Postulation of general unions of lines and decorated lines

Edoardo Ballico ${ }^{\text {i }}$
Department of Mathematics, University of Trento
ballico@science.unitn.it

Received: 2.11.2013; accepted: 3.6.2014.

Abstract

A + line $A \subset \mathbb{P}^{r}, r \geq 3$, is the scheme $A=L \cup v$ with L a line and v a tangent vector of \mathbb{P}^{r} supported by a point of L, but not tangent to L. Here we prove that a general disjoint union of lines and + lines has the expected Hilbert function.

Keywords: postulation, Hilbert function, lines, zero-dimensional schemes
MSC 2000 classification: primary 14N05, secondary 14H99

Introduction

Fix a line $L \subset \mathbb{P}^{r}, r \geq 2$, and $P \in L$. A tangent vector of \mathbb{P}^{r} with P as its support is a zero-dimensional scheme $Z \subset \mathbb{P}^{r}$ such that $\operatorname{deg}(Z)=2$ and $Z_{\text {red }}=\{P\}$. The tangent vector Z is uniquely determined by P and the line $\langle Z\rangle$ spanned by Z. Conversely, for each line $D \subset \mathbb{P}^{r}$ with $P \in D$ there is a unique tangent vector v with $v_{r e d}=P$ and $\langle v\rangle=D$. A + line $M \subset \mathbb{P}^{r}$ supported by L and with a nilradical at P is the union $v \cup L$ of L and a tangent vector v with P as its support and spanning a line $\langle v\rangle \neq L$. The set of all + lines of \mathbb{P}^{r} supported by L and with a nilradical at P is an irreducible variety of dimension $r-1$ (the complement of L in the $(r-1)$-dimensional projective space of all lines of \mathbb{P}^{r} containing P). Hence the set of all + lines of \mathbb{P}^{r} supported by L is parametrized by an irreducible variety of dimension r. Therefore the set of all + lines of \mathbb{P}^{r} is parametrized by an irreducible variety of dimension $2(r-1)+r=3 r-1$. Now assume $r \geq 3$. For all integers $t \geq 0$ and $c \geq 0$ let $L(r, t, c)$ be the set of all disjoint unions $X \subset \mathbb{P}^{r}$ of t lines and $c+$ lines. If $(t, c) \neq(0,0)$, then $L(r, t, c)$ is an irreducible variety of dimension $(t+c)(2 r-1)+c r$. Fix any $X \in L(r, t, c)$ and any integer $k>0$. It is easy to check that $h^{0}\left(\mathcal{O}_{X}(k)\right)=(k+1)(t+c)+c$ and $h^{i}\left(\mathcal{O}_{X}(k)\right)=0$ for all $i>0$ (Lemma 2). A closed subscheme $E \subset \mathbb{P}^{r}$ is said to have maximal rank if for every integer $k>0$ either $h^{0}\left(\mathcal{I}_{E}(k)\right)=0$ or $h^{1}\left(\mathcal{I}_{E}(k)\right)=0$, i.e. $h^{0}\left(\mathcal{I}_{E}(k)\right)=\max \left\{0,\binom{r+k}{r}-h^{0}\left(\mathcal{O}_{E}(k)\right)\right\}$.

[^0]Theorem 1. Fix integers $r \geq 3, t \geq 0$ and $c \geq 0$ such that $(t, c) \neq(0,0)$. If $r \geq 4$, then assume that the characteristic is zero. Then a general $X \in L(r, t, c)$ has maximal rank.

We prove Theorem 1 for $r=3$ in arbitrary characteristic, while we assume characteristic zero if $r \geq 4$. We also get intermediate results (e.g. $B_{r, k}$) that may be useful as a sample of lemmas which may be proved with + lines. We see + lines as a tool to prove something involving the Hilbert function of unions of curves and fat points. For an alternative approach to such disjoint unions, see Remark 1.

1 Preliminaries

Remark 1. Fix a line $L \subset \mathbb{P}^{n}, n \geq 2$, and a linear system $V \subseteq H^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(k)\right)$. Let $L^{(1)}$ be the first infinitesimal neighborhood of L in \mathbb{P}^{n}, i.e. the closed subscheme of \mathbb{P}^{n} with $\left(\mathcal{I}_{L}\right)^{2}$ as its ideal sheaf. Let A be any + line with L as its support. For any closed subscheme $B \subset \mathbb{P}^{n}$ set $V(-B):=\left\{f \in V: f_{\mid B} \equiv 0\right\}$. The + line A gives independent conditions to V with the only restriction of that L is the support of L if either $V(L)=\{0\}$ or $\operatorname{dim}(V(-A))=\operatorname{dim}(V(-L))-1$. A general + lines with L as its supports does not give independent conditions to V with the only restriction that L is its support if and only if $V(-L) \neq\{0\}$ and $V\left(-L^{(1)}\right)=V(-L)$. Now assume $\operatorname{dim}\left(V\left(-L^{(1)}\right)\right)=\operatorname{dim}(V(-L))-\gamma$ for some $\gamma>0$. The integer γ is the maximal number of tangent vectors $v_{1}, \ldots, v_{\gamma}$ of \mathbb{P}^{n} supported by points of L and imposing independent conditions to $V(-L)$ (with the restriction that their support is a point of L). So if we only need an integer $t+c \geq 2, t+c$ disjoint lines and $x \geq 2$ tangent vectors supported by some of these lines we may decide to put more than one tangent vector on a single line.

Lemma 1. Let $X \subset \mathbb{P}^{r}$ be a closed subscheme such that the nilradical sheaf $\eta \subseteq \mathcal{O}_{X}$ is supported by finitely many points. Set $Y:=X_{\text {red }}$ and fix $k \in \mathbb{N}$. Then:
(1) $\chi\left(\mathcal{O}_{X}(k)\right)=\chi\left(\mathcal{O}_{Y}(k)\right)+\operatorname{deg}(\eta)$;
(2) $h^{0}\left(\mathcal{I}_{X}(k)\right) \leq h^{0}\left(\mathcal{I}_{Y}(k)\right) \leq h^{0}\left(\mathcal{I}_{X}(k)\right)+\operatorname{deg}(\eta)$;
(3) $h^{1}\left(\mathcal{I}_{Y}(k)\right) \leq h^{1}\left(\mathcal{I}_{X}(k)\right) \leq h^{1}\left(\mathcal{I}_{Y}(k)\right)+\operatorname{deg}(\eta)$;
(4) $h^{0}\left(\mathcal{I}_{X}(k)\right)-h^{1}\left(\mathcal{I}_{X}(k)\right)=h^{0}\left(\mathcal{I}_{Y}(k)\right)-h^{1}\left(\mathcal{I}_{Y}(k)\right)-\operatorname{deg}(\eta)$.

Proof. By the definition of the reduction of a scheme the sheaf η is the ideal sheaf of Y in X. We have exact sequence (respectively of \mathcal{O}_{X}-sheaves and of $\mathcal{O}_{\mathbb{P}^{r} \text {-sheaves): }}$

$$
\begin{equation*}
0 \rightarrow \eta \rightarrow \mathcal{O}_{X}(k) \rightarrow \mathcal{O}_{Y}(k) \rightarrow 0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{X}(k) \rightarrow \mathcal{I}_{Y}(k) \rightarrow \eta \rightarrow 0 \tag{2}
\end{equation*}
$$

Since η is supported by finitely many points, we have $h^{i}(\eta)=0$ for all $i>0$ and $\operatorname{deg}(\eta)=h^{0}(\eta)$. Use the cohomology exact sequences of (1) and (2). QED

Remark 2. Fix integers $r \geq 3, t \geq 0$ and $c>0$. Fix $A \in L(r, t, c), D \in$ $L(r, t+c, 0)$ and set $B:=A_{\text {red }}$.
(1) We have $B \in L(r, t+c, 0)$. If A is general in $L(r, t, c)$, then B is general in $L(r, t+c, 0)$.
(2) Assume that D is general in $L(r, t+c, 0)$ and fix a decomposition $D=$ $D_{1} \sqcup D_{2}$ with $D_{1} \in L(r, t, 0)$ and $D_{2} \in L(r, c, 0)$. Let E be a general element of $L(r, 0, c)$ with $E_{r e d}=D_{2}$. Then D_{1} is general in $L(r, t, 0), D_{2}$ is general in $L(r, c, 0)$ and $D_{1} \cup E$ is general in $L(r, t, c)$.

