semicontinuity theorem for cohomology ([5],
I11.12.8) it is sufficient to prove h°(Zya,ur, (k)) = 0. Since Resg(YUA2ULy) =
Y and h°(Zy (k—2)) = 0, it is sufficient to prove h°(Q, Zon(yuasur,) (k+2)) = 0.
Since L1 U Ly C (Y N Q) UAs ULy and L1 U Ly € |OQ(’LL37]H_2 — ’LL37]C,0)|, it is
sufficient to prove hO(Q7IRGSLluLQ((YﬁQ)UAQULl)(k+2_u37k+2 +usp, k+2)) = 0.
We have Resr,ur, (Y NQ)U A2 UL1) = (Y NQ) U Sy. For general Ay the set
Sy is a set containing a general point of (ugy2 — v3 ky2) — (usx — v3 ) general
lines of type (1,0) and nothing else. Hence Ss may be considered as a general
union of (ugpt2 — v3xt+2) — (ugr — v3 ) points of Q. For general Y the set
Y N Q is a general subset of Q with cardinality 2us3 . Hence it is sufficient
to check that $((Y N Q) U Sy) = h%(Q,00(k + 2 — ug py2 + ug g, k + 2)), ie.
2ugk + (U k2 — v3kr2) — (Uusgk —v3k) = (b + 3 —ugpy2 +ugp)(k + 3), ie.
2ug g+ (k+2)(ug 2 — ug k) = (k+3)% + v3 k42 — v3 . Taking the difference of
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(4) for the integer k' = k + 2 from (4) and using that (k'§5) — (k'gg) = (k+3)?
we get 2u3 g + (k +2)(ug pro — usk) = (k + 3)% + v3 42 — v3k, as wanted.

(b) Now assume v3 12 < U3, i.e. K = 1,2 (mod 6). Take a general Y €
L(3,v3,ugr —vs) and write Y = EUF with E € L(3,v3 k42, ugr — vz ) and
F € L(3,v31—v3 k42,0). For general Y we have h"(Zy (k)) = 0 (by the inductive
assumption) and Y N @ is a general subset of @ with cardinality 2us . For each
line L C F fix one of the point P, € LNQ and call vy, a general tangent vector of
Q at Pp. Let A;, = LUwvy, C P3 be the +lines with L as its reduction, P;, as the
support of its nilradical and containing vr,. Set G := UpepAyr. Let M C @ be a
union of u3 ;12 — ug  general lines of type (1,0). Let N C @ be a general union
of u3 2 —us  +lines with M as the union of their support. We have FEUGUN €
L(3,v3 k42, U3 k2 — V3 k42)- Since Resg(FEUGUN) =Y and h%(Zy (k)) = 0, it is
sufficient to prove h%(Q, Zon(gucun) (k+2,k+2)). Since M € QN(EUGUN),
it is sufficient to prove hO(Q’IResM(Qm(EuGuN))(k+2_u37/f+2+“37k’ k+2)) = 0.
The scheme GNQ is a general union J of v3 ; tangent vectors of @) and a general
union of vz — v3 k42 points of @); we do not want to use here that general
tangent vectors gives the maximal possible number of conditions to any linear
system, because it requires characteristic zero ([4], [1], Lemma 1.4); however,
since vg ; < 2(k+2)/3, it is obvious that h'(Q, Zs(k+2—u3 pt2+us g, k+2)) = 0;
alternatively, use Lemma 4. Set S := Resp/ (V). The set S contains one point for
each line of M and it is general with this condition. Since M is a general union
of u3 42 — us i, lines of type (1,0), S may be considered as a general subset of
() with its cardinality. The set £ N (@ is a general subset of @) with cardinality
2u3 ) — 203 k42 Since 2(7)3,k — ’U3J€+2) + (Ug,k — ?}37]{,2) + (U37k+2 — U3yk) + 2(11,3’]c —
v3 kt2) = (kK +3 — uz g2 + ug k) (k + 3), we are done.

Lemma 7. For all integers k > 0 and ¢ > 0 such that c(k + 2) < (k;r?’) we
have h*(Zx(k)) = 0 for a general X € L(3,0,c).

Proof. If k =1, then ¢ = 1. The lemma is obvious in this case.