Lemma 1 and Remark 2 give the following result.
Lemma 2. Fix integers $r \geq 3, t \geq 0$ and $c>0$. Fix $X \in L(r, t, c)$ and set $Y:=X_{\text {red }}$. We have $Y \in L(r, t+c, 0)$. If A is general in $L(r, t, c)$, then B is general in $L(r, t+c, 0)$. For each integer $k>0$ we have $h^{1}\left(\mathcal{O}_{X}(k)\right)=0$, $h^{0}\left(\mathcal{O}_{X}(k)\right)=(t+c)(k+1)+c, h^{0}\left(\mathcal{I}_{Y}(k)\right)-c \leq h^{0}\left(\mathcal{I}_{X}(k)\right) \leq h^{0}\left(\mathcal{I}_{Y}(k)\right)$ and $h^{1}\left(\mathcal{I}_{Y}(k)\right) \leq h^{1}\left(\mathcal{I}_{X}(k)\right) \leq h^{1}\left(\mathcal{I}_{Y}(k)\right)+c$.

For all integers $r \geq 3$ and $k \geq 0$ let $H_{r, k}$ denote the following statement:
Assertion $H_{r, k}, r \geq 3, k \geq 0$: $\operatorname{Fix}(t, c) \in \mathbb{N}^{2} \backslash\{(0,0)\}$ and take a general $X \in L(r, t, c)$. If $(k+1) t+(k+2) c \geq\binom{ r+k}{k}$, then $h^{0}\left(\mathcal{I}_{X}(k)\right)=0$. If $(k+1) t+(k+2) c \leq\binom{ r+k}{k}$, then $h^{1}\left(\mathcal{I}_{X}(k)\right)=0$.

Lemma 3. Fix a general $X \in L(r, t, c)$. If $2 t+3 c \leq r+1$, then $h^{1}\left(\mathcal{I}_{X}(1)\right)=$ 0 . If $2 t+3 c \geq r+1$, then $h^{0}\left(\mathcal{I}_{X}(1)\right)=0$.

Proof. Since the case $c=0$ is obvious, we may assume $c>0$ and use induction on c. Fix a general $Y \in L(r, t, c-1)$ and write $X=Y \sqcup A$ with A a general + line of \mathbb{P}^{r}. If $2 t+3(c-1) \geq r-1$, we immediately see that $h^{0}\left(\mathcal{I}_{Y \cup A_{\text {red }}}(1)\right)=0$. Hence $h^{0}\left(\mathcal{I}_{X}(1)\right)=0$. Hence we may assume $2 t+3(c-1) \leq r-2$. Let $M \subset \mathbb{P}^{r}$ be the ($2 t+3 c-4$)-dimensional linear subspace spanned by Y. Since A is general, it spans a plane N such that $M \cap N=\emptyset$. Hence $h^{0}\left(\mathcal{I}_{Y \cup A}(1)\right)=h^{0}\left(\mathcal{I}_{Y}(1)\right)-3=$ $r+1-2 t-3 c$.

Remark 3. Fix an integer $r \geq 3$. By the definition of maximal rank and the irreducibility of each $L(r, t, c)$ Theorem 1 is true for the integer r if and only if all $H_{r, k}$ are true. Since $H_{r, 0}$ is obviously true, to prove Theorem 1 in \mathbb{P}^{r} it is sufficient to prove $H_{r, k}$ for all $k>0$. Lemma 3 says that $H_{r, 1}$ is true.

Remark 4. Fix integers $r \geq 3$ and $k>0$ and suppose you want to prove $H_{r, k}$. Fix $(t, c) \in \mathbb{N}^{2} \backslash\{(0,0)\}$. First assume $t>0$ and $(k+1)(t+c)+c<\binom{r+k}{r}$. Hence $(k+1)(t+c)+(c+1) \leq\binom{ r+k}{r}$. Suppose that $h^{1}\left(\mathcal{I}_{X}(k)\right)=0$ for a general $X \in L(r, t-1, c+1)$. Then $h^{1}\left(\mathcal{I}_{Y}(k)\right)=0$ for a general $Y \in L(r, t, c)$ (Lemma 1). Now assume $c>0$ and $(k+1)(t+c)+c>\binom{r+k}{r}$ and so $(k+1)(t+c)+(c-1) \geq$ $\binom{r+k}{r}$. Suppose that $h^{0}\left(\mathcal{I}_{A}(k)\right)=0$ for a general $A \in L(r, t+1, c-1)$. Then $h^{0}\left(\mathcal{I}_{B}(k)\right)=0$ for a general $B \in L(r, t, c)$. Therefore to prove $H_{r, k}$ it is sufficient to test all (t, c) such that either $(k+1)(t+c)+c=\binom{k+r}{r}$ or $t=0$ and $(k+2) c<\binom{k+r}{r}$ or $c=0$ and $(k+1) t>\binom{r+k}{r}$. We do not need to test the pairs $(t, 0)$ by [6]. Among the pairs $(0, c)$ with $(k+2) c \leq\binom{ r+k}{r}$ it is sufficient to test the ones with $\binom{r+k}{r}-k-1 \leq(k+2) c \leq\binom{ r+k}{r}$.

For all integers $r \geq 3$ and $k \geq 0$ define the integers $m_{r, k}$ and $n_{r, k}$ by the relations

$$
\begin{equation*}
(k+1) m_{r, k}+n_{r, k}=\binom{r+k}{k}, 0 \leq n_{r, k} \leq k \tag{3}
\end{equation*}
$$

Remark 5. Fix integers $r \geq 3$ and $k>0$. Since $m_{r, k} \leq k$ and $k(k+1) \leq$ $\binom{k+3}{3} \leq\binom{ r+k}{r}$, we get $m_{r, k} \geq n_{r, k}$.

For all integers $r \geq 3$ and $k \geq 0$ set $u_{r, k}:=\left\lceil\binom{ r+k}{r} /(k+2)\right\rceil$ and $v_{r, k}:=$ $(k+2) u_{r, k}-\binom{r+k}{r}$.

Notice that

$$
\begin{equation*}
(k+2)\left(u_{r, k}-v_{r, k}\right)+(k+1) v_{r, k}=\binom{r+k}{r} \tag{4}
\end{equation*}
$$

and that $0 \leq v_{r, k} \leq k+1$.
For all integers $k>0$ let $A_{r, k}$ denote the following assertion:
Assertion $A_{r, k}, k>0$: Let $X \subset \mathbb{P}^{r}$ be a general union of $v_{r, k}$ lines and $u_{r, k}-v_{r, k}+$ lines. Then $h^{0}\left(\mathcal{I}_{X}(k)\right)=0$.

2 The proof in \mathbb{P}^{3}

In this section we prove the case $r=3$ of Theorem 1 .
Lemma 4. Fix integers $a \geq 0, b \geq 0, y \geq 0$. Let $Z \subset Q$ be a general union of y tangent vectors. Then $h^{0}\left(\mathcal{I}_{Z}(a, b)\right)=\max \{0,(a+1)(b+1)-2 y\}$ and $h^{1}\left(\mathcal{I}_{Z}(a, b)\right)=\max \{0,2 y-(a+1)(b+1)\}$.

Proof. By the semicontinuity theorem for cohomology ([5], III.12.8) it is sufficient to find a disjoint union $W \subset Q$ of y tangent vectors such that $h^{0}\left(\mathcal{I}_{W}(a, b)\right)=$ $\max \{0,(a+1)(b+1)-2 y\}$. It is obviously sufficient to do it for the integers
$y=\lfloor(a+1)(b+1)\rfloor$ and $y=\lceil(a+1)(b+1) / 2\rceil$. First assume a odd. Let L_{0}, \ldots, L_{b} be $b+1$ distinct lines of type $(0,1)$. Let $E_{i} \subset L_{i}$ be any disjoint union of $(a+1) / 2$ tangent vectors. In this case we may take $W=E_{1} \cup \cdots \cup E_{b}$. In the same way we conclude if b is odd. Hence we may assume that both a and b are even. If $b=0$, then take y tangent vectors of L_{0}. Similarly we conclude if $a=0$. Hence we may assume $a \geq 2$ and $b \geq 2$ and use induction on a. It is obviously sufficient to check the integers y such that $2 y \geq(a+1)(b+1)-1$. Fix a smooth $C \in\left|\mathcal{O}_{Q}(2,2)\right| . C$ is a smooth elliptic curve and in particular it is irreducible. Take a general $S \subset C$ with $\sharp(S)=a+b$. Let $W \subset C$ be the union of the 2-points of C with the points of S as their support, i.e. the degree $2 a+2 b$ effective divisor of C in which each point of S appears with multiplicity two. Let $W^{\prime} \subset Q$ be a union of $y-a-b$ general tangent vectors. Set $Z:=W \cup W^{\prime}$. By the inductive assumption we have $h^{0}\left(\mathcal{I}_{W^{\prime}}(a-2, b-2)\right)=\max \{0,(a-1)(b-1)-2 y+2 a+2 b\}$, i.e. $h^{0}\left(\mathcal{I}_{W^{\prime}}(a-2, b-2)\right)=\max \{0,(a+1)(b+1)-2 y\}$ and $h^{1}\left(\mathcal{I}_{W^{\prime}}(a-2, b-2)\right)=$ $\max \{0,2 y-(a+1)(b+1)\}$. There are only finitely many (four in characteristic $\neq 2$, one or two in characteristic 2) line bundles R with $R^{\otimes 2} \cong \mathcal{O}_{C}(a, b)$. Since C has genus >0 for general S the line bundle $\mathcal{O}_{C}(S)$ is not one of them. Hence $W \notin\left|\mathcal{O}_{C}(a, b)\right|$. Since $\operatorname{deg}(W)=\operatorname{deg}\left(\mathcal{O}_{C}(a, b)\right)$, Riemann-Roch gives $h^{i}\left(C, \mathcal{O}_{C}(a, b)(-W)\right)=0, i=0,1$. Since $\operatorname{Res}_{C}(Z)=W^{\prime}$, the Castelnuovo's sequence gives $h^{i}\left(\mathcal{I}_{Z}(a, b)\right)=h^{i}\left(\mathcal{I}_{W^{\prime}}(a-2, b-2)\right)$.

QED
We have $u_{3, k}:=\lceil(k+3)(k+1) / 6\rceil$ and $v_{3, k}:=(k+2) u_{3, k}-\binom{3+k}{3}$. Write $k=6 m+b$ with $0 \leq b \leq 5$. We have $u_{3,6 m}=6 m^{2}+4 m+1, v_{3,6 m}=3 m+1$, $u_{3,6 m+1}=6 m^{2}+6 m+2, v_{3,6 m+1}=4 m+2, u_{3,6 m+2}=6 m^{2}+8 m+3, v_{3,6 m+2}=$ $3 m+2, u_{3,6 m+3}=6 m^{2}+10 m+4, v_{3,6 m+3}=0, u_{3,6 m+4}=6 m^{2}+12 m+6$, $v_{3,6 m+4}=m+1, u_{3,6 m+5}=6 m^{2}+14 m+8, v_{3,6 m+5}=0$. The construction below works (in particular Lemma 6) only because $u_{3,6 m+7}-v_{3,6 m+7} \geq u_{3,6 m+5}-$ $v_{3,6 m+5}$ (both sides of the inequality are equal to $u_{3,6 m+5}=6 m^{2}+14 m+8$). Without this inequality we would have needed a longer proof. In general we need $u_{3, k+2}-v_{3, k+2} \geq u_{3, k}-v_{3, k}$ for all $k>0$, but only in the case $k=6 m+5$ the right hand side is not much bigger than the left hand side.

Let $Q \subset \mathbb{P}^{3}$ be a smooth quadric surface. We have $\operatorname{Pic}(Q) \cong \mathbb{Z}^{2}$ and we take two distinct, but intersecting, lines contained in Q as a basis of $\operatorname{Pic}(Q)$. We will call $\left|\mathcal{O}_{Q}(1,0)\right|$ and $\left|\mathcal{O}_{Q}(0,1)\right|$ the two rulings of Q and call any $D \in\left|\mathcal{O}_{Q}(a, b)\right|$ a divisor (or a curve) of type (a, b). Fix a line $L \subset Q, P \in L$ and let γ be the set of all + lines $A \subset \mathbb{P}^{3}$ with L as their support and P as the support of the nilradical sheaf of \mathcal{O}_{A}. The set γ is the complement of a point in a two-dimensional projective space (it is $\left.\mathbb{P}\left(T_{P} \mathbb{P}^{3}\right) \backslash \mathbb{P}\left(T_{P} L\right)\right)$. The set γ^{\prime} of all $A \in \gamma$ contained in Q is the line $\mathbb{P}\left(T_{P} Q\right)$ minus the point $\mathbb{P}\left(T_{P} L\right)$. If $A \in \gamma^{\prime}$, then $A \subset Q$ and $\operatorname{Res}_{Q}(A)=\emptyset$. If $A \notin \gamma^{\prime}$, then $A \cap Q=L$ (as schemes) and $\operatorname{Res}_{Q}(A)=\{P\}$ (as schemes). Now take $A \subset Q$, see L as a divisor of Q; we have $\operatorname{Res}_{L}(A)=\{P\}$.

Lemma 5. $A_{r, 1}$ and $A_{3,2}$ are true.
Proof. $A_{r, 1}$ is is true by Remark 3.
We have $v_{3,2}=2$ and $u_{3,2}-v_{3,2}=1$. Take any $B=L_{1} \sqcup L_{2} \sqcup L_{3} \in L(3,3,0)$. B is contained in a unique quadric surface, Q^{\prime}, and Q^{\prime} is a smooth quadric. Let $A \subset \mathbb{P}^{3}$ be a general + line with L_{3} as its support. We have $L_{1} \cup L_{2} \cup A \in L(3,2,1)$. Since $A \nsubseteq Q^{\prime}$, we have $h^{0}\left(\mathcal{I}_{L_{1} \cup L_{2} \cup A}(2)\right)=0$.