Now assume k& = 2. It is sufficient to do the case ¢ = 2. Take A = A; U Ay €
L(3,0,2) with L; and Lo two different lines of type (1,0) of @, A1 C @ and
general with these restrictions, A» ¢ @ and general among the +lines supported
by Q. We get h°(Q, Ogna(2)) = 2 and hO(IResQ(A)) = 0, because Resg(A) # 0.

From now on we assume k > 3. Lemmas 5 and 6 give that A3 ;o and Az
are true. We have ¢ < ugy and ¢ < ugyp —1if vz > 0. If ¢ < uz g — v3p,
then we may use Asj. In particular we are done if vz = 0. Hence we may
assume v3j > 0. In this case it is sufficient to do the case ¢ = uz ) — 1. Fix a
general Y € L(3,v3 2, U3 2 — v3—2). We have h'(Zy (k —2)) =0, i = 0,1,
by Ask_2. We mimic part (b) of the proof of Lemma 6. Write Y = E U F
with £ € L(3,0,usr — v3x) and F € L(3,v34,0). For each line L C F fix
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one of the point P, € L N Q and call vy a general tangent vector of ) at
P;. Let A = LUwv;, C P3 be the +line with L as its reduction, P;, as the
support of its nilradical and containing vy. Set G := UpcpAp. Let M C @ be
a union of u3 4o — uz y — 1 general lines of type (1,0). Let N C @ be a general
union of ug 42 — ugy — 1 +lines with M as the union of their support. Take
X :=FEUGUN € L(3,0,ug —1). Since v3 ;, < k+1, as in part (b) of the proof
of Lemma 6 we get h'(Q,Zxnq(k)) = 0 and hence h'(Zx(k)) = 0. QED

Proof of Theorem 1 for r = 3: It is sufficient to prove Hs, for all £ > 2
(Remark 3). Fix an integer k£ > 0. It is sufficient to check the Hilbert function in
degree k of a general element of L(3,¢,c) with either t = 0 and (k+2)c < (k'gg)
or (k+ 1)t+ (k+2)c = (kf’) (Remark 4). By Lemma 7 it is sufficient to
check the pairs (t,c) with ¢ > 0 and (k+ 1)t + (k + 2)c = (k§3)7 i.e. (since the
integers k + 1 and k + 2 are coprime) the pairs (t,c) with ¢t = vz + (k + 2)«,
c=ug) —v3; — (k+ 1)a for some non-negative integer o such that (k +1)a <
ug k — V3 k. By [6] we may assume ¢ > 0. By Lemma 6 we may assume ¢t > v .
Since v32 = 2, uz 2 = 3 and As s is true (Lemma 5), we may assume k > 3. By
induction on k we may assume that h'(Zy (k — 2)) = 0, i = 0,1, for a general
W e L(3,t, ) for all non-negative integers t’, ¢’ such that (k—1)t'+kc’ = (k;rl)
Fix a general Y € L(3,m3k_2 — n3k—2,n3k—2). We have h*(Zy(k — 2)) = 0,
i=0,1.

Claim 1: We have t + ¢ > mg3 j_o.

Proof of Claim 1: Assume t + ¢ < mg_o — 1, i.e. assume (k—1)(t +¢) +
E—1< (k?;l) Since (k+ 1)t + (k + 2)c = (k;?’), we get (k+2)/(k—1) >
(/") = (k + 3)(k + 2)/k(k — 1), a contradiction.

Claim 2: We have ¢ > ng3 .

Proof of Claim 2: If k —2 = 0,1 (mod 3), then ng o =0.If k —2=2
(mod 3), then n3 o = (k — 1)/3. Hence we may assume k =4 (mod 3). Since
n3g =0,c>0and (k+1)t+ (k+2)c = (k;::g), we get ¢ = B(k + 1) for some
integer 3 > 0. Hence ¢ > k +1 > ng ;_o.

Notice that mg 2 > n3 p—2. Fix a general Y’ € L(3,m3 k2 —n3 k—2,N3 x—2)-
By the inductive assumption we have h*(Zy(k —2)) = 0, i = 0,1. Set e :=
t+ c—mg3_o. Claim 1 gives e > 0. Take a general union M C @ of e lines of
type (1,0).