Of course, $A_{r, k}$ makes sense only if $u_{r, k}-v_{r, k} \geq 0$; this is the reason why we didn't defined $A_{r, 0}$. By the semicontinuity theorem for cohomology ([5], III.12.8) to prove $A_{3, k}$ it is sufficient to find $A \in L\left(3, v_{3, k}, u_{3, k}-v_{3, k}\right)$ such that $h^{0}\left(\mathcal{I}_{A}(k)\right)=0$. Fix an integer $k>0$ and let $X \subset \mathbb{P}^{3}$ be a general union of $v_{3, k}$ lines and $u_{3, k}-v_{3, k}+$ lines. We have $h^{0}\left(\mathcal{O}_{X}(k)\right)=\left(u_{3, k}-v_{3, k}\right)(k+2)+$ $v_{3, k}(k+1)=\binom{k+3}{3}$, the latter equality being true by the definition of the integer $v_{3, k}$. Hence $h^{1}\left(\mathcal{I}_{X}(k)\right)=h^{0}\left(\mathcal{I}_{X}(k)\right)$.

Lemma 6. $A_{3, k} \Rightarrow A_{3, k+2}$ for all $k>0$.
Proof. We have $0 \leq u_{3, k+2}-u_{3, k} \leq k+2$.
(a) First assume $v_{3, k+2} \geq v_{3, k}$, i.e. $k \equiv 0,3,4,5(\bmod 6)$. Notice that in all cases we have $u_{3, k}-v_{3, k} \leq u_{3, k+2}-v_{3, k+2}$ (we even have equality if $k=6 m+5$, because $u_{3,6 m+7}=6 m^{2}+18 m+14, v_{3,6 m+7}=4 m+6, u_{3,6 m+5}=6 m^{2}+14 m+8$ and $\left.v_{3,6 m+5}=0\right)$. Let $L_{1} \subset Q$ be the union of $v_{3, k+2}-v_{3, k}$ distinct lines of type $(1,0)$ and $L_{2} \subset Q$ the union of $\left(u_{3, k+2}-v_{3, k+2}\right)-\left(u_{3, k}-v_{3, k}\right)$ distinct lines of type $(1,0)$ with $L_{1} \cap L_{2}=\emptyset$. Let $A_{2} \subset Q$ be the union of $\left(u_{3, k+2}-\right.$ $\left.v_{3, k+2}\right)-\left(u_{3, k}-v_{3, k}\right)$ general + lines contained in Q and with the lines of L_{2} as its support. Let $S_{2} \subset L_{2}$ be the support of the nilradical of $\mathcal{O}_{A_{2}}$. Take a general $Y \in$ $L\left(3, v_{3, k}, u_{3, k}-v_{3, k}\right)$. For general Y we have $Y \cap\left(L_{1} \cup L_{2}\right)=\emptyset$ and so $Y \cup A_{2} \cup L_{1} \in$ $L\left(3, v_{3, k+2}, u_{3, k+2}-v_{3, k+2}\right)$. By the semicontinuity theorem for cohomology ([5], III.12.8) it is sufficient to prove $h^{0}\left(\mathcal{I}_{Y \cup A_{2} \cup L_{1}}(k)\right)=0$. Since $\operatorname{Res}_{Q}\left(Y \cup A_{2} \cup L_{1}\right)=$ Y and $h^{0}\left(\mathcal{I}_{Y}(k-2)\right)=0$, it is sufficient to prove $h^{0}\left(Q, \mathcal{I}_{Q \cap\left(Y \cup A_{2} \cup L_{1}\right)}(k+2)\right)=0$. Since $L_{1} \cup L_{2} \subset(Y \cap Q) \cup A_{2} \cup L_{1}$ and $L_{1} \cup L_{2} \in\left|\mathcal{O}_{Q}\left(u_{3, k+2}-u_{3, k}, 0\right)\right|$, it is sufficient to prove $h^{0}\left(Q, \mathcal{I}_{\operatorname{Res}_{L_{1} \cup L_{2}}\left((Y \cap Q) \cup A_{2} \cup L_{1}\right)}\left(k+2-u_{3, k+2}+u_{3, k}, k+2\right)\right)=0$. We have $\operatorname{Res}_{L_{1} \cup L_{2}}\left((Y \cap Q) \cup A_{2} \cup L_{1}\right)=(Y \cap Q) \cup S_{2}$. For general A_{2} the set S_{2} is a set containing a general point of $\left(u_{3, k+2}-v_{3, k+2}\right)-\left(u_{3, k}-v_{3, k}\right)$ general lines of type $(1,0)$ and nothing else. Hence S_{2} may be considered as a general union of $\left(u_{3, k+2}-v_{3, k+2}\right)-\left(u_{3, k}-v_{3, k}\right)$ points of Q. For general Y the set $Y \cap Q$ is a general subset of Q with cardinality $2 u_{3, k}$. Hence it is sufficient to check that $\sharp\left((Y \cap Q) \cup S_{2}\right)=h^{0}\left(Q, \mathcal{O}_{Q}\left(k+2-u_{3, k+2}+u_{3, k}, k+2\right)\right)$, i.e. $2 u_{3, k}+\left(u_{3, k+2}-v_{3, k+2}\right)-\left(u_{3, k}-v_{3, k}\right)=\left(k+3-u_{3, k+2}+u_{3, k}\right)(k+3)$, i.e. $2 u_{3, k}+(k+2)\left(u_{3, k+2}-u_{3, k}\right)=(k+3)^{2}+v_{3, k+2}-v_{3, k}$. Taking the difference of
(4) for the integer $k^{\prime}=k+2$ from (4) and using that $\binom{k+5}{3}-\binom{k+3}{3}=(k+3)^{2}$ we get $2 u_{3, k}+(k+2)\left(u_{3, k+2}-u_{3, k}\right)=(k+3)^{2}+v_{3, k+2}-v_{3, k}$, as wanted.
(b) Now assume $v_{3, k+2}<v_{3, k}$, i.e. $k \equiv 1,2(\bmod 6)$. Take a general $Y \in$ $L\left(3, v_{3, k}, u_{3, k}-v_{3, k}\right)$ and write $Y=E \cup F$ with $E \in L\left(3, v_{3, k+2}, u_{3, k}-v_{3, k}\right)$ and $F \in L\left(3, v_{3, k}-v_{3, k+2}, 0\right)$. For general Y we have $h^{0}\left(\mathcal{I}_{Y}(k)\right)=0$ (by the inductive assumption) and $Y \cap Q$ is a general subset of Q with cardinality $2 u_{3, k}$. For each line $L \subseteq F$ fix one of the point $P_{L} \in L \cap Q$ and call v_{L} a general tangent vector of Q at P_{L}. Let $A_{L}=L \cup v_{L} \subset \mathbb{P}^{3}$ be the + lines with L as its reduction, P_{L} as the support of its nilradical and containing v_{L}. Set $G:=\cup_{L \in F} A_{L}$. Let $M \subset Q$ be a union of $u_{3, k+2}-u_{3, k}$ general lines of type $(1,0)$. Let $N \subset Q$ be a general union of $u_{3, k+2}-u_{3, k}+$ lines with M as the union of their support. We have $E \cup G \cup N \in$ $L\left(3, v_{3, k+2}, u_{3, k+2}-v_{3, k+2}\right)$. Since $\operatorname{Res}_{Q}(E \cup G \cup N)=Y$ and $h^{0}\left(\mathcal{I}_{Y}(k)\right)=0$, it is sufficient to prove $h^{0}\left(Q, \mathcal{I}_{Q \cap(E \cup G \cup N)}(k+2, k+2)\right)$. Since $M \subset Q \cap(E \cup G \cup N)$, it is sufficient to prove $h^{0}\left(Q, \mathcal{I}_{\operatorname{Res}_{M}(Q \cap(E \cup G \cup N))}\left(k+2-u_{3, k+2}+u_{3, k}, k+2\right)\right)=0$. The scheme $G \cap Q$ is a general union δ of $v_{3, k}$ tangent vectors of Q and a general union of $v_{3, k}-v_{3, k+2}$ points of Q; we do not want to use here that general tangent vectors gives the maximal possible number of conditions to any linear system, because it requires characteristic zero ([4], [1], Lemma 1.4); however, since $v_{3, k} \leq 2(k+2) / 3$, it is obvious that $h^{1}\left(Q, \mathcal{I}_{\delta}\left(k+2-u_{3, k+2}+u_{3, k}, k+2\right)\right)=0$; alternatively, use Lemma 4 . Set $S:=\operatorname{Res}_{M}(N)$. The set S contains one point for each line of M and it is general with this condition. Since M is a general union of $u_{3, k+2}-u_{3, k}$ lines of type $(1,0), S$ may be considered as a general subset of Q with its cardinality. The set $E \cap Q$ is a general subset of Q with cardinality $2 u_{3, k}-2 v_{3, k+2}$. Since $2\left(v_{3, k}-v_{3, k+2}\right)+\left(v_{3, k}-v_{3, k-2}\right)+\left(u_{3, k+2}-u_{3, k}\right)+2\left(u_{3, k}-\right.$ $\left.v_{3, k+2}\right)=\left(k+3-u_{3, k+2}+u_{3, k}\right)(k+3)$, we are done.

Lemma 7. For all integers $k>0$ and $c>0$ such that $c(k+2) \leq\binom{ k+3}{3}$ we have $h^{1}\left(\mathcal{I}_{X}(k)\right)=0$ for a general $X \in L(3,0, c)$.

Proof. If $k=1$, then $c=1$. The lemma is obvious in this case.
Now assume $k=2$. It is sufficient to do the case $c=2$. Take $A=A_{1} \cup A_{2} \in$ $L(3,0,2)$ with L_{1} and L_{2} two different lines of type $(1,0)$ of $Q, A_{1} \subset Q$ and general with these restrictions, $A_{2} \nsubseteq Q$ and general among the + lines supported by Q. We get $h^{0}\left(Q, \mathcal{O}_{Q \cap A}(2)\right)=2$ and $h^{0}\left(\mathcal{I}_{\operatorname{Res}_{Q}(A)}\right)=0$, because $\operatorname{Res}_{Q}(A) \neq \emptyset$.

From now on we assume $k \geq 3$. Lemmas 5 and 6 give that $A_{3, k-2}$ and $A_{3, k}$ are true. We have $c \leq u_{3, k}$ and $c \leq u_{3, k}-1$ if $v_{3, k}>0$. If $c \leq u_{3, k}-v_{3, k}$, then we may use $A_{3, k}$. In particular we are done if $v_{3, k}=0$. Hence we may assume $v_{3, k}>0$. In this case it is sufficient to do the case $c=u_{3, k}-1$. Fix a general $Y \in L\left(3, v_{3, k-2}, u_{3, k-2}-v_{3, k-2}\right)$. We have $h^{i}\left(\mathcal{I}_{Y}(k-2)\right)=0, i=0,1$, by $A_{3, k-2}$. We mimic part (b) of the proof of Lemma 6. Write $Y=E \sqcup F$ with $E \in L\left(3,0, u_{3, k}-v_{3, k}\right)$ and $F \in L\left(3, v_{3, k}, 0\right)$. For each line $L \subseteq F$ fix
one of the point $P_{L} \in L \cap Q$ and call v_{L} a general tangent vector of Q at P_{L}. Let $A_{L}=L \cup v_{L} \subset \mathbb{P}^{3}$ be the + line with L as its reduction, P_{L} as the support of its nilradical and containing v_{L}. Set $G:=\cup_{L \in F} A_{L}$. Let $M \subset Q$ be a union of $u_{3, k+2}-u_{3, k}-1$ general lines of type $(1,0)$. Let $N \subset Q$ be a general union of $u_{3, k+2}-u_{3, k}-1+$ lines with M as the union of their support. Take $X:=E \cup G \cup N \in L\left(3,0, u_{3, k}-1\right)$. Since $v_{3, k} \leq k+1$, as in part (b) of the proof of Lemma 6 we get $h^{1}\left(Q, \mathcal{I}_{X \cap Q}(k)\right)=0$ and hence $h^{1}\left(\mathcal{I}_{X}(k)\right)=0$. QED

Proof of Theorem 1 for $r=3$: It is sufficient to prove $H_{3, k}$ for all $k \geq 2$ (Remark 3). Fix an integer $k>0$. It is sufficient to check the Hilbert function in degree k of a general element of $L(3, t, c)$ with either $t=0$ and $(k+2) c \leq\binom{ k+3}{3}$ or $(k+1) t+(k+2) c=\binom{k+3}{3}$ (Remark 4). By Lemma 7 it is sufficient to check the pairs (t, c) with $t>0$ and $(k+1) t+(k+2) c=\binom{k+3}{3}$, i.e. (since the integers $k+1$ and $k+2$ are coprime) the pairs (t, c) with $t=v_{3, k}+(k+2) \alpha$, $c=u_{3, k}-v_{3, k}-(k+1) \alpha$ for some non-negative integer α such that $(k+1) \alpha \leq$ $u_{3, k}-v_{3, k}$. By [6] we may assume $c>0$. By Lemma 6 we may assume $t>v_{3, k}$. Since $v_{3,2}=2, u_{3,2}=3$ and $A_{3,2}$ is true (Lemma 5), we may assume $k \geq 3$. By induction on k we may assume that $h^{i}\left(\mathcal{I}_{W}(k-2)\right)=0, i=0$, 1 , for a general $W \in L\left(3, t^{\prime}, c^{\prime}\right)$ for all non-negative integers t^{\prime}, c^{\prime} such that $(k-1) t^{\prime}+k c^{\prime}=\binom{k+1}{3}$. Fix a general $Y \in L\left(3, m_{3, k-2}-n_{3, k-2}, n_{3, k-2}\right)$. We have $h^{i}\left(\mathcal{I}_{Y}(k-2)\right)=0$, $i=0,1$.

Claim 1: We have $t+c \geq m_{3, k-2}$.
Proof of Claim 1: Assume $t+c \leq m_{3, k-2}-1$, i.e. assume $(k-1)(t+c)+$ $k-1 \leq\binom{ k+1}{3}$. Since $(k+1) t+(k+2) c=\binom{k+3}{3}$, we get $(k+2) /(k-1)>$ $\binom{k+3}{3} /\binom{k+1}{3}=(k+3)(k+2) / k(k-1)$, a contradiction.

Claim 2: We have $c \geq n_{3, k-2}$.
Proof of Claim 2: If $k-2 \equiv 0,1(\bmod 3)$, then $n_{3, k-2}=0$. If $k-2 \equiv 2$ $(\bmod 3)$, then $n_{3, k-2}=(k-1) / 3$. Hence we may assume $k \equiv 4(\bmod 3)$. Since $n_{3, k}=0, c>0$ and $(k+1) t+(k+2) c=\binom{k+3}{3}$, we get $c=\beta(k+1)$ for some integer $\beta>0$. Hence $c \geq k+1>n_{3, k-2}$.