(a) Assume ¢ — ngp_o < e. Claim 2 gives ¢ — ng o > 0. Write M =
My U My with My a union of ¢ —ng ;o lines and M; a union of e — (¢ —n3 _2)
lines. Let A3 C @ be a general union of ¢ — ngj_o +lines with the lines in
M> as their support. Let Sy be the support of the nilpotent sheaf of As. Since
Ag is general, Sy is obtained taking for each line L C M, a general point of
L. Set X :=Y U M; U A,. Since X € L(3,t,c), it is sufficient to prove that
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hY(Zx(k)) = 0. Since Resg(X) =Y and h'(Zy (k — 2)) = 0, it is sufficient to
prove that A1 (Q, Zxng(k)) = 0. Since Resp (X NQ) = (YNQ)USs, it is sufficient
to prove that h'(Q, Zyrgyus, (k — e, k)) = 0. Since M is general and for each
line L C My the set SoNL is a general point of L, S, is a general subset of Q) with
cardinality ¢ —ns ;9. Since Y is general, the set (Y NQ)U S, is a general subset
of @ of cardinality 2ms o + ¢ — n3 ;2. Since (k — 1)m3 y—2 + N3 y—2 = (k'gl),
(k+ 1)t + (k+2)c= ("), ("5 - "I = (k+1)? and e = t + ¢ — mg o,
we have 2mg 2 + (k + 1)e + ¢ — ngp—o = (k+ 1), ie. #(S2 U (Y NQ)) =
(k+1)(k+1—e)=n%Q, Oq(k —e,k)). Hence hi(Q,I(yﬁQ)USQ(k —ek)) =0,
1=0,1.

(b) Now assume ¢ — n3j_o > e. For each line R C M fix a general
Or € R and call vg a general tangent vector of () with Og as its support.
Set RT := RUwg, MT := UgcyRT and S := UrcyrOR. Since M is general
and each Op is general in R, S is a general subset of () with cardinality e.
We have M+ C @Q and hence M NQ = M* and Resg(M™) = 0. Set g :=
c—ngk—2—e. Since e = t+c—mg3j_2, we get m3z x_o—n3 2 = g+t >t. Write
Y =Y, UY; with Y5 € L(3,0,n3%-2) and Y7 € L(3,mg _2 — n3 x—2,0). Since
mgk—2 — N3 k—2 = g+t >t, we may write Y7 = Y3 UY, with Y3 € L(3,¢,0) and
Yy € L(3,4,0). For each line L C Y} fix one of the two points, say O, of LNQ
and let wy, be a general tangent vector of QQ with Oy, as its support; set LT :=
LUwy € L(3,0,1). Set Y3 :=Upcy, LT and X’ := MTUY," UY, UY;. Since
X" € L(3,t,c), it is sufficient to prove that h'(Zx/(k)) = 0. Since Resg(X') =Y
and h!(Zy (k—2)) = 0, by the Castelnuovo’s sequence it is sufficient to prove that
Y (Q,Zxng(k)) = 0. The scheme X'NQ is the union of M and (Y3UYs")NQ.
We have Resp (Mt U (YsUY,")NQ)=SU((Y\Y1)NQ)UUcy, wr. Since
Y N Q is a general subset of @ with cardinality 2msj_o, the scheme Z :=
SU((Y\Ys) NQ)UUpcy, wr is a general union of g tangent vectors of @ and
e + 2mg —2 — g points of Q). By the Castelnuovo’s sequence it is sufficient to
prove that h'(Q,Zz(k — e k:)) = 0. By Lemma 4 it is sufficient to check that
deg(Z) < (k—e+1)(k+1). By (3) for the integers r = 3 and k' = k— 2 and the
equality (k+ 1)t + (k+2)c (k;rg) we get deg(Z) = (k+1)(k—e+1). QED

3 When r >3

In this section we prove Theorem 1 for all integers r > 4. For numerical
reasons this is easier than in the case r = 3 (as it was in [6] and [2]). The proof
in characteristic zero is very short and we will only give it.

Lemma 8. For all integers r > 3 and k > 2 we have my ;1 < Uy .
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Proof. We have kmy,.j,_1 < (k+:_1) and (k + 2)u,;, > (T:fk) Note that

(r—?i:k)/(r+l:—1> )k

and that (r 4+ k)k > (k + 2)k for all r > 3. QED

We need the following assumption B, j:
By, v >4, k > 0. Fix a hyperplane H C P". There is X € L(r,m, —
Nk, N k) such that the support of the nilradical sheaf of X is contained in H
and h%(Zx (k)) = 0.
For all X € L(r,m,r — nyg,nrx) we have h%(Ox(k)) = (Ttk) and so
hH(Zx (k) = h2(Zx (K)).