Notice that $m_{3, k-2} \geq n_{3, k-2}$. Fix a general $Y \in L\left(3, m_{3, k-2}-n_{3, k-2}, n_{3, k-2}\right)$. By the inductive assumption we have $h^{i}\left(\mathcal{I}_{Y}(k-2)\right)=0, i=0,1$. Set $e:=$ $t+c-m_{3, k-2}$. Claim 1 gives $e \geq 0$. Take a general union $M \subset Q$ of e lines of type $(1,0)$.
(a) Assume $c-n_{3, k-2} \leq e$. Claim 2 gives $c-n_{3, k-2} \geq 0$. Write $M=$ $M_{1} \sqcup M_{2}$ with M_{2} a union of $c-n_{3, k-2}$ lines and M_{1} a union of $e-\left(c-n_{3, k-2}\right)$ lines. Let $A_{2} \subset Q$ be a general union of $c-n_{3, k-2}+$ lines with the lines in M_{2} as their support. Let S_{2} be the support of the nilpotent sheaf of A_{2}. Since A_{2} is general, S_{2} is obtained taking for each line $L \subseteq M_{2}$ a general point of L. Set $X:=Y \cup M_{1} \cup A_{2}$. Since $X \in L(3, t, c)$, it is sufficient to prove that
$h^{1}\left(\mathcal{I}_{X}(k)\right)=0$. Since $\operatorname{Res}_{Q}(X)=Y$ and $h^{1}\left(\mathcal{I}_{Y}(k-2)\right)=0$, it is sufficient to prove that $h^{1}\left(Q, \mathcal{I}_{X \cap Q}(k)\right)=0$. Since $\operatorname{Res}_{M}(X \cap Q)=(Y \cap Q) \cup S_{2}$, it is sufficient to prove that $h^{1}\left(Q, \mathcal{I}_{(Y \cap Q) \cup S_{2}}(k-e, k)\right)=0$. Since M_{2} is general and for each line $L \subset M_{2}$ the set $S_{2} \cap L$ is a general point of L, S_{2} is a general subset of Q with cardinality $c-n_{3, k-2}$. Since Y is general, the set $(Y \cap Q) \cup S_{2}$ is a general subset of Q of cardinality $2 m_{3, k-2}+c-n_{3, k-2}$. Since $(k-1) m_{3, k-2}+n_{3, k-2}=\binom{k+1}{3}$, $(k+1) t+(k+2) c=\binom{k+3}{3},\binom{k+3}{3}-\binom{k+1}{3}=(k+1)^{2}$ and $e=t+c-m_{3, k-2}$, we have $2 m_{3, k-2}+(k+1) e+c-n_{3, k-2}=(k+1)^{2}$, i.e. $\sharp\left(S_{2} \cup(Y \cap Q)\right)=$ $(k+1)(k+1-e)=h^{0}\left(Q, \mathcal{O}_{Q}(k-e, k)\right)$. Hence $h^{i}\left(Q, \mathcal{I}_{(Y \cap Q) \cup S_{2}}(k-e, k)\right)=0$, $i=0,1$.
(b) Now assume $c-n_{3, k-2}>e$. For each line $R \subseteq M$ fix a general $O_{R} \in R$ and call v_{R} a general tangent vector of Q with O_{R} as its support. Set $R^{+}:=R \cup v_{R}, M^{+}:=\cup_{R \subseteq M} R^{+}$and $S:=\cup_{R \subseteq M} O_{R}$. Since M is general and each O_{R} is general in R, S is a general subset of Q with cardinality e. We have $M^{+} \subset Q$ and hence $M^{+} \cap Q=M^{+}$and $\operatorname{Res}_{Q}\left(M^{+}\right)=\emptyset$. Set $g:=$ $c-n_{3, k-2}-e$. Since $e=t+c-m_{3, k-2}$, we get $m_{3, k-2}-n_{3, k-2}=g+t>t$. Write $Y=Y_{1} \sqcup Y_{2}$ with $Y_{2} \in L\left(3,0, n_{3, k-2}\right)$ and $Y_{1} \in L\left(3, m_{3, k-2}-n_{3, k-2}, 0\right)$. Since $m_{3, k-2}-n_{3, k-2}=g+t \geq t$, we may write $Y_{1}=Y_{3} \sqcup Y_{4}$ with $Y_{3} \in L(3, t, 0)$ and $Y_{4} \in L(3, g, 0)$. For each line $L \subseteq Y_{4}$ fix one of the two points, say O_{L}, of $L \cap Q$ and let w_{L} be a general tangent vector of Q with O_{L} as its support; set $L^{+}:=$ $L \cup w_{L} \in L(3,0,1)$. Set $Y_{4}{ }^{+}:=\cup_{L \subseteq Y_{4}} L^{+}$and $X^{\prime}:=M^{+} \cup Y_{4}^{+} \cup Y_{2} \cup Y_{3}$. Since $X^{\prime} \in L(3, t, c)$, it is sufficient to prove that $h^{1}\left(\mathcal{I}_{X^{\prime}}(k)\right)=0$. Since $\operatorname{Res}_{Q}\left(X^{\prime}\right)=Y$ and $h^{1}\left(\mathcal{I}_{Y}(k-2)\right)=0$, by the Castelnuovo's sequence it is sufficient to prove that $h^{1}\left(Q, \mathcal{I}_{X^{\prime} \cap Q}(k)\right)=0$. The scheme $X^{\prime} \cap Q$ is the union of M^{+}and $\left(Y_{3} \cup Y_{4}{ }^{+}\right) \cap Q$. We have $\operatorname{Res}_{M}\left(M^{+} \cup\left(Y_{3} \cup Y_{4}^{+}\right) \cap Q\right)=S \cup\left(\left(Y \backslash Y_{4}\right) \cap Q\right) \cup \bigcup_{L \subseteq Y_{4}} w_{L}$. Since $Y \cap Q$ is a general subset of Q with cardinality $2 m_{3, k-2}$, the scheme $Z:=$ $S \cup\left(\left(Y \backslash Y_{4}\right) \cap Q\right) \cup \bigcup_{L \subseteq Y_{4}} w_{L}$ is a general union of g tangent vectors of Q and $e+2 m_{3, k-2}-g$ points of Q. By the Castelnuovo's sequence it is sufficient to prove that $h^{1}\left(Q, \mathcal{I}_{Z}(k-e, k)\right)=0$. By Lemma 4 it is sufficient to check that $\operatorname{deg}(Z) \leq(k-e+1)(k+1)$. By (3) for the integers $r=3$ and $k^{\prime}=k-2$ and the equality $(k+1) t+(k+2) c=\binom{k+3}{3}$ we get $\operatorname{deg}(Z)=(k+1)(k-e+1)$. QQED

3 When $r>3$

In this section we prove Theorem 1 for all integers $r \geq 4$. For numerical reasons this is easier than in the case $r=3$ (as it was in [6] and [2]). The proof in characteristic zero is very short and we will only give it.

Lemma 8. For all integers $r \geq 3$ and $k \geq 2$ we have $m_{r, k-1}<u_{r, k}$.

Proof. We have $k m_{r, k-1} \leq\binom{ k+r-1}{r}$ and $(k+2) u_{r, k} \geq\binom{ r+k}{r}$. Note that

$$
\binom{r+k}{r} /\binom{r+k-1}{r}=(r+k) / k
$$

and that $(r+k) k>(k+2) k$ for all $r \geq 3$.
We need the following assumption $B_{r, k}$:
$B_{r, k}, r \geq 4, k>0$. Fix a hyperplane $H \subset \mathbb{P}^{r}$. There is $X \in L\left(r, m_{r, k}-\right.$ $\left.n_{r, k}, n_{r, k}\right)$ such that the support of the nilradical sheaf of X is contained in H and $h^{0}\left(\mathcal{I}_{X}(k)\right)=0$.

For all $X \in L\left(r, m_{r, k}-n_{r, k}, n_{r, k}\right)$ we have $h^{0}\left(\mathcal{O}_{X}(k)\right)=\binom{r+k}{r}$ and so $h^{1}\left(\mathcal{I}_{X}(k)\right)=h^{0}\left(\mathcal{I}_{X}(k)\right)$.