Lemma 9. For all integers r > 4 and k > 2 we have my,j > myp_1.

Proof. We have
r+k—1
My -1+ (k + 1)(mr7k - mr,k—l) t Nk — Nrk—1 = ( r—1 > (5)

Assume my. < my 1 — 1. Since n, ) — ny -1 < k, (6) gives

r+k—1
mr,k—1_12< r—1 )

Since k1 < (7)) and k("7EY) = (7Y, weget —k 2 (r—1)(7EL),

a contradiction.

Lemma 10. Fix an integer r > 4 and assume that Theorem 1 is true in
Pr—1. Then B, 1, is true for all k > 0.

Proof. B, is true by Remark 3. Hence we may assume k > 2 and that B, ;_1 is
true. Fix Y € L(r,my p—1 —nyp k—1, Ny x—1) such that the support of the nilradical
sheaf of YV is contained in H and h(Zy(k — 1)) = 0. By the semicontinuity
theorem for cohomology ([5], I11.12.8) we may assume that Y is general among
the elements of L(r, my;—1 — Ny k—1, Ny k—1) Whose nilradical sheaf is supported
by points of H. Hence we may assume that no irreducible component of Y;..q4
is contained in H, that Y,.q is a general subset of H with cardinality m, ;—1
and that for each +line A C Y, say A = L Uwvy, the tangent vector vy, of A is
not contained in H. The latter assumption implies Y,.q N H =Y N H (scheme-
theoretic intersection) and Resy(Y) = Y. We have m,, > m, 1 (Lemma
9).
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(a) In this step we assume n, < n,,_1. Let F' C H be a general union
of my — my—1 lines, with the only restriction that exactly n,r—1 — n, of
them contain a point of Y,.q N H. We have m, 1 — nypjp—1 — (Npp—1 — Ny fp) +
My — My -1 = My — 2Ny ;-1 + Ny g. The scheme Y U F' is a disjoint union
of nyx—1 — nyp sundials, n,, +lines and m,j — 2n, 1 + n, ) lines. Since a
sundial is a flat limit of a family of elements of L(r,2,0) ([2]), it is sufficient
to prove h°(Zyur(k)) = 0. Since the set Y;oq N H is general in H, F' may be
considered as a general union of lines. Hence F' has maximal rank. By (5) we
have h'(H,Zr(k)) = 0 and h°(H,Zr(k)) = my k-1 — Ny k-1 + npk. Since for
fixed Yyeq N H N F we may deform the other components of Y so that the
other myx_1 — nyk—1 + nyp points of Y.cq N (H \ F') are general in H, then
hi(H, Zrnvur)(k)) = 0. Castelnuovo’s sequence gives Y (Zyur (k) = 0.

(b) In this step we assume n,j > npp—1 and My — Ny > My 1 —
nri—1. Let B C H be a general union of m, j, — n,r — (my -1 — nypi—1) lines
and n,r — npp—1 +lines. We have Y U E € L(r,m,} — ny,nyx) and the
support of the nilradical sheaf of Y U E is contained in H. By (5) we have
RO(E,Op(k)) + deg(Y N H) = (Ttﬁzl) Since Theorem 1 is true in P"~1, we
have h'(H.Zg(k)) = 0. Since Y N H is a general union of m, ;1 points of H,
(5) implies 2*(H, Ziyug)nu (k) = 0.

(c) In this step we assume n, 5 > Ny p—1 and My g — Ny < My g1 — Ny f—1-
Therefore g := n, j, —np g—1 — (My =My —1) > 0. Since n, j, < k, we have g < k.
Since kmy p—1+npp—1 = (H":_l) and n, 1 < k—1, we have g < m, 1 —np 1.
Take a general union G C H of m,., —m,. ;1 +lines. Since Theorem 1 is assumed
to be true in P"~1, G has maximal rank. By (5) we have h!'(H,Zg(k)) = 0 and
hO(H,Zg(k)) = myg—1 + g. Write Y = Y7 U Yo U Y3 with Y3 € L(r,0,m, 1),
Y1 € L(r,my —1—ny—1,0) and Yo € L(r, g,0). For each line L C Y5 let vy, be the
general tangent vector of H with LN H as its support. Set Ay := Urcy, (LUvL).
Since U := Y1 UAyUY3UG € L(r,m, , — Ny g, Ny i), it is sufficient to prove that
hO(Zy (k)) = 0. We have Resy (U) = Y, because each vy, is contained in H. The
scheme U N H is the union of G, m, ;_1 — n,—1 — g general points of H and g
general tangent vectors of H. Hence h'(H,Zynm(k)) = 0, i = 0,1 ([1], Lemma
1.4). QED