Lemma 9. For all integers $r \geq 4$ and $k \geq 2$ we have $m_{r, k} \geq m_{r, k-1}$.
Proof. We have

$$
\begin{equation*}
m_{r, k-1}+(k+1)\left(m_{r, k}-m_{r, k-1}\right)+n_{r, k}-n_{r, k-1}=\binom{r+k-1}{r-1} \tag{5}
\end{equation*}
$$

Assume $m_{r, k} \leq m_{r, k-1}-1$. Since $n_{r, k}-n_{r, k-1} \leq k$, (6) gives

$$
m_{r, k-1}-1 \geq\binom{ r+k-1}{r-1}
$$

Since $k m_{r, k-1} \leq\binom{ r+k-1}{r}$ and $k\binom{r+k-1}{r-1}=r\binom{r+k-1}{r}$, we get $-k \geq(r-1)\binom{r+k-1}{r-1}$, a contradiction.

Lemma 10. Fix an integer $r \geq 4$ and assume that Theorem 1 is true in \mathbb{P}^{r-1}. Then $B_{r, k}$ is true for all $k>0$.

Proof. $B_{r, 1}$ is true by Remark 3. Hence we may assume $k \geq 2$ and that $B_{r, k-1}$ is true. Fix $Y \in L\left(r, m_{r, k-1}-n_{r, k-1}, n_{r, k-1}\right)$ such that the support of the nilradical sheaf of Y is contained in H and $h^{0}\left(\mathcal{I}_{Y}(k-1)\right)=0$. By the semicontinuity theorem for cohomology ([5], III.12.8) we may assume that Y is general among the elements of $L\left(r, m_{r, k-1}-n_{r, k-1}, n_{r, k-1}\right)$ whose nilradical sheaf is supported by points of H. Hence we may assume that no irreducible component of $Y_{\text {red }}$ is contained in H, that $Y_{r e d}$ is a general subset of H with cardinality $m_{r, k-1}$ and that for each + line $A \subset Y$, say $A=L \cup v_{L}$, the tangent vector v_{L} of A is not contained in H. The latter assumption implies $Y_{\text {red }} \cap H=Y \cap H$ (schemetheoretic intersection) and $\operatorname{Res}_{H}(Y)=Y$. We have $m_{r, k} \geq m_{r, k-1}$ (Lemma $9)$.
(a) In this step we assume $n_{r, k}<n_{r, k-1}$. Let $F \subset H$ be a general union of $m_{r, k}-m_{r, k-1}$ lines, with the only restriction that exactly $n_{r, k-1}-n_{r, k}$ of them contain a point of $Y_{r e d} \cap H$. We have $m_{r, k-1}-n_{r, k-1}-\left(n_{r, k-1}-n_{r, k}\right)+$ $m_{r, k}-m_{r, k-1}=m_{r, k}-2 n_{r, k-1}+n_{r, k}$. The scheme $Y \cup F$ is a disjoint union of $n_{r, k-1}-n_{r, k}$ sundials, $n_{r, k}+$ lines and $m_{r, k}-2 n_{r, k-1}+n_{r, k}$ lines. Since a sundial is a flat limit of a family of elements of $L(r, 2,0)([2])$, it is sufficient to prove $h^{0}\left(\mathcal{I}_{Y \cup F}(k)\right)=0$. Since the set $Y_{\text {red }} \cap H$ is general in H, F may be considered as a general union of lines. Hence F has maximal rank. By (5) we have $h^{1}\left(H, \mathcal{I}_{F}(k)\right)=0$ and $h^{0}\left(H, \mathcal{I}_{F}(k)\right)=m_{r, k-1}-n_{r, k-1}+n_{r, k}$. Since for fixed $Y_{\text {red }} \cap H \cap F$ we may deform the other components of Y so that the other $m_{r, k-1}-n_{r, k-1}+n_{r, k}$ points of $Y_{r e d} \cap(H \backslash F)$ are general in H, then $h^{i}\left(H, \mathcal{I}_{H \cap(Y \cup F)}(k)\right)=0$. Castelnuovo's sequence gives $h^{0}\left(\mathcal{I}_{Y \cup F}(k)\right)=0$.
(b) In this step we assume $n_{r, k} \geq n_{r, k-1}$ and $m_{r, k}-n_{r, k} \geq m_{r, k-1}-$ $n_{r, k-1}$. Let $E \subset H$ be a general union of $m_{r, k}-n_{r, k}-\left(m_{r, k-1}-n_{r, k-1}\right)$ lines and $n_{r, k}-n_{r, k-1}+$ lines. We have $Y \cup E \in L\left(r, m_{r, k}-n_{r, k}, n_{r, k}\right)$ and the support of the nilradical sheaf of $Y \cup E$ is contained in H. By (5) we have $h^{0}\left(E, \mathcal{O}_{E}(k)\right)+\operatorname{deg}(Y \cap H)=\binom{r+k-1}{r-1}$. Since Theorem 1 is true in \mathbb{P}^{r-1}, we have $h^{1}\left(H \cdot \mathcal{I}_{E}(k)\right)=0$. Since $Y \cap H$ is a general union of $m_{r, k-1}$ points of H, (5) implies $h^{i}\left(H, \mathcal{I}_{(Y \cup E) \cap H}(k)\right)=0$.
(c) In this step we assume $n_{r, k} \geq n_{r, k-1}$ and $m_{r, k}-n_{r, k}<m_{r, k-1}-n_{r, k-1}$. Therefore $g:=n_{r, k}-n_{r, k-1}-\left(m_{r, k}-m_{r, k-1}\right)>0$. Since $n_{r, k} \leq k$, we have $g \leq k$. Since $k m_{r, k-1}+n_{r, k-1}=\binom{r+k-1}{r}$ and $n_{r, k-1} \leq k-1$, we have $g \leq m_{r, k-1}-n_{r, k-1}$. Take a general union $G \subset H$ of $m_{r, k}-m_{r, k-1}+$ lines. Since Theorem 1 is assumed to be true in \mathbb{P}^{r-1}, G has maximal rank. By (5) we have $h^{1}\left(H, \mathcal{I}_{G}(k)\right)=0$ and $h^{0}\left(H, \mathcal{I}_{G}(k)\right)=m_{r, k-1}+g$. Write $Y=Y_{1} \sqcup Y_{2} \sqcup Y_{3}$ with $Y_{3} \in L\left(r, 0, n_{r, k-1}\right)$, $Y_{1} \in L\left(r, m_{r, k-1}-n_{r, k-1}, 0\right)$ and $Y_{2} \in L(r, g, 0)$. For each line $L \subseteq Y_{2}$ let v_{L} be the general tangent vector of H with $L \cap H$ as its support. Set $A_{2}:=\cup_{L \subseteq Y_{2}}\left(L \cup v_{L}\right)$. Since $U:=Y_{1} \cup A_{2} \cup Y_{3} \cup G \in L\left(r, m_{r, k}-n_{r, k}, n_{r, k}\right)$, it is sufficient to prove that $h^{0}\left(\mathcal{I}_{U}(k)\right)=0$. We have $\operatorname{Res}_{H}(U)=Y$, because each v_{L} is contained in H. The scheme $U \cap H$ is the union of $G, m_{r, k-1}-n_{r, k-1}-g$ general points of H and g general tangent vectors of H. Hence $h^{i}\left(H, \mathcal{I}_{U \cap H}(k)\right)=0, i=0,1$ ([1], Lemma 1.4).