Proof of Theorem 1 for r > 3: Let H C P" be a hyperplane. We use
induction on r, the starting case being the one with » = 3 proved in section 2.
Hence we assume Theorem 1 in H = P"~! for all L(r —1,¢,¢). By Remark 3 it
is sufficient to prove H, j, for all k > 0. H, is true (Remark 3). Hence we may
assume k > 2 and that H, j_; is true. By Remark 4 it is sufficient to prove H,.j,
for the pairs (¢,¢) such that either ¢ = 0 and (T:fk) —k—1<¢lk+2)< (T;fk)
or t(k+ 1)+ (k+ 2)c = (T:fk) and ¢ > 0. If (T:fk) —k—-1<¢k+2) <
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(Tjk), then either v, = 0 and u,, = c or v, > 0 and ¢ = wu,; — 1. If
tk+1)+ (k+2)c = (Ttk), then t + ¢ > wu, . Hence in both cases we have
My -1 < t+ c (Lemma 8). Since k > 2, we have my 1 > My -1 (Remark 5).
Fix a general Y € L(r,my p—1 —np k—1, N —1). Hyp—1 implies h*(Zy (k—1)) = 0,
i = 0,1. The set HNY is a general subset of H with cardinality m,.;_1. We
have Resg(Y) =Y. We have

(6)

t+k—-1
Maest + (b 1)(E+ ¢ — Mg 1)+ —npgy < ( )

r—1

and the difference among the right hand side and the left hand side is at most
k+1.

(a) In this step we assume ¢ > n, ;_; (this is always the case if ¢ = 0). Set
e=t+c—mpg_1.

(al) First assume c—n, ;1 < e. Let E C H be a general union of c—n, ;1
+lines and e — ¢+ n,_1  lines. By the inductive assumption on r the scheme E
has maximal rank in H = P"~!. By (6) we have §(YNH)+h%(Og(k)) < (kji'{l)
Since F has maximal rank in H, we get h'(H,Zg(k)) = 0. Since #(Y N H) +
P (Og(k)) < (kjfif) and YNH is general in H, we get h' (H, Zryrgyum (k) = 0.
Since h!(Zy (k — 1)) = 0, the Castelnuovo’s sequence gives h!(Zy g(k)) = 0,
concluding the proof in this case.

(a2) Now assume ¢ — n,;_1 > e. Let F' C H be a general union of e
+lines of H. Set g := ¢ —nyp—1 — e = My p_1 — Ny p—1 —t. We have t > 0,
g>0andt+g=mpp_1—npp—1. Write Y = Y7 UY5 with Y7 a general element
of L(r,myr—1 — nyp—1,0) and Ys a general element of L(r,0,n,,—1). Write
Y1 = YUY, with Yy € L(r,g,0) and Y3 € L(r,t,0). For each line L C Y} let vy,
be a general tangent vector of H with LN H as its support. Set Lt := LUvy, and
Y1t :=Urcy,LT. Set X' := FUY,UY, " UY3. The scheme X is a disjoint union
of t lines and ¢ +lines. Since Resy(X’) =Y, by the Castelnuovo’s sequence it
is sufficient to prove that h'(H, Zx:np(k)) = 0. The scheme X’ N H is a general
union of F' (i.e. of e general +lines), deg(Y3) + deg(Y2) general points of H
and deg(Yy) general tangent vectors of H. Since F' C H has maximal rank in
H and the tangent vectors are general in H, the scheme X’ N H has maximal
rank in H ([4], [1], Lemma 1.4). We have deg(Y3) + deg(Y2) + 2deg(Yy) =
My j—1 + My g—1 — N3 x—1 — t. By (6) we have m, ;_1 + g+ (k+2)e < (TJ:EII)
Hence h'(H,Zxnp(k)) = 0.

(b) Now assume ¢ < n,j,_;. In particular we have n,,_; > 0. Since
nrk—1 < k—1, we have t = m, y—n,j and ¢ = n, ;. Lemma 10 gives h*(Zx (k)) =
0,7=0,1, for a general X € L(r,t,c).
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