Proof of Theorem 1 for $r>3$: Let $H \subset \mathbb{P}^{r}$ be a hyperplane. We use induction on r, the starting case being the one with $r=3$ proved in section 2. Hence we assume Theorem 1 in $H \cong \mathbb{P}^{r-1}$ for all $L\left(r-1, t^{\prime}, c^{\prime}\right)$. By Remark 3 it is sufficient to prove $H_{r, k}$ for all $k>0 . H_{r, 1}$ is true (Remark 3). Hence we may assume $k \geq 2$ and that $H_{r, k-1}$ is true. By Remark 4 it is sufficient to prove $H_{r, k}$ for the pairs (t, c) such that either $t=0$ and $\binom{r+k}{r}-k-1 \leq c(k+2) \leq\binom{ r+k}{r}$ or $t(k+1)+(k+2) c=\binom{r+k}{r}$ and $c>0$. If $\binom{r+k}{r}-k-1 \leq c(k+2) \leq$
$\binom{r+k}{r}$, then either $v_{r, k}=0$ and $u_{r, k}=c$ or $v_{r, k}>0$ and $c=u_{r, k}-1$. If $t(k+1)+(k+2) c=\binom{r+k}{r}$, then $t+c \geq u_{r, k}$. Hence in both cases we have $m_{r, k-1} \leq t+c$ (Lemma 8). Since $k \geq 2$, we have $m_{r, k-1} \geq n_{r, k-1}$ (Remark 5). Fix a general $Y \in L\left(r, m_{r, k-1}-n_{r, k-1}, n_{r, k-1}\right)$. $H_{r, k-1}$ implies $h^{i}\left(\mathcal{I}_{Y}(k-1)\right)=0$, $i=0,1$. The set $H \cap Y$ is a general subset of H with cardinality $m_{r, k-1}$. We have $\operatorname{Res}_{H}(Y)=Y$. We have

$$
\begin{equation*}
m_{r, k+1}+(k+1)\left(t+c-m_{r, k-1}\right)+c-n_{r, k-1} \leq\binom{ t+k-1}{r-1} \tag{6}
\end{equation*}
$$

and the difference among the right hand side and the left hand side is at most $k+1$.
(a) In this step we assume $c \geq n_{r, k-1}$ (this is always the case if $t=0$). Set $e:=t+c-m_{r, k-1}$.
(a1) First assume $c-n_{r, k-1} \leq e$. Let $E \subset H$ be a general union of $c-n_{r, k-1}$ + lines and $e-c+n_{r-1, k}$ lines. By the inductive assumption on r the scheme E has maximal rank in $H \cong \mathbb{P}^{r-1}$. By (6) we have $\sharp(Y \cap H)+h^{0}\left(\mathcal{O}_{E}(k)\right) \leq\binom{ k+r+1}{r-1}$. Since E has maximal rank in H, we get $h^{1}\left(H, \mathcal{I}_{E}(k)\right)=0$. Since $\sharp(Y \cap H)+$ $h^{0}\left(\mathcal{O}_{E}(k)\right) \leq\binom{ k+r+1}{r-1}$ and $Y \cap H$ is general in H, we get $h^{1}\left(H, \mathcal{I}_{(Y \cap H) \cup H}(k)\right)=0$. Since $h^{1}\left(\mathcal{I}_{Y}(k-1)\right)=0$, the Castelnuovo's sequence gives $h^{1}\left(\mathcal{I}_{Y \cup E}(k)\right)=0$, concluding the proof in this case.
(a2) Now assume $c-n_{r, k-1}>e$. Let $F \subset H$ be a general union of e +lines of H. Set $g:=c-n_{r, k-1}-e=m_{r, k-1}-n_{r, k-1}-t$. We have $t \geq 0$, $g>0$ and $t+g=m_{r, k-1}-n_{r, k-1}$. Write $Y=Y_{1} \sqcup Y_{2}$ with Y_{1} a general element of $L\left(r, m_{r, k-1}-n_{r, k-1}, 0\right)$ and Y_{2} a general element of $L\left(r, 0, n_{r, k-1}\right)$. Write $Y_{1}=Y_{3} \sqcup Y_{4}$ with $Y_{4} \in L(r, g, 0)$ and $Y_{3} \in L(r, t, 0)$. For each line $L \subseteq Y_{4}$ let v_{L} be a general tangent vector of H with $L \cap H$ as its support. Set $L^{+}:=L \cup v_{L}$ and $Y_{4}{ }^{+}:=\cup_{L \subseteq Y_{4}} L^{+}$. Set $X^{\prime}:=F \cup Y_{2} \cup Y_{4}{ }^{+} \cup Y_{3}$. The scheme X^{\prime} is a disjoint union of t lines and $c+$ lines. Since $\operatorname{Res}_{H}\left(X^{\prime}\right)=Y$, by the Castelnuovo's sequence it is sufficient to prove that $h^{1}\left(H, \mathcal{I}_{X^{\prime} \cap H}(k)\right)=0$. The scheme $X^{\prime} \cap H$ is a general union of F (i.e. of e general $+\operatorname{lines}$), $\operatorname{deg}\left(Y_{3}\right)+\operatorname{deg}\left(Y_{2}\right)$ general points of H and $\operatorname{deg}\left(Y_{4}\right)$ general tangent vectors of H. Since $F \subset H$ has maximal rank in H and the tangent vectors are general in H, the scheme $X^{\prime} \cap H$ has maximal rank in H ([4], [1], Lemma 1.4). We have $\operatorname{deg}\left(Y_{3}\right)+\operatorname{deg}\left(Y_{2}\right)+2 \operatorname{deg}\left(Y_{4}\right)=$ $m_{r, k-1}+m_{r, k-1}-n_{3, k-1}-t$. By (6) we have $m_{r, k-1}+g+(k+2) e \leq\binom{ r+k-1}{r-1}$. Hence $h^{1}\left(H, \mathcal{I}_{X^{\prime} \cap H}(k)\right)=0$.
(b) Now assume $c<n_{r, k-1}$. In particular we have $n_{r, k-1}>0$. Since $n_{r, k-1} \leq k-1$, we have $t=m_{r, k}-n_{r, k}$ and $c=n_{r, k}$. Lemma 10 gives $h^{i}\left(\mathcal{I}_{X}(k)\right)=$ $0, i=0,1$, for a general $X \in L(r, t, c)$.

Acknowledgements. I want to thank the referee for very useful comments.

References

[1] A. Bernardi, M. V. Catalisano, A. Gimigliano, M. IdÀ: Secant varieties to osculating varieties of Veronese embeddings of \mathbb{P}^{n}, J. Algebra, 321, n. 3, (2009), 982-1004.
[2] E. Carlini, M. V. Catalisano, A. V. Geramita: 3-dimensional sundials, Cent. Eur. J. Math., 9, n. 5, (2011), 949-971.
[3] E. Carlini, M. V. Catalisano, A. V. Geramita: Reduced and non-reduced linear spaces: lines and points, arXiv: 1308.0796.
[4] C. Ciliberto, R. Miranda: Interpolations on curvilinear schemes, J. Algebra, 203, n. 2, (1998), 677-678.
[5] R. Hartshorne: Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[6] R. Hartshorne, A. Hirschowitz: Droites en position générale dans \mathbb{P}^{n}, Algebraic Geometry, Proceedings, La Rábida 1981, 169-188, Lect. Notes in Math. 961, Springer, Berlin, 1982.

[^0]: ${ }^{\mathrm{i}}$ This work is partially supported by MIUR and GNSAGA (INDAM)
 http://siba-ese.unisalento.it/ © 2015 Università del Salento

